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DYNAMIC NETWORK MODELS AND GRAPHON ESTIMATION

BY MARIANNA PENSKY1

University of Central Florida

In the present paper, we consider a dynamic stochastic network model.
The objective is estimation of the tensor of connection probabilities � when
it is generated by a Dynamic Stochastic Block Model (DSBM) or a dynamic
graphon. In particular, in the context of the DSBM, we derive a penalized
least squares estimator �̂ of � and show that �̂ satisfies an oracle inequality
and also attains minimax lower bounds for the risk. We extend those results
to estimation of � when it is generated by a dynamic graphon function. The
estimators constructed in the paper are adaptive to the unknown number of
blocks in the context of the DSBM or to the smoothness of the graphon func-
tion. The technique relies on the vectorization of the model and leads to much
simpler mathematical arguments than the ones used previously in the station-
ary set up. In addition, all results in the paper are nonasymptotic and allow a
variety of extensions.

1. Introduction. Networks arise in many areas of research such as sociology,
biology, genetics, ecology, information technology to list a few. An overview of
statistical modeling of random graphs can be found in, for example, Kolaczyk
(2009) and Goldenberg et al. (2010). While static network models are relatively
well understood, the literature on the dynamic network models is fairly recent.

In this paper, we consider a dynamic network defined as an undirected graph
with n nodes with connection probabilities changing in time. Assume that we ob-
serve the values of a tensor Bi,j,l ∈ {0,1} at times tl where 0 < t1 < · · · < tL = T .
For simplicity, we assume that time instants are equispaced and the time inter-
val is scaled to one, that is, tl = l/L. Here, Bi,j,l = 1 if a connection between
nodes i and j is observed at time tl and Bi,j,l = 0 otherwise. We set Bi,i,l = 0 and
Bi,j,l = Bj,i,l for any i, j = 1, . . . , n and l = 1, . . . ,L, and assume that Bi,j,l are
independent Bernoulli random variables with �i,j,l = P(Bi,j,l = 1) and �i,i,l = 0.
Below, we study two types of objects: a Dynamic Stochastic Block Model (DSBM)
and a dynamic graphon.

The DSBM can be viewed as a natural extension of the Stochastic Block Model
(SBM) which, according to Olhede and Wolfe (2014), provides a universal tool
for description of time-independent stochastic network data. In a DSBM, all n
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nodes are grouped into m classes �1, . . . ,�m, and probability of a connection
�i,j,l is entirely determined by the groups to which the nodes i and j belong at
the moment tl . In particular, if i ∈ �k and j ∈ �k′ , then �i,j,l = Gk,k′,l . Here, G is

the connectivity tensor at time tl with Gk,k′,l = Gk′,k,l . Denote by n
(l)
k the number

of nodes in class k at the moment tl , k = 1, . . . ,m, l = 1, . . . ,L.
A dynamic graphon can be defined as follows. Let ζ = (ζ1, . . . , ζn) be a random

vector sampled from a distribution Pζ supported on [0,1]n. Although the most
common choice for Pζ is the i.i.d. uniform distribution for each ζi , we do not
make this assumption in the present paper. We further assume that there exists a
function f : [0,1]3 → [0,1] such that for any t one has f (x, y, t) = f (y, x, t) and

(1) �i,j,l = f (ζi, ζj , tl), i, j = 1, . . . , n, l = 1, . . . ,L.

Then function f summarizes behavior of the network and can be called dynamic
graphon, similarly to the graphon in the situation of a stationary network. This
formulation allows to study a different set of stochastic network models than the
DSBM.

It is known that graphons play an important role in the theory of graph limits
described in Lovász and Szegedy (2006) and Lovász (2012). The definition of
the dynamic graphon above fully agrees with their theory. Indeed, for every l =
1, . . . ,L, the limit of �∗,∗,l as n → ∞ is f (·, ·, tl). We shall further elaborate on
the notion of the dynamic graphon in Section 7.

In the last few years, dynamic network models attracted a great deal of attention
[see, e.g., Durante, Dunson and Vogelstein (2017), Durante and Dunson (2016),
Han, Xu and Airoldi (2015), Kolar et al. (2010), Anagnostopoulos et al. (2016),
Matias and Miele (2017), Minhas, Hoff and Warda (2015), Xing, Fu and Song
(2010), Xu (2015), Xu and Hero III (2014) and Yang et al. (2011) among others].
The majority of those papers describe changes in the connection probabilities and
group memberships via various kinds of Bayesian or Markov random field mod-
els and carry out the inference using the EM or iterative optimization algorithms.
While procedures described in those papers show good computational properties,
they come without guarantees for the estimation precision. The only paper known
to us that is concerned with estimation precision in the dynamic setting is by Han,
Xu and Airoldi (2015) where the authors study consistency of their procedures
when n → ∞ or L → ∞.

On the other hand, recently, several authors carried out minimax studies in the
context of stationary network models. In particular, Gao, Lu and Zhou (2015) de-
veloped upper and minimax lower bounds for the risk of estimation of the matrix
of connection probabilities. In a subsequent paper, Gao et al. (2016) generalized
the results to a somewhat more general problem of estimation of matrices with bi-
clustering structures. In addition, Klopp, Tsybakov and Verzelen (2017) extended
these results to the case when the network is sparse in a sense that probability
of connection is uniformly small and tends to zero as n → ∞. Also, Zhang and
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Zhou (2016) investigated minimax rates of community detection in the two-class
stochastic block model.

The present paper has several objectives. First, we describe the non-parametric
DSBM model that allows for smooth evolution of the tensor G of connection
probabilities as well as changes in group memberships in time. Second, we intro-
duce vectorization of the model that enables us to take advantage of well-studied
methodologies in nonparametric regression estimation. Using these techniques, we
derive penalized least squares estimators �̂ of � and show that they satisfy oracle
inequalities. These inequalities do not require any assumptions on the mechanism
that drives evolution of the group memberships of the nodes in time and can be ap-
plied under very mild conditions. Furthermore, we consider a particular situation
where only at most n0 nodes can change their memberships between two consec-
utive time points. Under the latter assumption, we derive minimax lower bounds
for the risk of an estimator of � and confirm that the estimators constructed in the
paper attain those lower bounds. Moreover, we extend those results to estimation
of the tensor � when it is generated by a graphon function. We show that, for
the graphon, the estimators are minimax optimal within a logarithmic factor of L.
Estimators, constructed in the paper, do not require knowledge of the number of
classes m in the context of the DSBM, or a degree of smoothness of the graphon
function f if � is generated by a dynamic graphon.

Note that unlike in Klopp, Tsybakov and Verzelen (2017) we do not consider a
network that is sparse in a sense that probabilities of connections between classes
are uniformly small. However, since our technique is based on model selection,
it allows to study a network where some groups do not communicate with each
other and obtain more accurate results. Moreover, as we show in Section 6, by
adjusting the penalty, one can provide adaptation to uniform sparsity assumption
if the number of nodes in each class is large enough.

The present paper makes several key contributions. First, to the best of our
knowledge, the time-dependent networks are usually handled via generative mod-
els that assume some probabilistic mechanism which governs the evolution of the
network in time. The present paper offers the first fully nonparametric model for
the time-dependent networks which does not make any of such assumptions. It
treats connection probabilities for each group as functional data, allows group
membership switching and enables one to exploit stability in the group member-
ships over time. Second, the paper provides the first minimax study of estimation
of the tensor of connection probabilities in a dynamic setting. The estimators con-
structed in the paper are adaptive to the number of blocks in the context of the
DSBM and to the smoothness of the graphon function in the case of a dynamic
graphon. Moreover, the approach of the paper is nonasymptotic, so it can be used
irrespective of how large the number of nodes n, the number of groups m and the
number of time instants L are and what the relationship between these parameters
is. Third, in order to handle the tensor-variate functional data, we use vectoriza-
tion of the model. This technique allows to reduce the problem of estimation of
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an unknown tensor of connection probabilities to a solution of a functional linear
regression problem with sub-Gaussian errors. The technique is very potent and is
used in a novel way. In particular, it leads to much more simple mathematics than
in Gao, Lu and Zhou (2015) and Klopp, Tsybakov and Verzelen (2017). In the case
of a time-independent SBM, it immediately reduces the SBM to a linear regres-
sion setting. In addition, by using the properties of the Kronecker product, we are
able to reduce the smoothness assumption on the connection probabilities to spar-
sity assumption on their coefficients in one of the common orthogonal transforms
(e.g., Fourier or wavelet). Fourth, we use the novel structure of the penalty a part
of which is proportional to the logarithm of the cardinality of the set of all possible
clustering matrices over L time instants. The latter allows to accommodate var-
ious group membership switching scenarios and is based on the Packing lemma
(Lemma 4) which can be viewed as a version of the Varshamov–Gilbert lemma
for clustering matrices. In particular, while all papers that studied the SBM dealt
with the situation where no restrictions are placed on the set of clustering matrices,
our approach allows to impose those restrictions. Finally, the methodologies of the
paper admit various generalizations. For example, they can be adapted to a situa-
tion where the number of nodes in the network depends on time, or the connection
probabilities have jump discontinuities, or when some of the groups have no con-
nection with each other. Section 6 shows that the technique can be adapted to an
additional uniform sparsity considered in Klopp, Tsybakov and Verzelen (2017) if
the number of nodes in each class is large enough.

