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In this paper, we consider the affine phase retrieval prob-
lem in which one aims to recover a signal from the magni-
tudes of affine measurements. Let {aj}mj=1 ⊂ Hd and b =
(b1, . . . , bm)� ∈ Hm, where H = R or C. We say {aj}mj=1
and b are affine phase retrievable for Hd if any x ∈ Hd can 
be recovered from the magnitudes of the affine measurements 
{|〈aj ,x〉 + bj |, 1 ≤ j ≤ m}. We develop general framework for 
affine phase retrieval and prove necessary and sufficient con-
ditions for {aj}mj=1 and b to be affine phase retrievable. We 
establish results on minimal measurements and generic mea-
surements for affine phase retrieval as well as on sparse affine 
phase retrieval. In particular, we also highlight some notable 
differences between affine phase retrieval and the standard 
phase retrieval in which one aims to recover a signal x from 
the magnitudes of its linear measurements. In standard phase 
retrieval, one can only recover x up to a unimodular constant, 
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while affine phase retrieval removes this ambiguity. We prove 
that unlike standard phase retrieval, the affine phase retriev-
able measurements {aj}mj=1 and b do not form an open set in 
Hm×d ×Hm. Also in the complex setting, the standard phase 
retrieval requires 4d −O(log2 d) measurements, while the affine 
phase retrieval only needs m = 3d measurements.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Phase retrieval

Phase retrieval is an active topic of research in recent years as it arises in many 
different areas of studies (see [2,5,6,9–12,15] and the references therein). For a vector 
(signal) x ∈ H

d, where H = R or C, the aim of phase retrieval is to recover x from 
|〈aj ,x〉|, j = 1, . . . , m, where aj ∈ H

d and we usually refer to {aj}mj=1 as the measurement 
vectors. Since for any unimodular c ∈ H, we have |〈aj ,x〉| = |〈aj , cx〉|, the best outcome 
phase retrieval can achieve is to recover x up to a unimodular constant.

We briefly overview some of the results in phase retrieval and introduce some nota-
tions. For the set of measurement vectors {aj}mj=1, we set A := (a1, . . . , am)� ∈ H

m×d

which we shall refer to as the measurement matrix. We shall in general identify the set 
of measurement vectors {aj}mj=1 with the corresponding measurement matrix A, and 
often use the two terms interchangeably whenever there is no confusion. Define the map 
MA : Hd → R

m
≥0 by

MA(x) = (|〈a1,x〉|, . . . , |〈am,x〉|).

We say A is phase retrievable for Hd if MA(x) = MA(y) implies x ∈ {cy : c ∈ H,

|c| = 1}. There have been extensive studies of phase retrieval from various different 
angles. For example many efficient algorithms to recover x from MA(x) have been 
developed, see [7–9,17] and their references. One of the fundamental problems on the 
theoretical side of phase retrieval is the following question: How many vectors in the 
measurement matrix A are needed so that A is phase retrievable? It is shown in [2] that 
for A to be phase retrievable for Rd, it is necessary and sufficient that m ≥ 2d − 1.

In the complex case H = C, the same question becomes much more challenging, how-
ever. The minimality question remains open today. Balan, Casazza and Edidin [2] first 
show that A is phase retrievable if it contains m ≥ 4d − 2 generic vectors in Cd. Bod-
mann and Hammen [5] show that m = 4d −4 measurement vectors are possible for phase 
retrieval through construction (see also Fickus, Mixon, Nelson and Wang [12]). Bandeira, 
Cahill, Mixon and Nelson [4] conjecture that (a) m ≥ 4d − 4 is necessary for A to be 
phase retrievable and, (b) A with m ≥ 4d − 4 generic measurement vectors is phase re-
trievable. Part (b) of the conjecture is proved by Conca, Edidin, Hering and Vinzant [11]. 
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They also confirm part (a) for the case where d is in the form of 2k+1, k ∈ Z+. However, 
Vinzant in [18] presents a phase retrievable A for C4 with m = 11 = 4d − 5 < 4d − 4
measurement vectors, thus disproving the conjecture. The measurement vectors in the 
counterexample are obtained using Gröbner basis and algebraic computation.

1.2. Phase retrieval from magnitudes of affine linear measurements

Here we consider the affine phase retrieval problem, where instead of being given the 
magnitudes of linear measurements, we are given the magnitudes of affine linear mea-
surements that include shifts. More precisely, instead of recovering x from {|〈aj ,x〉|}mj=1, 
we consider recovering x from the absolute values of the affine linear measurements

|〈aj ,x〉 + bj |, j = 1, . . . ,m,

where aj ∈ H
d, b = (b1, . . . , bm)� ∈ H

m. Unlike in the classical phase retrieval, where x
can only be recovered up to a unimodular constant, we will show that one can recover x
exactly from (|〈a1,x〉 + b1|, . . . , |〈am,x〉 + bm|) if the vectors aj and shifts bj are properly 
chosen.

Let A = (a1, . . . , am)� ∈ H
m×d and b ∈ H

m. Define the map MA,b : Hd → R
m
≥0 by

MA,b(x) = (|〈a1,x〉 + b1|, . . . , |〈am,x〉 + bm|) . (1.1)

We say the pair (A, b) (which can also be viewed as a matrix in Hm×(d+1)) is affine 
phase retrievable for Hd, or simply phase retrievable whenever there is no confusion, if 
MA,b is injective on Hd. Note that sometimes it is more convenient to consider the map

M2
A,b(x) := (|〈a1,x〉 + b1|2, . . . , |〈am,x〉 + bm|2). (1.2)

Clearly (A, b) is affine phase retrievable if and only if M2
A,b is injective on Hd. The goal 

of this paper is to develop a framework of affine phase retrieval.
There are several motivations for studying affine phase retrieval. It arises naturally 

in holography, see [16]. It could also arise in other phase retrieval applications, such as 
reconstruction of signals in a shift-invariant space from their phaseless samples [10], where 
some entries of x might be known in advance. In such scenarios, assume that the object 
signal is y ∈ H

d+k and the first k entries of y are known. We can write y = (y1, . . . , yk, x), 
where y1, . . . , yk are known and x ∈ H

d. Suppose that ãj = (aj1, . . . , ajk, aj) ∈ H
d+k, 

j = 1, . . . , m are the measurement vectors. Then

|〈ãj ,y〉| = |〈aj ,x〉 + bj |,

where bj := aj1y1 + · · · + ajkyk. So if (y1, . . . , yk) is a nonzero vector, we can take 
advantage of knowing the first k entries and reduce the standard phase retrieval in Hd+k

to affine phase retrieval in Hd.
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1.3. Our contribution

