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ESTIMATION OF PROBABILITIES OF LINEAR INEQUALITIES
FOR INDEPENDENT ELLIPTIC RANDOM VECTORS

By MARIANNA PENSKY
University of Central Florida, USA

SUMMARY. The goal of the present paper is to derive the maximum likelihood es-
timators of probabilities P(A’X + B'Y + C > 0) where independent vectors X and Y
have elliptical distributions. Also, a technique of Bayesian estimation is proposed which
enables one to avoid high-dimensional integration and, also, to utilize results of Bayesian
analysis conducted earlier. Estimators for familiar classes of elliptical distributions are

constructed.

1. Introduction

The stress-strength model has numerous applications in reliability, eco-
nomics, clinical trials, genetics, etc. Mathematically, the problem reduces
to estimation of the probability of the inequality P(X < Y) where X and
Y have known or unknown distributions. The problem was pioneered by
Birnbaum and McCarty (1958) and was the topic of about 150 publications
in the last four decades. Although estimators have been derived for various
distributions of X and Y, majority of papers deal with one of the following
three situations: distributions of X and Y are unspecified, X and Y are ex-
ponential random variables, and X and Y have normal distributions. Some
generalizations of the original stress-strength model have also been studied
(see, for example, Gupta and Gupta (1988), Gupta and Gupta (1990), Reiser
and Faraggi (1994), Rinco (1983), Yang and Mo (1985)).

The present paper investigates one more generalization of the stress-
strength model where instead of a two-component vector (X,Y’) we have two
independent k; and ky-component random vectors X = (X, ..., X(*¥1)) and
Y = (YU, .., Y*2)) and we are interested in estimation of the probability
P(A’X+B'Y + C > 0) where A and B are a known k; and ks-dimensional
vectors and C' is a known scalar.
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Estimation of P(A'’X+B'Y +C > 0) is very important in many practical
situations. Consider a technical system which is functioning under a variety
of random stresses X0, § = 1,--- ky, such that the total stress on the system
is given by a known linear combinations of the stresses A’X. This situation
occurs when, for example, X () is the density of the vehicles of type 7 on the
bridge (cars, buses, trucks and so on) and A® is the damage (stress) caused
by a vehicle of type 7. If the strength of the system is provided by several
components (for example, special steel or concrete, extra strong supports
for a bridge), then the strength of the system can be viewed as a linear
combination of some random components Y, ¢ = 1,... ko, that is B'Y.
In this model, stress X and strength Y are independent. Reliability of the
system is the probability that strength exceeds stress P(A’X < B'Y). If we
are interested in estimating the probability that strength exceeds stress by
a fixed value C, the problem reduces to estimating P(A’X +B’'Y 4+ C > 0).

The above problem and its minor variations were considered in the case
when X and Y are normally distributed random vectors by Pensky (1982),
Gupta and Gupta (1990) and Ivshin and Lumelskii (1994). It is easy to
see that with k1 = ko = 1, C = 0, A = (—1) and B = 1, the problem
reduces to the estimation of probability P(X < Y) for independent random
variables X and Y, while k; = 2, A = (—1,1) and B = 0 allows one to
estimate P(X < Y') for dependent variables X and Y. Pensky (1982) studied
estimation of P(A’X+B’Y +C > 0) when B = 0. Gupta and Gupta (1990)
investigated a particular case of estimating P(A'X 4+ C' > 0) with C' = 0:
although their model is written as P(A’X > B’Y), the normally distributed
vectors X and Y are assumed to be dependent, so that vectors X and Y
can be combined into one vector X.

However, all results mentioned above cover only the situation when X
and Y are normally distributed random vectors which may not cover the
variety of situations in practice. The purpose of the present paper is to
derive estimators for probabilities P(A’X + B'Y + C > 0) in the situation
when vectors X and Y have elliptical distributions with the pdfs of the forms

pi(200;, %)) = =72 f; (2 - 0,)S; (2 - 0))), =12 (L)

where X; is a positive definite symmetric k; x k; matrix and f;(z) > 0 is
such that

i [T =1, =12 (1.2)
2 i(z)dz =1, =1,2. .
I(ki/2) Jo / !