The rest of the paper is organized as follows. In Section 2, we introduce notation
and describe the vectorization of the model. In Section 3, we construct the penal-
ized least squares estimators �̂ of the tensor �. In Section 4, we derive the oracle
inequalities for their risks. In Section 5, we obtain the minimax lower bounds for
the risk that confirm that the estimators �̂ are minimax optimal. Section 6 shows
how our technique provides adaptation to uniform sparsity assumption studied in
Klopp, Tsybakov and Verzelen (2017). Section 7 develops the nearly minimax
optimal (within a logarithmic factor of L) estimators of � when the network is
generated by a graphon. Finally, Section 8, provides a discussion of various gener-
alizations of the techniques proposed in the paper. The proofs of all statements are
placed into the Supplementary Material [Pensky (2019)].

2. Notation, discussion of the model and data structures.

2.1. Notation. For any two positive sequences {an} and {bn}, an � bn means
that there exists a constant C > 0 independent of n such that C−1an ≤ bn ≤ Can

for any n. For any set �, denote cardinality of � by |�|. For any x, [x] is the
largest integer no larger than x.

For any vector t ∈ R
p , denote its �2, �1, �0 and �∞ norms by, respectively, ‖t‖,

‖t‖1, ‖t‖0 and ‖t‖∞. Denote by ‖t1 − t2‖H the Hamming distance between vectors
t1 and t2. Denote by 1 and 0 the vectors that have, respectively, only unit or zero
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elements. Denote by ej the vector with 1 in the j th position and all other elements
equal to zero.

For a matrix A, its ith row and j th columns are denoted, respectively, by Ai,∗
and A∗,j . Similarly, for a tensor A ∈ R

n1×n2×n3 , we denote its lth (n1 × n2)-
dimensional submatrix by A∗,∗,l . Let vec(A) be the vector obtained from matrix
A by sequentially stacking its columns. Denote by A ⊗ B the Kronecker product
of matrices A and B. Also, Ik is the identity matrix of size k. For any subset J of
indices, any vector t and any matrix A, denote the restriction of t to indices in J

by tJ and the restriction of A to columns A∗,j with j ∈ J by AJ . Also, denote by
t(J ) the modification of vector t where all elements tj with j /∈ J are set to zero.

For any matrix A, denote its spectral and Frobenius norms by, respectively,
‖A‖op and ‖A‖. Denote ‖A‖H ≡ ‖vec(A)‖H , ‖A‖∞ = ‖vec(A)‖∞ and ‖A‖0 ≡
‖vec(A)‖0. For any tensor A ∈ R

n1×n2×n3 , denote ‖A‖2 = ∑n3
l=1 ‖A∗,∗,l‖2.

Denote by M(m,n) a collection of membership (or clustering) matrices Z ∈
{0,1}n×m, that is, matrices such that Z has exactly one 1 per row and Zik = 1 iff a
node i belongs to the class �k and is zero otherwise. Denote by C(m,n,L) a set
of clustering matrices such that

(2) C(m,n,L) ⊆
L∏

l=1

M(m,n).

2.2. Discussion of the model. Note that the values of Bi,j,l are independent
given the values of �i,j,l , that is, Bi,j,l are independent in the sense that their
deviations from �i,j,l are independent from each other. Therefore, the values of
Bi,j,l are linked to each other in the same way as observations of a continuous
function with independent Gaussian errors are related to each other. Moreover, in
majority of papers treating dynamic block models [see, e.g., Durante, Dunson and
Vogelstein (2017), Han, Xu and Airoldi (2015), Matias and Miele (2017), Yang
et al. (2011) among others], similar to the present paper, the authors assume that
observations Bi,j,l are independent given �i,j,l . Note that this is not an artificial
construct: Durante, Dunson and Vogelstein (2017), for example, use the model for
studying international relationships between countries over time.

The only difference between the present paper and the papers cited above is
that we assume that the underlying connection probabilities G∗,∗,l are function-
ally linked (e.g., smooth) rather than being probabilistically related. Indeed, many
papers that treat dynamic block models assume some Bayesian generative mecha-
nism on the values of connection probabilities as well as on evolution of clustering
matrices. In particular, they impose some prior distributions that relate G∗,∗,l+1 to
G∗,∗,l and Z̃(l+1) to Z̃(l), the matrices of underlying probabilities and the clustering
matrices for consecutive time points. Since the proposed generative mechanism
may be invalid, we avoid making assumptions about the probabilistic structures
that generate connection probabilities and group memberships, and treat the net-
work as a given object. However, our model enforces, in a sense, a more close but
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yet flexible relation between the values of Bi,j,l since G∗,∗,l are functionally (and
not stochastically) related. Moreover, our theory allows to place any restrictions
on the set of clustering matrices.

To illustrate this point, consider just one pair of nodes (i, j) and assume that
these nodes do not switch their memberships between times tl and tl+1 and also
that Gi,j,l is continuous at tl . It is easy to see that if Gi,j,l is close to zero (or
one), then Gi,j,l+1 is also close to zero (or one), and hence, Bi,j,l and Bi,j,l+1 are
likely to be equal to zero (or one) simultaneously. This relationship takes place in
general.

To simplify the narrative, just for this paragraph, denote bl = Bi,j,l , bl+1 =
Bi,j,l+1, gl = Gi,j,l and gl+1 = Gi,j,l+1. In order we are able to assert conditional
probabilities P(Bi,j,l+1 = 1|Bi,j,l = 1) ≡ P(bl+1 = 1|bl = 1) and P(Bi,j,l+1 =
0|Bi,j,l = 0) ≡ P(bl+1 = 0|bl = 0), consider the situation where gl and gl+1 are
random variables with the joint pdf p(gl, gl+1) such that, given gl , on the average
gl+1 is equal to gl : E(gl+1 | gl) = gl . Assume, as it is done in the present paper,
that given gl , values of bl are independent Bernoulli variables, so that

p(bl, bl+1 | gl, gl+1) = g
bl

l (1 − gl)
1−bl g

bl+1
l+1 (1 − gl+1)

1−bl+1 .

It is straightforward to calculate marginal probabilities P(bl = 1) = E(gl),
P(bl+1 = 1) = E(gl+1) = E[E(gl+1 | gl)] = E(gl) and the joint probability P(bl =
1, bl+1 = 1) = E(gl+1gl) = E[E(gl+1gl | gl)] = E(g2

l ) which yields

P(bl+1 = 1 | bl = 1) − P(bl+1 = 1) = E(g2
l )

E(gl)
−E(gl) = Var(gl)

E(gl)
> 0

unless Var(gl) = 0. The latter means that, even in the presence of the assumption of
the conditional independence, the probability of interaction at the moment tl+1 is
larger if there were an interaction at the moment tl than it would be in the absence
of this assumption. Similarly, repeating the calculation with gl and gl+1 replaced
by 1 − gl and 1 − gl+1, obtain

P(bl+1 = 0 | bl = 0) − P(bl+1 = 0) = Var(gl)

E(1 − gl)
> 0.

In the absence of the probabilistic assumptions on gl and gl+1, we cannot evaluate
those conditional probabilities but the relationship persists in this situation as well.

