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a b s t r a c t

Sinusoid signals with multiple frequencies appear in various systems and their frequencies may carry
some important features. Frequency estimation from their discrete samples is one of the fundamental
problems and many frequency estimators have been proposed for uniform sampling setting. In this
paper, frequency estimators based on adaptive notch filtering are proposed for nonuniform sampling
setting. We observe that some dynamic systems associated with adaptive notch filters can be solved in
nonuniformly sampled time steps with high accuracy. This leads us to propose a digital adaptive notch
filtering method to estimate frequency of a sinusoidal signal with single frequency from its nonuniform
samples. The proposed method exhibits convergent and robust frequency estimation in the presence of
random sampling noises, and its variance is comparable to the Cramer–Rao lower bound in the presence
of additive white noise. The above method designed for single frequency estimation could track abrupt
single frequency change of an input signal, but it is not applicable directly for multiple frequency esti-
mation. Our simulations show that the proposed estimators have robust performance for sinusoidal
signals with multiple distinct frequencies, and they can be used to separate two very close frequencies of
an input signal in a highly noisy sampling environment.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Consider a mixture of sinusoidal signals, whose kth component
has amplitude Ak, frequency θk and phase ϕ ≤ ≤k K, 1k ,

∑ θ ϕ( ) = ( + )
( )=

y t A tsin .
1.1k

K

k k k
1

Such sinusoidal signals are encountered in active noise and vi-
bration control, wireless communications, audio, radar and sonar
signal processing [1–4]. In telecommunication systems, the fre-
quencies θ ≤ ≤k K, 1k , contain carrier's phase information neces-
sary for synchronization of demodulators or other components of
a receiver system.

The estimation problem of frequencies θ ≤ ≤k K, 1k , of the
signal y is a fundamental problem in systems theory with many
applications. It has been intensively studied in signal processing,
instrumentation and measurements, and control theory. Many
frequency estimators have been proposed, including adaptive
notch filtering, time frequency representation, phase locked loop,
eigensubspace tracking, extended Kalman filtering, internal model
,
.edu (Q. Sun),
method, etc., see [5–8] and references therein.
Most of existing estimators are derived for uniformly sampled

data ( Δ ) ≥y n T n, 0, with uniform sampling frequency ΔT1/ , and
often only for a single frequency, i.e., K¼1. In this paper, we con-
sider multiple frequency estimation problem of the signal y from
its nonuniform samples,

= ( ) + ≥ ( )z y T w n, 0, 1.2n n n

corrupted by additive noises wn, where ≥T n, 0n , are sampling
times.

Nonuniform sampling arises in many applications, such as
computer graphics, frequency scanning interferometry, magnetic
resonance imaging, computer tomography scans and Radon ima-
ging [9–14]. Uniform sampling is well studied and it has been
widely used in engineering applications. However in some appli-
cations, nonuniform sampling is necessary and it has better per-
formance. For instance, in antialiasing in computer graphics [15],
better results can be obtained with random sampling instead of
uniform sampling. The sampling operation could be costly, and a
low number of samples (but not necessarily uniform) is more
desirable. For instance, in frequency scanning interferometry, the
sampling effort is measured by the acquisition time at a given
point, and the optimal sampling scheme is usually nonuniform
[16]. Nonuniformly sampled data are harder to analyze and the
related methods, even for a “simple” task of obtaining the discrete
nonuniform Fourier transform, are much more difficult and often
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iterative [9,17]. Several statistical frequency estimators (based on
maximum likelihood estimation and filter banks) from non-
uniformly sampled data have been proposed in the literature
[11,18–23]. For nonuniform sampling problems in signal proces-
sing, the reader may refer to [24–26].

In many applications of signal processing, it is desirable to
eliminate or extract sine waves from observed data or to estimate
their unknown frequencies. Since the frequencies often vary with
time, it is useful to apply adaptive notch filters (ANFs) that adapt
their notch frequencies as a function of the observed time series,
see [27,28] and references therein. The ANF method is one of the
most suitable techniques to separate sinusoidal components of
unknown frequencies buried in noise, and/or retrieve such peri-
odic components [29–35]. It is robust in the presence of sampling
noise and it is capable of changing the notch frequency accord-
ingly. Various architectures have been proposed for the construc-
tion of adaptive notch filters, see for instance [1,36–41].

Frequency estimation problem using ANF is modeled as a
nonlinear system identification of a dynamic system either in
continuous time (CT) (e.g. [1]) or in discrete time (DT) (e.g. [29]).
The CT model systems are native to the physical world, they have a
built-in capability to cope with the nonuniformly sampled signal,
and they offer certain advantages over purely DT model systems
[45,46]. Compared to the DT model, direct estimation of CT models
is usually stable, accurate and free from undesirable sensitivity
problems, particularly at high sampling rates. The frequency esti-
mator developed in this paper is based on ANFs, which are gov-
erned by some CT dynamic systems [29–35,42–44]. We mainly
focus on a particular ANF governed by the following dynamic
system:

ξθ θ θ
θ γ θ ξθ

=
= − − +

= − ( − ) ( )

⎧
⎨⎪

⎩⎪

Dx x

Dx x x y

D y x x

2

2 , 1.3

1 2

2 2
2

1
2

2
2 1

where D represents the derivative with respect to time t, θx x, ,1 2

are states of the system, y is the excitation sinusoidal input with
single frequency θ0 (i.e., K¼1 in (1.1)), ξ is the notch depth, and γ is
the adaptation speed. The above system of nonlinear ordinary
differential equations (ODE) has good noise rejection capability. It
was proposed by Regalia in [1] as a DT filter, it was later adapted
by Bodson and Douglas [42] for a CT system, and finally a modified
version was proposed by Hsu et al. [29]. We have chosen this
dynamic system due to its superior performance compared to the
other systems that can be used with a similar discretization pro-
cedure, see Section 2.5 for performance comparison.

The main difficulty in handling CT dynamic systems directly is
the problem of evaluating derivatives of the input signal (with
unknown parameters) from its nonuniform samples numerically,
the numerical differentiation process in a highly noisy environ-
ment is usually unstable and impractical [47–49]. In this paper, we
propose a Taylor-like approximation of the dynamic system (1.3)
that is robust to noise and achieves high accuracy. Based on the
above approximation, we introduce an ANF method (2.13) to es-
timate the frequency of a sinusoidal signal from its nonuniform
samples. The proposed discrete ANF method reconciles the merits
of CT models while restricting itself to operate directly on the DT
data.