Here and in what follows, we denote vectors and matrices by bold characters,
W' is the transpose of matrix W, |[W/| is the determinant of W, tr(W) is
the trace of W.
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Elliptical distributions (1.1) is a class of symmetric distributions which
has been thoroughly studied by Anderson, Fang and Hsu (1986), Fang, Kotz
and Ng (1990), Sutradhar (1986), Sutradhar and Ali (1989) among others.
It is easy to see that multivariate normal distribution is a particular case of
(1.1) with f;(2) = (2r)7%i/2 exp{—2/2}, z > 0. In this sense, the present
paper continues the line of investigation devoted to the case when X and Y
are normally distributed (see, for example, Downton (1973), Govindarajulu
(1967), Gupta and Gupta (1990), Gupta et al. (1999), Ivshin and Lumelskii
(1994), Pensky (1982), Nandi and Aich (1994, 1996), Reiser and Guttman
(1986, 1987), Reiser and Fraggi (1994), Rinco (1983), Rukhin (1986), Singh
(1991), Weerandi and Johnson (1992), Woodward and Kelley (1977), Yang
and Mo (1985)). The last example in Section 4 deals with the case when
X and Y are normally distributed random vectors. Although the maximum
likelihood estimator (MLE) and the unbiased estimator for P(A,B,C) in
the case of the normal distribution have been derived previously by other
authors (Anderson, Fang and Hsu (1986), Ivshin and Lumelskii (1994)) we
felt that it may be interesting from didactic point of view to show how easily
they follow from the general theory developed in the paper. The Bayes
estimator of P(A’X + B'Y + C > 0) which is based on the inverse Wishart
prior, to the best of our knowledge, is original. The only Bayes estimator
known to the author is the one of Enis and Geisser(1971). The latter one,
based on Jeffreys’s noninformative prior, is a particular case of the Bayes
estimator obtained in the present paper.

As far as we know, no results on estimation of P(A’X + B'Y + C > 0)
have been obtained for the elliptical distribution of a general form. Also,
no estimators are available for particular types of elliptical distributions
rather than normal. The case when B = 0 and X has a multivariate T-
distribution has been studied by Abusev and Kolegova (1998). However, the
paper contains serious errors which make both the estimation procedure and
the resulting estimators totally wrong.

In what follows, we assume that i.i.d. samples

X: (X13X21"'3Xm)3 X: (Yla"'aYTl) (13)

having elliptic pdfs (1.1) are available. We construct the MLE and the Bayes
estimators of P(A'X + B'Y + C > 0) based on these samples. To achieve
this goal, we propose several algorithms which allow one to reduce the prob-
lem of calculation of P(A’X + B'Y + C > 0) to one or two-dimensional
integration. These techniques are used to construct the MLEs by replacing
0; and X¥;, 7 = 1,2, by their estimators. Moreover, in the case when un-
biased estimators of the pdfs (1.1) exist and belong to the class of elliptic
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distributions, this method automatically provides an unbiased estimator of
P(A'X+B'Y+C > 0). We shall also consider estimation of P(A’X+C > 0)
since quite often it is possible to provide a closed form for the MLE of
P(A'X+C > 0) even if it is impossible to do so for P(A’X +B'Y +C > 0).

2. The Maximum Likelihood Estimation

Denote
P(A,B,C) = P(A'X+B'Y+C’ >0), P(A,C)= P(A'X+C >0) (2.1)
and observe that

P(A,B,C) = / I(A'x + By + C > 0) p1(x[01, 21)p2(y |02, B2)dxdy

R
(2.2)
with K = ki +ko, I being an indicator function and p;(z|0;, X;),j = 1,2, de-
fined in (1.1). Hence, the MLE P(A,B, C) of P(A,B, () has the form (2.2)

A X

with @; and X; being replaced by their MLEs 0; and X;, j = 1,2, respec-
tively. The MLEs of the parameters #; and X; of the elliptical distributions
have been derived by Anderson, Fang and Hsu (1986)

