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Abstract
The paper considers the Popularity Adjusted Block model 
(PABM) introduced by Sengupta and Chen (Journal of the 
Royal Statistical Society Series B, 2018, 80, 365–386). 
We argue that the main appeal of the PABM is the flex-
ibility of the spectral properties of the graph which makes 
the PABM an attractive choice for modelling networks 
that appear in biological sciences. We expand the theory 
of PABM to the case of an arbitrary number of communi-
ties which possibly grows with a number of nodes in the 
network and is not assumed to be known. We produce es-
timators of the probability matrix and of the community 
structure and, in addition, provide non-asymptotic upper 
bounds for the estimation and the clustering errors. We use 
the Sparse Subspace Clustering (SSC) approach for parti-
tioning the network into communities, the approach that, 
to the best of our knowledge, has not been used for the 
clustering network data. The theory is supplemented by a 
simulation study. In addition, we show advantages of the 
PABM for modelling a butterfly similarity network and a 
human brain functional network.
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1  |   INTRODUCTION

Statistical network analysis has become a major field of research, with applications as diverse as sociology, 
biology, genetics, ecology and information technology to name a few. An overview of statistical modelling 
of random graphs can be found in, for example, Goldenberg et al. (2010), Kolaczyk (2009).

Consider an undirected network with n nodes and no self-loops and multiple edges. Let 
A ∈ {0, 1}n×n be the symmetric adjacency matrix of the network with Ai,j = 1 if there is a connection 
between nodes i and j, and Ai,j = 0 otherwise. We assume that 

where Ai,j are conditionally independent given Pi,j and Ai,j = Aj,i, Pi,j = Pj,i for i>j.
The block models assume that each node in the network belongs to one of K distinct blocks or 

communities k, k = 1,⋯,K. Let c denote the vector of community assignment, with ci = k if the node 
i belongs to the community k. Then, the probability of connection between node i ∈k and node 
j ∈l depends on the pair of blocks (k, l) to which nodes (i, j) belong. One can also consider a cor-
responding membership (or clustering) matrix Z ∈ {0, 1}n×K such that Zi,k = 1 if i ∈k, i = 1,…,n.

A classical random graph model for networks with community structure is the Stochastic Block 
Model (SBM) that has been studied by a number of authors (see, e.g. Abbe, 2018; Gao et al., 2017 
among others). Under this model, all nodes belonging to a community are considered to be stochasti-
cally equivalent, in the sense that the probability of connection between nodes is completely defined 
by the communities to which they belong. Specifically, under the K-block SBM, this probability is 
completely determined by the community assignment for nodes (i, j), so that Pi,j = Bci,cj

 where Bk,l is 
the probability of connection between communities k and l. In particular, any nodes from the same 
community have the same degree distribution and the same expected degree.

Since the real-life networks usually contain a very small number of high-degree nodes while the rest of 
the nodes have very few connections (low degree), the SBM model fails to explain the structure of many 
networks that occur in practice. The Degree-Corrected Block Model (DCBM) addresses this deficiency by 
allowing these probabilities to be multiplied by the node-dependent weights (see, e.g. Chen et al., 2018; 
Karrer & Newman, 2011; Zhao et al., 2012 among others). Under the DCBM, the elements of matrix P are 
modelled as Pi,j = �iBci,cj

�j, where �i, i = 1,…,n, are the degree parameters of the nodes and B is the (K×K) 
matrix of baseline interaction between communities. Identifiability of the parameters is usually ensured by 
a constraint of the form 

∑
i∈k

�i = 1 for all k = 1,…,K (see, e.g. Karrer & Newman, 2011).
A network feature that is closely associated with community structure is the popularity of nodes 

across communities defined as the number of edges between a specific node and a specific commu-
nity. While the DCBM allows to correctly detect the communities and accurately fits the total degree 
by enforcing the node-specific degree parameters, it enforces the node popularity to be uniformly 
proportional to the node degree. Hence, the DCBM fails to model node popularities in a flexible and 
realistic way. For this reason, recently, Sengupta and Chen (2018) introduced the Popularity Adjusted 
Stochastic Block Model (PABM) which models the probability of a connection between nodes as a 
product of popularity parameters that depend on the communities to which the nodes belong as well 
as on the pair of nodes themselves. In particular, in PABM 

where Vi,k, 1 ≤ i ≤ n, 1 ≤ k ≤ K, is the scaling parameter that identifies popularity of node i in class k, 
and 0 ≤ Pi,j ≤ 1 for any i and j. Specifically, Sengupta and Chen (2018) define the popularity of node i in 

(1)Ai,j ∼ Bernoulli (Pi,j ) , 1 ≤ i ≤ j ≤ n,

(2)Pi,j = Vi,cj
Vj,ci

,
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community k as �i,k =
∑

j∈k

Pi,j. They noted that the ratio of popularities of the nodes ( i, j ) ∈k in the 
same community k is equal to one for the SBM, is independent of community k (a function of i and j only) 
in DCBM but can vary between nodes and communities for the PABM, thus, allowing a more flexible 
modelling of connection probabilities. The authors showed that PABM generalises both the SBM and 
the DCBM, suggested the quasi-maximum likelihood type procedure for estimation and clustering and 
demonstrated the improvement achieved through this new methodology.

The flexibility of PABM, however, is not limited to modelling the popularity parameters of the 
nodes. In order to better understand the model, consider a rearranged version P(Z, K) of matrix P 
where its first n1 rows correspond to nodes from class 1, the next n2 rows correspond to nodes from 
class 2 and the last nK rows correspond to nodes from class K. Denote the (k, l)-th block of matrix P(Z, 
K) by P ( k,l ) (Z, K ). Since sub-matrix P ( k,l ) (Z, K ) ∈ [0, 1]nk ×nl corresponds to pairs of nodes in com-
munities (k, l), respectively, one obtains from (2) that P ( k,l )

i,j
= Vik,lVjl,k

 where ik is the i-th element in 
k and jl is the j-th element in l. Thus, matrices P ( k,l ) (Z, K ) are rank one matrices with the unique 
singular vectors generating them. Indeed, consider vectors Λ ( k,l ) with elements Λ ( k,l )

i
= Vik,l, where 

i = 1,…, nk and ik ∈k. Then, Equation (2) implies that 

 Moreover, it follows from (2) and (3) that P ( k,l ) (Z, K ) = [P ( l,k ) (Z, K ) ]T and that each pair of blocks (k, 
l) involves a unique combination of vectors Λ ( l,k ): 

where 

The latter implies that matrix P(Z, K) is formed by arbitrary rank one blocks and hence 
rank(P(Z, K))=rank(P) can take any value between K and K2. In comparison, all other block mod-
els restrict the rank of P to be exactly K. This is true not only for the SBM and DCBM discussed 
above but also for their generalisations such as the Mixed Membership models (MMM) (see, e.g. 
Airoldi et al., 2008; Cheng et al., 2017) and the Degree Corrected Mixed Membership (DCMM) 
(see, e.g. Jin et al., 2017). While the MMM and the DCMM allows more diverse structures of 
rank K matrices (those matrices have to be just a product of two rank K matrices with nonnegative 
components while the PABM requires a combination of K2 rank one matrices), meaningful fitting 
of the MMM or DCMM relies on a variety of conditions (one needs to have pure nodes in the 
network and some identifiability conditions need to be satisfied). In addition, while the MMM and 
DCMM are extremely useful for the analysis of social and society-related networks such as pub-
lications networks, they may not be appropriate in some other applications where each node can 

(3)P ( k,l ) (Z, K ) = Λ ( k,l ) [Λ ( l,k ) ]T.

P(Z, K ) =

⎡
⎢⎢⎢⎢⎣

Λ(1,1)(Λ(1,1))T Λ(1,2)(Λ(2,1))T
⋯ Λ(1,K)(Λ(K,1))T

Λ(2,1)(Λ(1,2))T Λ(2,2)(Λ(2,2))T
⋯ Λ(2,K)(Λ(K,2))T

⋮ ⋮ ⋯ ⋮

Λ(K,1)(Λ(1,K))T Λ(K,2)(Λ(2,K))T
⋯Λ(K,K)(Λ(K,K))T

⎤⎥⎥⎥⎥⎦

(4)Λ =

⎡⎢⎢⎢⎢⎣

Λ(1,1) Λ(1,2)
⋯ Λ(1,K)

Λ(2,1) Λ(2,2)
⋯ Λ(2,K)

⋮ ⋮ ⋯ ⋮

Λ(K,1) Λ(K,2)
⋯Λ(K,K)

⎤⎥⎥⎥⎥⎦
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belong to one and only one class. The butterfly similarity network studied in this paper provides 
an example of such application.