2.3. Vectorization of the model. Note that tensor � of connection probabilities
has a lot of structure. On one hand, it is easy to check that

(3) �∗,∗,l = Z̃(l)G∗,∗,l

(
Z̃(l))T , Bi,j,l ∼ Bernoulli(�i,j,l),

where Z̃(l) ∈ M(m,n) is the clustering matrix at the moment tl . On the other hand,
for every k1 and k2, vectors Gk1,k2,∗ ∈ R

L are comprised of values of some smooth
functions and, therefore, have low complexity. Usually, efficient representations of
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such vectors are achieved by applying some orthogonal transform H (e.g., Fourier
or wavelet transform); however, we cannot apply this transform to the original data
tensor for two reasons. First, the errors in the model are not Gaussian, so applica-
tion of H will convert the data tensor with independent Bernoulli components into
a data tensor with dependent entries that are not Bernoulli variables any more.
In addition, application of this transform to the original data will not achieve our
goals since, although vectors Gk1,k2,∗ represent smooth functions, vectors �i,j,∗
do not, due to possible switches in the group memberships. In addition, for every
l, matrix �∗,∗,l in (3) forms the so called bi-clustering structure [see, e.g., Gao
et al. (2016)] which makes recovery of G∗,∗,l much harder than in the case of a
usual regression model.

In order to handle all these intrinsic difficulties, we apply operation of vector-
ization to �∗,∗,l . Denote

(4) λ(l) = vec(�∗,∗,l), b(l) = vec(B∗,∗,l), g(l) = vec(G∗,∗,l).

Then Theorem 1.2.22(i) of Gupta and Nagar (2000) yields

(5)
λ(l) = (

Z̃(l) ⊗ Z̃(l))g(l),

b(l)
i ∼ Bernoulli

(
λ

(l)
i

)
, i = 1, . . . , n2, l = 1, . . . ,L.

Note that b(l)
i in (5) are independent for different values of l but not i due to

the symmetry. In addition, the values of b(l)
i and λ

(l)
i that are corresponding to

diagonal elements of matrices B∗,∗,l and �∗,∗,l , are equal to zero by construction.
Since all those values are not useful for estimation, we remove redundant entries
from vectors λ(l) and b(l) for every l = 1, . . . ,L. Specifically, in (5), we remove
the elements in λ(l) and the rows in (Z̃(l) ⊗ Z̃(l)) corresponding, respectively, to
�i1,i2,l and (Z̃(l)

i1,∗ ⊗ Z̃(l)
i2,∗) with i1 ≥ i2. We denote the reductions of vectors λ(l),

b(l) and matrices (Z̃(l) ⊗ Z̃(l)) by, respectively, θ (l), a(l) and C̃(l) obtaining

(6)
θ (l) = C̃(l)g(l),

a(l)
i ∼ Bernoulli

(
θ

(l)
i

)
, i = 1, . . . , n(n − 1)/2, l = 1, . . . ,L.

Note that unlike in the case of b(l), elements a(l)
i and a(l′)

i′ are independent when-
ever i �= i ′ or l �= l′. The interesting thing here is that matrices C̃(l) are still clus-
tering matrices, that is, C̃(l) ∈ M(n(n − 1)/2,m2). Indeed, C̃(l) are binary matri-
ces such that, for i corresponding to (i1, i2) with i1 < i2 and k corresponding to
(k1, k2) in (Z̃(l)

i1,k1
⊗ Z̃(l)

i2,k2
) one has C̃(l)

i,k = 1 if and only if the nodes i1 ∈ �k1 and
i2 ∈ �k2 .

Observe that although we removed the redundant elements from vectors λ(l)

and b(l), we have not done so for the vectors g(l). Indeed, since matrices G∗,∗,l

are symmetric, the elements of vectors g(l) corresponding to Gk1,k2,l and Gk2,k1,l
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with k1 �= k2 are equal to each other. For the sake of eliminating such redundancy
(and hence, the need of tracing the equal elements in the process of estimation),
for indices k corresponding to pairs of classes (k1, k2) with k1 > k2, we remove
entries g(l)

k from vectors g(l) and denote the resulting vectors by q(l). In order
an equivalent of the relation (6) still holds with vectors q(l) instead of g(l), we
add together columns of matrices C̃(l) corresponding to (k1, k2) and (k2, k1) with
k1 < k2, obtaining new matrices C(l). It is easy to see that, for every l, since C(l)

is obtained from C̃(l) by adding columns together and since each row of C̃(l) has
exactly one unit element with the rest of them being zeros, C(l) is again a clustering
matrix of size [n(n − 1)/2] × [m(m + 1)/2]. In particular, for indices i and k

corresponding to nodes (i1, i2) and classes (�k1,�k2) with i1 < i2 and k1 ≤ k2,
one has C(l)

i,k = 1 if i1 ∈ �k1 and i2 ∈ �k2 or i1 ∈ �k2 and i2 ∈ �k1 ; C(l)
i,k = 0

otherwise. The process of vectorization of the model and removing redundancy is
presented in Figure 1.

Using C(l) and q(l), one can rewrite equations (6) as

a(l) = θ (l) + ξ (l) with θ (l) = C(l)q(l), l = 1, . . . ,L,(7)

where C(l) ∈ M(M,N), θ (l) ∈ R
N , q(l) ∈ R

M , N = n(n − 1)/2 and M = m(m +
1)/2. Here, for every i and l, components a(l)

i of vector a(l) are independent

Bernoulli variables with P(a(l)
i = 1) = θ

(l)
i , so that components of vectors ξ (l) are

also independent for different values of i or l.
If we had the time-independent SBM (L = 1) and the clustering matrix were

known, equation (7) would reduce estimation of q(1) to the linear regression prob-

FIG. 1. Vectorization of the probability tensor � with n = 4, m = 2, N = n(n − 1)/2 = 6,
M = m(m + 1)/2 = 3 and L = 3. Left panel, top: transforming �∗,∗,l into θ (l), l = 1,2,3. Left

panel, middle: �∗,∗,1 = Z̃(1)G∗,∗,1(Z̃(1))T . Left panel, bottom: θ (1) = C̃(1)g(1) = C(1)q(1). In the
left panel, redundant elements of � are white, redundant elements of G are yellow. Right panel:
θ = Cq.
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lem with independent sub-Gaussian (Bernoulli) errors. Since in the case of the
DSBM, for each i, the elements g(l)

i , l = 1, . . . ,L, of vector gi represent the values
of a smooth function, we combine vectors in (7) into matrices. Specifically, we
consider matrices A,�,� ∈ R

N×L and Q ∈ R
M×L with columns a(l), θ (l), ξ (l)

and q(l), respectively. Note that if the group memberships of the nodes were con-
stant in time, so that C(l) ∈ {0,1}N×M were independent of l, formula (7) would
imply

(8) A = � + �, � = ZQ if C(l) = Z, l = 1, . . . ,L.

However, we consider the situations where nodes can switch group memberships
in time and (8) is not true.

For this reason, we proceed with further vectorization. We denote a = vec(A),
θ = vec(�) and q = vec(Q) and observe that vectors a, θ ∈ R

NL and q ∈ R
ML

are obtained by stacking vectors a(l), θ (l) and q(l) in (7) vertically for l = 1, . . . ,L.
Define a block diagonal matrix C ∈ {0,1}NL×ML with blocks C(l), l = 1, . . . ,L,
on the diagonal. Then (7) implies that

(9) a = θ + ξ with θ = Cq = C vec(Q),

where ai are independent Bernoulli(θ i ) variables, i = 1, . . . ,NL.
Observe that if the matrix C were known, then equations in (9) would repre-

sent a regression model with independent Bernoulli errors. Moreover, matrix CT C
is diagonal since matrices (C(l))T C(l) = (S(l))2, l = 1, . . . ,L, are diagonal with

S(l)
k1,k2

=
√

N
(l)
k1,k2

, where N
(l)
k1,k2

is the number of pairs (i1, i2) of nodes such that
i1 < i2 and one node is in class �k1 while another is in class �k2 at time instant tl :

(10) N
(l)
k1,k2

=
{
n

(l)
k1

n
(l)
k2

if k1 �= k2;
n

(l)
k1

(
n

(l)
k1

− 1
)

if k1 = k2.