This paper is organized as follows. Section 2 discusses a Taylor-
like approximation technique to solve the system (1.3) and a fre-
quency estimation of the unknown input signal with single fre-
quency. We propose the frequency estimator (2.13), perform the
local stability analysis, and study its convergence, noise char-
acteristics, statistical properties, and comparison to the conven-
tional ODE solver for the dynamic systems associated with the ANF
methods. We also perform a comparison of our method with a
state of the art discrete ANF [40]. Section 3 describes extensions of
the single frequency estimator (2.13) to multiple frequency esti-
mations with two configurations, the cascade ANF method and the
prefiltering ANF method. The two proposed multiple frequency
estimators have robust performance for sinusoidal signals with
multiple distinct frequencies or related harmonic frequencies.
Most of the known frequency estimators have poor performance
when input signal has two very close frequencies in a highly noisy
environment, a pathological case where the estimation error is
related to both the difference in the frequency and the noise level,
see [50] and references therein. Our simulation indicates that the
cascade ANF method has sound performance even in the separa-
tion of very close frequencies of the input signal in a highly noisy
sampling environment. We close the paper with concluding re-
marks in Section 4.

Notation: We use Euler notation for expressing derivatives, Dn

instead of Dn
t to denote the nth derivative with respect to time t.
2. Single frequency estimation

Consider a sinusoidal input,

θ ϕ( ) = ( + ) ( )y t A tsin , 2.10

where θ ϕA, ,0 are its amplitude, frequency, and phase respectively.
In the first subsection, we propose a discrete ANF method to es-
timate frequency θ0 of the sinusoid signal y from its nonuniform
samples,

= ( ) + ≥ ( )z y T w n, 0, 2.2n n n

corrupted by additive noise wn at sampling times ≥T n, 0n . Then in
the next four subsections, we discuss local stability, convergence,
approximation error, statistical characterization, and extensions of
the proposed ANF method. We also compare the performance of
our approach (2.13) with some of the existing ANF methods for
estimating frequency in Section 2.2 and 2.5.

2.1. The proposed method

The dynamical system (1.3) converges to its unique periodic
orbit,

θ θ ϕ
ξ

θ θ ϕ
ξ

θ= − ( + ) ( + )
( )

⎡⎣ ⎤⎦ ⎡
⎣⎢

⎤
⎦⎥x x

A t A t
, ,

cos
2

,
sin

2
, ,

2.3
T

T

1 2
0 0 0

0

when the adaption speed γ satisfies

γ ξ< < ( )A0 4 / 2.42

[29] . The dynamical system (1.3) can be rewritten as follows:

= ( ) ( )D tX F X, , 2.5

where θ= [ ]x xX , , T
1 2 is the state of the system, and

ξθ θ θ γ ξθ θ( ) = − − + ( − )⎡⎣ ⎤⎦t x x x y x y xF X, , 2 , 2 T
2 2

2
1

2
2

2
1

is a real analytic function of t and X . Therefore ( )tX is real analytic
by the Cauchy–Kovalevskaya theorem [51, Theorem 2 of Chap-
ter 4], and it has the following Taylor expansion:

∫ ( )∑( ) = ( )
!

+ ( ( ))
−

! ( )=

t
D T

k
t D s s

t s

m
dsX

X
F X,

2.6k

m k
n k

T

t
m

m

0 n

for all ≤ ≤ +T t Tn n 1 and ≥m 0.
For an input signal of sinusoidal type, we observe that the state

vector ( )tX of the dynamical system (1.3) can be approximated by
Taylor polynomials ∑ ( )( − ) != D T t T kX /k

m k
n n

k
0 of low order ≤m 4,
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( )∑( ) ≈ ( )
!

− ≕ ( ) ≤ ≤
( )=

+t
D T

k
t T t T t TX

X
X , ,

2.7k

m k
n

n
k

m n n n
0

, 1

when the maximal sampling gap ( − )+T Tmaxn n n1 is small, which in
turn depends on the signal frequencies. The problem how to
choose the maximal sampling gap and the choice of model order
m is discussed further in Section 2.3, cf. (2.23), where it is shown
to be dependent on the signal frequency θ.

For expressing Taylor polynomial approximation ( ) ≤t mX , 4m n, ,
explicitly, we introduce few auxiliary variables θ=x3

2, =x x y4 3 ,
ξθ=x x25 2 and =x x x6 1 3. Consider the derivatives of order up to 4:

1st order derivatives,

θ γ
θ θ

ξ θ θ

=
= − −

= − ( − )
=
= +
= ( + )
= + ( )

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

Dx x
Dx x x x
D x x x

Dx D
Dx x Dy yDx

Dx Dx x D
Dx x Dx x Dx

2

2
. 2.8

1 2

2 4 5 6

4 5 1

3

4 3 3

5 2 2

6 1 3 3 1

2nd order derivatives,

{ }( )
θ γ

θ θ θ

ξ θ θ θ

=
= − −

= − {( − ) + ( − )}

= +

= − + +

= ( + + )
= + + ( )

⎧

⎨
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⎩

⎪⎪⎪⎪⎪

D x Dx

D x Dx Dx Dx

D x x Dx x Dx Dx

D x D D

D x x y DyDx yD x

D x D x Dx D x D

D x x D x Dx Dx x D x

2

2

2 2

2 . 2.9
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2
2 4 5 6

2
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2
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2
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2
6 1
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3rd order derivatives,

θ γ

θ θ θ θ

θ θ θ

ξ θ θ θ θ

=
= − −

= − {( − ) + ( − )

+ ( − )}
= { + }

= − ( + ) − +

+
= ( + + + )
= + + + ( )

⎧

⎨
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⎩

⎪⎪⎪⎪⎪⎪⎪

D x D x

D x D x D x D x
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4th order derivatives,

θ γ

=
= − −

= − {( − ) + ( − )

+ ( − ) + ( − )} ( )

⎧

⎨
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In the above computation of derivatives of high orders, we
require knowledge of derivatives of the excitation sinusoidal signal
y with unknown frequency θ0. As the dynamical system (1.3)
converges to its unique periodic orbit (2.3), we may replace the
true frequency θ0 by the third state θ, and the digital differentiator
Dy of the sinusoidal signal y, with the product ξθ− x2 1. This leads to
the following approximation of Dy D y D y, , ,2 3 and D y4 :
θ θ ϕ ξθ

θ θ

θ θ

θ θ

= ( + ) ≈ −

= − ≈ −

= − ≈ −

= ≈ ( )

⎧

⎨
⎪⎪

⎩
⎪⎪

Dy A t x

D y y y

D y Dy Dy

D y y y

cos 2

. 2.12

0 0 1

2
0
2 2

3
0
2 2

4
0
4 4

Inspired by (2.3), (2.7) and (2.12), we propose the following
discretized adaptive notch filtering of order m to solve our fre-
quency estimation problem:

( )∑( ) = ( )
!