This paper considers affine phase retrieval for both real and complex signals. In Sec-
tion 2, we consider the real case H = R and prove several necessary and sufficient 
conditions under which MA,b is injective on Rd. For an index set T ⊂ {1, . . . , m}, we 
use AT to denote the sub-matrix AT := (aj : j ∈ T )� of A. Let #T denote the car-
dinality of T , span(AT ) ⊂ R

#T denote the subspace spanned by the column vectors 
of AT . In particularly, we show that (A, b) is affine phase retrievable for Rd if and only 
if span{aj : j ∈ Sc} = R

d for any index set S ⊂ {1, . . . , m} satisfying bS ∈ span(AS). 
Based on this result, we prove that the measurement vectors set A must have at least 
m ≥ 2d elements for (A, b) to be affine phase retrievable. Furthermore, we prove any 
generic A ∈ R

m×d and b ∈ R
m, where m ≥ 2d will be affine phase retrievable. The recov-

ery of sparse signals from phaseless measurements also attracts much attention recently 
[13,19]. In this section, we consider the real affine phase retrieval for sparse vectors.

We turn to the complex case H = C in Section 3. First we establish equivalent nec-
essary and sufficient conditions for (A, b) to be affine phase retrievable for Cd. Using 
these conditions, we show that (A, b) ∈ C

m×(d+1) is not affine phase retrievable for Cd

if m < 3d. The result is sharp as we also construct an affine phase retrievable (A, b) for 
C

d with m = 3d. This result shows that the nature of affine phase retrieval can be quite 
different from that of the standard phase retrieval in the complex setting, where it is 
known that 4d −O(log2 d) measurements are needed for phase retrieval [15,20].

Note that for j = 1, . . . , m we have

|〈aj ,x〉 + bj | = |〈ãj , x̃〉|, where x̃ =
(

x
1

)
, ãj =

(
aj

bj

)
. (1.3)

It shows that affine phase retrieval for x can be reduced to the classical phase retrieval 
for x̃ ∈ C

d+1 from |〈ãj , x̃〉|, j = 1, . . . , m. Because the last entry of x̃ is 1, it allows us 
to recover x without the unimodular constant ambiguity. Observe also from [11] that 
4(d + 1) − 4 = 4d generic measurements are enough to recover x̃ up to a unimodular 
constant, and hence they are also enough to recover x. In Section 3, we prove the stronger 
result that a generic (A, b) in Cm×(d+1) with m ≥ 4d − 1 is affine phase retrievable. We 
furthermore consider the complex affine phase retrieval for sparse signals in this section.

The classical phase retrieval has the property that the set of phase retrievable A ∈
H

m×d is an open set, and hence the phase retrievable property is stable under small 
perturbations [1,3]. Surprisingly, viewing (A, b) as an element in Hm×(d+1), we prove 
that the set of affine phase retrievable (A, b) is not an open set.

As far as stability of affine phase retrieval is concerned, we prove several new results 
in Section 4. For the standard phase retrieval, one uses min|α|=1 ‖x − αy‖ to measure 
the distance between x and y. The robustness of phase retrieval is established via the 
lower bound of the following bi-Lipschitz type inequalities for any phase retrievable A,

c min ‖x − αy‖ ≤ ‖MA(x) − MA(y)‖ ≤ C min ‖x − αy‖, (1.4)

α∈C,|α|=1 α∈C,|α|=1
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where c, C > 0 depend only on A [6]. Throughout this paper, we use ‖ · ‖ to denote the 
�2-norm. More explicit estimate of the constant c was given in [3]. For the affine phase 
retrieval, we use ‖x−y‖ to measure the distance between x and y because it is possible 
to recover x exactly in the affine phase retrieval. For the affine phase retrieval, we show 
that both MA,b and M2

A,b are bi-Lipschitz continuous on any compact sets, but are not 
bi-Lipschitz on Hd.

2. Affine phase retrieval for real signals

We consider affine phase retrieval of real signals in this section. Several equivalent 
conditions for affine phase retrieval are established. We also study affine phase retrieval 
for sparse signals. In particular we answer the minimality question, namely what is the 
smallest number of measurements needed for affine phase retrievability for Rd.

2.1. Real affine phase retrieval

Let T ⊂ {1, 2, . . . , m}. We first recall that for the measurement matrix A =
(a1, . . . , am)� ∈ R

m×d, we use AT to denote the submatrix of A consisting only those 
rows indexed in T , i.e. AT := (aj : j ∈ T )�. Similarly we use bT to denote the sub-vector 
of b consisting only entries indexed in T . For any matrix B, we use span(B) to denote 
the subspace spanned by the columns of B. Thus for any index subset T , the notation 
span(AT ) denotes the subspace of R#T spanned by the columns of AT .

Theorem 2.1. Let A = (a1, . . . , am)� ∈ R
m×d and b = (b1, . . . , bm)� ∈ R

m. Then the 
followings are equivalent:

(A) (A, b) is affine phase retrievable for Rd.
(B) The map M2

A,b is injective on Rd, where M2
A,b is defined in (1.2).

(C) For any u, v ∈ R
d and u 
= 0, there exists a k with 1 ≤ k ≤ m such that

〈ak,u〉
(
〈ak,v〉 + bk

)

= 0.

(D) For any S ⊂ {1, 2, . . . , m}, if bS ∈ span(AS) then span(A�
Sc) = span{aj : j ∈

Sc} = R
d.

(E) The Jacobian J(x) of the map M2
A,b has rank d for all x ∈ R

d.

Proof. The equivalence of (A) and (B) has already been discussed earlier. We focus on 
the other conditions.

(A) ⇔ (C). Assume that MA,b(x) = MA,b(y) for some x 
= y in Rd. For any j, we 
have

|〈aj ,x〉 + bj |2 − |〈aj ,y〉 + bj |2 = 〈aj ,x − y〉(〈aj ,x + y〉 + 2bj). (2.1)
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Set 2u = x − y and 2v = x + y. Then u 
= 0 and for all j,

〈aj ,u〉
(
〈aj ,v〉 + bj

)
= 0. (2.2)

Conversely, assume that (2.2) holds for all j. Let x, y ∈ R
d be given by x − y = 2u

and x + y = 2v. Then x 
= y. However, we would have M2
A,b(x) = M2

A,b(y) and hence 
(A, b) cannot be affine phase retrievable.