REMARK 1 (Directed graph). Similar vectorization algorithm can be used
when the dynamic network is constructed from directed graphs or graphs with
self-loops. In the former case, the only redundant entries of matrices �∗,∗,l would
be the diagonal ones while, in the latter case, � has no redundant elements and no
row removal is necessary.

REMARK 2 (Biclustering structures). Vectorization presented above can sig-
nificantly simplify the inference in the so called bi-clustering models considered,
for example, by Lee et al. (2010) and Gao et al. (2016). In those models, one needs
to recover matrix X from observations of matrix Y given by Y = U1XU2 + �
where matrices U1 and U2 are known and matrix � has independent zero-mean
Gaussian or sub-Gaussian entries. As long as there are no structural assumptions
on matrix X (such as, e.g., low rank), one can apply vectorization and reduce the
problem to the familiar nonparametric regression problem of the form y = Ux + ξ
where matrix U = U1 ⊗ U2 is known, ξ = vec(�) is the vector with independent
components and one needs to recover x = vec(X) from observations y = vec(Y).
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3. Assumptions and estimation for the DSBM. It is reasonable to assume
that the values of the probabilities q(l) of connections do not change dramati-
cally from one time instant to another. Specifically, we assume that for various
k = 1, . . . ,M , vectors qk = (q(1)

k , . . . ,q(L)
k ) represent values of some smooth func-

tions, so that q(l)
k = fk(tl), l = 1, . . . ,L. In order to quantify this phenomenon,

we assume that vectors qk have sparse representation in some orthogonal basis
H ∈ R

L×L with HT H = HHT = IL, so that vector HqT
k is sparse: it has only few

large coefficients, the rest of the coefficients are small or equal to zero. This is a
very common assumption in functional data analysis. For example, if H is the ma-
trix of the Fourier transform and fk belongs to a Sobolev space or H is a matrix of
a wavelet transform and fk belongs to a Besov space, the coefficients HqT

k of qT
k

decrease rapidly, and hence, vector HqT
k is sparse. In particular, one needs only

few elements in vector HqT
k to represent qk with high degree of accuracy. The

extreme case occurs when the connection probabilities do not change in time, so
that vector qk has constant components: then, for the Fourier or a periodic wavelet
transform, the vector HqT

k has only one nonzero element.
Denote D = QHT where matrix Q is defined in the previous section and

d = vec(D). Observe that vector d is obtained by stacking together the columns of
matrix D = QHT while its transpose DT = HQT has vectors HqT

k as its columns.
Then sparsity of the matrix D can be controlled by imposing a complexity penalty
‖d‖0 = ‖D‖0 = ‖DT ‖0 on matrix D. Note that complexity penalty does not require
the actual matrix D to have only few nonzero elements, it merely forces the proce-
dure to keep only few large elements in D while setting the rest of the elements to
zero, and hence, acts as a kind of hard thresholding. Note that by Theorem 1.2.22
of Gupta and Nagar (2000), one has

(11) d = vec
(
QHT ) = (H ⊗ IM)vec(Q) = (H ⊗ IM)q = Wq,

where W = (H ⊗ IM) is an orthogonal matrix such that WT W = WWT = IML.
Denote

(12) J ≡ JM = {j : dj �= 0}, dJC = 0,

so that J is the set of indices corresponding to nonzero elements of the vector d.
Consider a set of clustering matrices C(m,n,L) satisfying (2). At this point, we

impose very mild assumption on C(m,n,L):

(13) log
(∣∣C(m,n,L)

∣∣) ≥ 2 logm.

Assumption (13) is only used for simplifying expression for the penalty. Indeed,
until now, we allowed any collection of clustering matrices, so potentially, we can
work with the case where all cluster memberships are fixed in advance (although
this would be a totally trivial case). Condition (13) merely means that at least two
nodes at some point in time can be assigned arbitrarily to any of m classes. Later,
we shall consider some special cases such as fixed membership (no membership
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switches over time) or limited change (only at most n0 nodes can change their
memberships between two consecutive time points).

We find m, J , d and C as a solution of the following penalized least squares
optimization problem:

(14) (m̂, Ĵ , d̂, Ĉ) ∈ argmin
m,J,d,C

[∥∥a − CWT d
∥∥2 + Pen

(|J |,m)]
s.t. dJ c = 0,

where C ∈ C(m,n,L), a is defined in (9), d ∈ R
ML, W ∈ R

ML×ML, M = m(m +
1)/2 and

(15) Pen
(|J |,m) = 11 log

(∣∣C(m,n,L)
∣∣) + 11

2
|J | log

(
25m2L

|J |
)
.

Observe that the penalty in (15) consists of two parts. The first part accounts for the
complexity of clustering and, therefore, allows one to obtain an estimator adaptive
to the number of unknown groups m as long as the we can express the complexity
of clustering in terms of m, n and L. The second term represents the price of
estimating |J | elements of vector d and finding those |J | elements in this vector
of length m(m + 1)L/2.

Note that since minimization is carried out also with respect to m, optimization
problem (14) should be solved separately for every m = 1, . . . , n, yielding d̂M , ĈM

and ĴM . After that, one needs to select the value M̂ = m̂(m̂ + 1)/2 that delivers
the minimum in (14), so that

(16) d̂ = d̂M̂ , Ĉ = ĈM̂ , Ĵ = ĴM̂ .

Finally, due to (12), we set Ŵ = (H ⊗ IM̂) and calculate

(17) q̂ = ŴT d̂, θ̂ = Ĉq̂.

We obtain �̂ by packing vector θ̂ into the tensor and taking the symmetries into
account.

4. Oracle inequalities for the DSBM. Denote the true value of tensor �
by �∗. Also, denote by m∗ the true number of groups, by q∗ and θ∗ the true
values of q and θ in (9) and by C∗ the true value of C. Denote by D∗ and d∗ the
true values of matrix D and vector d, respectively. Let M∗ = m∗(m∗ + 1)/2 and
W∗ = (H ⊗ IM∗) be true values of M and W. Note that vector θ∗ is obtained by
vectorizing �∗ and then removing the redundant entries. Then it follows from (9)
that

(18) a = θ∗ + ξ with θ∗ = C∗q∗ = C∗(
W∗)T d∗.

Due to the relation between the �2 and the Frobenius norms, one has

(19)
∥∥θ − θ∗∥∥2 ≤ ∥∥� − �∗∥∥2 ≤ 2

∥∥θ − θ∗∥∥2
,

and the following statement holds.
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THEOREM 1. Consider a DSBM with a true matrix of probabilities �∗ and the
estimator �̂ obtained according to (14)–(17). Let C(m,n,L) be a set of clustering
matrices satisfying conditions (2) and (13). Then, for any t > 0, with probability
at least 1 − 9e−t , one has

(20)
‖�̂ − �∗‖2

n2L
≤ min

m,J,d
C∈C(m,n,L)

[
6‖CWT d(J ) − θ∗‖2

n2L
+ 4 Pen(|J |,m)

n2L

]
+ 38t

n2L

and

(21)

E

(‖�̂ − �∗‖2

n2L

)

≤ min
m,J,d

C∈C(m,n,L)

[
6‖CWT d(J ) − θ∗‖2

n2L
+ 4 Pen(|J |,m)

n2L
+ 342

n2L

]
,

where d(J ) is the modification of vector d where all elements dj with j /∈ J are set
to zero.

The proof of Theorem 1 is given in the Supplementary Material [Pensky
(2019)]. Here, we just explain its idea. Note that if the values of m and C are
fixed, the problem (14) reduces to a regression problem with a complexity penalty
Pen(|J |,m). Moreover, if J is known, the optimal estimator d̂ of d∗ is just a pro-
jection estimator. Indeed, denote ϒC = CWT and let ϒC,J = (CWT )J be the
reduction of matrix CWT to columns j ∈ J . Given m̂, Ĵ and Ĉ, one obtains
M̂ = m̂(m̂ + 1)/2, Ŵ = (H ⊗ IM̂), ϒC,J = (CWT )J and ̂ϒĈ,Ĵ = (ĈŴT )Ĵ . Let
(22)


C,J = ϒC,J

(
ϒT

C,J ϒC,J

)−1
ϒT

C,J , 
̂Ĉ,Ĵ = ϒ̂Ĉ,Ĵ

(
ϒ̂

T
Ĉ,Ĵ ϒ̂Ĉ,Ĵ

)−1
ϒ̂

T
Ĉ,Ĵ

be the projection matrices on the column spaces of ϒC,J and ϒ̂Ĉ,Ĵ , respectively.
Then it is easy to see that ϒ̂Ĉ,Ĵ d̂ = 
̂Ĉ,Ĵ a and vector d̂ is of the form

(23) d̂ = (
ϒ̂

T
Ĉ,Ĵ ϒ̂Ĉ,Ĵ

)−1
ϒ̂

T
Ĉ,Ĵ a.