In general, the flexibility makes the PABM an attractive choice for modelling networks that appear 
in biological sciences, especially in the situations where memberships in multiple communities are 
not allowed. Indeed, while social networks exhibit assortative behaviour due to the human tendency 
of forming strong associations, the biological networks tend to be more diverse.

However, while the PABM model is extremely valuable, the statistical inference in Sengupta and 
Chen (2018) has been incomplete. In particular, the authors considered only the case of a small finite 
number of communities K; they provided only asymptotic consistency results as n→∞ without any 
error bounds for finite values of n; their NP-hard clustering procedure was tailored to the case of a 
small K. In addition, the relaxation of this NP-hard procedure seems to be operational only in the case 
of K = 2 since all simulations and real data examples in Sengupta and Chen (2018) only tackled the 
case of K = 2.

The purpose of the present paper is to address some of those deficiencies and to advance the the-
ory of the PABM. Specifically, the main merit of our paper lies in the fact that we recognise that the 
probability matrix of the PABM is formed by a unique collection of rank one matrices. This useful 
property has not been detected by Sengupta and Chen (2018) who worked in terms of the Poisson 
likelihood and the Poisson likelihood modularity maximisations. This observation on the structure of 
the probability matrix leads to a variety of breakthroughs.

First, it enables us to carry out estimation and clustering for the PABM, without imposing any 
identifiability conditions, similarly to SBM and unlike the DCBM and MMM. Second, our under-
standing of the probability matrix structure leads to the Frobenius norm minimisation as the basis of 
optimisation procedure and to estimation of probability matrices by rank one approximations of the 
community matrices. The latter allows us to derive non-asymptotic upper bounds for the estimation 
error, even in the case when the number of communities is unknown and is possibly growing with n. 
In addition, we use the accuracy of approximation of the adjacency matrix for various number of com-
munities, to identify the number of communities in the network. Moreover, we formulate detectability 
conditions that guarantee that communities are identifiable, that is, for the true probability matrix, the 
solution of the optimisation problem is given by the true community assignment. Under those condi-
tions, we provide a non-asymptotic upper bound on the proportion of the misclassified nodes when the 
clustering is based on the solution of the optimisation problem above.

Furthermore, we note that, under the detectability condition, the columns of the probability matrix 
that correspond to any of the communities lie in a K-dimensional subspace, which is different from 
subspaces corresponding to all other communities. The latter conclusion results in the introduction of 
the Sparse Subspace Clustering (SSC) approach for partitioning the network into communities. While 
the SSC is widely used in computer vision, to the best of our knowledge, it has never been used for 
clustering network data. The advantage of the SSC procedure is that it is known to work very well 
in practice and has several well studied versions (see Section 3.1 for the discussion of the SSC algo-
rithms). Moreover, unlike the Extreme Point algorithm which Sengupta and Chen (2018) managed to 
implement only in the case of K = 2, the SSC works well for an arbitrary number of communities. Our 
simulation study, as well as the real data examples, handle various number of communities between 2 
and 6. In particular, we demonstrate the advantages of the PABM for modelling networks that appear 
in biological sciences.

We show that, under the detectability condition, the SSC delivers the correct community assign-
ment at population level. We discuss the state-of-the-art results for the accuracy of the SSC approach 
and point out why they cannot be applied directly in the case of the independent Bernoulli errors. 
Investigation of the precision of the SSC for such errors is the matter of future work.



      |  297NOROOZI et al.

The rest of the paper is organised as follows. Section 2 considers estimation and clustering 
in PABM as a solution of a penalised optimisation procedure and investigates its accuracy. 
Specifically, Section 2.1 introduces notations used throughout the paper. Section 2.2 formu-
lates estimation and clustering as solutions of an optimisation procedure. Section 2.3 derives 
an upper bound for the estimation error in the case when the number of communities in the 
PABM is unknown. Section 2.4 delivers an upper bound for estimation errors in the case 
when all probabilities of connections are uniformly small and also discusses advantages of 
the PABM for modelling sparsity when this assumption is not true. Section 2.5 provides de-
tectability conditions at the population level. Section 2.6 offers sufficient conditions for the 
proportion of misclassified nodes to be bounded above by a pre-specified quantity �n with a 
high probability. Since the optimisation problem in Section 2.2 is NP-hard, Section 3 pres-
ents a computationally tractable way of finding communities by the Subspace Clustering. In 
particular, Section 3.1 reviews the SSC methodologies and elaborates on what kind of SSC 
procedure we employ in this paper. Section 3.2 shows that the SSC delivers correct commu-
nity assignment at the population level while Section 3.3 investigates this question in the case 
when the SSC is applied to the adjacency matrix. Section 4 deliberates about practical imple-
mentation of clustering and provides a simulation study and real data examples. Proofs for all 
the statements of the paper can be found in the Supplementary Material. Finally, the codes for 
the simulations are available from the third author’s website at https://scien​ces.ucf.edu/math/
mpens​ky/recen​t-publi​catio​ns/

2  |   ESTIMATION AND CLUSTERING

2.1  |  Notation

For any two positive sequences {an } and {bn }, an ≲ bn and an ≍ bn mean that there exists a constant 
C > 0 independent of n such that, respectively, an ≤ Cbn and C−1an ≤ bn ≤ Can for any n. For any set 
Ω, denote cardinality of Ω by |Ω|. For any numbers a and b, a ∧ b = min(a, b). For any vector t ∈ ℝ

p,  
denote its �2, �1, �0 and �∞ norms by, respectively, ‖t‖, ‖t‖1, ‖t‖0 and ‖t‖∞. Denote by 1m the  
m-dimensional column vector with all components equal to one. For any matrix A, denote its spectral 
and Frobenius norms by, respectively, ‖A‖op and ‖A‖F. Let vec(A) be the vector obtained from matrix 
A by sequentially stacking its columns.

Denote by n,K a collection of clustering matrices Z ∈ {0, 1}n×K such that Zi,k = 1 if i ∈k,  
i = 1,…,n and ZTZ = diag(n1,…, nK ) where nk = |k | is the size of community k, where k = 1,…,K. 
Denote nmin = min

k
nk. Denote by Z,K ∈ {0, 1}n×n the permutation matrix corresponding to Z ∈n,K 

that rearranges any matrix B ∈ Rn,n, so that its first n1 rows correspond to nodes from class 1, the next 
n2 rows correspond to nodes from class 2 and the last nK rows correspond to nodes from class K. Recall 
that Z,K is an orthogonal matrix with  −1

Z,K
= T

Z,K
. For any Z,K and any matrix B ∈ ℝ

n×n denote the 
permuted matrix and its blocks by, respectively, B(Z, K) and B ( k,l ) (Z, K ), where B ( k,l ) (Z, K ) ∈ ℝ

nk ×nl,  
k, l = 1,…,K, and 

 Also, throughout the paper, we use the star symbol to identify the true quantities. In particular, we denote 
the true matrix of connection probabilities by P∗, the true number of classes by K∗ and the true clustering 
matrix that partitions n nodes into K∗ communities by Z∗.

(5)B(Z, K ) = T
Z,K

BZ,K, B = Z,KB (Z, K )T
Z,K

.

https://sciences.ucf.edu/math/mpensky/recent-publications/
https://sciences.ucf.edu/math/mpensky/recent-publications/
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2.2  |  Optimisation procedure for estimation and clustering

In this section we consider estimation of the true probability matrix P∗. Consider block P ( k,l )
∗

(Z∗, K∗ ) 
of the rearranged version P∗ (Z∗, K∗ ) of P∗. Let Λ ≡ Λ (Z∗, K∗ ) ∈ [0, 1]n×K∗ be a block matrix 
with each column l partitioned into K∗ blocks Λ ( k,l ) ≡ Λ ( k,l ) (Z∗, K∗ ) ∈ [0, 1]nk. Then, due to (3), 
P ( k,l )

∗
(Z∗, K∗ ) are rank one matrices such that P ( k,l )

∗
(Z∗, K∗ ) = [P ( l,k )

∗
(Z∗, K∗ ) ]T and that each pair 

of blocks (k, l) involves a unique combination of vectors Λ ( k,l ). The structures of matrices P∗ (Z∗, K∗ ),  
Λ and P∗ are illustrated in Figure 1.

Observe that although matrices P ( k,l )
∗

(Z∗, K∗ ) in Equation (3) are well defined, vectors Λ ( k,l ) and 
Λ ( l,k ) can be determined only up to a multiplicative constant. In particular, under the constraint 

 Sengupta and Chen (2018) obtained explicit expressions for vectors Λ ( k,l ) and Λ ( l,k ) in Equation (3). In 
reality, K∗ and matrices Z∗ and P∗ are unknown and need to be recovered. If K∗ were known, in order to 
estimate Z∗ and P∗, one could permute the rows and the columns of the adjacency matrix A using permuta-
tion matrix Z,K∗

 obtaining matrix A(Z, K∗ ) = T
Z,K∗

AZ,K∗
 and then, following assumption (3), minimise 

some divergence measure between blocks of A(Z, K∗ ) and the products Λ ( k,l ) [Λ ( l,k ) ]T. One of such 
measures is the Bregman divergence between A(Z, K∗ ) and Λ ( k,l ) [Λ ( l,k ) ]T.