(C) ⇔ (D). Assume that (C) holds. If for some S ⊂ {1, 2, . . . , m} with bS ∈ span(AS), 
we have span{aj : j ∈ Sc} 
= R

d, then we can find u 
= 0 such that 〈aj ,u〉 = 0 for all 
j ∈ Sc. Moreover, since bS ∈ span(AS), we can find v ∈ R

d such that −bj = 〈aj ,v〉 for 
all j ∈ S. Thus for all 1 ≤ j ≤ m, we have

〈aj ,u〉
(
〈aj ,v〉 + bj

)
= 0.

This is a contradiction. The converse clearly also holds.
(C) ⇔ (E). Note that the Jacobian J(v) of the map M2

A,b at the point v ∈ R
d is 

precisely

J(v) =
(
(〈a1,v〉 + b1)a1, (〈a2,v〉 + b2)a2, . . . , (〈am,v〉 + bm)am

)
,

i.e. the j-th column of J(v) is (〈aj ,v〉 + bj)aj . Thus rank(J(v)) 
= d if and only if there 
exists a nonzero u ∈ R

d such that

u�J(v) =
(
〈a1,u〉

(
〈a1,v〉 + b1

)
, . . . , 〈am,u〉

(
〈am,v〉 + bm

))
= 0.

The equivalence of (C) and (E) now follows. �
As an application of Theorem 2.1, we show that the minimal number of affine mea-

surements to recover all d-dimensional real signals is 2d.

Theorem 2.2. Let A = (a1, . . . , am)� ∈ R
m×d and b ∈ R

m. If m ≤ 2d − 1, then (A, b)
is not affine phase retrievable for Rd.

Proof. We divide the proof into two cases.

Case 1 : rank(A) ≤ d − 1.

In this case, there exists a nonzero vector u ∈ R
d such that 〈aj , u〉 = 0, 1 ≤ j ≤ m. 

Thus for any x ∈ R
d,

|〈aj ,x〉 + bj |2 = |〈aj ,x + u〉 + bj |2, 1 ≤ j ≤ m.

This means that MA,b is not injective.
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Case 2 : rank(A) = d.

In this case, there exists an index set S0 ⊂ {1, . . . , m} with cardinality d so that the 
square matrix AS0 has full rank d, which implies

bS0 ∈ span(AS0). (2.3)

In other words, there exists v ∈ R
d such that 〈aj ,v〉 + bj = 0 for all j ∈ S0. Now since 

m ≤ 2d − 1 and #S0 = d, we have #Sc
0 = m − d ≤ d − 1 where Sc

0 := {1, . . . , m} \ S0. 
Hence there exists a nonzero u ∈ R

d such that u ⊥ {aj : j ∈ Sc
0}. The non-injectivity 

follows immediately from Theorem 2.1 (C). �
We next consider generic measurements. There are various ways one can define the 

meaning of being generic. A rigorous definition involves the use of Zariski topology. In 
this paper, we adopt a simpler definition. We say that a generic u in HN has a certain 
property if there is an open dense set X ⊂ H

N so that every u in X has that property. 
Sometimes in actual proofs, we obtain the stronger result where Xc := H

N \ X is an 
algebraic variety. The following theorem on generic measurements also shows that the 
lower bound given in Theorem 2.2 is optimal.

Theorem 2.3. Let m ≥ 2d. Then a generic (A, b) ∈ R
m×(d+1) is affine phase retrievable.

Proof. The theorem follows readily from Theorem 2.1 (D). Note that for a generic A ∈
R

m×d, any d rows are linearly independent, so that span(A�
Sc) = R

d as long as #Sc ≥ d. 
On the other hand, span(AS) is a d dimensional subspace in R#S and so bS /∈ span(AS)
if #S > d. Thus if bS ∈ span(AS), then #S ≤ d, which implies #Sc ≥ d. Consequently 
span{aj : j ∈ Sc} = span(A�

Sc) = R
d. Hence (A, b) is affine phase retrievable. �

The following theorem highlights a difference between the classical linear phase re-
trieval and the affine phase retrieval.

Theorem 2.4. Let m ≥ 2d. Then the set of affine phase retrievable (A, b) ∈ R
m×(d+1) is 

not an open set.

Proof. We only need to find an affine phase retrievable (A, b) ∈ R
m×(d+1) such that for 

each ε > 0, there is a small perturbation (A′, b) ∈ R
m×(d+1) with ‖A − A′‖F < ε such 

that (A′, b) is not affine phase retrievable, where ‖ · ‖F denotes the l2-norm (Frobenius 
norm). We first do so for m = 2d. Set

A = (Id, Id)�, b = (b11, . . . , bd1, b12, . . . , bd2)�.

Here we require that bj1 
= bj2 for all j and specially suppose b12 = 0. Then (A, b) is affine 
phase retrievable. To see this, assume that x, y ∈ R

d such that MA,b(x) = MA,b(y). 
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Then for each j, we must have |xj + bjk| = |yj + bjk| for k = 1, 2. Since bj1 
= bj2, we 
must have xj = yj . Thus MA,b is injective and hence (A, b) is phase retrievable.

Now let δ > 0 be sufficiently small. We perturb A to

A′ = (Id + b11δE21, Id)� , (2.4)

where Eij denotes the matrix with the (i, j)-th entry being 1 and all other entries being 0. 
Now set x = (b11, −1/δ, 0, . . . , 0)� and y = (−b11, −1/δ, 0, . . . , 0)�. It is easy to see that

|A′x + b| = |A′y + b|.

Hence (A′, b) is not affine phase retrievable. By taking δ sufficiently small, we will 
have ‖A′ − A‖F ≤ ε. It follows that for m = 2d, the set of affine phase retrievable 
(A, b) ∈ R

m×(d+1) is not an open set.
In general for m > 2d, we can simply take the above construction (A, b) ∈ R

2d×(d+1)

and augment it to a matrix (Ã, b̃) ∈ R
m×(d+1) by appending m −2d rows of zero vectors 

to form its last m − 2d rows. The (Ã, b̃) is clearly affine phase retrievable, and the 
same perturbation above applied to the first 2d rows of A now breaks the affine phase 
retrievability. Thus for any m ≥ 2d, the set of affine phase retrievable (A, b) ∈ R

m×(d+1)

is not an open set. �
2.2. Real sparse affine phase retrieval

Set

Σs(Hd) := {x ∈ H
d : ‖x‖0 ≤ s}.

We say that (A, b) ∈ H
m×(d+1) is s-sparse affine phase retrievable for Hd if MA,b

is injective on Σs(Hd). In this subsection, we show that the minimal number of affine 
measurements to recover all s-sparse real signals is 2s + 1.