Hence, the values of m̂, Ĵ and Ĉ can be obtained as a solution of the following
optimization problem:

(Ĉ, m̂, Ĵ ) ∈ argmin
m,J,C

[‖a − 
C,J a‖2 + Pen
(|J |,m)]

s.t. C ∈ C(m,n,L),

where 
C,J and Pen(|J |,m) are defined in (22) and (15), respectively. After that,
we use the arguments that are relatively standard in the proofs of oracle inequalities
for the penalized least squares estimators.

Note that ‖CWT d(J ) − θ∗‖2 in the right-hand sides of expressions (20) and
(21), is the bias term that quantifies how well one can estimate the true values
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of probabilities θ∗ by blocking them together, averaging the values in each block
and simultaneously setting all but |J | elements of vector d to zero. If |J | is too
small, then d will not be well represented by its truncated version d(J ) and the
bias will be large. The penalty represents the stochastic error and constitutes the
“price” for choosing too many blocks and coefficients. In particular, the second
term (11/2)|J | log(25 m2L/|J |) in (15) is due to the need of finding and es-
timating |J | elements of the Lm(m + 1)/2-dimensional vector. The first term,
log(|C(m,n,L)|), accounts for the difficulty of clustering and is due to applica-
tion of the union bound in probability.

Theorem 1 holds for any collection C(m,n,L) of clustering matrices satisfying
assumption (13). In order to obtain some specific results, denote by Z(m,n,n0,L)

the collection of clustering matrices corresponding to the situation where at most
n0 nodes can change their memberships between any two consecutive time points,
so that

(24)
∣∣Z(m,n,n0,L)

∣∣ = mn

[(
n

n0

)
mn0

]L−1

,

yielding |Z(m,n,0,L)| = mn and |Z(m,n,n,L)| = mnL. Note that the case of
n0 = 0 corresponds to the scenario where the group memberships of the nodes are
constant and do not depend on time while the case of n0 = n means that member-
ships of all nodes can change arbitrarily from one time instant to another. Since

log

[(
n

n0

)
mn0

]
≤ n0 log

(
mne

n0

)
,

formulae (15) and (24) immediately yield the following corollary.

COROLLARY 1. Consider a DSBM with a true matrix of probabilities �∗ and
estimator �̂ obtained according to (14)–(17) where C(m,n,L) = Z(m,n,n0,L).
Then inequalities (20) and (21) hold with

(25) Pen
(|J |,m) = 11

[
n logm + n0(L − 1) log

(
mne

n0

)
+ |J |

2
log

(
25 m2L

|J |
)]

.

It is easy to see that the first term in (25) accounts for the uncertainty of the
initial clustering, the second term is due to the changes in the group memberships
of the nodes over time (indeed, if n0 = 0, this term just vanishes) while the last
term is identical to the second term in the expression for the generic penalty (15).
While we elaborate only on the special case where the collection of clustering
matrices is given by (24), one can easily produce results similar to Corollary 1 for
virtually any nodes’ memberships scenario.



DYNAMIC NETWORK MODELS AND GRAPHON ESTIMATION 2391

REMARK 3 (The SBM). Theorem 1 provides an oracle inequality in the case
of a time-independent SBM (L = 1). Indeed, in this case, by taking H = 1 and
W = IM , obtain for any t > 0

E‖�̂ − �∗‖2

n2 ≤ min
m,J,q

C∈M(m,n)

[
6‖Cq(J ) − θ∗‖2

n2 + 44 logm

n

+ 22|J |
n2 log

(
25 m2

|J |
)]

+ 342

n2

(26)

and a similar result holds for the probability. Note that if |J | = m(m+1)/2, our re-
sult coincides with the one of Gao, Lu and Zhou (2015). However, if many groups
have zero probability of connection, then |J | is small and the right-hand side of
(26) can be asymptotically smaller than n−1 logm + n−2m2 obtained in Gao, Lu
and Zhou (2015). In addition, our oracle inequality is non-asymptotic and the es-
timator is naturally adaptive to the unknown number of classes. [Gao et al. (2016)
obtained adaptive estimators but not via an oracle inequality.]

Corollary 1 quantifies the stochastic error term in Theorem 1. The size of the
bias depends on the level of sparsity of coefficients of functions qk in the basis
H and on the constitution of classes. While one can study a variety of scenarios,
in order to be specific, we consider the case of a balanced network model where
the sizes of all the classes are proportional to each other, in particular, for some
absolute constants 0 < ℵ1 ≤ 1 ≤ ℵ2 < ∞, one has

(27) ℵ1
n

m
≤ n

(l)
k ≤ ℵ2

n

m
, k = 1, . . . ,m, l = 1, . . . ,L,

where n
(l)
k the number of nodes in class k at the moment tl .

Note that the condition (27) is very common in studying random network mod-
els [see, e.g., Gao et al. (2017) or Amini and Levina (2018) among others]. In ad-
dition, if class memberships are generated from the multinomial distribution with
the vector of probabilities (π1, . . . , πm), and C1/m ≤ πi ≤ C2/m for some con-
stants 0 < C1 < C2 < ∞, as it is done in, for example, Bickel and Chen (2009),
condition (27) holds with high probability.

In particular, we consider networks that satisfy condition (27) but yet allow only
n0 nodes switch their memberships between time instances. We denote the corre-
sponding set of clustering matrices by Zbal(m,n,n0,L,ℵ1,ℵ2). It would seem that
condition (27) should make clustering much simpler. However, as Lemma 1 below
shows, this reduction does not makes estimation significantly easier since the com-
plexity of the set of balanced clustering matrices log |Zbal(m,n,n0,L,ℵ1,ℵ2)|
is smaller than the complexity of the set of unrestricted clustering matrices
log |Z(m,n,n0,L)| only by, at most, a constant factor.
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LEMMA 1 (Balanced network model complexity). If n ≥
√

en3
0, then

(28) log
∣∣Zbal(m,n,n0,L,ℵ1,ℵ2)

∣∣ ≥ 1

4

[
n logm + (L − 1)n0 log

(
mne

n0

)]
.

Then one can use the same penalty that was considered in Corollary 1, so that
Theorem 1 yields the following result.

THEOREM 2. Consider a balanced DSBM satisfying condition (27). Let �∗ be
the true matrix of probabilities, m∗ be the true number of classes, M∗ = m∗(m∗ +
1)/2, Q∗ be the true matrix of probabilities of connections for pairs of classes

and D∗ = Q∗H. If n ≥
√

en3
0 and the estimator �̂ is obtained as a solution of

optimization problem (14) with the penalty (25) where

(29) J =
M⋃

k=1

Jk,

then, for any t > 0, with probability at least 1 − 9e−t , one has

(30)
‖�̂ − �∗‖2

n2L
≤ min

J

{
6ℵ2

2

(m∗)2L

M∗∑
k=1

∑
l /∈Jk

(
D∗

k,l

)2 + 4 Pen(|J |,m∗)
n2L

}
+ 38t

n2L

and a similar result holds for the expectation.

In order to obtain specific upper bounds in (30), we need to impose some as-
sumptions on the smoothness of functions Q∗

k,∗, k = 1, . . . ,M∗. For the sake of
brevity, we assume that all vectors D∗

k,∗, k = 1, . . . ,M∗, behave similarly with
respect to the basis H (generalization to the case where this is not true is rather
pedestrian but very cumbersome as we point out in Section 8, Discussion).

(A0). There exist absolute constants ν0 and K0 such that

(31)
L∑

l=1

(l − 1)2ν0
(
D∗

k,l

)2 ≤ K0, k = 1, . . . ,M∗.

