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1. INTRODUCTION

Let M = 2 be afixed positive integer. A family of closed subspacesV;, j € Z, of
L2, the space of all square integrable functions on the real ling, is said to be a
multiresolution of L? if the following conditions hold:

(i) Vi CVjy,and f € Vjifandonly if f(M-) € V., forall j € Z;
(i) U VjisdenseinL?and NV, = ¢&;
jez jez
(iii) there exists a function ¢ in V, such that { (- — k); k € Z} is a Riesz
basis of V.

Here we say that { #(- — k); k € Z} isa Riesz basis of V, if there exist constants
0 < A = B < « such that
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for al square summable sequences { d(k)} and V, is spanned by { (- — K); k €
Z}. When A =B =1, wesaythat { (- — k); k € Z} is an orthonormal basis of
Vo, or simply say that ¢ is orthonormal.

The concept of multiresolution was introduced by Meyer and Mallat (see [4, 7,
22]). The multiresolution above generalizes the one introduced by Meyer and Mallat,
but simplifies the one by Devore et al. [3] for our purpose.

From the definition of a multiresolution, the function ¢ in (iii), which is called
M-band scaling function or scaling function for short, satisfies the refinement equation

d(x) = 3 cp(Mx — k), (1)

kez

where { ¢}, which is called the mask of the above refinement equation, satisfies

> ¢ = M. In this paper, we always assume that ¢ is compactly supported and that
kez

the mask of the refinement equation (1) has finite length.
Let

H@) = o 5 62t (2)

kez

be the symbol of the refinement equation (1), or of the refinable function ¢. Then
H(z) is a Laurent polynomial. By taking Fourier transform at both sides of (1), we
have

(M) = H(e ™ )¢ (£).

Here the Fourier transform f of an integrable function is defined by
(&) = [ etogax,
R

and the Fourier transform for a compactly supported distribution is understood
as usual.

There is considerable literature on the problem under which condition on ¢ in (1)
or under which condition on the mask { ¢} in (1) the family of spaces V; spanned
by { M2¢p(M1-—Kk); k € Z} is a multiresolution of L? (see, for instance, [3] and
references therein). In this paper, we give the following restriction on ¢: There exists
a compactly supported distribution n, which is the solution of another refinement
equation

n(x) = 3 ba(Mx — K)

kez

5(0) =1, (3)
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where the mask { b} has finite length and X~ by, = M, such that n(¢(- — t)) iswell
kez
defined for all t € Rand

fOx) = 3 n(f(- + K)d(x = k) (4)

kez

for every function f in the space spanned by { (- — k)} . Obviously the distribution
n such that (3) and (4) hold is not unique in general. The above restriction on ¢
does not restrict us very much. Examples of n such that (3)-and (4) hold are ¢ when
{¢$(- — k)} is an orthonormal basis of V, [7]; ¢ when ¢ and ¢ are biorthogonal
[6]; 6, the delta distribution, when ¢ is cardinal which means that ¢ is continuous
at integer points and ¢(k) = 0 for k € Z except ¢(0) = 1[21]; and ¢* when ¢* is
the dual of ¢ defined by

TICI
S 10(E + )

$* (&) =

In this paper, we only consider the two useful cases: n = ¢ and n = 6.

A central probleminwavel et analysisisto construct appropriate wavel et bases. Onthe
otherhand,a mostallinterestingandusef ulwavel etbasescanbeconstructedfrommultireso-
lutions,andthescalingfunctionspl ay anessential roleinmultiresol ution. Sothereisconsid-
erableliteraturedevotedtotheconstructionof vari ouskindof scalingfunctionsandtheprop-
ertiesof suchscalingfunctions.ForM =2, thepopul arwavel etsareDaubechies orthonormal
wavel ets; biorthogonal wavel etsby Cohen, Daubechi esand Feauveau; splinewavel etsby
ChuiandWang; etc. ForM = 3, multiresol utionandM-bandwavel etsarewel | studied( seg[ 1,
10-15,17-19,24,25,29] ,etc.) .L et

MIU/N-1+5 o\
SCED N )(23n47) (5)

S+ c+Sv—1=S j=1 S
and

N—-1

Pun(z) = > aun(s)(2 -z - z7")% (6)

s=0

Thenthefollowingexplicitformulatothesymbol of orthonormal scalingfunctionisproved
byHeller[12] andindependentlybytheauthors] 2] .