Theorem 2.5.

(i) Let 1 ≤ s ≤ d −1 and (A, b) ∈ R
m×(d+1) be s-sparse affine phase retrievable for R

d. 
Then m ≥ 2s + 1.

(ii) Let m ≥ 2s +1 and (A, b) be a generic element in Rm×(d+1). Then (A, b) is s-sparse 
affine phase retrievable for Rd.

Proof. (i) We first show that if (A, b) is s-sparse affine phase retrievable, then m ≥ 2s +1. 
First we claim that the rank of A is at least r = min(d, 2s). Indeed, suppose that the 
claim is false. Then there exists a nonzero vector x ∈ Σr(Rd), such that Ax = 0. Write 
x = u − v with u, v ∈ Σs(Rd). Then u 
= v and Au = Av. Hence for all 1 ≤ j ≤ m, we 
have
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|〈aj ,u〉 + bj | = |〈aj ,v〉 + bj |,

which is a contradiction. Thus rank(A) ≥ r = min(d, 2s).
Assume that m ≤ 2s. We derive a contradiction. Since s < d, it follows that r ≥ s +1. 

Thus there exists an index set T ⊂ {1, 2, . . . , m} with #T = s +1, such that rank(AT ) =
s + 1. Without of loss of generality we may assume that T = {1, 2, . . . , s + 1}. Moreover, 
we may also without of loss of generality assume that the first s + 1 columns of AT are 
linearly independent. In other words, the (s + 1) × (s + 1) submatrix of A restricted to 
the first s + 1 rows and columns is nonsingular. Call this matrix B. It follows that there 
exists a y ∈ R

s+1 such that By = −bT . Write y = (y1, . . . , ys+1)� and set

v0 = (y1, . . . , ys+1, 0, . . . , 0)� ∈ R
d.

Then ATv0 = −bT .
If yj = 0 for some 1 ≤ j ≤ s + 1, say ys+1 = 0, we let u = (u1, . . . , us, 0, . . . , 0)�. 

Since #T c = m − (s +1) ≤ s −1, there exists such a u0 
= 0 such that 〈aj ,u0〉 = 0 for all 
j ∈ T c. Now for x = v0 +u0 and y = v0 −u0, we have M2

A,b(x) = M2
A,b(y) and x 
= y. 

Furthermore, x, y ∈ Σs(Rd). This is a contradiction. Hence yj 
= 0 for all 1 ≤ j ≤ s.
Now for any 1 ≤ j1 < j2 ≤ s + 1 consider

uj1,j2 = (u1, . . . , us+1, 0, . . . , 0)� ∈ R
d, uj1 = tyj1 , uj2 = −tyj2 . (2.5)

We view the other uj ’s and t as unconstrained variables, so there are s variables. Since 
#T c = m − (s + 1) ≤ s − 1, it follows that there exists a ũj1,j2 
= 0 satisfying (2.5) such 
that 〈aj , ũj1,j2〉 = 0 for all j ∈ T c. If t 
= 0, then we may normalize ũj1,j2 so that t = 1. 
Set x = v0 + ũj1,j2 and y = v0 − ũj1,j2 . It follows that M2

A,b(x) = M2
A,b(y) and

supp(x) ⊂ {1, 2, . . . , s + 1} \ {j2}, supp(y) ⊂ {1, 2, . . . , s + 1} \ {j1}.

This is a contradiction.
To complete the proof of m ≥ 2s +1, we finally need to consider the case that t = 0 in 

ũj1,j2 
= 0 for every pair of indices 1 ≤ j1 < j2 ≤ s +1. But if so, it implies that any s −1
columns among the first s + 1 columns of AT c are linearly dependent. In particular, it 
means the (m −s −1) × (s +1) submatrix of AT c restricted to the first s +1 columns has 
rank at most s − 2. Now because the (s + 1) × (s + 1) submatrix of A restricted to the 
first s + 1 rows and columns is nonsingular, we may without loss of generality assume 
that s × s submatrix of A restricted to the first s rows and columns is nonsingular, for 
otherwise we can make a simple permutation of the indices. The key now is to observe 
that (A, b) is not s-sparse affine phase retrievable, because (A, b) restricted to the first 
s columns is not affine phase retrievable for Rs. To see this, let A′ be the submatrix of A
consisting of only the first s columns of A. We show (A′, b) is not affine phase retrievable 
for Rs. Note that for S = {1, 2, . . . , s}, we have bS ∈ span (A′

S) because by assumption 
A′

S is nonsingular. But we also know that the rows of ASc do not span Rs because it 
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has rank(ASc) ≤ s −1. Hence (A′, b) is not affine phase retrievable by Theorem 2.1 (D). 
This completes the proof of m ≥ 2s + 1.

(ii) Next we prove for m ≥ 2s +1, a generic (A, b) ∈ R
m×(d+1) is s-sparse affine phase 

retrievable. The set of all (A, b) ∈ R
m×(d+1) has real dimension m(d +1). The goal is to 

show that the set of (A, b) that are not s-sparse affine phase retrievable lies in a finite 
union of subsets of dimension strictly less than m(d + 1). Our result then follows.

For any subset of indices I, J ⊂ {1, . . . , m} with #I, #J ≤ s, we say (A, b) ∈
R

m×(d+1) is not (I, J)-sparse affine phase retrievable if there exist x 
= y in Rd such 
that

supp(x) ⊂ I, supp(y) ⊂ J, and M2
A,b(x) = M2

A,b(y). (2.6)

Let AI,J denote the set of all 4-tuples (A, b, x, y) satisfying (2.6) and x 
= y. Then

AI,J ⊂ R
m×(d+1) × R

d × R
d.

Then AI,J is a well-defined real quasi-projective variety ([14, Page 18]). Write A =
(a1, a2, . . . , am)� and b = (b1, . . . , bm)�. Then by (2.1), M2

A,b(x) = M2
A,b(y) is equiva-

lent to

〈aj ,x − y〉(〈aj ,x + y〉 + 2bj) = 0, j = 1, 2, . . . ,m. (2.7)

Fix any j, the above equation holds if and only if

〈aj ,x − y〉 = 0 or 〈aj ,x + y〉 + 2bj = 0.