COROLLARY 2. Let the conditions of Theorem 2 hold and D∗
k,∗ satisfy as-

sumption (31). If the estimator �̂ is obtained as a solution of optimization problem
(14), then for any t > 0, with probability at least 1 − 9e−t , one has

‖�̂ − �∗‖2

n2L
≤ K̃0

(
min

{
1

L

[(
m∗

n

)2
log

(
n

m∗
)] 2ν0

2ν0+1
,

(
m∗

n

)2}
+ logm∗

nL
+ n0

n2 log
(

m∗ne

n0

)
+ t

n2L

)(32)

and a similar result holds for the expectation. Here, K̃0 is an absolute constant
that depends on K0, ν0, ℵ1 and ℵ2 only.
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5. The lower bounds for the risk for the DSBM. In order to prove that the
estimator obtained as a solution of optimization problem (14) is minimax optimal,
we need to show that the upper bounds in Corollaries 1 and 2 coincide with the
minimax lower bounds obtained under similar constraints. For the sake of deriva-
tion of lower bounds for the error, we impose mild conditions on the orthogonal
matrix H as follows: for any binary vector ω ∈ {0,1}L one has

(33)
∥∥HT ω

∥∥∞ ≤ ‖ω‖1/
√

L and H1 = √
Le1,

where 1 = (1,1, . . . ,1)T and e1 = (1,0, . . . ,0)T . Assumptions (33) are not re-
strictive. In fact, they are satisfied for a variety of common orthogonal transforms
such as the Fourier transform or a periodic wavelet transforms.

First, we derive the lower bounds for the risk under the assumption that vector
d is l0-sparse and has only s nonzero components. Let Gm,L,s be a collection of
tensors such that G ∈ Gm,L,s implies that the vectorized versions q of G can be
written as q = WT d with ‖d‖0 ≤ s. In order to be more specific, we consider the
collection of clustering matrices Z(m,n,n0,L) with cardinality given by (24) that
corresponds to the situation where at most n0 nodes can change their memberships
between consecutive time instants. In this case, Pen(|J |,m) is defined in (25).

THEOREM 3. Let orthogonal matrix H satisfy condition (33). Consider the
DSBM where G ∈ Gm,L,s with s ≥ κm2 where κ > 0 is independent of m,
n and L. Denote γ = min(κ,1/2) and assume that L ≥ 2, n ≥ 2m, n0 ≤
min(γ n,4/3γ nm−1/9) and s is such that

(34) s2 log(2LM/s) ≤ 68LMn2.

Then

inf
�̂

sup
G∈Gm,L,s

C∈Z(m,n,n0,L)

P�

{‖�̂ − �‖2

n2L
≥ C(γ )

(
logm

nL
+ n0

n2 log
(

mne

n0

)

+ s log(Lm2/s)

n2L

)}
≥ 1

4
,

(35)

where �̂ is any estimator of �, P� is the probability under the true value of the
tensor � and C(γ ) is an absolute constant that depends on γ only.

Theorem 3 ensures that if vector d has only s nonzero components, then the
upper bounds in Corollary 1 are optimal up to a constant. In order to provide a
similar assertion in the case of Corollary 2, we assume that rows of matrix D are
l2-sparse. For this purpose, we consider a collection of tensors Gm,L,ν0 such that
G ∈ Gm,L,ν0 implies that Q = DH and rows Dk,∗ of matrix D satisfy condition
(31). Let as before Zbal(m,n,n0,L,ℵ1,ℵ2) be a collection of clustering matrices
satisfying condition (27) and such that at most n0 nodes change their memberships
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between two consecutive time instances. The following statement ensures that the
upper bounds in Corollary 2 are minimax optimal up to a constant factor.

THEOREM 4. Let orthogonal matrix H satisfy condition (33). Consider the
DSBM where G ∈ Gm,L,ν0 with ν0 > 1/2, L ≥ 2 and n ≥ 2m. Then, for any abso-
lute constants 0 < ℵ1 ≤ 1 ≤ ℵ2 < ∞, one has

inf
�̂

sup
G∈Gm,L,s

C∈Zbal

P�

{‖�̂ − �‖2

n2L
≥ C

[
min

{
1

L

[(
m

n

)2] 2ν0
2ν0+1 ;

(
m

n

)2}

+ logm

nL
+ n0

n2 log
(

mne

n0

)]}
≥ 1

4
,

(36)

where Zbal stands for Zbal(m,n,n0,L,ℵ1,ℵ2), �̂ is any estimator of �, P� is
the probability under the true value of the tensor � and C is an absolute constant
independent of n, m and L.

Theorems 3 and 4 confirm that the estimator constructed above is minimax op-
timal up to a constant if G ∈ Gm,L,s and C ∈ Z(m,n,n0,L), or G ∈ Gm,L,ν0 and
C ∈ Zbal(m,n,n0,L,ℵ1,ℵ2).

Note that the terms logm/(nL) and n0n
−2 log(mne/n0) in (35) and (36) cor-

respond to, respectively, the error of initial clustering and the clustering error due
to membership changes. The remaining terms are due to nonparametric estima-
tion and model selection. Assumptions (33) and (34) are purely technical and are
necessary to ensure that the “worst case scenario” tensor G of connection proba-
bilities has nonnegative components. As we mentioned earlier, conditions (33) are
totally nonrestrictive. Condition (34) in Theorem 3 holds whenever representation
of the tensor of probabilities in the basis H is at least somewhat sparse. Indeed, if
there is absolutely no sparsity (which is a very implausible scenario when smooth
functions are represented in a basis) and s ≈ ML, then condition (34) reduces to
m(m + 1)L ≤ Cn2 and will still be true if L is relatively small. If L is large, the
situation where s ≈ ML is very unlikely. Assumption that s ≥ κm2 for some κ > 0
independent of m, n and L, restricts the sparsity level and ensures that one does
not have too many classes where nodes have no interactions with each other or
members of other classes.

Finally, it is also worth keeping in mind that all assumptions in Theorems 3 and
4 are used for the derivation of the minimax lower bounds for the risk and are not
necessary for either the construction of the estimator �̂ of � in (14) or for the
assessment of its precision in Theorems 1 and 2.

6. The uniformly sparse DSBM. In the current literature, the notion of the
sparse SBM refers to the case where the entries of the matrix of the connection
probabilities are uniformly small: � = ρn�

(0) with ‖�(0)‖∞ = 1 and ρn → 0 as
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n → ∞. The concept is based on the idea that when the number of nodes in a net-
work grow, the probabilities of connections between them decline. The minimax
study of the sparse SBM has been carried out by Klopp, Tsybakov and Verzelen
(2017). The logical generalization of the sparse SBM of this type would be the
sparse DSBM where the elements of the tensor � are bounded above by ρn where
ρn → 0 as n grows. We refer to this kind of network as uniformly sparse.

On the other hand, not all networks become uniformly sparse as n → ∞. In-
deed, in the real world, when a network grows, the number of communities in-
creases and, while the probabilities of connections for majority of pairs of groups
become very small, some of the of pairs groups will still maintain high connection
probabilities. We refer to this type of network as nonuniformly sparse. The idea
of such a network has been elaborated in the recent paper of Borgs et al. (2016).
The authors considered heavy-tailed sparse graphs such that, in the context of the
SBM, one still has � = ρn�

(0) but the elements of �(0) are no longer bounded by
one but by a quantity that grows with n.

While distinguishing between very small probabilities might be essential in a
clustering problem, it is not so necessary in the problem of estimation of the tensor
of the connection probabilities studied in the present paper. Indeed, it is a common
knowledge that, in the nonparametric regression model, in order to obtain the best
error rates, one needs to replace small elements of the vector of interest by zeros
rather than estimating them. Similarly, if the network is nonuniformly sparse, that
is, some pairs of groups have probabilities of connections equal or very close to
zero, one would obtain an estimator with better overall precision by setting those
very small connection probabilities to zeros. Although nowhere in the present pa-
per we make an assumption that a network is sparse and, moreover, consideration
of the nonuniformly sparse SBM or DSBM is not one our objectives, this paper nat-
urally provides the tools for minimax optimal statistical estimation in such models
that deliver results with very little additional work.

In addition, the techniques developed in this paper allow, with some additional
work, to extend results obtained in Klopp, Tsybakov and Verzelen (2017) to the
dynamic setting. However, majority of their results depend upon solution of op-
timization problem (14) under the restriction that ‖WT d‖∞ ≤ ρn which requires
representation of the estimator via a different projection operator and will result
in more cumbersome calculations. Therefore, we avoid studying this new opti-
mization problem and only extend Corollary 2.2 of Klopp, Tsybakov and Verzelen
(2017) that handles the case of the balanced model without placing the above-
mentioned restriction. For this purpose, consider a small ρn and denote

(37) rn(m) = max
(
ρn,m

2/n2)
.