Δ ≥
( )

+
=

T
D T

k
T nX

X
, 0,

2.13
n

k

m k
n

n
k

1
0

where ≤ ≤m2 4, the derivatives of θ= [ ]x xX , , T
1 2 are given in

(2.8)–(2.11), and the ones for y are provided by (2.12). The problem
of how to select the approximation order ≤ ≤m2 4 of the pro-
posed discretization procedure will be discussed in Section 2.3.

2.2. Local stability analysis and convergence

In this section, we discuss the local stability of the proposed
dynamic system, demonstrate convergence of the proposed
method (2.13) in general sampling setting, and compare its per-
formance to frequency estimation using the conventional Runge–
Kutta method under uniform sampling setting [54].

To study the local stability of the discrete system (2.13), we
introduce the following continuous autonomous 4th order system:

ξθ θ θ
θ γ θ ξθ

ξθ

=
= − − +

= − ( − )
= − ( )

⎧

⎨
⎪⎪

⎩
⎪⎪

Dx x

Dx x x y

D y x x

Dy x

2

2
2 , 2.14

1 2

2 2
2

1
2

2
2 1

1

where θ= [ ]X x x y, , ,1 2 is the state vector of the system. The pro-
posed system (2.14) is highly nonlinear and there is no explicit
solution. Now we consider the behavior of the above system at one
of the equilibrium points, provided that the system converges in
the periodic orbit defined in (2.3). The linearized system near the
equilibrium point Xn is given by

= ( )DX JX, 2.15

where θ ξ= −z y x1 2 , θ ξ= −z y x22 2 , and

θ θξ θ θ
γθ γθ ξ γ γθ

θξ ξ

=
− − −

− − −
− − ( )⁎

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

J
z x

z x x z x

x

0 1 0 0
2 2 2

2 2
2 0 2 0

.

2.16X

2
2 2 1

2

2 1 1 1
2

1

1

By Poincare–Lyapunov Theorem [53], the linearized system (2.15)
at the equilibrium point Xn is stable if and only if all eigenvalues of
J have nonpositive real part. For the pure excitation input sinu-
soidal signal θ= ( )y A tsin 0 (i.e., ϕ = 0 in (2.1)), the equilibrium
points of the continuous system (2.14) are

θ
ξ

θ θ
ξ

θ θ= − ( ) ( ) ( )
( )

⎡
⎣⎢

⎤
⎦⎥X

A t A t
A t

cos
2

,
sin
2

, , sin .
2.17

0
0 0 0

0 0

Direct computation shows that the eigenvalues of the linearized
matrix J at X0 with A¼1 and t¼1 are

λ θ λ θ λ θ Δ γ θ ξ
ξ

= − = = ( + ( ) − )
i i, ,

2 sin 2 16
16

,1 0 2 0 3
0 0

2

and

λ θ Δ γ θ ξ
ξ

= ( − + ( ) − )2 sin 2 16
16

,4
0 0

2
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where Δ γ γ θ ξ γξ θ γξ θ= ( − ( ) + − ( ) − ( ))2 cos 4 128 64 cos 32 sin 22 2 0 4 2 0 2 0 . The first
two eigenvalues λ λ,1 2 are purely imaginary. Therefore, for the local
stability of the continuous system (2.14) at the equilibrium point
X0 in (2.17), we require that the third and fourth eigenvalues
(depending on γ ξ, and θ at the equilibrium point Xn) have nega-
tive real parts.

Observe that λ3 and λ4 form the conjugate roots of a quadratic
equation, where Δ is the discriminant. Thus, we can determine
how to adjust the parameters γ and ξ for the local stability.

� For the case when Δ < 0, the two eigenvalues λ λ,3 4 occur as a
complex conjugate pair and the stability will only depend on
their real parts. This implies that the system (2.14) has local
stability near the equilibrium point if,

γ ξ
θ θ

<
( )

4
sin cos 2.18

2

0 0

� When Δ = 0 the two eigenvalues are real and λ λ=3 4, the sta-
bility will still depend on the same condition (2.18).

� For the case when Δ > 0, eigenvalues λ λ,3 4 are real and distinct.
For the local stability of the system (2.14), we require that
λ λ+ < 03 4 and λ λ > 03 4 , which are equivalent to the following:

γ ξ
θ θ

γθ θ
ξ

< >4
sin cos

and
cos
2

0.
2

0 0

0
2 2

0

The last condition is satisfied simply by choosing γ ξ >, 0, and
these parameters are by definition positive. Hence in all cases the
local stability depends only on satisfying the stability condition
(2.18), cf. the similar stability condition (2.4) in [29].

To study the local stability of the system (2.14) using experi-
ments, we choose the adaption alertness parameters γ and noise
sensitivity parameter ξ as in (2.4). For ξ = 0.1 and γ = 0.001, nu-
merical simulation indicates that the third and fourth eigenvalues
λ3 and λ4 remain strictly negative and negatively increasing about
the θ π= f20 0, where ∈ [ ]f 30, 300 Hz0 , see Fig. 1. For different va-
lues of parameters ξ and γ, one may find the range of frequencies
so that the third and fourth eigenvalues have strictly negative real
part, and hence the nonlinear dynamic system (2.14) is locally
asymptotically stable. Thus with the use of both qualitative and
quantitative techniques we have established the local stability of
the proposed dynamic system. There are still mathematical diffi-
culties to study stability for the proposed dynamic system (2.14) in
the discrete setting using only the nonuniform sampling data
Fig. 1. Eigenvalue plot of the Jacobian system, ξ = 0.1, γ = 0.001 in a frequency
range, θ π= f20 0 where ∈ [ ]f 30, 300 Hz0 in steps of 3 Hz. The eigenvalues λ λ,3 4
remain strictly <0 making the actual nonlinear system linearized locally at a point
in the periodic orbit to be locally asymtotically stable.
(2.13). Our numerical results show that all trajectories starting
close to the periodic orbit region will stay near the region when
the approximation order is chosen appropriately and nonuniform
sampling is taken with small sampling gap (depending on the
signal frequency).