Thus for any x 
= y, the first condition requires aj to lie on a hyperplane, which has 
co-dimension 1, while the second condition fixes bj to be −〈aj ,x + y〉/2. Overall, for 
any given x 
= y, these two conditions constraint the j-th row of (A, b) to lie on a real 
projective variety of codimension 1. We shall use Xj(x, y) to denote this variety which is a 
subvariety of Rd+1. Now let π2 : AI,J −→ R

d×R
d be the projection (A, b, x, y) 
→ (x, y)

onto the last two coordinates. Then for any x0 
= y0 in Rd with supp(x0) ⊂ I and 
supp(y0) ⊂ J , we have

π−1
2 {(x0,y0)} = X1(x0,y0) ×X2(x0,y0) × . . .×Xm(x0,y0) × {x0} × {y0}.

Hence the dimension of π−1
2 {(x0, y0)} is

dim
(
π−1

2 {(x0,y0)}
)

= m(d + 1) −m = md.

It follows that dim(AI,J) ≤ md + #I + #J ≤ md + 2s.
We now let π1 : AI,J −→ R

m×(d+1) be the projection (A, b, x, y) 
→ (A, b). Since 
projections cannot increase the dimension of a variety, we know that
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dim (π1(AI,J)) ≤ md + 2s = m(d + 1) + 2s−m < m(d + 1).

However, π1(AI,J) contains precisely those (A, b) in Rm×(d+1) that are not (I, J)-sparse 
affine phase retrievable. Thus a generic (A, b) ∈ R

m×(d+1) is (I, J)-sparse affine phase 
retrievable.

Finally, there are only finitely many indices subsets I, J . Hence a generic (A, b) ∈
R

m×(d+1) (m ≥ 2s + 1) is (I, J)-sparse affine phase retrievable for any I, J with 
#I, #J ≤ s. The theorem is proved. �
3. Affine phase retrieval for complex signals

In this section, we consider affine phase retrieval for complex signals. Affine phase re-
trieval for complex signals, like in the case of the classical phase retrieval, poses additional 
challenges.

3.1. Complex affine phase retrieval

We first establish the analogue of Theorem 2.1 for complex signals. Throughout this 
paper, 〈u,v〉 :=

∑d
j=1 ujvj for u = (u1, . . . , ud) ∈ C

d, v = (v1, . . . , vd) ∈ C
d.

Theorem 3.1. Let A = (a1, . . . , am)� ∈ C
m×d and b = (b1, . . . , bm)� ∈ C

m. Then the 
followings are equivalent:

(A) (A, b) is affine phase retrievable for Cd.
(B) The map M2

A,b is injective on Cd.
(C) For any u, v ∈ C

d and u 
= 0, there exists a 1 ≤ k ≤ m such that

�
(
〈u,ak〉

(
〈ak,v〉 + bk

))

= 0.

(D) Viewing M2
A,b as a map R2d −→ R

m, its (real) Jacobian J(x) has rank 2d for all 
x ∈ R

2d.

Proof. The equivalence of (A) and (B) has already been discussed earlier. We focus on 
the other conditions.

(A) ⇔ (C). Assume that M2
A,b(x) = M2

A,b(y) for some x 
= y in Cd. Observe that 
for any a, b ∈ C, we have |a|2 − |b|2 = �((ā− b̄)(a + b)). Thus for any j, we have

|〈aj ,x〉 + bj |2 − |〈aj ,y〉 + bj |2 = �
(
〈x − y,aj〉(〈aj ,x + y〉 + 2bj)

)
. (3.1)

Set 2u = x − y and 2v = x + y. Then u 
= 0 and for all j,

�
(
〈u,aj〉(〈aj ,v〉 + bj)

)
= 0. (3.2)
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Conversely, assume that (3.2) holds for all j. Let x, y ∈ C
d be given by x − y = 2u

and x + y = 2v. Then x 
= y. However, we would have M2
A,b(x) = M2

A,b(y) and hence 
(A, b) cannot be affine phase retrievable.

(C) ⇔ (D). The k-th entry of M2
A,b(x) is |〈ak, x〉 + bk|2. Since all variables here 

are complex, we shall separate them into the real and imaginary parts by adopting the 
notation x = xR + ixI , ak = ak,R + iak,I and bk = bk,R + ibk,I . The k-th entry of 
M2

A,b(x) is now

|〈ak,x〉 + bk|2 = (〈ak,R,xR〉 + 〈ak,I ,xI〉 + bk,R)2 + (〈ak,R,xI〉 − 〈ak,I ,xR〉 − bk,I)2 .

It follows that the (real) Jacobian of M2
A,b(xR, xI) is

J(x) := J(xR,xI) = 2

⎛
⎜⎜⎜⎝

a�
1,R · α1(x) − a�

1,I · β1(x) a�
1,I · α1(x) + a�

1,R · β1(x)
a�

2,R · α2(x) − a�
2,I · β2(x) a�

2,I · α2(x) + a�
2,R · β2(x)

...
...

a�
m,R · αm(x) − a�

m,I · βm(x) a�
m,I · αm(x) + a�

m,R · βm(x)

⎞
⎟⎟⎟⎠ ,

where αj(x) := 〈aj,R,xR〉 + 〈aj,I ,xI〉 + bj,R and βj(x) := 〈aj,R,xI〉 − 〈aj,I ,xR〉 − bj,I
for all 0 ≤ j ≤ m.

Now assume that rank(J(x)) is not 2d everywhere. Then there exist v = vR + ivI

and u = uR + iuI 
= 0, such that u as a vector in R2d is in the null space of J(v), i.e.,

J(v)
(

uR

uI

)
= 0.

It follows that for all 1 ≤ k ≤ m, we have

Ck := 〈ak,R,uR〉αk(v) − 〈ak,I ,uR〉βk(v) + 〈ak,I ,uI〉αk(v) + 〈ak,R,uI〉βk(v) = 0.

(3.3)

But one can readily check that Ck is precisely

Ck = �
(
〈u,ak〉(〈ak,v〉 + bk)

)
.

Thus (A, b) cannot be affine phase retrievable by (C).
The converse clearly also holds. Assume that (C) is false. Then there exist v, u ∈ C

d

and u 
= 0 such that

�
(
〈u,ak〉(〈ak,v〉 + bk)

)
= 0

for all 1 ≤ k ≤ m. It follows that (3.3) holds for all k and hence
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J(v)
(

uR

uI

)
= 0.

Thus rank(J(v)) < 2d. �
3.2. Minimal measurement number

We now show that the minimal number of measurements needed to be affine phase 
retrievable is 3d. This is surprising compared to the classical affine phase retrieval, where 
the minimal number is 4d −O(log2 d).

Lemma 3.1. Let z1, z2 ∈ C. Suppose that b1, b2, b3 ∈ C are not collinear on the complex 
plane. Then z1 = z2 if and only if |z1 + bj | = |z2 + bj |, j = 1, 2, 3.

