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Abstract

Overcomplete representations such as wavelets and windowed Fourier expansions have become mainstays of modern statistical
data analysis. In the present work, in the context of general finite frames, we derive an oracle expression for the mean quadratic risk
of a linear diagonal de-noising procedure which immediately yields the optimal linear diagonal estimator. Moreover, we obtain an
expression for an unbiased estimator of the risk of any smooth shrinkage rule. This last result motivates a set of practical estimation
procedures for general finite frames that can be viewed as the generalization of the classical procedures for orthonormal bases.
A simulation study verifies the effectiveness of the proposed procedures with respect to the classical ones and confirms that the
correlations induced by frame structure should be explicitly treated to yield an improvement in estimation precision.
c⃝ 2017 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Regression using more predictors than observations has received a great deal of attention in recent years, from
viewpoints as diverse and fundamental as high-dimensional inference and regularization, approximation theory, and
sparse coding. While an orthogonal basis yields fast algorithms and classical asymptotic theory, it can often fail to
represent a particular function of interest efficiently. As a result, overcomplete representations such as wavelets and
windowed Fourier expansions have become mainstays of modern statistics and signal processing.

Such representations are formalized through the theory of frames. Frames can be generated by the action of
operators on a template function (mother wavelet or Gabor atom), or be unstructured and random (as in compressive
sensing). Results for frame-based regression come in two flavors: those that derive from statistics which usually aim
for universality, and those that derive from signal processing which usually exploit structure of specific frame families
(usually wavelet or Fourier frames).

In the context of thresholding estimators for de-noising purposes, [6] gave some of the first related results, for
multiwavelets. Some of the latest results are by [12] for a particular windowed Fourier frame and [7], where an
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universal threshold is derived for frames satisfying rather stringent conditions which ensure that the threshold depends
on the number of the frame functions but not on the frame structure. In general, frame based de-noising procedures are
often derived using adaptation of de-noising methodologies developed for the case of orthonormal bases by exploring
specific characteristic of an unknown signal (as in Bayesian framework, see, e.g., [13]), and/or by exploring specific
characteristic of the frame structure (see, e.g., [10,8,14]).

The objective of this paper is to bridge the existing gap between mathematical and statistical theories on one hand
and engineering practice on the other. In particular, the purpose of this paper is to give a comprehensive study of
de-noising properties of frames in a way that allows practitioners to trade off between computational convenience
and statistical efficacy. We do this by providing several new and practically implementable techniques that generalize
standard ones taking the correlation structure of the frame coefficients into account.

We start with deriving an oracle expression for the quadratic risk of a linear diagonal estimator which, in the case
of an orthonormal basis, immediately yields the popular Wiener estimator. We also show that it is naturally related to
block thresholding, which is proved to be very effective (see, e.g., [2]). We then derive the Stein’s (1981) unbiased
risk estimator (SURE) for all smooth shrinkage functions and general frames, recovering the results of [1,9] from the
image processing literature. Using SURE, we then obtain explicit expressions for the linear shrinkage and the soft and
the hard thresholding de-noising procedures for general frames that are standard in signal processing literature for the
case of orthonormal bases. A finite-sample simulation study verifies the effectiveness of the proposed methods with
respect to classical techniques.

2. Oracle risk expression for frame-based regression

Consider the canonical problem of recovering some f ∈ Rn from its corrupted observation x :

x = f + δ, δ ∼ N (0, σ 2 In). (2.1)

Any matrix W ∈ C N×n of full column rank is a frame for Rn when n and N are finite; columns of its conjugate
transpose W ∗ are the corresponding frame vectors. Applying W to (2.1), we obtain

W x = W f + Wδ ⇒ y = θ + ε, ε ∼ N (0, σ 2U ) (2.2)

where covariance U = W W ∗
∈ C N×N is of rank n, and we let y = W x , θ = W f , and ε = Wδ.