The Bregman divergence between vectors x and y associated with a continuously differentiable, 
strictly convex function F is defined as 

(6)1T
nk
Λ ( k,l ) = 1T

nl
Λ ( l,k ) ,

F I G U R E  1   Matrices Λ, P(Z, K) and P in the case of n = 5 and K = 2. Matrix Λ (top left): Λ ( 1,1 ) (red), Λ ( 2,1 ) 
(blue), Λ ( 1,2 ) (yellow), Λ ( 2,2 ) (violet). Assembling re-organised probability matrix P(Z, K) (top right): P ( 1,1 ) (Z, K ) 
(red), P ( 2,1 ) (Z, K ) (green), P ( 2,2 ) (Z, K ) (violet). Re-organised probability matrix P(Z, K) (bottom left): P ( 1,1 ) (Z, K ) 
(red), P ( 2,1 ) (Z, K ) and P ( 1,2 ) (Z, K ) (green), P ( 2,2 ) (Z, K ) (violet). Probability matrix P (bottom right): nodes 1,3,4 are 
in community 1; nodes 2 and 5 are in community 2  
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where ∇F(y) is the gradient of F with respect to y. The Bregman divergence between any matrices X and 
Y of the same dimension can be defined as the Bregman divergence between their vectorised versions: 
DF (X, Y ) = DF (vec(X) , vec(Y) ). It is well known that DF (X, Y ) ≥ 0 for any X and Y and DF (X, Y ) = 0 
if X = Y. In particular, the Poisson log-likelihood maximisation used in Sengupta and Chen (2018) corre-
sponds to minimising the Bregman divergence with 

 Under the assumption (3) and the constraint (6) of Sengupta and Chen (2018), the latter leads to maximi-
sation over Λ ( k,l ) and Z ∈n,K∗

 of the following quantity 

where A ( k,l ) stands for A ( k,l ) (Z, K∗ ), the (k, l)-th block of matrix A(Z, K∗ ). It is easy to see that the ex-
pression (7) coincides with the Poisson log-likelihood up to a term which depends on matrix A only, and 
is independent of P, Z and K∗. Maximisation of (7) over Λ, under condition (6), for given Z and K∗, leads 
to the estimators of Λ obtained in Sengupta and Chen (2018) 

 Afterwards, Sengupta and Chen (2018) plug the estimators (8) into (7), thus, obtaining the likelihood 
modularity function which they further maximise in order to obtain community assignments.

In the present paper, we use the Bregman divergence associated with the Euclidean distance 
(F (x) = ‖x‖2 ) which, for a given K, leads to the following optimisation problem 

 Note that recovery of the components Λ ( k,l ) and Λ ( l,k ) of the products above relies on an identifiabil-
ity condition of the type (6). Since these conditions can be imposed in a variety of ways, we denote 
Θ ( k,l ) = Λ ( k,l ) [Λ ( l,k ) ]T and recover the uniquely defined rank one matrix Θ ( k,l ). In addition, since the 
number of clusters K is unknown, we impose a penalty on K in order to safeguard against choosing too 
many clusters. Hence, we need to solve the following optimisation problem 

DF (x, y) = F (x) − F (y) − ⟨∇F(y) , x − y⟩

F(x) =
∑

i

(xilnxi − xi ) .

(7)l (Λ |A) = −DF (A,Λ ) =

K∗∑
k,l= 1

nk∑
i= 1

nl∑
j= 1

[
A

( k,l )

i,j
ln
(
Λ

( k,l )

i
Λ

( l,k )

j

)
−
(
Λ

( k,l )

i
Λ

( l,k )

j

)]
.

(8)Λ̂
( k,l )

=
A ( k,l ) (Z, K∗ )1nl√
1T

nk
A ( k,l ) (Z, K∗ )1nl

; Λ̂
( l,k )

=
(A ( k,l ) (Z, K∗ ) )T1nk√

1T
nk

A ( k,l ) (Z, K∗ )1nl

.

(Λ̂, Ẑ ) ∈ argmin
Λ,Z

�
K�

k,l= 1

‖A ( k,l ) (Z, K ) − Λ ( k,l ) [Λ ( l,k ) ]T‖2
F

�
s.t. A(Z, K ) = T

Z,K
AZ,K

(9)
(Θ̂, Ẑ, K̂)∈ argmin

Θ,Z,K

�
K�

k,l= 1

‖A(k,l)(Z, K)−Θ(k,l)‖2
F
+Pen(n, K)

�

s.t. A(Z, K)=T
Z,K

AZ,K, rank(Θ(k,l))=1; k, l=1, 2,⋯, K.



300  |      NOROOZI et al.

 Here, Θ̂ is the block matrix with blocks Θ̂
( k,l )

, k, l = 1,…, K̂ and Pen(n, K) will be defined later.
Observe that, if Ẑ and K̂ were known, the best solution of problem (9) would be given by the rank 

one approximations Θ̂
( k,l )

 of matrices A ( k,l ) ( Ẑ, K̂ ) 

where �̂ ( k,l )

1
 are the largest singular values of matrices A ( k,l ) ( Ẑ, K̂ ); û

( k,l )
( Ẑ, K̂ ), v̂

( k,l )
( Ẑ, K̂ ) are the 

corresponding singular vectors and Πû,̂v

(
A ( k,l ) ( Ẑ, K̂ )

)
 is the rank one projection of matrix A ( k,l ) ( Ẑ, K̂ ) 

(see Lemma 3 in Supplementary Material for the exact expression). Due to the Perron–Frobenius theorem 
(Rao & Rao, 1998, P.15.1.14), �𝜎 ( k,l )

1
> 0 and elements of vectors û ( k,l )

( Ẑ, K̂ ) and v̂ ( k,l )
( Ẑ, K̂ ) are non-

negative. Plugging (10) into (9), we rewrite optimisation problem (9) as 

 In order to obtain ( Ẑ, K̂ ), one needs to solve optimisation problem (11) for every K, obtaining 

 and then, find K̂ as 

 Note that if the true number of clusters K∗ were known, the penalty in Equations (9) and (11) would be 
unnecessary.

2.3  |  The penalty and the estimation errors

In this section we evaluate the estimation and the clustering errors. We choose the penalty which, with 
high probability, exceeds the random errors. In particular, we denote 

where H1, H2 and H3 are positive absolute constants that can be evaluated. Then, the following statement 
holds.

Theorem 1  Let (Θ̂, Ẑ, K̂ ) be a solution of optimisation problem (9). Construct the estimator P̂ of P∗ 
of the form 

(10)Θ̂
( k,l )

( Ẑ, K̂ ) = Πû,̂v

(
A ( k,l ) ( Ẑ, K̂ )

)
= �̂

( k,l )

1
û

( k,l )
( Ẑ, K̂ ) ( v̂

( k,l )
( Ẑ, K̂ ) )T,

(11)
(Ẑ, K̂)∈argmin

Z,K

�
K�

k,l= 1

‖A(k,l)(Z, K)−Πû,̂v

�
A(k,l)(Z, K)

� ‖2
F
+Pen(n, K)

�

s.t. A(Z, K)=T
Z,K

AZ,K

(12)ẐK ∈ argmin
Z∈n,K

�
K�

k,l= 1

‖A ( k,l ) (Z, K ) −Πû,̂v

�
A ( k,l ) (Z, K )

� ‖2
F

�

(13)K̂ ∈ argmin
K

�
K�

k,l= 1

‖A ( k,l ) ( ẐK, K ) −Πû,̂v

�
A ( k,l ) ( ẐK, K )

�
‖2

F
+ Pen(n, K )

�
.

(14)Pen(n, K ) = H1nK + H2K2lnn + H3nlnK,
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 where 
Ẑ,K̂

 is the permutation matrix corresponding to ( Ẑ, K̂ ). Then, for any t>0 and some absolute 
positive constants H and C̃, one has 

 

The exact values of H and C̃ can be found in the proof of Theorem 1. Observe that estimation 
is always consistent as long as K/n→0. Note also that the estimation errors in Equations (16) 
and (17) are proportional to the right-hand side of Equation (14). The first term in Equation 
(14) corresponds to the error of estimating nK unknown entries of matrix Λ, the second term 
is associated with estimation of rank K2 matrix while the last term is due to the clustering of n 
nodes into K communities. If K grows with n, that is, K=K(n)→∞ as n→∞, then the first term 
in Equation (14) dominates the other two terms. However, in the case of a fixed K, the first and 
the third terms grow at the same rate as n→∞. The second term is always of a smaller order 
provided K(n)/n→0.