Proof. We use zj,R and zj,I to denote the real and imaginary part of zj, and similarly 
for bj,R and bj,I . Assume the lemma is false, and that there exist z1, z2 with z1 
= z2 so 
that |z1 + bj |2 = |z2 + bj |2, j = 1, 2, 3. Note that |z1 + bj |2 = |z2 + bj |2 implies that

(z2,R − z1,R) · bj,R + (z2,I − z1,I) · bj,I = |z1|2 − |z2|2
2 , j = 1, 2, 3. (3.4)

The (3.4) together with z1 
= z2 implies that b1, b2, b3 are collinear. This is a contradic-
tion. �
Theorem 3.2.

(i) Suppose that (A, b) ∈ C
m×(d+1) is affine phase retrievable in Cd. Then m ≥ 3d.

(ii) Let B := (a1, . . . , ad) ∈ C
d×d be nonsingular. Set A = (B, B, B)� ∈ C

3d×d. Let

b = (b11, . . . , bd1, b12, . . . , bd2, b13, . . . , bd3)� ∈ C
3d

such that bj1, bj2, bj3 are not collinear in C for any 1 ≤ j ≤ d. Then (A, b) is affine 
phase retrievable in Cd.

Proof. (i) Write A = (a1, . . . , am)� ∈ C
m×d. Assume that m < 3d. Clearly rank(A) = d, 

for otherwise we will have Ax = 0 for some x 
= 0 and hence MA,b(x) = MA,b(0). Hence 
there exists a T ⊂ {1, . . . , m} with #T = d such that rank(AT ) = d, which means we 
can find v ∈ C

d such that

〈ak,v〉 + bk = 0, k ∈ T.

Now, because #T c = m − d < 2d, and the system of homogeneous linear equations for 
the variable u with v fixed,
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�
(
〈u,aj〉(〈aj ,v〉 + bj)

)
= 0, j ∈ T c

has 2d real variables uR, uI , it must have a nontrivial solution. The two vectors u 
= 0, 
v combine to yield

�
(
〈u,aj〉(〈aj ,v〉 + bj)

)
= 0

for all 1 ≤ j ≤ m. This contradicts with (C) in Theorem 3.1.
(ii) To prove (A, b) is affine phase retrievable, we prove that MA,b(x) = MA,b(y)

implies x = y in Cd. The property MA,b(x) = MA,b(y) implies that

|〈aj ,x〉 + bjk| = |〈aj ,y〉 + bjk|, j = 1, . . . , d, k = 1, 2, 3. (3.5)

Thus by Lemma 3.1, for each fixed j we have

〈aj ,x〉 = 〈aj ,y〉.

This implies x = y since the matrix B = (a1, . . . , ad) is nonsingular. �
It is well known that in the classical phase retrieval, the set of all phase retrievable 

A ∈ C
m×d is an open set in Cm×d. But for affine phase retrieval, as with the real affine 

phase retrieval case, this property no longer holds. The following theorem shows that 
this property also doesn’t hold in the complex case when m ≥ 3d.

Theorem 3.3. Let m ≥ 3d. Then the set of affine phase retrievable (A, b) ∈ C
m×(d+1) is 

not an open set in Cm×(d+1). In fact, there exists an affine phase retrievable (A, b) ∈
C

3d×(d+1), which satisfies the conditions in Theorem 3.2 (ii). Given any ε > 0, there 
exists (A′, b) ∈ C

3d×(d+1) which does not have affine phase retrievable property such 
that

‖A′ − A‖F ≤ ε,

where ‖ · ‖F denotes the Frobenius norm.

Proof. Following the construction given in Theorem 3.2 (ii), we set A = (B, B, B)�, 
where B is nonsingular and

b := (i, . . . , i︸ ︷︷ ︸
d

, 0, . . . , 0︸ ︷︷ ︸
d

, 1, . . . , 1︸ ︷︷ ︸
d

)� ∈ C
3d.

We will show that there exists an arbitrarily small perturbation A′ such that (A′, b) is 
no longer affine phase retrievable. Making a simple linear transformation x = B−1y, we 
see that all we need is to show that this property holds for A = (Id, Id, Id)�, where Id
is the d × d identity matrix. Let δ > 0 be sufficiently small. We perturb A to
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A′ = (Id + iδE21, Id, Id)�, (3.6)

where E21 denotes the matrix with the (2, 1)-th entry being 1 and all other entries 
being 0. Now set x = (i, −1/δ, 0, . . . , 0)� and y = (−i, −1/δ, 0, . . . , 0)�. It is easy to see 
that

|A′x + b| = |A′y + b|

which implies that

M(A′,b)(x) = M(A′,b)(y).

Thus (A′, b) is not affine phase retrievable. By taking δ sufficiently small we will have 
‖A′ − A‖F ≤ ε.

In general for m > 3d, like the real case, we can simply take the above construction 
(A, b) ∈ C

3d×(d+1) and augment it to a matrix (Ã, b̃) ∈ C
m×(d+1) by appending m − 3d

rows of zero vectors to form its last m −3d rows. (Ã, b̃) is clearly affine phase retrievable, 
and the same perturbation above applied to the first 3d rows of Ã now breaks the affine 
phase retrievability.

Thus for any m ≥ 3d, the set of affine phase retrievable (A, b) ∈ C
m×(d+1) is not an 

open set. �
We next consider complex affine phase retrieval for generic measurements. We have 

the following theorem:

Theorem 3.4. Suppose that m ≥ 4d − 1. Then a generic (A, b) ∈ C
m×(d+1) is affine 

phase retrievable in Cd.

Proof. Let N = m +1. Then N ≥ 4d = 4(d +1) −4. Hence by [11], there is an open dense 
set of full measure X ⊂ C

N×(d+1), such that any F ∈ X is linear phase retrievable in the 
classical sense. Write F = (f1, f2, . . . , fN )�, where each fj ∈ C

d+1. For each g ∈ C
d+1, 

denote Xg := {F = (f1, f2, . . . , fN )� ∈ X : fN = g}. Then there exists a g0 ∈ C
d+1, 

such that the projection of Xg0 onto C(N−1)×(d+1) with the last row removed is a dense 
open set with full measure. Thus F = (f1, . . . , fN−1, g0)� is phase retrievable in Cd+1 in 
the classical sense for a generic (f1, . . . , fN−1)� ∈ C

(N−1)×(d+1).
Now let P0 ∈ C

(d+1)×(d+1) be nonsingular such that P0g0 = ed+1. Then for any 
F ∈ Xg0 , we have

G := FP�
0 = (P0f1, . . . , P0fN−1, ed+1)� =: (g1, . . . ,gN−1, ed+1)�.