The goal of our analysis is first to reduce noise in the vector y of frame coefficients by shrinking or thresholding
its components – thus yielding vector θ̂ – and subsequently to estimate f by

f̂ = (W ∗W )−1W ∗θ̂ = W +θ̂ , (2.3)

with W +
= (W ∗W )−1W ∗ the Moore–Penrose inverse of W , termed its canonical dual frame. When, in particular,

W ∗W = α In , then the frame is said to be tight, in which case U−
= (W +)∗W + reduces to U−

= α−2U and
∥W f ∥

2
2 =

1
α2 ∥ f ∥

2
2.

Let Γ be a diagonal matrix with vector γ on the diagonal, so that Γ = diag(γ ). If we consider any estimator
of type θ̂ = Γ y with Γ fixed (not depending on y), then an expression for its oracle risk is given by the following
statement.

Theorem 1. Let U = W W ∗ and U−
= (W +)∗W +. If θ̂ = Γ y for fixed, diagonal Γ , then

E∥ f̂ − f ∥
2

= Tr


U−(IN − Γ )θθ∗(IN − Γ ) + σ 2ΓUΓU−


. (2.4)

In particular, if the frame is tight, then U−
= α−2U.

Proof. Note that for all x ∈ C n×1 it holds ∥x∥
2

=
n

i=1 x2
i = Tr(xx∗). Hence, we obtain

E∥ f̂ − f ∥
2

= E∥W +(Γ y − θ)∥2

= ETr

W +(Γ y − θ)(Γ y − θ)∗(W +)∗


≡ ∆1 + ∆2.
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Then, by using E(ϵ) = 0 and the cyclic permutation property of the trace operator, we derive

∆1 = Tr

W +(IN − Γ )θθ∗(IN − Γ )(W +)∗


= Tr[U−(IN − Γ )θθ∗(IN − Γ )];

∆2 = Tr

W +ΓE


ϵϵ∗


Γ ∗(W +)∗


= σ 2Tr


ΓUΓU−


. �

It is worth to observe that Theorem 1 implies that in the case of hard thresholding, one needs to minimize the risk
of (2.4) over the set of binary diagonal matrices. In the case of an orthonormal basis, the oracle expression in (2.4)
takes the familiar form

n
i=1


θ2

i I(γi = 0) + σ 2 I(γi = 1)

. This motivates the choice of a threshold based on the

magnitude of a coefficient for any kind of an orthonormal basis. This situation changes, however, whenever matrix
W of frame elements ceases to be unitary—because the specific frame structure should now be taken into account.
Indeed, Theorem 1 implies that the choice of coefficients to “keep” (γi = 1) or “kill” (γi = 0) depends not only on
their values, but also on the entries of matrix U .

Denote by A ◦ B the Hadamard (element-wise) matrix product of A and B. Then, Theorem 1 yields the following
expression for the optimal diagonal shrinkage rule.

Corollary 1. The optimal diagonal linear shrinkage rule θ̂ = γ ◦ y in the setting of Theorem 1 is given by

γ =


(θθ∗) ◦ U−

+ σ 2(U ◦ U−)
−1 

(θθ∗) ◦ U−


1N , (2.5)

where, again, U−
= α−2U for the special case of a tight frame.

Proof. Note that minimization of (2.4) with respect to Γ = diag(γ ) leads to minimization, with respect to γ , of the
quadratic form

arg min
γ

(γ ∗ Aγ − 2γ ∗b), (2.6)

where A = (θθ∗)◦U−
+σ 2(U ◦U−) and b = ((θθ∗)◦U−)1N , with 1N the column vector of all ones. The existence

of the inverse in (2.5) is guaranteed to exist, since the Hadamard product of any two positive-definite matrices is
positive-definite. �

Corollary 1 generalizes the linear diagonal oracle estimator for an orthonormal basis. In a special case of a tight
frame, when N = n and α = 1 and U = U−

= In , we recover, directly from (2.5), the well-known Wiener linear
shrinkage rule γi = θ2

i /(θ2
i + σ 2).

Corollary 1 also implies that the optimal weights are functions not only of θi but also of other coefficients in their
respective neighborhoods. Thus, (2.5) represents an overlapping block shrinkage procedure where the lengths of the
blocks are automatically determined by the correlations induced by the frame operator. The latter directly motivates
the block shrinkage procedures that are known to have good risk properties (see, e.g., [2,4,14] among others).