2.4  |  The sparse PABM

The real-life networks are usually sparse in a sense that a large number of nodes have small 
degrees. One of the advantages of the PABM is that it allows flexible modelling of sparsity. 
Traditionally, in most statistical models, sparsity of a vector means that a large proportion of its 
components is equal to zero. One of the shortcomings of both the SBM and the DCBM is that 
they do not allow to impose the condition that some of the connection probabilities are equal to 
zero. Naturally, for the SBM, it is not realistic to assume that all nodes in a pair of communities 
have no connections. Neither can one set any of the node-specific weight to zero, since this will 
force the respective node to be totally disconnected from the network. For this reason, unlike in 
other numerous statistical settings, sparsity in block models is defined as a low maximum prob-
ability of connections between the nodes: 

 where �n is small when n is large (see, e.g. Klopp et al., 2017; Lei & Rinaldo, 2015).
There are several shortcomings of this definition of sparsity. First, definition (18) characterises 

sparsity of the network as a whole, without describing community-specific sparsity patterns. Second, 
even in the context of the simplest model, the SBM, in order to take a full advantage of assumption 
(18), one needs to carry out the estimation under the restriction that all entries of the matrix P̂ are 
bounded above by �n (see Klopp et al., 2017), which is an unknown quantity.

Moreover, in the context of the PABM, one can take advantage of sparsity in a different, more 
natural, in our opinion, way. Indeed, unlike the SBM and the DCBM, the PABM setting allows some 
connection probabilities to be zero while keeping average connection probabilities between classes 

(15)P̂ = 
Ẑ,K̂

Θ̂ ( Ẑ, K̂ )T

Ẑ,K̂

(16)ℙ

�
n
−2‖P̂−P∗‖2

F
≤n

−2
HPen(n, K∗)+n

−2
C̃t

�
≥1−3e

−t,

(17)n−2
�‖ P̂ − P∗‖2

F
≤ n−2 H Pen(n, K∗ ) + n−2 C̃.

(18)max
i,j

Pi,j ≤ �n,
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above certain level and the network connected. This is certainly true since setting Λ ( k,l )

i
= 0 in the 

PABM simply means that that node i in class k is not active (‘popular’) in class l. The latter does not 
prevent node i from having high probability of connection with nodes in another class. This approach 
enables a more nuanced representation of sparsity patterns where they are community-based and do 
not necessarily apply to the whole network.

Therefore, the PABM, similarly to other sparse statistical settings, allows structural sparsity where 
small parameters are set to zero rather than considered to be infinitesimally small. Setting some of 
the connection probabilities to zero, rather than bounding all of the connection probabilities by a very 
small number, as in Equation (18), not only leads to better understanding of network topology but 
also allows more precise estimation of the probability matrix P∗. Furthermore, this approach enables 
one to handle the unknown number of communities that is possibly growing with n. While we do not 
consider the structurally sparse PABM in this paper, we investigate the structurally sparse PABM in 
depth in our subsequent publication Noroozi et al. (2019).

Below, we briefly consider the case of the uniformly sparse PABM satisfying condition (18). 
In this case, the main error term nK in Equations (16) and (17) is replaced by �nnK, which can 
significantly reduce the error if K=K(n)→∞. However, the drawback of this approach is that one 
needs to know either the sparsity level �n or the number of communities K. The reason for this is 
that the penalty term, which offsets the random error, should contain a component C�nnK where C 
is an absolute constant. The latter quantity may not be monotone since K=K(n) is growing with n, 
while �n is decreasing with n.

For this reason, we derive the estimation error under a more common scenario that the number of 
communities is known: K = K∗. In this case, penalty is unnecessary and one can just solve optimisa-
tion problem (12) for the known number of communities.

Theorem 2  Let K = K∗ be known, Ẑ be a solution of optimisation problem (12) with K = K∗. Let 
Θ̂ = Θ̂ ( Ẑ) be the matrix with blocks Θ̂

( k,l )
 given by Equation (10). Construct the estimator P̂ of 

P∗ of the form Equation (15) where 
Ẑ
 is the permutation matrix corresponding to Ẑ. Assume 

that nmin = min
k

(nk ) is large enough, so that 

for some absolute constant C𝜏 > 0 and �n in Equation (18). Then, for any t>0 and some absolute positive 
constants H̃, H1, H2 and H3, one has 

 

The advantage of Theorem 2, in comparison with Theorem 1, is that it takes sparsity into account 
and replaces the main error term O(nK) in Theorem 1 by the smaller quantity O (�nnK ), and this is 
done without any knowledge of �n. If �n → 0 as n→∞, the latter may be significantly smaller than 
the former. This reduction, however, comes at a price. First, application of Theorem 2 requires the 
knowledge of the number of communities K. Second, while results in Theorem 1 are non-asymptotic 
and are valid for any combination of n and K, Theorem 2 requires not only n but also nmin to be large 
via conditions (19).

(19)log(2nmin ) ≤ (2 nmin )2∕13, �n ≥ C� log(2 nmin )∕nmin

(20)ℙ

�
n
−2‖P̂−P∗‖2

F
≤H1�n

n
−1

K+H2n
−2

K
2+H3n

−1lnK+n
−2

H̃t

�
≥1−3e

−t,

(21)n−2
�‖ P̂ − P∗‖2

F
≤ H1�nn−1 K + H2n−2 K2 + H3n−1 lnK + n−2 H̃.
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In addition, Theorem 2 puts natural constraints on the sparsity level �n. Note that under the as-
sumption (18), one has ‖P∗‖2

F
≤ n2�2

n
. Therefore, in order �‖ P̂ − P∗‖2

F
∕‖P∗‖2

F
→ 0 according to 

(21), one needs 

 The latter requires n�2
n
∕lnK →∞. Hence, to achieve a meaningful consistency, one needs to ensure that 

the expected network degree is n𝜏n ≫
√

n, which implies that Theorem 2 works for a moderately dense 
graph only.

2.5  |  Detectability of clusters

In order to evaluate the clustering error, we assume that the true number of communities K = K∗ is 
known. Let Z∗ ∈n,K∗

 be the true clustering matrix. In order for clustering to be successful, one 
needs a detectability condition that guarantees that communities are identifiable.

Assumption A1  There exists k, 1 ≤ k ≤ K∗, such that vectors Λ ( k,1 ) ,…,Λ ( k,K∗ ) are linearly inde-
pendent and have all positive components.

Assumption A1 is an alternative formulation of the Detectability Assumption 4.4 of Sengupta 
and Chen (2018) which states that, for any two nodes j1 and j2 that belong to different commu-
nities, the set 

{
Pi,j1

∕Pi,j2

}n

i=1
 assumes at least (K+1) distinct values. Similarly, to Sengupta and 

Chen (2018), Assumption A1 guarantees that, for the true K = K∗, expression (12) is minimised 
at Z = Z∗.

Note that the assumption, that all elements of matrix Λ are positive, is necessary. Indeed, con-
sider a PABM with K = 2 and matrix Λ such that Λ ( 1,1 ) = Λ ( 1,2 ) = u and Λ ( 2,1 ) = v and Λ ( 2,2 ) = w,  
where v and w are linearly independent. If ui = 0 and wj = 0 for some i and j, then matrix P has two 
proportional columns, i and j, of the form (cu, 0)T, and nodes i and j can be placed in any of the two 
communities. In order to avoid the condition that all elements of matrix Λ are positive, one can use an 
alternative assumption.

Assumption A1*  For any k = 1,…, K∗, vectors Λ ( k,1 ) ,…,Λ ( k,K∗ ) are linearly independent.

Lemma 1  Let Assumption A1 or Assumption A1* holds. Let Z∗ ∈n,K∗
 be the true clustering ma-

trix and Z ∈n,K∗
 be an arbitrary clustering matrix. Then, 

 where, for any matrix B, Π(1) (B ) is its rank one approximation. Moreover, equality in Equation (22) 
occurs if and only if matrices Z and Z∗ coincide up to a permutation of columns.

Lemma 1 implies that if K = K∗ is known, then optimisation problem (9) leads to the true cluster-
ing assignment at a population level. The next section explores the clustering errors in the case when 
optimisation procedure (9) is applied to the adjacency matrix.

H1K (n�n ) −1 + H2K2 (n�n ) −2 + H3lnK (n�2
n
) −1 + H̃ (n�n ) −2

→ 0 (n →∞) .