6, = X, 6,=Y,
B = B(am)'S),  Sp=ky(Man) 'Sy,

where
X =m' 3 X, Y=n'}Y,
S1 = Y(X-X)Xi-X), S=Y (Yi-Y)(Yi-Y) (23)

k-.
\j = argmax{z? f;(2)}, j=1,2. (2.4)
Let us introduce new parameters

a=+VA'S|A, b=+vB'X3B, c= A’01 + B,02 + C, (25)

with the MLEs

o= \/ki A'SIA/(mA1), b= /k:B'S;B/(n\y), é=A'XK+BY+C, (2.6)

where A; and Ay are defined in (2.4).
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Note that since 3;, j = 1,2, are the positive definite symmetric matrices,
there exist matrices V; such that V;Vj = 3;, j = 1,2. Then, (see Fang,
Kotz and Ng (1990)) vectors

E=Vi(X-61), n=V,'(Y -0, (2.7)
have spherical distributions with the pdfs fi(z'z) and f2(2z'z), respectively,
where f;(t), j = 1,2, are defined in (1.1) and (1.2).

The following theorem and corollary allow one to obtain MLEs of P(A, B, C)
and P(A,C) (see (2.1)).

THEOREM 1. The probability P(A, B, C) and its MLE have, respectively,
the forms

P(A,B,C) = J(a,b,c), P(A,B,C)=J(a,b,é). (2.8)

Here, function J(a,b,c) can be calculated as

J(a,b,c) = /jo /jo I(az + by + ¢ > 0) f11(x) fo1 (y)dzdy, (2.9)
where
(kj—1)/2 00
fir(z) = m/o tki =32 g2 tydt, §=1,2, (2.10)
j

are the pdfs of the first components €Y and 77(1) of vectors & and n defined
If characteristic functions ¢1(w) and wz(w) of €V and nV) are available

pi(w) :/o:o eF fi(z)dz, j=1,2, (2.11)

then J(a,b,c) is given by

11 o0 glew
J(a,b,c) = 3 + ;Im/0 - 1 (aw) 2 (bw)dw. (2.12)

Here, Im(z) is the imaginary part of z.

PROOF. Denote by ||z|| = VZ'z the norm of a vector z. Observe that in
terms of the new vectors £ and 7, defined in (2.7), inequality A’X + B'Y +
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C > 0 takes the form A'V{& + B'Vin + ¢ > 0, where c is given by (2.6). It
follows from Theorem 2.4 of Fang, Kotz and Ng (1990) that

A'ViE=|[ViA|eD, B'Vin=|VyB|nWY,

where £€(1) and 77(1) are the first components of vectors £ and n, respectively.
These components have pdfs

kj—1 kj—1
fi(2) :/fj(t2+ >z I dais §=1,2.
i=1 i=1
With the help of formula 4.642 of Gradshtein and Ryzhik (1980), the last
integrals can be rewritten as (2.10). Now, to complete the first half of the
proof one just need to notice that [|[V1A| = a and ||VoB|| = b.
To prove the relation (2.12) use formula 3.721 of Gradshtein and Ryzhik
(1980) which implies that

1 oo gilaztby+ecw
[,
0

1
Iaz +by+c>0)==+—Im

2 7 w

Therefore, it follows from (2.9) that

00 00 1 1 0o ei(az+by+c)w
J(a,b,c) = / / Jf11(2) fa1(y) 5T = Im / ———— dw| dzdy.
o0 /=00 s 0 w
(2.13)
Changing the order of integration in (2.13) results in (2.12). O

COROLLARY 1. The probability P(A,C) and its MLE can be written as
P(A,0) = J(a,0), P(A,C)=J(a.¢)
where the function J(a,c) has the form
¢ o1 (aw)dw.
w
(2.14)

c/a 1 c/a 1 1 00
J(a,c):/ fll(w)d$:§+/ f11($)dx:§+—hn/
0 s 0

—0o0
Here f11(x) and @1(w) are defined in (2.10) and (2.11), respectively.