It is linear phase retrievable in the classical sense for generic g1, . . . , gN−1. In particular, 
any vector y = (x1, . . . , xd, 1)� can be recovered by |Gy|, where |·| means the entry-wise 
absolute value. However, note that the last entry of y is 1, and the last row of G is e�d+1. 
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So the measurement from last row provides no information. In other words, the above 
y can be recovered exactly from the measurements provided by the first N − 1 = m

rows of G. This means precisely that the first N − 1 = m rows of G are affine phase 
retrievable. Let (A, b) denote the first m rows of G. It follows that (A, b) ∈ C

m×(d+1)

is affine phase retrievable. Therefore a generic (A, b) ∈ C
m×(d+1) (m ≥ 4d − 1) is affine 

phase retrievable. �
3.3. Complex sparse affine phase retrieval

We now focus on sparse affine phase retrieval by proving that generic (A, b) is s-sparse 
affine phase retrievable if m ≥ 4s + 1.

Theorem 3.5. Let m ≥ 4s +1. Then a generic (A, b) ∈ C
m×(d+1) is s-sparse affine phase 

retrievable.

Proof. The proof here is very similar to the proof in the real case. The set of all (A, b)
has real dimension dimR(Cm×(d+1)) = 2m(d + 1). The goal is to show that the set of 
(A, b) that are not s-sparse affine phase retrievable lies in a finite union of subsets, each 
of which is a projection of real hypersurfaces of dimension strictly less than 2m(d + 1). 
This would yield our result.

For any subset of indices I, J ⊂ {1, . . . , m} with #I, #J ≤ s, we say (A, b) ∈
C

m×(d+1) is not (I, J)-sparse affine phase retrievable if there exist x 
= y in Cd such 
that

supp(x) ⊂ I, supp(y) ⊂ J, and M2
A,b(x) = M2

A,b(y). (3.7)

Let AI,J denote the set of all 4-tuples (A, b, x, y) satisfying (3.7) and x 
= y. Then

AI,J ⊂ C
m×(d+1) × C

d × C
d,

where we view (A, b) as an element of Cm×(d+1). For our proof we shall identify 
C

m×(d+1) × C
d × C

d with Rm×2(d+1) × R
2d × R

2d. In this case AI,J is a well-defined 
real quasi-projective variety ([14, Page 18]). Note that M2

A,b(x) = M2
A,b(y) yields 

|〈aj ,x〉 + bj |2 = |〈aj ,y〉 + bj |2 for all 1 ≤ j ≤ m, where A = (a1, a2, . . . , am)� and 
b = (b1, . . . , bm)�. By (3.1), this is equivalent to

�
(
〈x − y,aj〉(〈aj ,x + y〉 + 2bj)

)
= 0, j = 1, 2, . . . ,m. (3.8)

Fix any j, the above equation holds if and only if

• 〈x − y,aj〉 = 0; or
• 〈x − y,aj〉 
= 0 but (3.8) holds.
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Thus for any x 
= y, the first condition requires aj to lie on a hyperplane, which has real 
co-dimension 2, while the second condition requires bj to be on a line in C (depending 
on x, y, aj). Overall, for any given x 
= y, these two conditions constraint the j-th row 
of (A, b) to lie on a real projective variety of codimension 1. We shall use Xj(x, y) to 
denote this variety which is a subvariety of R2d+2. Now let π2 : AI,J −→ C

d ×C
d be the 

projection (A, b, x, y) 
→ (x, y) onto the last two coordinates. Then for any x0 
= y0 in 
C

d with supp(x0) ⊂ I and supp(y0) ⊂ J , we have

π−1
2 {(x0,y0)} = X1(x0,y0) ×X2(x0,y0) × . . .×Xm(x0,y0) × {x0} × {y0}.

Hence the real dimension of π−1
2 {(x0, y0)} is

dimR

(
π−1

2 {(x0,y0)}
)

= 2m(d + 1) −m = 2md + m.

It follows that dimR(AI,J) ≤ 2md + m + 2#I + 2#J ≤ 2md + m + 4s.
We now let π1 : AI,J −→ C

m×(d+1) be the projection (A, b, x, y) 
→ (A, b). Since 
projections cannot increase the dimension of a variety, we know that

dimR (π1(AI,J)) ≤ 2md + m + 4s = 2m(d + 1) + 4s−m < 2m(d + 1).

However, π1(AI,J) contains precisely those (A, b) in Cm×(d+1) that are not (I, J)-sparse 
affine phase retrievable. Thus a generic (A, b) ∈ C

m×(d+1) is (I, J)-sparse affine phase 
retrievable.

Finally, there are only finitely many indices subsets I, J . Hence a generic (A, b) ∈
C

m×(d+1) (m ≥ 4s + 1) is (I, J)-sparse affine phase retrievable for any I, J with 
#I, #J ≤ s. The theorem is proved. �
4. Stability and robustness of affine phase retrieval

Stability and robustness are important properties for affine phase retrieval. For the 
standard phase retrieval, stability and robustness have been studied in several papers, 
see [3,4,6,13]. In this section, we establish stability and robustness results for both maps 
MA,b and M2

A,b.

Theorem 4.1. Assume that (A, b) ∈ H
m×(d+1) is affine phase retrievable. Assume that 

Ω ⊂ H
d is a compact set. Then there exist positive constants C1, C2, c1, c2 depending 

on (A, b) and Ω such that for any x, y ∈ Ω, we have

c1
1 + ‖x‖ + ‖y‖ ‖x − y‖ ≤ ‖MA,b(x) − MA,b(y)‖ ≤ C1‖x − y‖, (4.1)

c2‖x − y‖ ≤
∥∥M2

A,b(x) − M2
A,b(y)

∥∥ ≤ C2(1 + ‖x‖ + ‖y‖)‖x − y‖.

(4.2)
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Proof. Write A = (a1, . . . , am)� and b = (b1, . . . , bm)�. We first establish the inequality 
for the map M2

A,b(x), where we recall

M2
A,b(x) =

(
|〈a1,x〉 + b1|2, . . . , |〈am,x〉 + bm|2

)
.