The ANF technique governed by the dynamic system (1.3) is a
globally convergent estimator with very high noise immunity [29].
The discretized version (2.13) is based on the observation that the
evaluation of derivatives of the input excitation sinusoidal signal
could be circumvented by using the interrelationship among the
states of the dynamic system, see (2.12). The system (2.13) con-
verges according to our analysis and simulations.

The discrete system (2.13) could be implemented for both
nonuniformly or uniformly sampled data without any significant
changes to its implementation. The simplest models for nonuni-
form sampling schemes are the jittered nonuniform sampling [22],

τ= Δ + ( )T n T , 2.19n n

and the additive nonuniform sampling,

τ= + ( )+T T , 2.20n n n1

where ΔT is the uniform sampling rate and τn is a family of
identically distributed independent random variables with mean
ΔT and small τmaxn n [24–26]. Presented in Fig. 2 is the snapshot of
the sinusoid signal y in (2.1) and its heavily infected samples zn in
(2.2) between 20 and 40 ms via the sampling scheme (2.20). Fig. 3
(a) shows the flow of trajectories in the three-dimensional state
space for the system (2.13), where the frequency of a sinusoid
signal could be recovered from the system as one of its states, θ.
Shown in Fig. 3 is a Poincare section [52] of the system (2.13),
where the flow of trajectories of the system (1.3) passes through
the section =x 02 . The attractor plotted in red reveals the periodic
flow of trajectories near the true frequency of the input excitation
signal in a very noisy environment, cf. the unique periodic orbit in
(2.3), provided that the initial

θ( ) = [ ( ) ( ) ( )] ( )T y T Dy T TX , , 2.21T
0 0 0 0

in (2.13) has relative error between its third state θ ( )T0 and the
true frequency being less than 10%.

The convergence rate of the discrete system (2.13) depends on
the adaptation speed, the true frequency of the sinusoid input, and
the relative error between the initial frequency and the true
Fig. 2. In the simulation, the signal (plotted in green) has amplitude A¼1, fre-
quency θ π≔ ( ) =f / 2 170 Hz0 0 and phase ϕ π= /2, and the samples zn, corrupted by i.i.
d. random noises wn with =SNR 5 dB, are taken on Tn in (2.20) with Δ =T 1 ms and
τ = 0n for uniform sampling (plotted in blue) and i.i.d. random τ ∈ [ ]ΔT.5, 1.5n for
nonuniform sampling (plotted in red). (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)



Fig. 3. Flow trajectories and Poincare section of the discrete system (2.13). In the simulation, the sinusoid input y in (2.1) has amplitude A¼1, frequency θ π= 1200 and phase
ϕ π= /2, the sampling procedure (2.2) is taken uniformly at = ≤ ≤T n n0.001 , 0 1000n , seconds with additive i.i.d. random noise wn at level 5 dB, the notch depth and
adaption speed in (1.3) are given by ξ = 0.15 and γ = 0.001, and the approximation orderm in (2.13) is 4. (For interpretation of the references to color in this figure, the reader
is referred to the web version of this paper.)

Fig. 4. Convergence of frequency estimation θ π( ) ( )T / 2n in the discrete ANF method (2.13) to the true frequencies θ π≔ ( )f / 20 0 . In the simulation, the sampling procedure and
the input signal y are the same as in Fig. 2 except that =f 60 Hz0 (left) and =f 170 Hz0 (right). The notch depth, adaption speed and approximation order in (1.3) are the
same as in Fig. 3.
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frequency of the sinusoid input. The frequency estimation in the
proposed ANF method (2.13) for two different frequencies,

=f 60 Hz1 and =f 170 Hz2 is shown, it is observed to have faster
convergence when the true frequency of the input signal is higher,
see Fig. 4. Our simulations also indicate that the performance of
the algorithm (2.13) degrades gracefully as the SNR of additive
noise decreases, see Fig. 5.

The proposed ANF method (2.13) is designed for a single fre-
quency estimation of a sinusoid input. Due to the fast convergence,
it could be used to track the frequency change of the input signal,

π π( ) = [ ˜ Δ + ] ( )y n f n Tsin 2 /2 2.22

where the frequency f̃ of the input signal (this frequency is not the
true instantaneous frequency but follows a model description for
tracking ANF in [40]) changes abruptly due to various reasons,
such as power surges, mechanical dysfunction or network dis-
ruption. Presented in Fig. 6 is frequency tracking results with
uniform sampling gap Δ =T 1 ms, where the frequency of the input
signal changes abruptly from 72 Hz to 60 Hz in 1/3 second and
from 60 Hz to 80 Hz in the next 1/3 second. It is observed that the
corresponding flow trajectory has three periodic orbits, which are
near the true frequencies 72 Hz, 60 Hz and 80 Hz of the input
signal.

Now, we compare our solution (2.13) of the dynamic system
(1.3) with the direct ODE approximation solution. For uniform
sampling with time step >h 0, the fourth order Runge–Kutta
method [54] to solve the system (2.5) is given by

(( + ) ) = ( ) + + + +
⎛
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⎞
⎠⎟n h nh

h
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6
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The above conventional Runge–Kutta method requires the excita-
tion signal y in the continuous form, which could be obtained from
its samples (2.2) by certain interpolation. The Runge–Kutta
method is not applicable for nonuniform sampling setting, while



Fig. 5. On the left is frequency estimation θ π( ) ( )T / 2n of the proposed ANF method for input signals y with different amplitudes, while on the right is mean frequency error of
the proposed ANF method for 500 independent trials for each noise level. In the simulation, the signal y, the sampling procedure, and the input signal y, the notch depth,
adaption speed and approximation order are the same as in Figs. 2 and 3, except that y has amplitudes =A 1, 2, 4 for the left figure, and y has amplitude A¼2 and SNR of
sampling noises wn varies from 0 to 50 dB for the right figure.

A.A. Syed et al. / Signal Processing 129 (2016) 67–8172
our proposed method (2.13) is designed for a generic nonuniform
input data. Even for uniform sampling setting, simulations show
that the proposed ANF method (2.13) has slightly faster con-
vergence than the Runge–Kutta method does, and it has better
frequency estimation when the input signal has higher frequencies
between the two frequencies shown, see Fig. 7. This demonstrates
the importance of proper discretization of the continuous dynamic
system (1.3), especially when only the noisy nonuniformly sam-
pled data is available.