3. Unbiased risk estimation for the frame-based regression

The oracle expression of Theorem 1 enables the construction of unbiased estimators of the risk E∥ f̂ − f ∥
2. Indeed,

if we re-write the matrix Θ = θθ∗ appearing in (2.4) as Θ = E(yy∗) − σ 2U and estimate it via Θ = yy∗
− σ 2U ,

then, we obtain the following unbiased estimator of the risk.

Corollary 2. Let θ̂ = Γ y for a fixed, diagonal matrix Γ . Then, an unbiased estimator for the risk R = E∥ f̂ − f ∥
2 is

R = σ 2n + ∆, ∆ = y∗(IN − Γ )U−(IN − Γ )y − 2σ 2Tr

U−U (IN − Γ )


. (3.1)

In particular, if Γ induces a hard thresholding rule, so that θ̂ = γ ◦ y with γ ∈ {0, 1}
N , then

∆ =

N
i, j=1


yi y jU

−

i j − 2σ 2(U−U )i i I(i = j)


I(γi = 0) I(γ j = 0). (3.2)
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Proof. Note that

Tr

ΓUΓU−


= Tr


UU−

+ (IN − Γ )U (IN − Γ )U−
− 2(IN − Γ )UU−


.

Now replace θθ∗ in (2.4) by yy∗
− σ 2U and observe that, since W +W = In ,

Tr

UU−


= Tr


W W ∗(W +)∗W +


= Tr


(W +W )∗ W +W


= n, (3.3)

which proves expression (3.1). �

We shall later use Corollary 2 and the specific form of (3.2) to implement hard thresholding. First, however, note
that since Θ is positive semi-definite, its diagonal elements must be nonnegative, implying Θ̂i i = y2

i − σ 2Ui i ≥ 0 for
each i . These inequalities themselves enforce thresholds σ

√
Ui i on the values of yi .

The oracle risk (2.4) and its unbiased estimator (3.1) are very useful when working with linear estimators,
i.e., estimators for which Γ does not depend on y. However, very often linear estimator is poor and more sophisticated
formulae are required for Γ depending on y. To take into account this dependence, in the following theorem we
propose a modification of SURE for a general estimator θ̂ = y + g(y).

Theorem 2. Assume the settings of Section 2 and let θ̂ = y + g(y), where g(y) : R N
→ R N is a continuous

and piecewise differentiable column vector function. Let Z = ∇y g∗(y) be the N × N matrix with components
Zi j = ∂g j (y)/∂yi . Then SURE for E∥ f̂ − f ∥

2 is given by (3.1) with

∆ = g∗(y)U−g(y) + 2σ 2Tr

U−U Z


. (3.4)

Here, again U−
= α−2U and U−U = α−1U for the special case of a tight frame.

Proof. First, let us show that under conditions of Theorem 2, one has

E

(θ̂ − θ)(θ̂ − θ)∗


= σ 2U + E


g(y)g∗(y)


+ 2σ 2UE (Z) . (3.5)

To see this, write E

(θ̂ −θ)(θ̂ −θ)∗


= E {(y − θ)(y − θ)∗ + g(y)g∗(y)}+2E {(y − θ)g∗(y)} ≡ Ω1 +2Ω2. Observe

Ω1 = σ 2U + E {g(y)g∗(y)} and Ω2 = WE {(x − f )g∗(W x)}, as y = W x and θ = W f .
Let Cσ = (2πσ 2)−n/2 and observe that Q = E[(x − f )g∗(W x)] is the n × N matrix with components

Ql j = E[(xl − fl)g j (W x)] = Cσ


(xl − fl) g j (W x) exp


−∥x − f ∥

2

2σ 2


dx

= −Cσ σ 2


g j (W x) dl


exp


−∥x − f ∥

2

2σ 2


dx1 · · · dxl−1dxl+1 · · · dxn

= Cσ σ 2


∂

∂xl


g j (W x)


exp


−∥x − f ∥

2

2σ 2


dx

= σ 2E


∂

∂xl
g j (W x)


,

obtained using integration by parts, and denoting the differential with respect to xl by dl . Applying the chain rule, we
derive that

∂

∂xl


g j (W x)


=

N
i=1

∂

∂yi


g j (y)


Wil =

N
i=1

Zi j Wil = (W ∗Z)l j .