Denote the matrix (A, b) ∈ H
m×(d+1) by (A, b) = (ã1, . . . , ̃am)�, where ãj :=

(
aj

bj

)
, 

j = 1, . . . , m. Similarly we augment x, y ∈ H
d into x̃, ̃y ∈ H

d+1 by appending 1 to the 
(d + 1)-th entry. Now we have

M2
A,b(x) = (|〈a1,x〉 + b1|2, . . . , |〈am,x〉 + bm|2)

= (tr(ã1ã∗
1x̃x̃∗), . . . , tr(ãmã∗

mx̃x̃∗)) =: T(x̃x̃∗),

where T is a linear transformation from H(d+1)×(d+1) to Rm.
Let XΩ = {x̃x̃∗ ∈ H

(d+1)×(d+1) : x ∈ Ω},

ΘΩ = {S ∈ H
(d+1)×(d+1) : ‖S‖F = 1, tS ∈ XΩ −XΩ for some t > 0}

and

Θ̃Ω =
{

S :=
(

zw∗ + wz∗ z
z∗ 0

)
: z ∈ H

d,w ∈ (Ω + Ω)/2 and ‖S‖F = 1
}
,

where ‖ · ‖F denotes the l2-norm (Frobenius norm) of a matrix. Then

ΘΩ ⊂ Θ̃Ω (4.3)

because

S = t−1(x̃x̃∗ − ỹỹ∗) =
(

zw∗ + wz∗ z
z∗ 0

)
∈ Θ̃Ω for all S ∈ ΘΩ,

where the existence of t > 0, x, y ∈ Ω in the first equality follows from the definition of 
ΘΩ and the second equality holds for z = (x − y)/t and w = (x + y)/2.

For any S =
(

zw∗ + wz∗ z
z∗ 0

)
∈ Θ̃Ω, we have

T(S) = T
(

xx∗ − yy∗ x − y
x∗ − y∗ 0

)
= T(x̃x̃∗ − ỹỹ∗) = M2

A,b(x)−M2
A,b(y) 
= 0 (4.4)

by the affine phase retrievability of (A, b), where x = w+z/2 and y = w−z/2. Clearly 
Θ̃Ω is a compact set. This together with (4.4) implies that
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c2 := inf
S∈Θ̃Ω

‖T(S)‖ > 0. (4.5)

Therefore
∥∥M2

A,b(x) − M2
A,b(y)

∥∥ = ‖T(x̃x̃∗ − ỹỹ∗)‖

≥
(

inf
S∈ΘΩ

‖T(S)‖
)
‖x̃x̃∗ − ỹỹ∗‖F ≥ c2‖x̃x̃∗ − ỹỹ∗‖F , (4.6)

where the first equality follows from (4.4) and the last inequality holds by (4.3).
Now for the unit vector ed+1, we have

‖x̃x̃∗ − ỹỹ∗‖F ≥ ‖(x̃x̃∗ − ỹỹ∗)ed+1‖ = ‖x̃ − ỹ‖ = ‖x − y‖.

This, together with (4.5) and (4.6), establishes the lower bound in (4.2).
Because M2

A,b(x) is linear in X = x̃x̃∗, we must also have

∥∥M2
A,b(x) − M2

A,b(y)
∥∥ ≤ C ′

2‖x̃x̃∗ − ỹỹ∗‖F .

However using the standard estimate, we have

‖x̃x̃∗ − ỹỹ∗‖F ≤ ‖x̃‖ ‖x̃ − ỹ‖ + ‖ỹ‖ ‖x̃ − ỹ‖ ≤ 2(1 + ‖x‖ + ‖y‖) ‖x − y‖.

Here we have used the facts that ‖x̃− ỹ‖ = ‖x−y‖ and ‖x̃‖ ≤ 1 +‖x‖. Taking C2 = 2C ′
2

yields the upper bound in (4.2).
We now prove the inequalities for MA,b. The upper bound in (4.1) is straightforward. 

Note that ∣∣∣|〈aj ,x〉 + bj | − |〈aj ,y〉 + bj |
∣∣∣ ≤ |〈aj ,x − y〉| ≤ ‖aj‖ ‖x − y‖.

It follows that

‖MA,b(x) − MA,b(y)‖ ≤
( m∑
j=1

‖aj‖
)
‖x − y‖.

The upper bound in (4.1) thus follows by letting C1 =
∑m

j=1 ‖aj‖.
To prove the lower bound, we observe that∣∣∣|〈aj ,x〉 + bj |2 − |〈aj ,y〉 + bj |2

∣∣∣
=

∣∣∣|〈aj ,x〉 + bj | − |〈aj ,y〉 + bj |
∣∣∣(|〈aj ,x〉 + bj | + |〈aj ,y〉 + bj |)

≤ L(1 + ‖x‖ + ‖y‖)
∣∣∣|〈aj ,x〉 + bj | − |〈aj ,y〉 + bj |

∣∣∣,
where L > 0 is a constant depending only on (A, b). Hence
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∥∥M2
A,b(x) − M2

A,b(y)
∥∥ ≤ L(1 + ‖x‖ + ‖y‖) ‖MA,b(x) − MA,b(y)‖ .

It now follows from the lower bound ‖M2
A,b(x) − M2

A,b(y)‖ ≥ c2‖x − y‖ and setting 
c2 = c1/L that

‖MA,b(x) − MA,b(y)‖ ≥ c1
1 + ‖x‖ + ‖y‖ ‖x − y‖.

The theorem is proved. �
Proposition 4.1. Neither MA,b nor M2

A,b is bi-Lipschitz on Hd.

Proof. The map M2
A,b(x) is not bi-Lipschitz follows from the simple observation that 

it is quadratic in x (more precisely, in �(x) and �(x)). No quadratic function can be 
bi-Lipschitz on the whole Euclidean space.

To see MA,b(x) is not bi-Lipschitz, we fix a nonzero x0 ∈ H
d. Take x = rx0 and 

y = −rx0, where r > 0. Note that

‖MA,b(x) − MA,b(y)‖ =
( m∑
j=1

(|r〈aj ,x0〉 + bj | − |r〈aj ,x0〉 − bj |)2
)1/2

and

‖x − y‖ = 2r‖x0‖.

Then

‖MA,b(x) − MA,b(y)‖
‖x − y‖ = 1

2‖x0‖
( m∑
j=1

(|〈aj ,x0〉 + bj/r| − |〈aj ,x0〉 − bj/r|)2
)1/2

.

(4.7)

A simple observation is that the right side of (4.7) tending to 0 as r → ∞. Hence for any 
δ > 0, we can choose r large enough so that

‖MA,b(x) − MA,b(y)‖
‖x − y‖ ≤ δ.

Thus MA,b(x) is not bi-Lipschitz. �
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