THEOREM 1. Let H(2) = ((1 — zZ")/M(1 — 2))"Q(z) be the symbol of an ortho-
normal scaling function with compact support and Py «(z) be defined by (6). Then

1

QDQZY = Pun(@ + (1 - N1 -2 5 ZR(ZY),  (7)

s=1
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where Ry(z™*) = zRy_s(2) and

Pun(2) + (1 — 2)N(1 — z7H)N M{ Z*R(z") = 0

s=1

for all z = €*.

It is known that the solution of the refinement equation (1) with symbol H(z)
satisfying (7) is not always an orthonormal scaling function of a multiresolution. But
whenR;=0in(7)for 1 = s= M — 1, it becomestrue. In particul ar, the corresponding
solution, which we denote ¢y, is an orthonormal scaling function and is the one
constructed by Daubechies in [8] when M = 2. So we call ¢y the Daubechies
scaling function even when M = 2.

The first conclusion in this paper is on the asymptotic regularity of ¢y n. The
regularity of refinable function is an important factor in application. The regularity
widely considered are the Sobolev exponent, Holder exponent and Besov exponent
(see[5, 7,9, 16, 20, 22, 26—-28], etc.) The Sobolev exponent s,(f), 0 < p < =, is
defined by

(1) = sfs: [ 11011+ Ielrya < =}

for0 < p < «and

s.(f) = sup{s; f(£)(1 + |£])®is bounded} .
The Holder exponent a(f) is defined by
a(f) =sup{a; f € C},

where C¢ is the usual Hélder class. For compactly supported function f, the Sobolev
exponent and Holder exponent are closed related,

1

1
fy— == f)—
s(f) 0 s(fF) q

for0<p=q=xand
s(f) = a(f) = s.(F).

In this paper, we use the Sobolev exponent s..(f) as the index to the regularity of a
function f. The Sobolev exponent s.(f) was introduced by Cohen and Conze in [5]
and s,(f), 1 < p < o, was introduced by Herve in [16]. For simplicity, we write
S.(dmn) 8 amn-
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When M = 2, Volker proved that

3 |n| P2,N(GZW”3)| |n| P2,N(ezﬂ”3)|

1
N In4 _ESSZ(@’N)SN_ In4
in [28] and
In3
() = (1= [N+ oM

in[27]. The second result was aso proved by Cohen and Conze in [5]. For M = 3,
4, Heller and Wells proved similar estimates to s,(¢u ) [15]. In this paper, we
will prove

THEOREM 2. Let ¢y n and ay y be defined as above. Then there exists a constant
C independent of N such that

InN
-—| =C 8
MmN 4InM| (®)
when M is odd and
—4N In sin ZMMI 5 + InN
_ =C 9
amn 41InM ’ (©)

when M is even.

From our result, we see that the Sobolev exponent of scaling functions ¢y n increases
amost linearly to N when M is even, and increases only at the rate of In N when M
isodd. Such a phenomenon was also observed by Heller and Wells[15] and Villemoes
according to [7, p. 320]. In 1995, Shi and the third author constructed a class of M-
band scaling functions which Sobolev exponent grows proportionally to their symbol
support widths for all M = 3 [23]. This aso gives an affirmative answer to the
remark in [7, p. 338].

The second part of this paper is devoted to the problem n = 6 in (3) and (4). In
this case we see that ¢ is continuous at al integer points and ¢(k) takes value 1
when k = 0 and 0 when k = 0. We call such a function as cardinal function.

In 1994, Lewis noticed the importance of constructing a cardinal scaling function.
An easy way to construct a cardinal function is by self-convolution of an orthonormal
function. Specifically, the function ® defined by

200 = [ d(y = 60

is a cardina function when ¢ is an orthonormal function. The construction of a
cardinal scaling function for M = 3 was considered by Heller [11] and the authors
[2] independently. The following formula is taken from [2].
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Define
[(N-1)/2]
Qun(z) =z M ON2 5 pyn(s)(2—z—2z1)° (10)
s=0
when M is odd,
Quan(z) =z ™%z 5 byn(s)(2-z—27Y)° (11)
O0=s=N/2-1

when M and N are even, and

Qun(2) = Z—(M—l)N/2—1/2< Z bun(s)(2 — z — Z—l)s

O=s=(N-1)/2

1-2
2

2 bun(s)(2-z- Zl)s> (12)