Finally we compare our technique with the ANF frequency es-
timation and tracking proposed in [40]. As seen from Fig. 8, using
the same signal model as described in (2.22), our method achieves
comparable convergence results in purely uniform sampling set-
tings. However, there are several fundamental differences:

� The design of the ANF in [40] is based on a discrete model of
filter equations with uniform sampling, while our proposed ANF
method works in both uniform and nonuniform sampling
setting.

� The design of the ANF in [40] is based on gradient descent (LMS)
Fig. 6. Frequency tracking of the proposed ANF method (2.13). The sampling procedure (
having SNR¼20 dB, the adaption speed, γ = 0.01, and the notch depth, and the approxi
algorithm of the error function, while our proposed solution is
derived from Lyapunov stability analysis and convergence of
associated differential equation. The later approach is argued as
a superior technique in [1,29].

� The ANF in [40] has only one control parameter, while there are
three parameters, the frequency parameter θ, the response
tuning parameter λ, and the frequency rejection parameter ξ
in our approach. So the ANF in [40] is restricted and it can only
estimate the harmonic frequencies, while our approach works
for nonharmonic frequency estimation also.

� However there is one advantage due to such simplifying as-
sumption. The ANF in [40] converges to the global minimum,
while our proposed solution is proved to have local convergence
only.

2.3. Approximation error

Selection of the approximation order m in the proposed ANF
method (2.13) depends on the sampling rate, the input signal
frequency, the additive noise, and the sampling noise level. In this
2.2) is taken uniformly at = ≤ ≤T n n0.001 , 0 1000n , seconds with additive noise wn

mation order in (1.3) are the same as in Fig. 3.



Fig. 7. Comparison between the proposed ANF method (2.13) with m¼4 and Runge–Kutta method of order 4 on frequency estimation in uniform sampling setting. In this
simulation, the input y, the sampling procedure, the notch depth and adaption speed are the same as in Figs. 2 and 3, except that the digital frequency θ π≔ ( )f / 20 0 of the input
signal is 60 Hz for the left figure and 170 Hz for the right figure.

Fig. 8. The sampling procedure (2.2) is taken uniformly at
= ≤ ≤T n n0.001 , 0 1200n , seconds with additive noise wn having SNR¼18 dB. The

frequency changes abruptly after every 0.4 seconds. The parameters tuned are
γ ξ= =0.005, 0.14 and the ANF is initialize to frequency¼127 Hz. As it is clear that
even in purely uniform settings the proposed method which is based on con-
tinuous dynamic system has similar speed and accuracy of frequency estimation as
the purely discrete model based ANF proposed in [40].
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section, we discuss the problem how to choose the approximation
order m for mid-range frequency estimation, and consider a
combination of the proposed solution with heterodyning techni-
que for high-range frequency estimation. These frequency ranges
are specific to the performance of the proposed ANF algorithm, see
Section 2.4 for the statistical characterization.

By (2.6), the discrete ANF algorithm (2.13) has approximation
error in its discretization being dominated by a multiple of

θ( Δ ) +A Tmaxn n
m

0
1 for the sinusoidal input θ ϕ= ( + )y A tsin 0 with

unknown frequency θ0. Thus, to achieve better accuracy in the
frequency estimation (2.13), one should select the higher approx-
imation order m in the proposed ANF method (2.13).
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for all phases ϕ, we may select the approximation order m in the
algorithm (2.13) as follows:
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So for estimating frequency of a sinusoid input via the algorithm
(2.13) of order m, we need roughly 8 samples per period for m¼2,
6 samples for m¼3, and 4 samples for m¼4, respectively. Our
simulations indicate that for an excitation sinusoidal input with its
frequency θ π( )/ 2 Hz0 larger than 1/8 of sampling rate ΔT1/maxn n, it
is more reasonable to choose high order approximation in the
algorithm (2.13) for its convergence and robustness. For sinusoid
input y with low frequency (i.e., θ ΔTmaxn n0 is not large), a low
order approximation in the algorithm (2.13) can be used, while at
high frequencies (i.e., θ ΔTmaxn n0 is large), we observe that θ( )D y3 2

of the rescaled input θ y2 used in (1.3) could be dominated by the
noise, see Fig. 9. From our simulations, we may conclude that the
discrete ANF method (2.13) is effective to estimate mid-range
frequencies of the input signal which in turn depends on the
sampling rate, additive noise and the sampling noise.

When the input signal has high frequency, we can increase the
sampling frequency ΔT1/ and that allows us to estimate higher
frequency with rapidly sampled data. However when the sampling
frequency cannot be increased, we propose to combine the dis-
crete ANF method (2.13) with the heterodyning technique [55].
Take the input excitation signal θ ϕ( ) = ( + )y t A tsin 0 with un-
known high frequency θ0, and a modulator frequency θc with
θ θ− c0 in the effective range of our technique (2.13). Applying sine
and cosine modulators with frequency θc to the signal y gives



Fig. 9. Frequency estimation of sinusoidal inputs θ π= ( + )y tsin /20 with fre-
quencies θ π( )/ 2 Hz0 via the algorithm (2.13) with m¼2 (squared magenta), m¼3
(circled green), m¼4 (diamond shaped blue) respectively. In the simulation, ad-
ditive jittered sampling is same as shown in Fig. 2. additive noise has SNR¼5 dB,
and the adaption speed γ and notch depth ξ are 0.001 and 0.15 respectively. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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To eliminate high-frequency component, θ θ+ c0 , of the modulated
signals y1 and y2, we apply low pass filter such that only the low
frequency component θ θ−c 0 passes through, which generates
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and use ỹ1 to replace y as the input sinusoid signal of our algorithm
(2.13), see Fig. 10 for block diagram of the combination of het-
erodyning and the discrete ANF method.

In the above heterodyning ANF method for high-frequency
estimation, we again need some a priori information on frequency
θ0 of the input signal so that we can select a proper modulator
frequency θc and construct band pass filter blocks to eliminate
high-frequency components of modulated signals. This restricts
the application of the heterodyning ANF method to the uniform
sampling setting only. On the other hand, our signal re-
normalization procedure (2.24) makes our heterodyning ANF
method almost independent of amplitude of the input signal,
which increases the robustness of our procedure. We did simula-
tions with a number of different frequencies in the range 200–
450 Hz and obtained similar estimation results, see Fig. 11.

2.4. Statistical characterization

In this subsection, we compare variance of frequency estima-
tion in the discrete ANF method (2.13) with the Cramer–Rao lower
bound (CRLB) for the jittered sampling model (2.19). The statistical
property will be useful to determine the range of effective fre-
quencies for the proposed ANF, and also the range of frequencies
in which the performance of the proposed ANF degrades.