Similar to (14), we find m, J , d and C as a solution of the following penalized
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least squares optimization problem:

(38)
(m̂, Ĵ , d̂, Ĉ) ∈ argmin

m,J,d,C

[∥∥a − CWT d
∥∥2

+ λ0rn(m)Pen
(|J |,m)]

s.t. dJ c = 0

where C ∈ Zbal(m,n,n0,L,ℵ1,ℵ2), a is defined in (9), d ∈ R
ML, W ∈ R

ML×ML,
M = m(m + 1)/2, Pen(|J |,m) is defined in (25) and λ0 is a tuning parameter that
is bounded above and below by a constant.

In order the estimator has the uniform sparsity property, we need to make sure
that transformation H is such that, whenever it is used for sparse representation
of smooth functions, the maximum absolute value of the estimator obtained by
truncation of the vector of coefficients is bounded above by a constant factor of
the maximum absolute value of the original function. In particular, we denote the
projection matrix on the column space of matrix (CWT )J by 
C,J and impose
the following condition on the transformation matrix H:

(A1). There exists an absolute constant B0 such that for any C ∈ Zbal(m,n,n0,

L,ℵ1,ℵ2) and any vector θ

(39)
∥∥
⊥

C,J θ
∥∥∞ = ‖θ − 
C,J θ‖∞ ≤ B0‖θ‖∞.

Let, as before, �∗ be the true matrix of probabilities, m∗ be the true number of
classes, M∗ = m∗(m∗ + 1)/2, C∗ be the true clustering matrix, Q∗ be the true ma-
trix of probabilities of connections for pairs of classes, D∗ = Q∗H, d∗ = vec(D∗),
θ∗ = C∗(W∗)T d∗ and W∗ = H ⊗ IM∗ .

THEOREM 5. Consider a balanced DSBM satisfying condition (27). Let ma-
trix H be such that condition (39) is satisfied and ‖�∗‖∞ ≤ ρ∗

n . If ρn ≥ ρ∗
n ,

n ≥
√

en3
0 and the estimator �̂ is obtained as a solution of optimization prob-

lem (38), then, for an absolute constant C̃0 and any t > 0, with probability at least
1 − 9e−t , one has

(40)
‖�̂ − �∗‖2

n2L
≤ C̃0 min

J

{‖
⊥
C∗,J θ∗‖2

n2L
+ rn(m

∗)[Pen(|J |,m∗) + t]
n2L

}
,

where 
C∗,J is the projection matrix on the column space of (C∗W∗T )J and C̃0
is an absolute constant that depends on B0, ℵ1 and ℵ2 only.

In particular, if condition (31) holds with K0 replaced with ρ∗
nK0, then

‖�̂ − �∗‖2

n2L
≤ K̃0rn

(
m∗)(

min
{

1

L

[(
m∗

n

)2
log

(
n

m∗
)] 2ν0

2ν0+1
,

(
m∗

n

)2}
+ logm∗

nL
+ n0

n2 log
(

m∗ne

n0

)
+ t

n2L

)
.

(41)

Here, K̃0 is an absolute constant that depends on B0, K0, ν0, ℵ1 and ℵ2 only.
Results similar to (40) and (41) hold for the expectations.
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7. Dynamic graphon estimation. Consider the situation where tensor � is
generated by a dynamic graphon f , so that � is given by expression (1) where
function f : [0,1]3 → [0,1] is such that f (x, y, t) = f (y, x, t) for any t and
ζ = (ζ1, . . . , ζn) is a random vector sampled from a distribution Pζ supported on
[0,1]n.

Given an observed adjacency tensor B sampled according to model (1), the
graphon function f is not identifiable since the topology of a network is invariant
with respect to any change of labeling of its nodes. Therefore, for any f and any
measure-preserving bijection μ : [0,1] → [0,1] (with respect to Lebesgue mea-
sure), the functions f (x, y, t) and f (μ(x),μ(y), t) define the same probability
distribution on random graphs. For this reason, we are considering equivalence
classes of graphons. Note that in order it is possible to compare clustering of nodes
across time instants, we introduce an assumption that there are no label switching
in time, that is, every node carries the same label at any time tl , so that the function
μ is independent of t .

Under this condition, we further assume that probabilities �i,j,l do not change
drastically from one time point to another, that is, that, for every x and y, functions
f (x, y, t) are smooth in t . We shall also assume that f is piecewise smooth in x

and y. In order to quantify those assumptions, for each x, y ∈ [0,1]2, we consider
a vector f(x, y) = (f (x, y, t1), . . . , f (x, y, tL))T and an orthogonal transform H
used in the previous sections. We assume that elements vl(x, y) of vector v(x, y) =
Hf(x, y) satisfy the following assumption:

(A2). There exist constants 0 = β0 < β1 < · · · < βr = 1 and ν1, ν2,K1,K2 > 0
such that for any x, x′ ∈ (βi−1, βi] and y, y′ ∈ (βj−1, βj ], 1 ≤ i, j ≤ r , one has[

vl(x, y) − vl

(
x′, y′)]2 ≤ K1

[∣∣x − x′∣∣ + ∣∣y − y′∣∣]2ν1,(42)

L∑
l=1

(l − 1)2ν2v2
l (x, y) ≤ K2.(43)

Note that, for a graphon corresponding to the DSBM model, on each of the rect-
angles (βi−1, βi]× (βj−1, βj ], functions vl(x, y) are constant, so that vl(x, y) = 0
for l = 2, . . . ,L and ν1 = ∞.

We denote the class of graphons satisfying assumptions (1), (42) and (43) by
(ν1, ν2,K1,K2). In order to estimate the dynamic graphon, we approximate it
by an appropriate DSBM and then estimate the probability tensor of the DSBM.
Note that, since ν1, ν2, K1 and K2 in Assumption A are independent of x and y,
one can simplify the optimization procedure in (14).

Let Q be the matrix defined in (8) and (9). Note that since random variables
ζ1, . . . , ζn are time-independent, we can approximate the graphon by a DSBM
where group memberships of the nodes do not change in time. Hence, matri-
ces C(l) are independent of l, so that C(l) = Z, (8) holds and � = ZQ. Denote
X = AHT . Denote by V and � the matrices of the coefficients of Q and � in the
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transform H: V = QHT and � = �HT . Then, by (8), � = ZVH and � = ZV.
Note that each row of the matrices V and � corresponds to one spatial location.
Since, due to (43), the coefficients in the transform H decrease uniformly irrespec-
tive of the location, one can employ L1 < L columns instead of L columns in the
final representations of Q and �. In order to simplify our presentation, we denote
L1 = Lρ where 0 < ρ ≤ 1 and use the optimization procedure (14) to find m, ρ,
V(ρ) and Z where V(ρ) is the submatrix of V with columns V∗,j , 1 ≤ j ≤ Lρ . Due
to |J | = MLρ and 0.5 m2Lρ ≤ |J | ≤ m2Lρ , in this case optimization problem
(14) can be reformulated as(

m̂, ρ̂, V̂(ρ̂), Ẑ
) ∈ argmin

m,ρ,V(ρ)

Z∈Z(m,n,0,L)

[∥∥X(ρ) − ZV(ρ)
∥∥2

+ 11n logm + 11

2
m2Lρ log

(
25L1−ρ)]

,

(44)

where Z(m,n,0,L) is defined in (24). Then the estimation algorithm appears as
follows:

1. Apply transform H to the data matrix A obtaining matrix X = AHT .
2. Consider a set � = {ρ ∈ [0,1] : Lρ is an integer}. For every ρ ∈ �, remove all

columns X∗,l with l ≥ Lρ + 1 obtaining matrix X(ρ) with EX(ρ) = ZV(ρ) ≡
�(ρ) where matrix V(ρ) has Lρ columns.

3. Find (m̂, ρ̂, V̂(ρ̂), Ẑ) as a solution of the optimization problem (44).
4. Choose �̂ = ẐV̂(ρ̂)H and obtain �̂ by packing �̂ into a tensor.