PROOF. To show that the first part of the equality (2.14) is true perform
integration over y in (2.9) keeping in mind that b = 0 and fi1(z) is an even
function of z. Validity of the second part of (2.14) follows directly from
(2.12). O
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3. Bayes estimation

For the sake of construction of a Bayes estimator of P(A,B,C) one
needs to choose a prior pdf ¢g(61, X1, 63,35). Then, the Bayes estimator of
P(A,B,C) has the form

P(A,B,C)

2
[-+- [ J(a,b,¢)L1 (681, 51|X)L2(02,82|Y)g(01,51,02,55) [] d0;dS;
j=1

2
S D101, 21 |X) La(02, 22| Y)g(01, 51,02, %) [] d6;d=;
j=1
(3.1)

Here, a, b and c are given by (2.5), X and Y are samples on X and Y (see
(1.3)), L1(61,%1]X) and Ly(02,32|Y) are the likelihood functions

L1(01,211X) = [[ p1(Xi]01,21), L2(82,52|Y) = [] p2(Yil62, ),

i=1 i=1
(3.2)
where p;(X|0;,%;), j = 1,2, are defined in (1.1). The integrals in (3.1) are
calculated over the space Rg, x Ay, X Ry, x Ay, where Ay is the space of
symmetric positive definite (k x k) matrices in Ry.

It is easy to see that (3.1) leads to [k1 +ko+0.5 k1 (k1 4+1)+0.5 ko (ko +1)]-
dimensional integration which is almost computationally intractable since
even in the case of k1 = ko = 2 one needs to perform 10-dimensional inte-
gration. For this reason, in the case when (61, X;) and (02, X9) are a-priori
independent, i.e.

9(01,%1,02,%3) = g1(01,%1)g2(02, 32), (3.3)

we suggest an algorithm that allows one to avoid painful integration over ;
and X;, j=1,2.

THEOREM 2. Assume that (3.8) is valid and denote the marginal pdfs of
X and Y (see (1.3)) by q1(X) and q2(Y), respectively:

0(X) = (X1, X)) = / 1.(6, £[X)g1 (6, ) dOdS,
Ry, J Ag,
(3.4)
B(Y) = @Y1, .. Y,) — / 12(8, £[Y)g2(6, £) dOdS.
Rk2 Ak‘2
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Then the Bayes estimator (3.1) can be written as

D ql(Xla"'axmax) qZ(Yla"'aYTMY)
P(A,B,C :/ dxdy. (3.5
( ) oAaB,o) (X, X)) @Y., Yy) y. (35)

Here, the set Q(A,B,C) is as follows:

QA,B,C)={x€Ry,,y €Ry,: A'x+B'y+C >0}. (3.6)

PrROOF. Note that J(a,b,c) = P(A,B,C) is given by (2.2). Substi-
tuting (2.2) for J(a,b,c) in (3.1) and changing the order of integration we
arrive at (3.5). O

Note that (3.5) requires (k1 + k2)-dimensional integration only. For ex-
ample, if ky = ky = 2, (3.5) results in 4-dimensional integration (compare
with 10-dimensional integration in (3.1)). Moreover, since the value of the
marginal density is essential for Bayes analysis, the expressions for ¢;(X)
and ¢2(Y) may be available from Bayesian analysis conducted previously by
another researcher. In the case of B = 0, Theorem 2 reduces to

COROLLARY 2. IfB = 0, then the Bayes estimator (3.1) can be evaluated

as
~ X1 Xm X)
paC) = [ 1ax+cso) XL Xmx) 3.7
(4,0) Ry, ( 20) 71 (X1 ey Xim) (3.7
Here, the marginal density q(X) is defined in (3.4).
PrOOF. Formula (3.7) follows directly from (3.5). O

4. Examples

ExXAMPLE 1. The Pearson — type II distributions. Let X and Y have
pdfs (1.1) with

fi(2) = [D(a)| " a k2 0k /2 4+ ;) (1 —2)% 7 (0<2z< 1), j=1,2
(4.1)
Using formulas (2.9) and (2.10), we derive the MLE of P(A,B,C) of the
form (2.8) with @, b and ¢ defined in (2.6) and X\; = k;/(k; + 20; — 2):

f,llf,ll I(az+by+c > 0)(1—3:2)0‘1*“—273(1 — y%aﬁ#dxdy

T(a,b, c)=
(a,b,¢) B (0.5, a1 + 0.5kt — 0.5) B (0.5, 0 + 0.5k — 0.5)

(4.2)



ESTIMATION OF PROBABILITIES OF LINEAR INEQUALITIES 99

Here B(a, ) is the beta function. It is easy to see that the last formula
requires two-dimensional integration.