For the additive white Gaussian noise (AWGN) wn in (1.2) with

variance s2, the corresponding CRLB θ( ^)var for any unbiased fre-

quency estimator θ̂ depends on the frequency θ0 of the excitation
sinusoidal input, and it decreases when more sampling data are
available [56,57]. In fact,
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Fig. 11. Heterodyning ANF method for high-frequency estimation. In the simulation, the sinusoid input y, the sampling procedure, the notch depth and adaption speed are
the same as in Fig. 3 except that the frequency θ π= ( )f / 20 0 of y is 450 Hz, modulator frequency =f 490 Hzc , and frequency initialization for ANF is 55 Hz. Presented on the
right is a lowpass filter using the generic inbuilt MATLAB function fdesign.lowpass with specifications, =F 50 Hzp (passband), =F 75 Hzst (stopband), Ap¼1, =A 90st
(attenuation in dB) with specifications =F 50 Hzp (passband), =F 75 Hzst (stopband), =A 1 dBp and =A 90 dBst .

Fig. 12. For jittered sampling ( + ) ≤ ≤n r n/1000, 0 1000n , seconds of sinusoidal
inputs θ π( ) = ( + )y t tsin /20 with frequencies θ π( )/ 2 Hz0 , CRLB is about

( )σ =− −A a N6 / 0.62 2 1 , where ∈ [ − ]r 1/8, 1/8n are randomly selected and the signal-
noise ratio ( )σ≔ ASNR 10 log /10

2 is 20.

A.A. Syed et al. / Signal Processing 129 (2016) 67–81 75
From the above estimate (2.25), we see that the CRLB θ( ^)var may
grow without bounds when θTN 0 is sufficiently small, cf. Fig. 9, and
it is proportional to the signal-noise-ratio σ A/2 2.

For the uniform sampling between 0 and a seconds (i.e.,
=T na N/n seconds for ≤ ≤ −n N0 1) and the sinusoidal input with

positive frequency θ0, the CRLB θ( ^)var is asymptotically proposi-
tional to reciprocal of the sampling number N,
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where ρ θ= a20 0. Thus for the uniform sampling between 0 and a
seconds and the sinusoidal input with large frequency θ0, the CRLB

θ( ^)var is about σ( ) − −A a N6 / 2 2 1, see Fig. 12.
For a nonuniform sampling between 0 and a seconds with
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as → ∞N . Hence the asymptotic estimate (2.25) for the CRLB

bound θ( ^)var holds for the above nonuniform setting, including
the jittered nonuniform sampling in (2.19) and the additive non-
uniform sampling in (2.20).

Due to discretization, the frequency estimate obtained by our
proposed method (2.13) is biased, but the systematic error is less
than 1% Hz when the input sinusoid has around mid-range fre-
quencies from our simulations, cf. Fig. 5. The variance of frequency
estimate is also comparable to the CRLB when the input sinusoid
has mid-range frequency, see Fig. 13.

2.5. Extension

In this subsection, we extend the proposed discretization
technique in Section 2.1 to continuous dynamic systems for fre-
quency estimation with high accuracy. We apply the extended
discretization technique to adaptive notch filtering developed by
Mojiri, Xia, Morino, Hou and their collaborators [30–35], and
compare their performance on frequency estimation of a sinusoi-
dal input.

Consider a dynamic system



Fig. 13. Listed on the left is the mean value error between the estimated frequency θ π( )/ 2 Hz in the algorithm (2.13) with m¼4 and the true frequency θ π( )/ 2 Hz0 of the
sinusoid input, while on the right is the common logarithm between the variance of the estimated frequency in the algorithm (2.13) and the Cramer–Rao lower bound. In the
algorithm (2.13), the jittered sampling set, SNR of the additive noise, the adaption speed and the notch depth are the same as in Fig. 9.

Fig. 14. Block diagram for discretization a dynamic system for frequency estimation.
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= ( ) ( )D t yX F X, , , 2.27

where = [ … ] ∈ x x xX , , , n
T n

1 2 and × × ⟼   F: n n is a real
analytic function. By the Cauchy–Kovalevskaya theorem [51], the
solution ( )tX of the dynamic system (2.27) is analytic and it can
been approximated by Taylor polynomials of order ≥m 0,
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when maximal sampling gap ( − )+T Tmaxn n n1 is small relative to
the changing or stationary signal frequency. In the case that de-
rivatives ≤ ≤D y k m, 1k , of the input signal y are well approxi-
mated at sampling times ≥T n, 0n , we can discretize the dynamic
system (2.27) as we did in (2.13) for the system (1.3), see Fig. 14 for
the block diagram.

There are several variations for the ANF system (1.3). Mojiri and
his collaborators decoupled the notch depth ξ and adaption speed
γ in (1.3) [32,34,35], and introduced the following dynamic sys-
tem:
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which has a unique periodic orbit,

θ θ ϕ θ θ ϕ θ[ ] = [ − ( + ) ( + ) ]x x A t A t, , cos , sin ,T T
1 2 0 0 0 0

for the sinusoidal input θ ϕ= ( + )y A tsin 0 . An additional constraint
for stability is ξ > 1, hence the notch depth cannot be made very
narrow to reject other frequencies unlike the system (1.3).

In [31], Xia observed the similarity between adaptive notch
filters and adaptive identifiers, and then he introduced a frequency
estimator of fourth order,

γ
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where γ >b k k, , , 01 2 . The above dynamic system has globally ex-
ponential convergence and its fourth state x4 converges to squared
frequency θ02 of the sinusoidal input θ ϕ= ( + )y A tsin 0 . Similar
frequency estimator of fourth order was introduced by Marino and
Tomei [30] independently,



Fig. 15. In this simulation, the input y in (2.1) has amplitude A¼1, frequency
θ π= 1200 and phase ϕ π= /3, the sampling procedure (2.2) is taken uniformly at