(22)
K�

k,l= 1

‖P ( k,l )
∗

(Z∗ ) −Π(1) (P ( k,l )
∗

(Z∗ ) ‖2
F
≤

K�
k,l= 1

‖P ( k,l )
∗

(Z) −Π(1) (P ( k,l )
∗

(Z ) ‖2
F
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2.6  |  The clustering errors

Note that if Z∗ is the true clustering matrix and Z is any other clustering matrix, then the proportion of 
misclassified nodes can be evaluated as 

where K is the set of permutation matrices K: {1, 2,⋯, K} ⟶ {1, 2,⋯, K}. Let 

 be the set of clustering matrices with the proportion of misclassified nodes being at least �n, 0 < 𝜌n < 1.
The success of clustering in Equation (12) relies upon the fact that matrix P∗ is a collection of K2 

rank one blocks, so that the operator and the Frobenius norms of each block are the same. Moreover, 
if clustering were incorrect, the ranks of the blocks would increase which would lead to the dis-
crepancy between their operator and Frobenius norms. In particular, the following statement is true.

Theorem 3  Let K = K∗ ≥ 2 be the true number of clusters and Z∗ ∈n,K∗
 be the true clustering 

matrix. Let Assumption A1 or A1* hold. Let Ẑ ≡ ẐK be a solution of the optimisation problem 
(12). If for some �n ∈ (0, 1∕2) and �n ∈ (0, 1), one has 

then, with probability at least 1 − 2e− c0n, the proportion of the nodes, misclassified by Ẑ, is at most �n.
If, moreover, the entries of the matrix P∗ are bounded above by �n as in Equation (18) and, in addition, 
condition (19) holds for the true clustering Z∗, then, with probability at least 1 − 2e− c0n, the proportion 
of the nodes, misclassified by Ẑ, is at most �n, provided 

 Here, H, H̃ and c0 are absolute positive constant independent of K, n, �n and �n.
In order to see what condition (25) means, we consider a simple example of the SBM with K = 2 

and Pi,j = b when nodes i and j belong to the same community and Pi,j = r when they belong to differ-
ent ones. Then, condition (25) reduces to the following inequality.

Lemma 2  Consider the SBM with K = 2, P = ZBZT where B1,1 = B2,2 = b, B1,2 = r and Z∗ ∈n,2 
with equal size communities. Then, for 0 < 𝜌 ≡ 𝜌n < min(1, r2∕b2 ) and � ≡ �n, one has 

where C̃ is an absolute constant.

(23)Err(Z, Z∗ ) = (2n) −1 min
K ∈K

‖ZK − Z∗‖1 = (2n) −1 min
K ∈K

‖ZK − Z∗‖2
F

(24)Υ(Z∗, � ) =

�
Z ∈n,K: (2n) −1 min

K ∈K

‖ZK−Z∗‖1 ≥ �

�

(25)‖P∗‖2
F
− (1 + �n ) max

Z∈Υ ( Z∗,�n )

K�
k,l= 1

‖P ( k,l )
∗

(Z) ‖2
op
≥

H

�n

(nK + K2lnn) ,

(26)‖P∗‖2
F
− (1 + �n ) max

Z∈Υ ( Z∗,�n )

K�
k,l= 1

‖P ( k,l )
∗

(Z ) ‖2
op
≥

H̃

�n

(�nnK + K2 + nlnK) .

(27)‖P∗‖2
F
− (1 + � ) max

Z∈Υ ( Z∗,� )

2�
k,l= 1

‖P ( k,l )
∗

(Z) ‖2
op
≥ C̃

�
n2 �2 (b2 − r2 )2 b−2 − 4�n2b2

�
,
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Corollary 1  For the SBM in Lemma 2, one has 

The example above shows that condition (25) is less sensitive than conditions that are based on 
the difference between mean vectors of probabilities of connections between the communities in the 
case of the SBM (or scaled mean vectors of the communities in the case of the DCBM). Indeed, it 
follows from Gao et al. (2017) that for the SBM in Lemma 2 one can attain the misclassification rate 

which is much smaller than �n in Equation (28). Nevertheless, achieving the misclassification rate (29) 
depends upon not only the knowledge that the data are generated by the SBM, but also that this SBM is 
strongly assortative and balanced, and, in addition, requires handling the Bernoulli likelihood. In contrast, 
Theorem 3 is designed to work in the case where the communities are not characterised by their means 
and are not necessarily assortative or balanced. In addition, our procedure is based on minimising the 
Frobenius norm which is much more computationally efficient but is less sensitive than the Bernoulli 
likelihood maximisation.

Moreover, we believe that the assessment of Theorem 3 is valuable since it allows one to upper bound 
the misclassification rate rather than just stating that it tends to zero when the number of nodes in the 
network grows, as it is routinely done in the papers that draw clustering assignments on the basis of 
modularity maximisations (see, e.g. Bickel & Chen, 2009; Sengupta & Chen, 2018; Zhao et al., 2012).

3  |   SPARSE SUBSPACE CLUSTERING

In Section 2, we obtained an estimator Ẑ of the true clustering matrix Z∗ as a solution of optimisa-
tion problem (11). Minimisation in Equation (11) is somewhat similar to modularity maximisation in 
Bickel and Chen (2009), Sengupta and Chen (2018), Zhao et al. (2012), in the sense that modularity 
maximisation as well as minimisation in Equation (11) are NP-hard, and, hence, require some relaxa-
tion in order to obtain an implementable clustering solution.

In the case of the SBM and the DCBM, possible relaxations include semi-definite program-
ming (see, e.g. Amini & Levina, 2018 and references therein), variational methods (Celisse et al., 
2012) and spectral clustering and its versions (see, e.g. Joseph & Yu, 2016; Lei & Rinaldo, 2015; 
Rohe et al., 2011 among others). Since in the case of PABM, columns of matrix P∗ that corre-
spond to nodes in the same class are neither identical, nor proportional, application of spectral 
clustering (and its versions such as spherical spectral clustering) to matrix P∗ directly does not 
deliver the partition of the nodes.

However, it is easy to see that the columns of matrix P∗ that correspond to nodes in the same class 
form a matrix with K rank one blocks, hence, those columns lie in the subspace of the dimension at 
most K. Therefore, matrix P∗ is constructed of K clusters of columns (rows) that lie in the union of K 
subspaces, each of the dimension K. Under Assumption A1*, those subspaces are independent in the 
sense that the dimension of their union (the rank of P∗) is equal to the sum K2 of the dimensions K of 
individual subspaces, and they can be recovered. For this reason, the subspace clustering presents a 
technique for obtaining a fast and reliable solution of optimisation problem (11) or (12).

(28)𝜌2
n
≲ n−1∕2 b−1 (b2 − r2 ) −2.

(29)�n ≍ exp

(
−

n(b − r )2

2Kb

)
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3.1  |  Review of the subspace clustering

Subspace clustering has been widely used in computer vision and, for this reason, it is a very well 
studied and developed technique in comparison with the Extreme Points algorithm used in Sengupta 
and Chen (2018). Subspace clustering is designed for separation of points that lie in the union of 
subspaces. Let {Xj ∈ ℝ

D }n
j=1

 be a given set of points drawn from an unknown union of K⩾1 linear or 
affine subspaces {i }

K
i=1

 of unknown dimensions di = dim(i ), 0 < di < D, i = 1,…,K. In the case of 
linear subspaces, the subspaces can be described as 

where Ui ∈ ℝ
D×di is a basis for subspace i and y ∈ ℝ

di is a low-dimensional representation for point x. 
The goal of subspace clustering is to find the number of subspaces K, their dimensions {di }

K
i=1

, the sub-
space bases {Ui }

K
i=1

, and the segmentation of the points according to the subspaces.
Several methods have been developed to implement subspace clustering such as algebraic methods 

(Boult & Gottesfeld Brown, 1991; Ma et al., 2008; Vidal et al., 2005), iterative methods (Agarwal & 
Mustafa, 2004; Bradley & Mangasarian, 2000; Tseng, 2000) and spectral clustering-based methods 
(Elhamifar & Vidal, 2009, 2013; Favaro et al., 2011; Liu et al., 2013, 2010; Soltanolkotabi et al., 2014; 
Vidal 2011). In this paper, we use the latter group of techniques.

Spectral clustering algorithms rely on construction of an affinity matrix whose entries are based on 
some distance measures between the points. In particular, in the case of the SBM, adjacency matrix 
itself serves as the affinity matrix, while for the DCBM, the affinity matrix is obtained by normal-
ising rows/columns of A. In the case of the subspace clustering problem, one cannot use the typical 
distance-based affinity because two points could be very close to each other, but lie in different sub-
spaces, while they could be far from each other, but lie in the same subspace. One of the solutions is 
to construct the affinity matrix using self-representation of the points with the expectation that a point 
is more likely to be presented as a linear combination of points in its own subspace rather than from 
a different one. A number of approaches such as Low-Rank Representation (see, e.g. Liu et al., 2010; 
Liu et al., 2013) and SSC (see, e.g. Elhamifar & Vidal, 2009; Elhamifar & Vidal, 2013) have been 
proposed in the past decade for the solution of this problem.