Therefore, we obtain that Ω2 = σ 2 E(W W ∗Z) = σ 2 U E(Z), which yield expression (3.5). Now, to complete the
proof of the theorem, recall that Tr(UU−) = n by (3.3), and observe that

E∥ f̂ − f ∥
2

= ETr

(θ̂ − θ)(θ̂ − θ)∗(W +)∗W +


= σ 2Tr(UU−) + ETr


g(y)g∗(y)U−

+ 2σ 2U ZU−


. �
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We emphasize that Theorem 2 generalizes the classical Stein’s results presented in [11] to the case of general
frames, which includes any full-rank linear expansion of a data vector in a finite-dimensional setting. It also recovers
results of [1,9] in the image processing literature. Moreover, Theorem 2 applies to any arbitrary de-noising strategy
which satisfies assumptions of the theorem. In particular, it applies to various types of thresholding or shrinkage
procedures for construction of unbiased estimators of the risk, as it is shown by the following four examples.

Example 1. Consider the case of linear shrinkage procedure θ̂ = Γ y = IN y + (Γ − IN )y where Γ is diagonal and
independent of y. Then, Theorem 2 with g(y) = (Γ − IN )y and Z = Γ − IN recovers expression (3.1) for ∆.

Example 2. Consider the case of “keep-or-kill” hard thresholding procedure θ̂ = Γ y = IN y + (Γ − IN )y where
Γ = diag(γ ) and γ ∈ {0, 1}

N independent on data. Then, Theorem 2 with g(y) = (Γ − IN )y and Z = Γ − IN
recovers expression (3.2) for ∆.

Example 3. In the case of a hard thresholding procedure with variable threshold t (where the decision to “keep” or
“kill” a coefficient depends upon the coefficient itself), θ̂ = y−yI(|yi | < t). Hence, in Theorem 2, g(y) = −yI(|yi | <

t) and Z is diagonal with elements Zi i = −I(|yi | < t). Thus, Theorem 2 yields the SURE for E∥ f̂ − f ∥
2 of the form

(3.1) with

∆ =

N
i, j=1


yi y jU

−

i j I(|yi | < t)I(|y j | < t) − 2σ 2(U−U )i i I(i = j)I(|yi | < t)

. (3.6)

Note that (3.6) generalizes the hard thresholding rule from orthonormal bases to frames. Indeed, in the former case,
(3.6) recovers the familiar expression

∆ =


n

i=1

y2
i I(|yi | < t) − 2σ 2

n
i=1

I(|yi | < t)


. (3.7)

Example 4. In the case of the soft thresholding with a variable threshold t , one has θ̂i = {yi − sign(yi ) t} I (|yi | > t),
so that gi (y) is of the form

gi (y) = −sign(yi ) min(|yi |, t) i = 1, . . . , N . (3.8)

Hence, Z in Theorem 2 is diagonal, with elements Zi i = −I(|yi | < t), so that Theorem 2 yields the SURE for
E∥ f̂ − f ∥

2 of the form (3.1) with

∆ =

N
i, j=1


sign(yi y j ) min(|yi |, t) min(|y j |, t)U−

i j − 2σ 2(U−U )i i I(i = j)I(|yi | < t)


. (3.9)

Note that (3.9) generalizes the soft thresholding rule from orthonormal bases to frames. Indeed, in the former case,
(3.9) recovers the familiar risk reported in [5]

∆ =


n

i=1

min(y2
i , t2) − 2σ 2

n
i=1

I(|yi | < t)


. (3.10)