O=s=(N-3)/2

when M is even and N is odd, where

(M=1)/2 _ .\ _2s
bun(s) = Z |_| <N "9 1>(2 sm%) J

Site o tSM-n/2=s j=1 S

when M is odd and
M/2-1 N + -1 . _2s.
b= S ] < 3 ><2 sin%) ’
Sitcctsye=s j=1 S

» <[(N + 1)/2] + Su;2 — 1>4SM/2.
Sv/2

(13)

when M is even. Then we have

THEOREM 3. Let Qun(2) be defined asin (10) —(12). If a compactly supported
continuous solution ¢ of (1) is cardinal, then its symbol H(z) = ((1 — z")/(M —
Mz))"Q(z) satisfies

M-1

Q(2) = Qua() + (1 = )" 3 z°R(Z") (14)

s=1

for some Laurent polynomials Ry(z), 1 =s=M — 1.

The proof of Theorem 3 may be found in [2, 11]. We omit the details here. In the
same way, the solution of the refinement equation (1) with symbol satisfying (14)
is not always cardinal. It is not continuous and not a scaling function of a multiresolu-
tion. But when Ry, = 0in (14) for 1 = s = M — 1, the corresponding solution is a
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cardinal scaling function when N is sufficiently large, which we denote ®,, . Observe
that

2N+s—-1 N—1+Kk\/N—-1+s—k
S k s—k

O=k=s

Therefore @y, oy are the self-convolution of Daubechies scaling functions ¢y, but
Dy onp 1 @€ not the self-convolution of any scaling functions. So the class of cardind
scaling functions @y, includes more cardinal scaling functions. Write the Sobolev
exponent s, (Py ) of Py 8S Bun. Then we have

THEOREM 4. Let ¢y and By n be defined as above. Then there exists a constant
C independent of N such that

InN
— =C
Aun = 5 M’
when M is odd and
—N In sin? ZMMI > +InN
_ =C
Pun 2InM ‘

when M is even.

Until now we have considered the problem about orthonormal or cardinal scaling
functions with compact support. It is natural to ask whether there exists a compactly
supported scaling function which is both orthonormal and cardinal. A result in [21]
tellsus that such afunction does not exist when M = 2. In Section 4, we give examples
of such scaling functions for M = 3.

Let
2-zM—zM M?(a + 7y) ,
H(2) = 1 1-zYz-z"**
@) - i N (1
2 f—
n M (az Y) (1-2)(z* - Z—M’—l)>,
where
M2 — 1 12M' (M’ + 1)
X = ————S -, = —_1
12M2M’ M2 -1

and M’ is the integral part of (M — 1)/2. Let ¢, be the solution of (1) with the
symbol H,(z). It will be shown that ¢, is a compactly supported scaling function
which is both orthonormal and cardinal.

When M = 2, Daubechies proved in [8] that the only symmetric scaling function
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of a multiresolution is the Haar function. This example shows that in some sense it
is possible that some properties which do not hold when M = 2 may hold when M
= 3, or that there is more space to choose appropriate wavelet bases for M = 3 than
for M = 2.

The paper is organized as follows. In Section 2 and 3, we give the proofs of
Theorems 2 and 4, respectively. Section 4 is devoted to the construction of both
orthonormal and cardina scaling functions for M = 3.

2. ORTHONORMAL SCALING FUNCTIONS
In this section, we will give the proof of Theorem 2. To prove it we need some
lemmas.
Lemma 1. LetM = 3 and
M—-1 J7T
(X, .o X)) = Y (L4 %)In(1 + %) — xInx — xIn sinzﬁ ,
j=1

M-1

where0 = x, = 1and = x = 1. Then f takes its maximum 2 In M at
j=1

sin®r/(2M) .
P = , l1=j=M-1
b1 = GnZjaIM — snZrl(2M) J
Proof. By computation, we have
92 (% +x)<0  whenj=j’,
f(x) =
0% 0% 0, whenj # j".