In this paper, we use SSC since it allows one to take advantage of the knowledge that, for a given 
K, columns of matrix P∗ lie in the union of K distinct subspaces, each of the dimension at most K. If 
matrix P∗ were known, the weight matrix W would be based on writing every data point as a sparse 
linear combination of all other points by minimising the number of nonzero coefficients 

 where, for any matrix B, Bj is its j-th column. The affinity matrix of the SSC is the symmetrised 
version of the weight matrix W. If the subspaces are linearly independent, then the solution to the 
optimisation problem (30) is such that Wk,j ≠ 0 only if points k and j are in the same subspace. In the 
case of data contaminated by noise, the SSC algorithm does not attempt to write data as an exact 
linear combination of other points. Instead, SSC is based on the solution of the following optimis-
ation problem 

i = {x ∈ ℝ
D: x = Uiy} , i = 1,…, K

(30)min
Wj

‖Wj‖0 s.t (P∗)j =
�
k≠ j

Wkj(P∗)k

(31)Ŵj ∈ argmin
Wj

�‖Wj‖0 + � ‖Aj − AWj‖2
2

s.t. Wjj = 0
�

, j = 1,…, n,
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where γ > 0 is a tuning parameter. Problem (31) can be rewritten in an equivalent form as 

where L is the maximum number of nonzero elements in each column of W; in our case L=K. We solve 
(32) using the Orthogonal Matching Pursuit (OMP) algorithm (Mallat & Zhang, 1993; Weisberg, 2005) 
implemented in SPAMS Matlab toolbox (see Mairal et al., 2014). Given Ŵ, the affinity (similarity) matrix 
is defined as 

where, for any matrix B, matrix |B| has absolute values of elements of B as its entries.
The similarity matrix allows to construct the similarity graph G=(V;E) where (i, j) ∈ E if and only 

if Si,j > 0 (see, e.g. Wang et al., 2016).
Remark 1  (Computational complexity of the SSC).Implementation of the SSC consists of two parts. 

The first part, evaluation of the matrix Ŵ. The second part is spectral clustering of the similarity 
matrix (33). While the first component of the problem is more computationally expensive (since 
it requires solution of n sparse regression problems), it is also the portion that can be easily 
carried out via parallel computing. Indeed, evaluation of each of the vectors Wj, j = 1,…,n, is 
completely independent from evaluation of all the others. Hence, if one has m CPUs available, 
evaluation of matrix W can be accomplished m times faster. As a result, with the adequate fa-
cilities available, the computational limits of the technique is similar to the ones in the more 
traditional block models such as SBM and DCBM.

3.2  |  Correctness of the SSC at population level

In order to apply the SSC for clustering in the PABM, we need to show that the SSC can detect 
communities correctly, at least at the population level. Let P∗ be the true probability matrix. Since P∗ 
contains no errors, one can obtain the coefficients matrix W as a solution of the optimisation problem 
(30). It turns out that Assumption A1* in Section 2.5 guarantees the correct community assignment 
(up to permutations of class labels).

Recovery of the clustering matrix Z∗ relies on the fact that each column of the matrix P∗ is repre-
sented as a linear combination of points in its own subspace rather than from a different one. This is 

(32)Ŵj ∈ argmin
Wj

�‖Aj − AWj‖2
2

s.t. ‖Wj‖0 ≤ L, Wjj = 0
�

, j = 1,…, n,

(33)S = |Ŵ | + |ŴT |

Algorithm 1: Consistent noiseless SSC (Wang et al., 2016)
Input: The noiseless data matrix P∗

Output: Vector of community assignments ĉ, clustering matrix Ẑ and recovered subspaces ̂k, k = 1,…,K

Steps:

1. Constructing the similarity graph: Solve the optimisation problem (30) and construct the similarity matrix S 
defined in Equation (33). Construct the similarity graph G=(V;E) where (i, j) ∈ E if and only if Si,j > 0.

2. Subspace recovery: For each connected component Gr = (Vr ;Er ) of G, compute ̂(r) = Range(PVr
) 

using any convenient linear algebraic method. Let { ̂ ( k ) }K
k=1

 be the K unique subspaces in ̂(r).

3. Final clustering: For each connected component Vr with ̂(r) = ̂ ( k ), set ĉi = k, Ẑi,l = � ( l = k ) for i ∈ Vr 
and l = 1,…,K.
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formalised as the Self-Expressiveness Property (SEP) of the similarity graph S: Si,j > 0 implies that 
nodes i and j belong to the same cluster (see, e.g. Elhamifar & Vidal, 2013). Note that the reverse is 
not necessarily true: the fact that nodes i and j are in the same cluster does not necessarily imply that 
Si,j > 0. Under Assumption A1*, Theorem 1 of Elhamifar and Vidal (2013) ensures that the similarity 
matrix S obtained as a solution of optimisation problem (30) satisfies the SEP.

Nevertheless, the SEP alone does not lead to the perfect clustering because the obtained similarity 
graph G could be poorly connected (see, e.g. Nasihatkon & Hartley, 2011). It appears however that 
a simple post-clustering procedure (Algorithm 1) suggested in Wang et  al. (2016), guarantees the 
correct recovery.

The�orem 4  Assume that the correct number of communities K = K∗ is known. Then, under 
Assumption A1*, Algorithm 1 recovers communities correctly up to a permutation, that is, there 
exists a permutation π on {1,…,K} such that Ẑi,�(k) = (Z∗)i,k for every i = 1,…,n and k = 1,…,K.

3.3  |  Accuracy of the data-based SSC

While there are many papers that evaluate clustering errors in the case of the k-means algorithm and 
spectral clustering, as well as their relaxations, there are very few results available for the accuracy of 
the SSC, and those results are quite recent. As it is evident from Section 3.2, the successful clustering 
relies on the fact that the SEP condition is satisfied with the high probability and that the similarity 
graph is sufficiently connected.

The main effort of the scientific community was devoted to establishing the SEP condition. Initially, 
this effort was directed to its justification when the true matrix is measured without errors Elhamifar 
and Vidal (2009) or with outliers Soltanolkotabi and Candes (2012). The latter paper assumes that the 
columns of the data matrix are generated at random using the bases of the respective subspace (semi-
random model). Furthermore, the bases may themselves be generated uniformly, at random, from the 
unit sphere (random model) and the outliers are also uniformly distributed on the unit sphere. In the 
subsequent paper, Soltanolkotabi et al. (2014) handle the case where the data matrix contains small 
Gaussian errors. Few later papers refine the results of the last two publications. Specifically, Wang 
and Xu (2016) extend results of Soltanolkotabi et al. (2014) to the case of the deterministic model with 
random noise, that is, the model where true matrix is fixed in advance and is not generated at random. 
The noise vectors are assumed to be i.i.d. spherically symmetric with the lengths bounded above by 
a small quantity. Results of the latter paper are also featured in a very recent monograph of Shi and 
Iyengar (2019) which refines results of Wang and Xu (2016) in the case of missing observations or 
Gaussian noise.

The graph connectivity in the SSC has been much less studied. Indeed, it is mentioned in 
Nasihatkon and Hartley (2011) that the similarity graph may satisfy the SEP condition but be poorly 
connected. Fortunately, this issue can be addressed by post-processing procedures suggested in Wang 
et al. (2016). One of the procedures is presented in Algorithm 1.