= ≤ ≤T n n0.001 , 0 1000n , seconds without additive noise wn, the approximation
orderm in (2.13) is 4 and initial frequency is about 66 Hz or with 10% error. Also we
set ξ = 0.15 and γ = 0.001 in (1.3) and (2.29), γ= = = =b k k0.3, 0.5, 0.61 2 in (2.30)
and λ γ= = =k0.4, 0.5, 0.61 in (2.31).
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where λ γ >, 0 and λ> ( )k 1/ 41 .
For the above dynamic systems (2.29)–(2.31) we may apply

similar technique used in (2.12) to approximate ≤ ≤D y k m, 1k , of
the input signal y at sampling times ≥T n, 0n or for the uniform
sampling we can use Runge–Kutta method directly also. This leads
to discretization of those dynamic systems, which is similar to the
one (2.13) based on the system (1.3). Our simulations show that
the solution of those dynamic systems (2.29)–(2.31) provides the
frequency estimate of a sinusoid input y, but comparing with the
proposed method based on the dynamic system (1.3), they have
slower convergence, see Fig. 15.
Fig. 16. Frequency retrieval via discrete ANF method (2.13). In the simulation, the sampl
two initial frequencies selected are =f 56 Hzc1 and =f 125 Hzc2 , and the input signal =y

=f 60 Hz1 and =f 120 Hz2 , and amplitudes =A 11 , =A 22 (left) and =A 1/22 (right). In t
figure and 60 Hz for the right figure respectively.
3. Multiple frequency estimation

In this section, we introduce two modifications of the discrete
ANF technique (2.13) and discuss their performance for multiple
frequency estimation of a signal in (1.1) from its noisy nonuniform
samples (1.2). We remark that once all frequencies of the signal are
retrieved, its amplitudes and phases could be evaluated by finding
least squares estimates [59] or directly using the states of some
dynamic system by (2.3).

For multiple frequency estimation, adaptive dynamic systems
that try to estimate all frequencies at the same time have been
proposed but their formulations are very complicated for in-
creasing number of frequencies [44]. As an ideal notch filter has
unit gain at all frequencies except at notch frequency where its
gain is zero, we may use simple configurations of ANFs tracking
only one frequency per channel. Such a configuration could be
implemented by applying the discretized ANF technique (2.13)
with different initial frequencies, and then approximating the in-
put signal from its noisy samples. If the initial frequencies can be
chosen in around the true frequencies, the algorithm (2.13) may
lead to accurate approximation of true frequencies of the input
signals, but it might only track the dominant frequency (higher
amplitude) or the lower frequency of the input signal (since we
have higher accuracy estimation for components with lower fre-
quency) effectively, and hence the other frequencies could not be
retrieved, see Fig. 16.

The above observation on the frequency retrieval inspires us to
introduce the following cascade ANF method:

� First find a notch frequency θ1 (mostly the dominant one or the
lower frequency) of the input signal by applying the discretized
ANF method (2.13) or its combination with heterodyning.

� Then extract the sinusoid θ ϕ= ( + )y A tsin1 1 1 1 with that fre-
quency θ1 from the signal y. The sinusoid ξ θ≈y x2 /1 1 1 by (2.3),
where x1 is the first state of the system (2.13).

� Next, remove that sinusoid from the signal and pass the new
signal − ^y y1 to the next stage.

� Finally, repeat the above procedure until the residual error is
below certain threshold, or all sinusoids in the input signal are
extracted.

The block diagram of the above cascade procedure is presented in
Fig. 17, cf. [3] for similar configuration in audio signal processing.
ing procedure, the notch depth and adaption speed are the same as in Figs. 2 and 3,
π ϕ π ϕ( + ) + ( + )A f t A f tsin 2 sin 21 1 1 2 2 2 has phases ϕ π= /21 and ϕ π= /72 , frequencies

his simulation, the dominant frequencies of the input signals are 120 Hz for the left



Fig. 17. Block diagram of cascade procedure for multiple frequency estimation.
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The cascade procedure is attractive, as applying the discretized
ANF technique (2.13) in each stage may retrieve one of the sinu-
soids, and the remaining stage would have no choice but to seek
other sinusoids [36]. However, the disadvantages with the cascade
procedure include the distortion introduced by the discretized
ANF technique (2.13) at each cascade stage, and the time delay that
is introduced due to processing and retrieval of each sinusoidal
component. This could render online estimation impractical if the
signal y is composed of many frequencies.

To avoid the distortion introduced the discretized ANF techni-
que (2.13) at each cascade stage, we propose an alternative ap-
proach to combine our discrete ANF technique (2.13) with band
pass prefiltering:

� First, apply band pass filters with some a priori chosen central
frequencies, θ θ θ…, , ,c c Kc1 2 , to the samples of the input signal for
initial spectral selection.

� Then, use the discretized ANF technique (2.13) for the filtered
samples to obtain the true frequencies around the band pass
frequencies independently.

The block diagram for parallel implementation of the above
discrete ANF technique with prefiltering is presented in Fig. 18,
cf. adaptive filtering in [58] for multi-frequency estimation.

By introducing narrow bandpass filters to do the initial spectral
selection, we effectively eliminate distortion of the cascade pro-
cedure in each stage, while we still embrace the benefits of the
parallel implementation for fast sinusoid retrieval.

For uniform sampling procedure, we may design narrow
bandpass filters directly (using MATLAB fdesign) or design filter G
from the complementary notch filters H, with their transfer
functions G(z) and H(z) are related by

( ) = − ( )G z H z1 .

For instance, H is a notch filter of second order,
Fig. 18. Block diagram of discrete ANF method with prefiltering.
ω
ω

( ) = − ( ) +
− ( ) + ( )

− −

− −H z
z z

r z r z
1 2 cos

1 2 cos 3.1
0

1 2

0
1 2 2

with notch bandwidth parameter ∈ ( )r 0, 1 and notch frequency
ω0.

The drawback of prefiltering ANF method is that narrow band
prefiltering is not applicable when only nonuniform sampling of
the input signal is available.

The rest of this section is devoted to demonstration of the
cascade ANF procedure and the prefiltering ANF procedure to es-
timate multiple frequencies of the multi-sinusoid signals effec-
tively in various settings.

3.1. Inputs with two well-separated frequencies

Consider an input signal

π ϕ π ϕ= ( + ) + ( + ) ( )y A f t A f tsin 2 sin 2 3.21 1 1 2 2 2

with its two frequencies f1,f2 being far away. Our simulations show
that both prefiltering ANF and cascade ANF provide estimations
close to true frequencies of the input signal y, see Fig. 19 and cf.
Fig. 16.

For uniform sampling setting, prefiltered configuration is a bit
more suitable in terms of both speed and accuracy, but in non-
uniform sampling we can effectively use cascade configuration
especially when there are small number of frequencies for the
input signal.

3.2. Input with two very close frequencies, a pathological case

Consider an input signal y of the form (3.2) with its two fre-
quencies f1 and f2 being close. As those two frequencies cannot be
separated using narrow band pre-filters especially in highly noisy
sampling environment, prefiltering ANF method does not provide
reasonable frequency estimations. So in this subsection, we restrict
ourselves to discuss frequency estimation via the cascade ANF
method in that pathological case.