Therefore f cannot take its maximum at the boundary of
M-1

Q:{(le"'ifol);oixjﬁlv z Xj: 1}1
j=1

if there exists a constant \ such that the equation

0 .
<8—Xj>f(xl,...,xM1)=ln)\, l=j=M-1,

has a solution in the interior of the domain 2. Observe that

0 X+ 1 LS
— | f ) =In+——| 2.
<8Xj> (%, y Xm-1) n X nsn M
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Then the matter reduces to
. M—1

IanTJrl—Insinzﬁwzln)\, 1=j=M-1, Y x=1 0<x<1 (15)

i=1

By (15), we have
=\ sinzj—ﬂ -1 B
% M
Hence it suffices to solve the equation about \,
M-1 j7r -1 T -2
> <)\sinzﬁ—1> =1, )\>2(sinm> . (16)
j=1
Letu =4\ and
M-1 j’]T
h(u) = u-— 4sin2—> :
@=n ( u

Then we can write (16) as
—uh’(u) = h(u), O<u< ZSjnZ%, (17)

where h’ (u) denotes the derivative of h(u). Let z, be a complex humber such that
2 — 2 — 2z = u. Then
2 —zM — zgM
h(u) = ——m.
(W= % - 2"

Hence the first equation in (17) can be written as
(-1 + z)) ™ (=z8"*+zg"H =0 (18)

Thenz, +# +1 and z, = e*""'™ for some integer 1 = | = M — 1 are the solutions
of Eq. (18), but only z, = e*'™’™ and hence u = 4 sin? 7/2M is the solution of
(17). Hence f takes maximum at (54, ..., Bu-1), where 0 < g; < 1is defined

by

sin®r/(2M)

= =j=M - 1. 1
SnZjn/M — sinni(2m) | S =) (19)

Bi
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We now compute the maximum of f. By (19), we have

M—1
In(1 + 8) — Insin?
> In(1+5) -

j=1

M-1 j7T
In( 4 sin? —
z n( sin M>

i=1

f(B1, ..., Bu-1)

M—1 .
I 4sin2l—4sin21—7r — Insin?
2M M 2M

=1

+ In

In M2 + Insin2—— — Insin2—— = 2 In M.
2M 2M

Hence Lemma 1 is proved.

LEMMA 2. Let ay n be defined by (5). Then there exists a constant C independent
of N such that

CflMZNN71I2 = 4N71M’N(N _ 1) = CMZNN71/2.

Proof. By the Stirling formulan! ~ n"e"Vn, we obtain

<N—1+S

s ) ~ sl’zexp<(N -~ DL +y)In(L+y)—(N-1ylIn y),

where0 =y = s/(N — 1) = 1. Hereafter two terms A and B are said to be equivalent
to each other, denoted by A ~ B, if there exists a constant C independent of various
parameters which would take place in the formula such that

C'A =B =CA.

Observe that

2N -1
4N g (N - 1) = ( >

N-1

when M = 2. Therefore Lemma 2 holds for M = 2 by the Stirling formula. So it
remains to prove Lemma 2 for M = 3.
By the definition of fin Lemma 1 and the Stirling formula, we have

M—1 _ . —2s. M-1
|_| <N 1+ %)(Smj_ﬂ'> b e(N-Df (0 |—I sj—1/2,
j=1 S M i=1

where X = (Xg, ..., Xv-1), % = §/(N — 1).

M-1

Let e > 0 and let K, be defined as the set of (s;, ..., Sy-1) Suchthat = §=N

j=1
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— 1 and |§/(N - 1) - ,le < e. The complement of K. in the set of all (s,, ...,
Su_1) such that 2 s = N — 1lisdenoted K*. Then for sufficient small ¢ > 0, there
exist positive constants C, and C, such that

M-1 2
C: z <%——ﬁj> SZ'HM-f(ﬁ,...,NS’w_l:I-)

i=1

_ M—-1 i B 2
-cy (75-9) (20)

when (s, ..., Su_1) € K.. Therefore we have

Mt/N-1 i
> |_| ( ! S) <sinj—7r>251
1. Su-1) €K, j=1 § M

= CN-M=D72pg2N Z exp<—C(N _ 1) Mil (S/(N _ 1) _ ﬂj)2>

(1, - Sm-1) €K, j=1

= CNi(Mil)IZMZNJ‘ Xm' * .dXMfl

X — G| =¢,2=j=M-1
1 ]

M-1

« exp<—C(N “1Y 05— M- CN- D (3 05 ,8,-))2>

j=2

M—-1 M-1
= CMZNN*“ZJ' - exp<—C > IxlP-C(Y x,-)2>dx1- -~ dXy_1
[ | <VNe,2=j=M-1 j=2 j=2
= CM2NN"Y2, (21)
For (si, ..., Su1) € K¥, by the continuity of f and the fact that (3, ..., Bu_1)
is the unique point in  for which f takes the maximum, there exists 6 > 0 such that
fl—2 ., ) oM - 6).
N-1 "N-1
Hence