Since our optimisation problem guarantees that coefficient vector has K non-zero components, 
and, hence, leads to a sufficiently well connected similarity graph, it is the SEP condition that presents 
the hardest challenge. Indeed, as it follows from the review above, there are two types of derivations of 
the SEP conditions in the existing literature. Specifically, in the case where X ∈ ℝ

n×N is a true matrix 
with columns drawn from K different subspaces i, i = 1,…, K, and Y=X+Ξ is its noisy version, the 
papers differ on whether they treat elements of matrix Ξ as deterministic or random. In both cases, the 
procedures start with scaling columns of matrix Y to the unit length.
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The case of the random errors handles either the normally distributed errors (Shi & Iyengar, 2019; 
Soltanolkotabi et al., 2014), or, more broadly, i.i.d errors having a spherically symmetric distribution 
(Wang & Xu, 2016). Moreover, this assumption constitutes the cornerstone of the proofs since the 
arguments there are based on the fact that the errors are invariant under an orthogonal transformation. 
In addition, for both random and deterministic errors (see, e.g. Wang et al., 2016), it is assumed that 
for any columns Xi and Ξi of matrices X and Ξ, respectively, one has 

 where �n → 0 as n→∞ with high probability. The latter implies that ‖Xi‖ = 1 + o (1) as n→∞.
Note that neither of the above assumptions are true in the case of Bernoulli errors. It is easy to 

see that Bernoulli errors are not i.i.d and that the columns of matrix Ξ are not spherically symmetric. 
Moreover, assumption (34) is not true in the case of the Bernoulli data. To understand this, consider 
a vector p ∈ [0, 1]n, a vector a of independent Bernoulli variables ai ∼ Bernoulli (pi ), i = 1,…,n, and 
ξ=a−p. Then, for pi ≤ 1∕2 one has pi (1 − pi ) ≥ p2

i
 and 

 so that inequality (34) does not hold.
To make matters worse, scaling of the columns of the matrix A in Equation (1) to unit length is 

itself problematic. Indeed, since components of a Bernoulli vector are either zeros or ones, one has 
‖a‖2 =

∑
n
i=1

ai = aT1, so ‖a‖2 is a very poor approximation of ‖p‖2. As a matter of fact, scaling 
column Ai of matrix A to unit length amounts to dividing this column by 

√
d( i )  where d(i) is the de-

gree of the node i.
In conclusion, the existing error analysis for the SSC cannot be used in the case of Bernoulli data 

and one needs to establish a brand new theory. Development of such theory is a matter of future 
investigation.

4  |   SIMULATIONS AND REAL DATA EXAMPLES

4.1  |  Simulations on synthetic networks

In this section we evaluate the performance of our method using synthetic networks. We assume that the 
number of communities (clusters) K is known and for simplicity consider a perfectly balanced model with 
n/K nodes in each cluster. We generate each network from a random graph model with a symmetric prob-
ability matrix P given by the PABM model with a clustering matrix Z and a block matrix Λ.

Sengupta and Chen (2018), in their simulations, considered networks with K = 2 communities of 
equal sizes and matrices Λ in Equation (2) with elements Λi,r = �i

√
h

1+h
 when node i lies in class r, 

and Λi,r = � i

√
1

1+h
 otherwise, where h is the homophily factor. The factors �i and � i were set to 0.8 

for half of the nodes in each class and to 0.2 for another half at random, and h ranges between 1.5 and 
4.0. Note that, although the data generated by the procedure above follows PABM, the probability 
matrix has constant blocks, for which the spectral clustering is known to deliver accurate results. In 
particular, the setting above leads to the SBM with four blocks. However, the spectral clustering incurs 
some difficulties as the probabilities of connections in every community become more diverse. In this 
paper, we make sure to generate networks that follow PABM with diverse probabilities of connections.

(34)‖Ξi‖ ≤ �n‖Xi‖ , i = 1,…, n,

�‖�‖2 =

n�
i= 1

(pi − p2
i
) ≥ ‖p‖2,
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To generate a more diverse synthetic network, we start by producing a block matrix Λ in Equation 
(4) with random entries on the interval (0,a), 0<a<1. We multiply the non-diagonal blocks of Λ by ω, 
0<ω<1, to ensure that most nodes in the same community have larger probability of interactions. Then 
matrix P(Z, K) with blocks P ( k,l )

Z,K
= Λ ( k,l ) (Λ ( l,k ) )T, k, l = 1,…,K, mostly has larger entries in the diag-

onal blocks than in the non-diagonal blocks. The parameter ω is the heterogeneity parameter. Indeed, if 
ω = 0, the matrix P∗ is strictly block-diagonal, while in the case of ω = 1, there is no difference between 
diagonal and non-diagonal blocks. Next, we generate a random clustering matrix Z ∈n,K correspond-
ing to the case of equal community sizes and the permutation matrix rP(Z, K) corresponding to the 
clustering matrix Z. Subsequently, we scramble rows and columns of P(Z, K) to create the probability 
matrix P = Z,KP(Z, K )T

Z,K
. Finally, we generate the lower half of the adjacency matrix A as indepen-

dent Bernoulli variables Aij ∼ Ber(Pij ), i = 1,…,n, j = 1,…,i−1, and set Aij = Aji when j>i. In practice, 
the diagonal diag(A) of matrix A is unavailable, so we estimate diag(P) without its knowledge.

Sengupta and Chen (2018) used the Extreme Points (EP) algorithm, introduced in Le et al. (2016), 
as a clustering procedure. For K = 2, the EP algorithm computes the two leading eigenvectors of the 
adjacency matrix A, and finds the candidate assignments associated with the extreme points of the 
projection of the cube [ − 1, 1]n onto the space spanned by the two leading eigenvectors of A. The 
technique is becoming problematic when K grows and the probabilities of connections are getting 
more diverse, hence, Sengupta and Chen (2018) have only studied performances of estimation and 
clustering in the case of K = 2 and the choices of probability matrix P described above. As we have 
mentioned before, these are the settings for which the spectral clustering procedure allows to identify 
the communities. Considering that we are interested in studying K>2 and the more diverse probabil-
ities of connections, we use the spectral clustering directly (SC thereafter) and compare its precision 
with the SSC procedure.

Since the diagonal elements of matrix A are unavailable, we initially set Aii = 0, i = 1,…,n. We 
solve optimisation problem (32) using the OMP algorithm. After matrix Ŵ of weights is evaluated, 
we obtain the clustering matrix Ẑ by applying spectral clustering to |Ŵ | + |ŴT |, as it was described 
in Section 3.1. Given Ẑ, we generate matrix A( Ẑ ) = T

Ẑ
A

Ẑ
 with blocks A ( k,l ) ( Ẑ), k, l = 1,…,K, and 

obtain Θ̂
( k,l )

( Ẑ, K̂ ) using the rank one approximation for each of the blocks. Finally, we estimate ma-
trix P by P̂ = P̂ ( Ẑ, K̂ ) using formula (15) with K̂ = K.

We compared the accuracy of SSC and SC methods in terms of the average estimation errors 
n−2 ‖ P̂ − P‖2

F
 and the average clustering errors Err( Ẑ, Z ) defined in Equation (23). Figures 2 and 3 

show the results of these comparisons for the number of nodes ranging from n = 600 to n = 1080 with 
the increments of 120. The left panels display the clustering errors Err( Ẑ, Z ) while the right ones ex-
hibit the estimation errors n−2 ‖ P̂ − P‖2

F
, as functions of the number of nodes. All errors are averaged 

over 50 simulation runs. Figure 2 explores the effects of heterogeneity on the precision of estimation 
and clustering by carrying out simulations for K = 4 and K = 8, and for three different values of the 
parameter ω: ω = 0.5, 0.7 and 0.9. Block matrix Λ in Equation (4) has random entries in the interval 
(0,1) in this case. Figure 2 confirms that the SSC is becoming more and more accurate in comparison 
with SC as ω grows. The latter is due to the fact that the SSC is more suitable for handling heteroge-
neous connections probabilities.

Figure 3 examines the impact of sparsity on clustering precision. For this round of simulations we 
used K = 3 and K = 5, fixed ω = 0.9 and generated entries of the block matrix Λ in Equation (4) on 
the intervals (0,1), (0,0.9) and (0,0.8). The results are sorted by the average connection probability 
ρ which, in the above simulation setting, takes values 0.21833, 0.17685 and 0.13973 for K = 3, and 
0.21200, 0.17172 and 0.13568 for K = 5. Figure 3 shows that the clustering errors decrease as ρ and 
n increase, with the effect of growth of n on the accuracy of clustering being much more significant 
in the case of the SSC.
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Figure 4 presents the results of comparison of the clustering errors of SSC and SC in the simulations 
settings of Sengupta and Chen (2018). It is easy to see that, while for larger values of the homophily factor 
h both methods perform almost equally well, the accuracy of SC deteriorates as h is getting smaller, due to 
the fact that the differences between probabilities of connections within and between clusters become less 
significant. The latter shows that the SSC approach is beneficial for clustering in PABM model. Indeed, it 
delivers more accurate results than the SC when probabilities of connections are more diverse. Moreover, 
SSC is still applicable when the PABM reduces to the SBM, although SC is more accurate in the case of 
the SBM since it does not require an additional step of evaluating the affinity matrix.