4. Optimal strategies for finite frames

In this section, we use results obtained in the previous sections to obtain optimal frame based estimators of
some specific forms. In particular, we construct an optimal linear shrinkage estimator, an optimal hard thresholding
and an optimal soft thresholding estimator in the case of a general frame. These choices are motivated, on one
hand, by the actual possibility of minimizing the SURE obtained in the previous section, on the other hand, by
our intention to compare them with their classical counterparts adapted from the setting with an orthonormal basis.
Indeed, the numerical simulations below show the advantage of taking into account the frame correlation structure
while minimizing the error estimator. However, we would like to point out that Theorem 2, in principle, offers a valid
instrument for obtaining an optimal estimator for any θ̂ = y + g(y) which satisfies the assumptions.
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4.1. The linear shrinkage

We begin with the SURE strategy for linear shrinkage in the frame setting. By Corollary 2, one has E∥ f̂ − f ∥
2

=

σ 2n +E∆ with ∆ = Tr{U−(IN −Γ )yy∗(IN −Γ )+ 2σ 2U−UΓ − 2σ 2U−U }. Writing θ̂ = γ ◦ y, we recognize that,
similarly to Corollary 1, the problem of finding Γ reduces to the minimization of a quadratic form (2.6) where, now,
A = (yy∗) ◦ U− and b = {A − σ 2(U ◦ U−)}1N , so that

γ = A−1b =

(yy∗) ◦ U−

−1

(yy∗) ◦ U−

− σ 2(U ◦ U−)


1N . (4.1)

Since matrices U , U− and yy∗ are nonnegative definite and Hermitian, matrix A is also nonnegative definite and
Hermitian, and, thus, the minimum exists and it is unique. Furthermore, note that matrix A and vector b are often
sparse. For example, in the case of a sparse tight frame, expressions for A and b take the forms A = α−2(yy∗) ◦ U
and b = (A − σ 2U ◦ U )1N . Since the majority of entries of matrix U are equal to zero, respective entries of matrix
A also vanish.

Note that the objective function in (2.6) can be modified and improved in a variety of ways. For example, adding
a quadratic penalty term γ ∗ Pγ with any positive-definite matrix P leads to the Tikhonov regularization while adding
a penalty of the form β∥γ ∥ℓp , where ∥ · ∥ℓp is a vector norm in ℓp space, induces sparsity whenever 0 ≤ p ≤ 1. We
refer to [3] for the discussion on how the estimating procedure above can be improved and specialized.

4.2. The hard thresholding

In the case of a hard thresholding rule, our SURE strategy again follows Corollary 2 and Example 3 with ∆ given
by (3.6). To minimize the resulting expression, we introduce a matrix H with components

Hi j =


yi y jU

−

i j if i ≠ j,

y2
i U−

i i − 2σ 2(U−U )i i if i = j.

Consider a set of indices J such that j ∈ J if γ j = 0 and j ∉ J otherwise. Then ∆ can be re-written as

∆ =


i, j∈J

Hi j

and the goal is to find a set of indices J such that the sum of respective row and column elements of matrix H
is minimal. This minimizations can be accomplished by a kind of a greedy algorithm which can be carried out as
follows.

The greedy algorithm

1. Since the diagonal values of matrix H are counted once while all other elements are counted twice, introduce
modified matrix H̃ with elements

H̃i j =


Hi j , if i ≠ j,
Hi j/2, if i = j.

Set J = {1, . . . , N }.
2. Find a column l of H̃ with the maximum sum of elements.
3. If the sum of elements of column l is positive, then eliminate column l and row l from H̃ and index l from set J ,

and RETURN TO STEP 2. If the sum of elements of column l is zero or negative, then FINISH.
4. Set γ j = 0 if j ∈ J and γ j = 1 if j ∉ J .

4.3. The soft thresholding

In the case of the soft thresholding, our SURE strategy follows Example 4 with ∆ given by (3.9) and threshold
chosen as the minimum of

N
i, j=1


sign(yi y j ) min(|yi |, t) min(|y j |, t)U−

i j − 2σ 2(U−U )i i I(i = j)I(|yi | < t)


. (4.2)
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Fig. 1. Normalized test signals of length 1280.

This optimization problem can be solved in O(N log N ) steps. Indeed, if |yi | are arranged in an increasing order,
then the rule (4.2) implies that for the values of t which lie between two consecutive values of |yi | SURE is strictly
increasing, see [5]. Therefore, t should coincide with one of the values |yi |.