5 |;| <N -1+ §><sinjﬁ7r>25j = C(M — §)°NNM-D2_ (D)

(s1--- Su—1) €KL 1=1 S

Combining (21) and (22), we obtain

T/N-1 i\ %S
3 M ( . " S) <sin Jﬁﬂ) = CM2NNY2,  (23)
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On the other hand,

W
M
aF
VRS
P
|
B
+
£n
N——
VS
[%2]
=5
~——
»

v

CN~(M-D/2pg2N z eXp(—C(N 1y Mil (s/(N = 1) - ﬂj)z)

(s,7 * - sm-1) €K j=1

= CM 2NN71/2

where the second inequality follows from (20) and the last one may be proved by
the same computation used in (21). Hence

4N1g, (N — 1) = CM2N~Y2, (24)

This proves Lemma 2 by combining (23) and (24).

LEMMA 3. Let M = 2 be an even integer. Then |sin £/2 sin M£/2| decreases on
[Mz/(M + 1), #].

Proof. Letg(£) =tan M&/2 + M tan £/2. Then g’ (£) > 0 on [Mx/(M + 1),
7] and

Mr

M
= (M — (=1)"?)t > 0.
9<M+1) TV
By computation, we have
2<singsin%> :cos%cosgg(g).

It is easy to see that cos M¢/2 = 0 on [Mn/(M + 1), n] when M/2 is even, and
cosM¢E/2 = 0on [Mn/(M + 1), «] when M/2 is odd. Then Lemma 3 follows from
sin £/2 sin M¢/2 = 0 when € = .

LeMMA 4. Let M bean even integer and &, = 2 arcsin(sin?M=/(2M + 2)). Then
there exists a constant C independent of N such that

CflMZNNflIZS'nZN % = PM'N(ei§O) = CMZNN71/29n2N%O

Proof. By (5), we have

aun(s)4® = JE' SinzﬁaM,N(S + 1)4%1, O=s=N-2
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Hence
N-1 i 2 N-1-s
: o IM o &
P eo) < N — 1)sin2V 2@ snw = C,MAN~Y2gn2N 0 ,
wn(€°°) = aun( ) > > 2 Sin%,/2 1 >

s=0

where the last inequality follows from Lemma 2 and

for al M = 2. On the other hand,

PM,N(eifo) = ayn(N — 1)sin2N72§_20 - CZMZNN*l’zsinZNg—ZO

by Lemma 2. Hence Lemma 4 follows by letting C = max(C,, C;1).

LEMMA 5. Let H(z) = ((1 — 2)/M(1 — 2))"Q(z) and <;>(§) = ﬁ H(e's'M").

Define

2

i
[ Q™)

n=1

¢eR

and b, = In B/(2j In M) for some positive integer j. Then

[$() =C(L+ [N,  DEER,

for some constant C, and

s:(¢) = N —b.
A similar result can befound in [ 5]. Lemma5 can be proved by the same procedure

used there. We omit the details here.
Now we start to prove Theorem 2 by dividing into two cases: M is odd and even.

Case 1: M isodd. Observe that
N—1

0 = Pun(€) = Pun(—1) = 5 aun(s)4®

s=0

and

aun(s + 1)4°1, O=s=N-2

NI

1. .«
s)4° = = sin? — s+ 1)45"1 <
awn(s) > M aun( )

by (5). Therefore by Lemma 2, we obtain
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N—1

> aun(s)4® = 2aun(N - 1)4Nt = CM2NNY2
s=0
and
N-1
S aun(s)4% = aun(N — 1)4V ! = C-IM2NN-Y2.
s=0

Hence by Lemma 5 we have

In N
4InM

OlM'N =

On the other hand, there exists a constant C independent of j by (5) such that

|l bun(MIT)[2 = (M~2VPy (1)) | dun(m)[2 = (CNTH2)T, | =1
Hence

InN
4InM

AN =

by Lemma 5 and the conclusion of Theorem 2 holds for the case M is odd.
Case 22 M iseven. By the definition of Py n, we have

PM,N(eif) = maX(PM’N(emO), PM,N(eiE°)<S|S_i:22§OI/22) - ) ,

where &, = 2 arcsin(sin® (M7/2M + 2)). Therefore

. _ _ “2N+2 M
Pun(€)| = Pyn(e)( sin & sin?N? ——
| M,N( )| M,N( )( 2 2M + 2
= CMZNN71IZSin2N72 %:‘:2 (25)

by Lemma 4 when |£| = Ma/(M + 1) and

| . . inZe/2 \N in’Mg/2\"*
| Pun(€®)Pun(€™)] = (PM'N(eI%)f(SSi':zﬁfo//Z) max<1' <S|;n2,\£j/2 > >