If it is desirable to reduce estimation of P(A,B, () to one-dimensional
integration, one can use combination of formulae (2.10) — (2.12) and formula
3.771.8 of Gradshtein and Ryzhik (1980):

k1 ko
1 1_/2 k 2 k 2\ -t 5 roy -1+
Tavo =g (5 )r (257) () T 6) T

2w 2 2 a b
<. - _14Batks
X/O sin(cw)w (er-bor—14545 )JarH%(aw)JarH%z(bw)dw,
(4.3)

where .J,(-) is the Bessel function of the first kind which can be presented
via infinite series (see 8.402 of Gradshtein and Ryzhik (1980))

P 0 2k

=5 > -

Jy(2) T .
P 92K KT (v + k + 1)

Now, let us consider the case of B = 0. In this situation, by (2.14),

_1\1! _ 2 .
L+ e[B(422p )] LR (5 - (a+552): 5%, if o] <
J(a'a C) =
1+ Lsign(c), if || > a.
(4.4)
Here, o F (o, 8;v; 2) denotes the hypergeometric series
af  ala+1)BB+1) ,

Fila,B57v;2) =1+ z+ z4 4 ...
2Fi(a, 57:2) -1 y(y+1)-2!

Note that the hypergeometric series in (4.4) terminates if 2c; + k1 > 3 is an
odd integer.

EXAMPLE 2. The multivariate T-distribution. Let X and Y have
multivariate T-distributions with the pdfs (1.1) with

k; kg o +k;
fi(z) =7 7 0, D(ay/2)] Ty +kj)/2) (L +2/05) 7, aj 05 >0.
(4.5)
Using formulas (2.9) and (2.10) we derive that

J(a,b,c) = 0.5+ [\/a102 B(0.5a1,0.5)B(0.5a3,0.5)] "
yta

00 o 2y+ o
X/ (144 /o0) 5 V (1+22/o1) "5 dz| dy. (4.6)
0 0
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Then P(A B, C) has the form (2.8) with a, b, ¢ given by (2.6) and \; =
kjojjag, 5 =1,2.

If oy is even integer the inside integral in (4.6) can be reduced to a finite
sum using formula 2.271.6 of Gradshtein and Ryzhik (1980). Moreover, if
a1 and as are both odd integers, we can derive a finite sum presentation
for J(a,b,c) using formulas (2.11), (2.12) and relation 3.737.1 of Gradshtein
and Ryzhik (1980)

227(117(12

(a1 — 1 —ip) (g — 1 — i) 21072 ( /o1a) (\ /o))"
X Z Z 1oy (a1—1 1 (aa—1 Y z:bil,iga (47)
11=0 i2=0 11! 9! ( 3 —21) ( 5 —22).
with
F(i1+i2) . . . . . c f . .
(Voras gy [G1-+42) aretan (G277 if intia > 0,
¢i1,i2 =
arctan (m), if i1+i2 =0.
(4.8)
It is easy to see that in the case of B = 0, (4.6) reduces to
1 1 c 12— 3 ¢
Jla,c) =5 R s, =t
(@0 =3+ Bosm.05) Vo (2 2 2 o1’ + 2

(4.9)
Note that the hypergeometric series in (4.9) terminates if @; > 2 is an even
integer.
If a is an odd integer, formulae (4.7) and (4.8) take the forms

a;—1

B 1 21—041 2 (CMI -1- Z)' 2Z(\/_Cl)
AR R (TP Y (e TR

(4.10)

where

% sin (Z arctan (a 00'1)) s if 4 > 0,

i = (4.11)
arctan (a\;(r—l) , if 1 =0.

Observe that formulae (4.9) — (4.11) give the finite sum presentation for
P(A,C) if a; is an integer, even or odd.
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We want to draw reader’s attention to the fact that J(a,c) can also be
evaluated by using probability tables for the Student’s ¢-distribution. In
fact, by the first equality in (2.14),

1 cvaL 2 7a12+1
a/G1 C\/(1
(a,c) CM13(0.5C¥1,0.5) /7 ( + 1> i ( o < a,/01> ’
(4.12)

where t, has the Student’s ¢-distribution with o degrees of freedom.