5. Simulation study

In this section, we carry out some numerical experiments to study the finite sample performances of the proposed
estimators. In our simulation study, we use the classical Gabor frame with the Hamming window. This is a tight frame
which is particularly suitable for representation of fast oscillating signals such as audio signals. For that reason, we
consider two fast oscillating standard test signals, WernerSorrows and Mishmash, reproducible by MakeSignal of the
toolbox Wavelab, and two pieces of real audio signals sp2-5k.wav and Glock.wav. The test signals listed above are
displayed in Fig. 1.

The objective of this simulation study is to illustrate the gain in de-noising precision obtained by taking into the
account the frame structure rather than to be an exhaustive study of signal de-noising by frames which is usually
addressed by application-specific schemes. Results of all comparisons are represented in terms of the means and the
standard deviations of ∥ f̂ − f ∥2. In order to show the advantage attained by accounting for the frame structure, we
compare the ideal best diagonal estimator obtained minimizing the true risk in (2.5) with the ideal best diagonal
estimator obtained by minimizing the true risk without taking into account the frame structure, i.e., considering
U = I . We denote these two estimators WIENERU and WIENERI , respectively. Note that estimators WIENERU
and WIENERI are not available in practice, but their comparison can give an idea of the best possible gain obtained
by taking into account the frame structure. The empirical versions of these estimators, to which we refer as EMPU and
EMPI , respectively, are derived by substituting θθ∗ with its unbiased estimator yy∗

−σ 2U for EMPU , and yy∗
−σ 2 IN

for EMPI . Note that both estimators are of the form γ ◦ y where γ is given by expression (4.1) for EMPU , while γ

reduces to the well known empirical Wiener estimator γi = (y2
i − σ 2)/y2

i for EMPI . Since matrices

yyT

◦ U


and

yyT

◦ IN


have high condition numbers, in order to stabilize their inversion, in our simulation study, we add a
quadratic penalty term γ t Pγ with matrix P = ζ IN to the objective function (2.6).

Results for ζ = 10−4.5 are reported in Table 1 and are based on 100 simulation runs with the signal-to-noise ratios
(SNR) 1, 3 and 5, that represent, respectively, the high, the moderate and the low noise levels. As it is standard in
the statistical literature, the signal-to-noise ratio (SNR) is defined as the ratio of the standard deviations of the signal
and the noise. The empirical estimators EMPU and EMPI approximate the corresponding ideal estimators WIENERU
and WIENERI when the noise level is low (SNR = 5) and can be quite far from them when the noise level is high
(SNR = 1). However, for all the test signals, the ideal gain (the difference between the first and the second columns)
and the empirical gain (the difference between the third and the fourth columns) obtained by accounting for the frame
structure is quite significant, especially, in the case of high noise.
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Table 1
Results obtained over 100 runs and with parameter choices, n = 1280 and 64-sampled Hamming window.

WIENERU WIENERI EMPU EMPI

WERNERSORROWS

SNR = 1 0.1327 (0.0096) 0.2274 (0.0116) 0.4964 (0.0240) 5.7420 (0.1847)
SNR = 3 0.0284 (0.0019) 0.0404 (0.0022) 0.0777 (0.0034) 0.1343 (0.0049)
SNR = 5 0.0126 (0.0006) 0.0167 (0.0007) 0.0321 (0.0011) 0.0412 (0.0015)

MISHMASH

SNR = 1 0.1026 (0.0106) 0.1837 (0.0139) 0.4881 (0.0254) 6.2411 (0.2290)
SNR = 3 0.0211 (0.0017) 0.0284 (0.0021) 0.0752 (0.0036) 0.1113 (0.0044)
SNR = 5 0.0094 (0.0007) 0.0122 (0.0008) 0.0324 (0.0013) 0.0286 (0.0015)

SP2-5K

SNR = 1 0.1533 (0.0112) 0.2474 (0.0127) 0.5201 (0.0254) 6.2648 (0.1745)
SNR = 3 0.0363 (0.0022) 0.0548 (0.0024) 0.0849 (0.0039) 0.1771 (0.0058)
SNR = 5 0.0168 (0.0009) 0.0244 (0.0011) 0.0349 (0.0014) 0.0614 (0.0022)