In order to reject one frequency from the other, we should
select small notch depth ξ in (1.3). Therefore by (2.4), the adaption
speed γ in the dynamic system (1.3) should be small too, which
implies that the discrete dynamic system (2.13) has slow con-
vergence and there are long delay to retrieval of true frequencies.
Our simulations indicate that it is better to select the first initial
frequency in the middle of those two close frequencies if we do
not have much information on the dominant frequency, see Fig. 20
and cf. Fig. 16.

Most of known frequency estimations has poor performance
for the pathological case, see [50] and references therein. What is
unexpected to select slow adaption speed and narrow notch depth
is the robustness of our frequency estimation. We did the simu-
lation for noise with SNR¼40, 30, 20, 10, 0 dB, and in all cases we
get the same consistent and smooth estimates. Possible reasons for
such phenomenon could be that the ANF has excellent noise re-
jection capability especially when we make the adaptation speed
slow and the filter bandwidth narrow. This could make our cas-
cade ANF method more powerful than the one in [7], where it is
required that the signal power must be greater than the noise
power in their methods.

3.3. Input with multiple harmonic frequencies

Consider an input signal

∑ θ ϕ= ( + )
( )=

y A tsin
3.3k

K

k k k
1



Fig. 19. Frequency estimation via prefiltering ANF and cascade ANF methods. In this simulation, the sampling procedure, the notch depth and adaption speed, and two initial
frequencies selected are the same as in Fig. 16, and the signal y in (3.2) has amplitudes =A 11 and =A 22 , phases ϕ π= /21 and ϕ π= /72 , and frequencies =f 60 Hz1 and

=f 120 Hz2 . Plotted on the left is frequency estimation via cascade ANF method (in solid blue line) and prefiltering ANF method (in dashed red line), while plotted on the
right is narrow band pass prefilter around two initial frequencies being used in the prefiltering ANF method. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)

Fig. 20. Frequency retrieval of inputs with two close frequencies via the cascade
ANF method. In this simulation, the input signal y in (3.2) has frequencies

=f 61 Hz1 (dominant frequency for the right figure), =f 65 Hz2 (dominant fre-
quency for the left figure), phases ϕ π ϕ π= =/2, /71 2 , and amplitude = =A A 11 2 ,
the sampling procedure is the same as in Fig. 19 except sampling time interval is
[ ]0, 3 second, the adaption speed γ = 0.00001 (one hundredth of the one in Fig. 19),
and notch depth ξ = 0.015 (one tenth of the one in Fig. 19), the first initial fre-
quency is 63 Hz (mean values of f1 and f2), and 67 Hz (about 5% above the non-
dominant frequency f2).
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with harmonic frequencies θ θ= kk 1, ≤ ≤k K2 [59]. For a signal
with harmonic frequencies, it suffices to find its fundamental
frequency θ π( )/ 2 Hz1 , which could be obtained by bandpass fil-
tering of the input signal. We observe that the fundamental fre-
quency can be estimated consistently via a single ANF block in a
highly noisy environment. Presented in Fig. 21, cf. Fig. 6, is the
fundamental frequency estimation of the signal y in (3.3) with
amplitudes = = = = =A A A A A A A A A1, /2, /3, /4, /51 2 1 3 1 4 1 5 1 , pha-
ses ϕ π∈ [ ]0,k randomly selected, and fundamental frequency f0
changing abruptly from 72 Hz to 60 Hz at 1/3 second and from
60 Hz to 80 Hz at 2/3 second, cf. signals with time-varying fun-
damental frequency in power systems [59]. The above observation
makes our solution very suitable for time domain signal analysis
similar to [60] (which is a CT system), but now we can do it with
nonuniformly sampled data in the presence of random sampling
noise and additive noise.
3.4. Input with multiple frequencies

In this subsection, we consider frequency estimation when
input signals (1.1) have multiple frequencies. Due to the distortion
by cascade ANF in each iteration, we propose to apply prefiltering
ANF method for frequency estimation. Presented in Fig. 22 is a
demonstration for our prefiltering ANF frequency estimator, where
the input signal

∑ π ϕ= ( + )
=

y A f tsin 2
k

k k k
1

7

has amplitudes ∈ [ ]A 0.5, 1.5k and phases ϕ π π∈ [ − ] ≤ ≤k, , 1 7k ,
being randomly selected, and the actual frequencies are
( … ) = ( )f f, , 78, 137, 177, 234, 288, 325, 437 Hz1 7 .
4. Conclusions

Multiple frequency estimators from nonuniform sampling data
are proposed in this paper, which reconcile the merits of adaptive
notch filtering in continuous time while restricting to operate di-
rectly on discrete time data. Despite the mathematical difficulties,
some conclusive results on the local stability analysis and con-
vergence of the proposed solution are established. To our best
knowledge, solving the frequency estimation problem directly
from some dynamic systems is not presented in the literature
when only nonuniform sampling data are available. We expect
that this paper will stimulate further interest in this direction.

Local stability analysis, convergence and the stochastic character-
ization of the proposed frequency estimators are established when
the input signal has single frequency. Extensive simulations for var-
ious scenarios demonstrate robustness, accuracy and fast tracking of
the proposed frequency estimators. For multiple frequencies, we have
two proposed methods, the cascade procedure and the prefiltering
process. While the cascade method is good for small number of fre-
quencies in nonuniform setting, the prefiltering method is useful for
faster response in uniform settings. The proposed method is robust
even in the estimation of two close frequencies in high noise.

Further research on parameter tuning, which is an open pro-
blem in control research, especially for particular applications
of the proposed frequency estimators to signal processing and
control, is needed. The reader may refer to [29–35] on robust
parameter tuning for adaptive notch filtering in the continuous
domain.



Fig. 21. Fundamental frequency tracking of an input signal with harmonic frequencies using a single ANF block. In the simulation, the sampling procedure, notch depth,
adaption speed and initial frequency are the same as the ones in Fig. 6(b).

Fig. 22. In the simulation, the sampling procedure, the notch depth and adaption speed are the same as in Fig. 16. Presented on the left is the first four frequency estimation
via the prefiltering ANF method (2.13) with the initial frequencies 70, 130, 180, 240 Hz. On the right is the last three frequency estimation via discrete ANF method with
heterodyning, where we use 270, 330, 450 Hz as center frequencies of bandpass filters.
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