ExXAMPLE 3. The multivariate Cauchy distribution. The multivariate

Cauchy distribution is a particular form of a multivariate T- distribution
with a; = 1, j = 1,2. Then it follows from (4.7) and (4.8) that P(A,B,C)
can be written as

1 1
J(a,b,c) = - + —arctan

2 0w (a\/a-l—b\/a_g)'

To obtain an expression for J(a,c) set b =0 in (4.13).

(4.13)

ExXAMPLE 4. The multivariate normal distribution. Let us derive the
MLE, the unbiased and the Bayes estimators of the probability P(A,B, C).

The mazimum likelihood estimator has the form (2.8) where J(a,b,c) is
calculated by (2.12). Taking into account that f;(z'z) in this case are the k;-
variate standard normal densities, we obtain that £¢1) and 77(1) have univari-
ate standard normal distributions, so that ¢;(w) = e*°"2/2, j = 1,2. Then,
it follows from (2.12), formula 3.952.6 of Gradshtein and Ryzhik (1980) and
formulas 7.1.1 and 7.1.5 of Abramowitz and Stegun (1992) that

11 & (=) c 2t
J(a,b,c) = §+ﬁ§(2@+ v (\f TH#)
11
3+ 2 (Javeem) (4.14)

where
1)2 2141

— (=
erf(z \F/ g 2+ )t

2
Using the probability integral ®(z) = (v2m)~! [ e~Tdt we can provide
another presentation of (4.14):

o

T(a,b,c) = ( (4.15)

)
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To derive J(a,c) just let b =0 in (4.14) or (4.15).

To find an unbiased estimator of P(A,B,C) observe that the unbiased
estimator of k;-variate normal density with unknown parameters 8; and X;
based on N; observations has the form (see Voinov and Nikulin (1996))

Nj—1\ arki/2)q
1"( J2 )Nj]/ |S]| 1/2
Nj—k;—1 . .
_;.L) (Nj—]_)kl/Qﬂ'kJ/2

p(x|0j,Sj)=F(

Fy [(x—8,)'S;" (x—0))],5 = 1,2,

(4.16)

. 1 Nj—ki=3 —1 :

with Fj(z) = [l — (N; — 1) "'Njz]7 =2 I(0 < 2z < N; (N; — 1)), j =
1,2. It is easy to see that (4.16) are the pdfs of kj-variate Pearson-type II
distributions (see (4.1)) with the parameters ; = éj, 3= N]-*I(Nj —1)S;,
aj = 0.5(N; —k; — 1), j = 1,2. Since in our case, N; = m, Ny = n, the
unbiased estimator of P(A, B, C) can be obtained as P(A, B, C) = J(a, b, ¢)
with a1 = 0.5(m — k1 — 1), ap = 0.5 n—kg—l)

a= \/ A’SA b=

and J(a, b, c) is given by (4.2) or (4.3). Note that the combination of (4.2)
and (4.17) results in an unbiased estimator which coincides with the one
provided by Ivshin and Lumelskii (1994).

If B = 0, then the unbiased estimator of P(A,C) is P(A,C) = J(a,¢)
where, @ and ¢ are defined in (4.17) and, by (4.4),

2

B'S;B, ¢=AX+BY+C (417)

-1 - .
s+ [B(33-1)] R (5-"hks), ifld<a
J(a'a C) =

5 + 3sign(c), if |¢| > a.
(4.18)
The estimator (4.18) has been derived in Pensky (1982). Estimator of Gupta
and Gupta (1990) coincides with (4.18) with the only difference that it is ex-
pressed via incomplete beta function instead of hypergeometric series. Note
that the hypergeometric series in (4.18) terminates provided m > 4 is even.

Now, let us derive the Bayes estimator. Let us assume that all parameters
01, 02, ¥ and Xy are a priori independent with the flat priors for ; and
the inverse Wishart priors or Jeffreys’s priors for ¥,, 7 = 1,2.

In the first case, ¢;(0;,3;), j = 1,2, is the inverse Wishart pdf with the
parameters r; and W, that is

T‘j+kj—l

rs+2k;
125~ = exp{—0.5tr(WjZ‘;1)}, j=1,2,
(4.19)

9i(05,%;) o< |[Wj|
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where o< means ”proportional to”. Let us derive ¢;(X) since the expression
for q2(Y) is very similar (see (3.4)).