GLOCK

SNR = 1 0.0845 (0.0075) 0.1305 (0.0093) 0.4529 (0.0245) 6.4889 (0.2079)
SNR = 3 0.0192 (0.0014) 0.0278 (0.0016) 0.0737 (0.0037) 0.1232 (0.0043)
SNR = 5 0.0089 (0.0006) 0.0123 (0.0007) 0.0322 (0.0013) 0.0326 (0.0015)

Table 2
Results obtained over 100 runs and with parameter choices, n = 1280 and 64-sampled Hamming window.

SOFTU SOFT I HARDU HARDI

WERNERSORROWS

SNR = 1 0.3748 (0.0188) 0.8511 (0.0414) 0.4939 (0.0277) 0.9024 (0.0200)
SNR = 3 0.0763 (0.0041) 0.1342 (0.0114) 0.0737 (0.0037) 0.3965 (0.3965)
SNR = 5 0.0327 (0.0016) 0.0481 (0.0039) 0.0298 (0.0014) 0.1275 (0.0041)

MISHMASH

SNR = 1 0.3519 (0.0216) 0.8970 (0.0695) 0.4884 (0.0312) 0.9756 (0.0158)
SNR = 3 0.0602 (0.0040) 0.1063 (0.0095) 0.0659 (0.0034) 0.2573 (0.0160)
SNR = 5 0.0251 (0.0013) 0.0414 (0.0035) 0.0266 (0.0015) 0.0786 (0.0039)

SP2-5K

SNR = 1 0.3893 (0.0197) 0.8555 (0.0693) 0.5204 (0.0281) 0.9952 (0.0105)
SNR = 3 0.0917 (0.0047) 0.1689 (0.0164) 0.0842 (0.0036) 0.4023 (0.0142)
SNR = 5 0.0457 (0.0026) 0.0626 (0.0059) 0.0353 (0.0015) 0.1799 (0.0050)

GLOCK

SNR = 1 0.2853 (0.0186) 0.5064 (0.0462) 0.4523 (0.0285) 0.9350 (0.0462)
SNR = 3 0.0516 (0.0029) 0.0981 (0.0083) 0.0656 (0.0037) 0.1628 (0.0078)
SNR = 5 0.0228 (0.0012) 0.0406 (0.0034) 0.0273 (0.0015) 0.0919 (0.0026)

In a similar manner, we carry out comparisons between the soft thresholding procedures obtained with and without
consideration of the specific frame structure. In particular, we construct estimators SOFTU and SOFT I which are
provided by the formula θ̂i = (yi − sign(yi )t)I(|yi | > t) with the global threshold t obtained by minimizing,
respectively, expression (3.9) derived above and the classical one (3.10) as in [5]. Moreover, we compare estimators
HARDU and HARDI obtained using the hard thresholding scheme presented in Section 4.2 and the universal hard
thresholding estimator defined as θ̂i = yi I(|yi | > σ


2 log N ). We emphasize that this last estimator represents both

the classical universal thresholding (when U = I ) as well as an asymptotically optimal estimator when U is a stable
frame (as the one adopted here) according to results presented in [7].

Results of comparisons are reported in Table 2 and are based on 100 simulation runs. As in the previous study,
results show a very significant gain when taking frame structure into account. Note that, performance of the estimator
HARDI is very poor, but this is not surprising since the universal threshold σ


2 log N is known to be too large for

de-noising applications when the true signal is not sufficiently sparse (see, e.g., [5]).
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Fig. 2. Data (green dotted line); true signals (blue); WIENERU estimators (red); WIENERI estimators (magenta). SNR = 1. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Data (green dotted line); true signals (blue); SOFTU estimators (red); SOFT I estimators (magenta). SNR = 1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

For completeness, one of the 100 estimators obtained by WIENERU and WIENERI are shown in Fig. 2 and one
obtained by SOFTU and SOFT I are shown in Fig. 3, both in the case of SNR = 1.
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