Note that construction of the estimator �̂ does not require knowledge of ν1, ν2,
K1 and K2, so the estimator is fully adaptive. The following statement provides a
minimax upper bound for the risk of �̂.

THEOREM 6. Let  ≡ (ν1, ν2,K1,K2) be the class of graphons satisfying
Assumptions (1), (42) and (43). If �̂ is obtained as a solution of optimization
problem (44) as described above, then

sup
f ∈

E‖�̂ − �∗‖2

n2L
≤ C min

1≤h≤n−r

0≤ρ≤1

{
Lρ−1

h2ν1
+ I (ρ < 1)

L2ρν2+1

+ (h + r)2(1 + (1 − ρ) logL)

n2L1−ρ
+ log(h + r)

nL

}
,

(45)

where the constant C in (45) depends on ν1, ν2, K1 and K2 only.

Note that h in (45) stands for h = m − r where m is the number of blocks
in the DSBM which approximates the graphon, hence, h ≤ n − r . On the other
hand, h ≥ 0 since one needs at least r blocks to approximate the graphon that
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satisfies condition (42). Since the expression in the right- hand side of (45) is rather
complex and is hard to analyze, we shall consider only two regimes: (a) r = rn,L ≥
2 may depend on n and L and ν1 = ∞; or (b) r = r0 ≥ 1 is a fixed quantity
independent of n and L. The first regime corresponds to a piecewise constant (in
x and y) graphon that generates the DSBM while the second regime deals with
the situation where f is a piecewise smooth function of all three arguments with
a finite number of jumps. In the first case, we set h = 2, in the second case, we
choose h to be a function of n and L. By minimizing the right-hand side of (45),
we obtain the following statement.

COROLLARY 3. Let �̂ be obtained as a solution of optimization problem (44)
as described above. Then, for  ≡ (ν1, ν2,K1,K2) and C independent of n and
L, one has

sup
f ∈

E‖�̂ − �∗‖2

n2L

≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
C min

{
1

L

[(
r

n

)2
log

(
n

r

)] 2ν2
2ν2+1 ;

(
r

n

)2}
+ C log r

nL
, r = rn,L;

C min
{

1

L

(
logL

n2

) 2ν1ν2
(ν1+1)(2ν2+1) ;

(
logL

n2

) ν1
ν1+1

}
+ C logn

nL
, r = r0.

(46)

In order to assess optimality of the penalized least squares estimator obtained
above, we derive lower bounds for the minimax risk over the set (ν1, ν2,K1,K2).
These lower bounds are constructed separately for each of the two regimes.

THEOREM 7. Let matrix H satisfy assumptions (33) and ν2 ≥ 1/2 in (43).
Then, for C independent of n and L, one has

(47) inf
�̂

sup
f ∈(ν1,ν2,K1,K2)

P�

{‖�̂ − �‖2

n2L
≥ �(n,L)

}
≥ 1

4
,

where

�(n,L)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
C min

{
1

L

[(
r

n

)2] 2ν2
2ν2+1 ;

(
r

n

)2}
+ C log r

nL
, r = rn,L;

C min
{

1

L

(
1

n2

) 2ν1ν2
(ν1+1)(2ν2+1) ;

(
1

n2

) ν1
ν1+1

}
+ C logn

nL
, r = r0.

(48)

It is easy to see that the value of �(n,L) coincides with the upper bound in (46)
up to a at most a logarithmic factor of n/r or L. In both cases, the first quantities
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in the minimums correspond to the situation where f is smooth enough as a func-
tion of time, so that application of transform H improves estimation precision by
reducing the number of parameters that needs to be estimated. The second quanti-
ties represent the case where one needs to keep all elements of vector d and hence
application of the transform yields no benefits. The latter can be due to the fact
that ν2 is too small or L is too low.

The upper and the lower bounds in Theorems 6 and 7 look somewhat similar to
the ones appearing in anisotropic functions estimation [see, e.g., Lepski (2015)].
Note also that although in the case of a time-independent graphon (L = 1), the esti-
mation precision does not improve if ν1 > 1, this is not any longer true in the case
of a dynamic graphon. Indeed, the right-hand sides in (48) become significantly
smaller when ν1, ν2 or L grow.

REMARK 4 (The DSBM and the dynamic graphon). Observe that the defini-
tion (1) of the dynamic graphon assumes that vector ζ is independent of t . This
is due to the fact that, to the best of our knowledge, the notion of the dynamic
graphon with ζ being a function of time has not yet been developed by the prob-
ability community. For this reason, we restrict our attention to the case where we
are certain that, at any time point, the graphon describes the limiting behavior of
the network as n → ∞. Nevertheless, we believe that when the concept of the
dynamic graphon is established, our techniques will be useful for its estimation.

In the case of a piecewise constant graphon, our setting corresponds to the sit-
uation where the nodes of the network do not switch their group memberships in
time, so that n0 = 0 in (24). Therefore, a piecewise constant graphon (r = rn,L,
ν1 = ∞) is just a particular case of the general DSBM since the latter allows any
temporal changes of nodes’ memberships. However, the dynamic piecewise con-
stant graphon formulation enables us to derive specific minimax convergence rates
for estimators of � in terms of n, L and r . On the other hand, the piecewise smooth
graphon (r = r0, ν1 < ∞) is an entirely different object that is not represented by
the DSBM.

8. Discussion. In the present paper, we considered estimation of connection
probabilities in the context of dynamic network models. To the best of our knowl-
edge, this is the first paper to propose a fully nonparametric model for the time-
dependent networks which treats connection probabilities for each group as the
functional data and allows to exploit the stability in the group memberships over
time. The paper derives adaptive penalized least squares estimators of the tensor
of the connection probabilities in a nonasymptotic setting and shows that the esti-
mators are indeed minimax optimal by constructing the lower bounds for the risk.
This is done via vectorization technique which is very useful for the task in the
paper and can be very beneficial for solution of other problems such as, for ex-
ample, inference in bi-clustering models mentioned in Remark 2. In addition, we
show that the correct penalty consists of two parts: the portion which accounts
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for the complexity of estimation and the portion which accounts for the complex-
ity of clustering and is proportional to the logarithm of the cardinality of the set
of clustering matrices. The latter is a novel result and it is obtained by using the
innovative Packing lemma (Lemma 4 in the Supplementary Material) which can
be viewed as a version of the Varshamov–Gilbert lemma for clustering matrices.
Finally, the methodologies of the paper allow a variety of extensions.

1. (Inhomogeneous or nonsmooth connection probabilities.) Assumption (43)
essentially implies that probabilities of connections are spatially homogeneous and
are represented by smooth functions of time that belong to the same Sobolev class.
The model, however, can be easily generalized. First, by letting H be a wavelet
transform and assuming that for any fixed x and y, function f (x, y, ·) belongs to
a Besov ball, one can accommodate the case where f (x, y, ·) has jump disconti-
nuities. Furthermore, by using a weaker version of condition (43), similar to how
this was done in Klopp and Pensky (2015), one can treat the case where functions
f (x, y, t) are spatially inhomogeneous.

2. (Time-dependent number of nodes.) One can apply the theory above even
when the number of nodes in the network changes from one time instant to another.
Indeed, in this case we can form a set that includes all nodes that have ever been in
the network and denote their number by n. Consider a class �0 such that all nodes
in this class have zero probability of interaction with each other or any other node
in the network. At each time instant, place all nodes that are not in the network
into the class �0. After that, one just needs to modify the optimization procedures
by placing additional restriction that the out-of-the-network nodes indeed belong
to class �0 and that G0,k,l = 0 for any k = 0,1,2, . . . ,m and l = 1, . . . ,L.

3. (Adaptivity to clustering complexity.) Although, in the case of the DSBM,
our estimator is adaptive to the unknown number of classes, it requires knowledge
about the complexity of the set of clustering matrices. For example, if at most n0
nodes can change their memberships between two consecutive time points and n0
is a fixed quantity independent of n and m, we can replace n0 by logn that domi-
nates n0 if n is large enough. However, if n0 depends on n and m, development of
an adaptive estimator would require an additional investigation.

SUPPLEMENTARY MATERIAL

Supplementary material (DOI: 10.1214/18-AOS1751SUPP; .pdf). The sup-
plement contains proofs of all statements in the paper.
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