Integrating the likelihood function Lq(01,3|X) in (3.2) with respect to
6, and taking into account that Y™, (X; — X)'E (X, — X) = tr(2;'S))
we obtain

PX[B1) B, 7 exp{-05tx(878))}

It is easy to notice that the product p(X|X1)g; (W1]61,X1) is proportional to
the pdf of the inverse Wishart distribution with parameters (r; +m —1) and

(r1+kj+m—2)
(S1+Wjy). Hence integration over 3 yields ¢;(X) o [S1+Wq|~ 2
r1+k
[W| L= Considering vector (X, x) instead of X and rearranging suffi-

cient statistics, we obtain

(ri+k1+m—2)

q(Xl,...,Xm,X) |S1+W1| 2

XX
Xi,..,X _ I
X m) ‘Sl+W1+(m+1)*1m(x—X)(x—X)" ?

and ¢(Y1,....,Y,,¥)/q(Y1,...,Y,) has a similar expression.
For any square positive deflinite matrix A denote by VA a square positive
definite matrix such that vV A v A = A. Introducing new variables

B = ﬁ 1[(\/W)*1]’ (x—X), v= \/n\/_L—i—l[(\/W)l], (v,

denoting

A =

N I/ | S
- ”\;ﬂ_: VSI+TWi A, B= 7\7’/; VSt W, B, €= AX+BY+C,

and using (3.5), we arrive at

r1+ki4+m—1 ro+ko4+n—1

P(A‘aBaC) = 012 / U [l“l‘,l“l‘—i_ 1]7 2 [VIV + 1]7 2 dﬂd’/
Q(A,B,C)

(4.20)
Here the set Q(A, B, () is defined in (3.6) and

_(’CHQ-kz) F(0.5(’f'1 + ki +m— 1)) F(0.5(’f'2 +ko+n— 1))
'(0.5(ry +m — 1)) r0.5(rg +n—1))

Cia=m

Therefore, we obtain that P(A,B,C) = J(a, b, ¢) where

1 1 X1RYV
=y /2 A'(S; + WA, b= \/ﬂB, Sz + W2)B, ¢=A'X+B'Y+C,
m

(4.21)
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and J(a,b,c) is given by formula (4.6) with
op=00=1, ay=m+r1—1, as=n+1ry —1. (4.22)

If we choose 1 and 79 so that m +r; > 2 and n + ro > 2 are even, then
there exists a finite sum presentation of J(a,b,c) given in (4.7) and (4.8).

If B =0, then P(A,C) = J(a,¢) where J(a,c) is given by (4.9), or by
(4.12), or by combination of (4.10) and (4.11), a, ¢, o1, 09, a1 and a9 are
defined in (4.21) and (4.22), respectively.

Similarly, we can derive the Bayes estimator when X; is distributed

according to Jeffreys’s prior: ¢;(W;|0;,3;) |Ej|7ﬁ¥, j = 1,2 (see
Yang and Berger (1994)). Note that Jeffreys’s prior is a particular case
of (4.19) with W; = 0 and r; = 1 —kj. Let m > ki and n > ks.
Then P(A,B,C) = J(@*,b*, & where a* = /(m + DA'S1AJm, b* =
V/(n+1)B’SyB/n, ¢ is defined in (4.21) and J(a,b,c) is given by formula
(4.6) with o1 =09 =1, a3 =m —k;, as =n—ky. If B = 0, the Bayes
estimator based on Jeffreys’s prior reduces to (see (4.9) and (4.12))

~ 1 c 1 2
P(A — F (L 2tki-m.3. ¢
( ?C) 2+\/WB(0_5(m—kl),o_5) 2 1(2? 2 72)(a*)2+02)’
(4.23)
or o
I —
PA,C) = P (1 4, < AXLC)Vmin — k) (4.24)
(m + 1)A’S,A

Note that the Bayes estimator of Enis and Geisser (1971) is the particular
case of (4.24) when C' = 0. The estimators coincide in this case. The seeming
discrepancy between the two estimators is due to the difference in notations:
S; in (4.23) is given by (2.3) while Enis and Geisser (1971) defined S; as
Si=(m—-1)"1y" (X; - X)(X; — X).
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