Remark 2  (Spectral Clustering Versus SSC.)It is worth noting that when the matrix of probabilities P∗ 
is close to being block diagonal, the spectral clustering can be still used for recovering community 
assignments, even if P∗ does not follow the SBM. The latter is due to the fact that, in this situation, 
the graph can be well approximated by a union of distinct connected components, and, therefore, 
SC allows to identify the true clusters. Moreover, in such situation, SC has an advantage of not 
requiring an additional step of self-representation, which is computationally costly and produces 

F I G U R E  2   The clustering errors Err ( Ẑ, Z ) defined in Equation (23) (left panels) and the estimation errors 
n
− 2 ‖ P̂ − P‖ 2

F
 (right panels) for K = 4 (top) and K = 8 (bottom) clusters. The errors are evaluated over 50 simulation 

runs. The number of nodes ranges from n = 600 to n = 1080 with the increments of 120. SSC results are represented 
by the solid lines; SC results are represented by the dotted lines: ω = 0.5 (red), ω = 0.7 (blue) and ω = 0.9 (black)  
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additional errors. Moreover, as we shall see from examples below, when probabilities of connec-
tions become more heterogeneous, SSC turns to be more precise than SC. In addition, since PABM 
has more unknown parameters than SBM, its correct fitting requires sufficient number of nodes per 
class (see, e.g. Soltanolkotabi et al., 2014); otherwise, its accuracy declines.

Remark 3  (Unknown number of clusters.)In our previous simulations we treated the true number of 
clusters as a known quantity. However, we can actually use P̂ to obtain an estimator K̂ of K by solv-
ing, for every suitable K, the optimisation problem (13), which can be equivalently rewritten as 

The penalty Pen(n, K) defined in Equation (14) is, however, motivated by the objective of setting it above 
the noise level with a very high probability. In our simulations, we also study the selection of an unknown 
K using somewhat smaller penalty 

(35)K̂ = argmin
K

{ ‖ P̂ − A‖2
F
+ Pen(n, K ) } .

F I G U R E  3   The clustering errors Err ( Ẑ, Z ) defined in Equation (23) (left panels) and the estimation errors 
n
− 2 ‖ P̂ − P‖ 2

F
 (right panels) for K = 3 (top) and K = 5 (bottom) clusters. The errors are evaluated over 50 simulation 

runs. The number of nodes ranges from n = 600 to n = 1080 with the increments of 120. SSC results are represented 
by the solid lines; SC results are represented by the dotted lines: for three different values of ρ and fixed ω = 0.9  
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F I G U R E  4   Clustering errors of SC and SSC for K = 2 clusters and n = 300,420 and 540 nodes in the simulations 
setting of Sengupta and Chen (2018). The homophily factor h ranges from 1.5 to 4 with increments of 0.5  
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TABLE 1   The relative of the estimators K̂ of K∗ for K∗ ranging from 3 to 6, n = 420 and n = 840 and ω = 0.5, 0.7 and 0.9

n = 420 n = 840

K
∗

K̂ ω = 0.5 ω = 0.7 ω = 0.9 ω = 0.5 ω=0.7 ω = 0.9

3 2 0 0 0 0 0 0

3 0.76 0.80 0.90 0.52 0.60 0.80

4 0.24 0.16 0.10 0.36 0.26 0.16

5 0 0.04 0 0.12 0.14 0.02

6 0 0 0 0 0 0.02

4 2 0 0 0 0 0 0

3 0.06 0.14 0 0.02 0.02 0

4 0.64 0.66 0.96 0.56 0.64 0.76

5 0.28 0.16 0.04 0.30 0.26 0.22

6 0.02 0.04 0 0.12 0.08 0.02

5 2 0 0.02 0 0 0 0

3 0.02 0 0.02 0 0 0

4 0.14 0.16 0.04 0.04 0.04 0

5 0.64 0.66 0.82 0.78 0.68 0.90

6 0.20 0.16 0.12 0.18 0.28 0.10

6 2 0 0.04 0 0 0 0

3 0.06 0.18 0.02 0 0 0

4 0.18 0.22 0.02 0 0 0

5 0.28 0.22 0.08 0.12 0.16 0.10

6 0.48 0.34 0.88 0.88 0.84 0.90

The probabilities for the true values of K are given in bold.
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where ρ(A) is the density of matrix A, the proportion of nonzero entries of A.
In order to assess the accuracy of K̂ as an estimator of K, we evaluated K̂ as a solution of optimisation 
problem (35) with the penalty (36) in each of the previous simulations settings over 50 simulation 
runs. Table 1 presents the relative frequencies of the estimators K̂ of K∗ for K∗ ranging from 3 to 6,  
n = 420 and n = 840 and ω = 0.5, 0.7 and 0.9. Table 1 confirms that for majority of settings, K̂ = K∗, 
the true number of clusters, with high probability. Moreover, the estimator K̂ of K is more reliable for 
higher values of ω and larger number of nodes per cluster.

4.2  |  Real data examples

In this section, we report the performances of SSC and SC in studying real-life networks. The social 
networks usually exhibit strong assortative behaviour, the phenomenon which is possibly due to the 
tendency of humans to form strong associations. Perhaps, for this reason, the political blogs network, 
the British Twitter network and the Digital Bibliography & Library Project network which have been 
analysed by Sengupta and Chen (2018) have nearly block-diagonal adjacency matrices, so SC exhibits 
good performance in clustering of those networks (see Remark 2).

However, PABM provides a more accurate description of more diverse networks, in particular, 
the networks that appear in biological sciences. Below, we consider a butterfly similarity network 
extracted from the Leeds Butterfly dataset described in Wang et al. (2018). Leeds Butterfly dataset 
contains fine-grained images of 832 butterfly species that belong to 10 different classes, with each 
class containing between 55 and 100 images. In this network, the nodes represent butterfly species 
and edges represent visual similarities between them. Visual similarities are evaluated on the basis of 
butterfly images and range from 0 to 1. We study a network by extracting the four largest classes as 

(36)Pen(n, K ) = � (A )nK
√

lnn ( lnK )3

F I G U R E  5   Adjacency matrices of the butterfly similarity network with 41,132 nonzero entries and 4 clusters 
(left) and the brain network with 37,250 nonzero entries and 6 clusters (right) 
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a simple graph with 373 nodes and 20,566 edges. We draw an edge between the nodes if the visual 
similarity between those nodes is greater than zero.

Classification of species on the basis of their visual similarities is a very important task. In many 
applications, the goal is to classify species automatically on the basis of their images, captured by a 
remote camera. This type of monitoring is essential for surveying bio-diversity and tracking abun-
dance and habitats of species that may be affected by climate change and human activities. While the 
related species may look similar, classification of species does not allow mixed memberships: each of 
the actual species belong to one and only one class.

Figure 5 (left) shows the adjacency matrix of the graph (after clustering), which suggests that the 
PABM is a reasonable model to fit to the network. The latter is due to the fact that, since the phenotype 
of the species in the same class can vary, the SBM may not provide an adequate summary for the class 
similarities. Replacing the SBM by the DCBM does not solve the problem either, since it is unlikely 
that few butterflies are ‘more similar’ to the others than the rest. Moreover, the PABM allows some 
of the butterflies in one class to be ‘more similar’ to species of another specific class than the others, 
thus, justifying application of the PABM.

We carried out clustering of the nodes using the SSC, the SC and the weighted k-median algo-
rithm, one of the popular clustering methods for the DCBM used in Lei and Rinaldo (2015) and Gao 
et al. (2018). We compared the clustering assignments of those methods with the true class specifi-
cations of the species using the adjusted Rand index that measures the agreement between two clus-
tering assignments. The value of the adjusted Rand index between the true class specifications and 
the clustering assignments obtained by the SSC is 0.73; the weighted k-median algorithm is 0.67; and 
the SC is 0.61. In addition, we applied formula (35) with K ranging from 2 to 6 and obtained the true 
number of clusters.

As the second real network, we analyse a human brain functional network, measured using the 
resting-state functional MRI (fMRI). In particular, we use the co-activation matrix of the brain con-
nectivity dataset, described in Crossley et al. (2013). In this dataset, the brain is partitioned into 638 
distinct regions and a weighted graph is used to characterise the network topology. In our analysis, 
we set all nonzero weights to one, obtaining the network with 18625 undirected edges. Since, for 
this network, the true clustering as well as the true number of clusters are unknown, we first applied 
formula (35) with K ranging from 2 to 10 to find the number of clusters obtaining K̂ = 6. This agrees 
with the assessment in Crossley et al. (2013) where the authors partitioned the network into six groups 
(if one considers the ‘rich-club’ communities as separate clusters). Subsequently, we applied the SSC 
for partitioning the network into blocks and derived the estimator P̂ of P∗. Figure 5 (right) shows the 
adjacency matrix of the graph after clustering. The true probability matrix P∗ is unknown, we can 
only report that n−2 ‖ P̂ − A‖2

F
= 0.05, which indicates high agreement between the two matrices. We 

also carried out clustering of the nodes using the weighted k-median algorithm and the SC, that cor-
respond, respectively, to modelling P via the DCBM and the SBM, and calculated the adjusted Rand 
index between the clustering assignments obtained by the three clustering methods. The adjusted 
Rand index between the clustering assignments obtained by the SSC and the weighted k-median algo-
rithm is 0.47; the SSC and the SC is 0.64; and the weighted k-median algorithm and the SC is 0.51.
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