- (PM,N(eifo)V(sn@)Zmzmax(l, (g&)m

2 2
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é- Mf 2N-2
X sup (sin—sin—) )
Mr/(M+1)=|¢|=m 2 2

—2N+2 4AN—4
= (PM,N(ei50))2<Sin %) = CM4NN1<S|I'] Mr )

127

2M + 2

(26)
when M7/(M + 1) = |£| = =, where the third inequality follows from Lemma 3

and the definition of &y, and the last one holds because of Lemma 4. Combining (25)
and (26), we have

N—1

' M N
B, = su P eIflMn = CMZNN—l/ZS'nZN MZN,
TR I:IO mn (€ < 2M + 2)

where By is defined as in Lemma 5. Therefore

INN — 4N In sin Mr
= 2M + 2
MN = 4InM

by Lemma 5. On the other hand

~ M2j+17r
Pun ( M + 1)

2

. |~ M7
— M—ZNP eler/(M+1) j
R e ey

2

=~ [ cN-Y2gin2N Mm g
2M + 2

for every j = 1. Hence

InN — 4N In sin (Mx/(2M + 2))
aM,N = + C
4InM

by Lemma 5. This proves the conclusion for the case M is even and hence completes
the proof of Theorem 2.

3. CARDINAL SCALING FUNCTIONS

In this section we will give the proof of the asymptotic regularity of cardinal scaling
functions.

Proof of Theorem 4. By the proof of Lemma 2, there exists a constant C indepen-
dent of N such that
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CflMNNflIZ = bM,N( [%]) = CMNNflIZ,

where [x] denotes the integral part of x. Also notice that for z = €'¢,

Qua(dQua(z ) =( 3 bun(s)(2 — z - 271)%)?,

0=s=[(N—1)/2]

when M is odd or N is even, and

N-—1\)\° 2+z+2z"
b 2—z—zHYNMt 4 —— =
(( 2 >>( ) 2

X < > bun(s)(2 — z — zl)s>2

O=s=(N+1)/2

= Qun(z ) Qun(2)
=4 > bun(s)(2 — z - Zl)s>2

O=s=(N-1)/2

when M is even and N is odd. Then we may conclude Theorem 4 by the procedure
to prove Theorem 2 line by line.

4. ORTHONORMAL AND CARDINAL SCALING FUNCTIONS

In this section we will construct examples of compactly supported scaling functions
which are both orthonormal and cardinal for al M = 3.

Itis proved in [ 21] that there does not exist a compactly supported scaling function
which is both orthonormal and cardina when M = 2. So we shall assume M = 3 in
this section.

Define M’ = (M — 1)/2 when M isodd and M’ = M/2 — 1 when M is even.
Define H,(2) by

_ 2-72"-z" M?(a + ) o= 1\(5 _ oM'+1
H'(Z)_Mz(Z—z—z’l) <1+ > 1-z)z-2"")
+ —Mz(“z_ M) (1- gzt - zM’l)) . (27)
where

1.

M- oMy
12M2M’ Y M2 — 1
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For H,, it is easy to check that H,(1) = 1,

> Hi(ze*¥M) =1 (28)
O=s=M-1
and
Mot M2 -1
2wis/IM —1,-2mis/IMYy __ ’ M —-M
| _ oM
> Hi(ze YH (z e )=1+ <2aM AVE )(2 z z™
s=0
2 2 !
+ MM'<"‘ ; v “('\th l)>(2 M- zM2 o1 (29)
because

2 — M — z7M\? (2 - ZM — z7W)?2
H@H((zY)=M*=—=———F+) +aM?
(@H(z27) <2—z—21> * 2-z-2z"*

M’ M’
X(YZ+5Sz)+@2-2"-zv)?
j=1 j=1

><<“ s iz (5 (S z-j)2)>.

j=—M'+1

Let ¢, be the compactly supported solution of the refinement equation

di(x) = 3 cah(Mx—Kk),  #(0) =1, (30)

kez

where { ¢} are the coefficients of z* in the symbol H,, i.e.,

Hence by (28) and (29), ¢, in (30) is a compactly supported scaling function which
is both cardinal and orthonormal if the following statements hold,

H (e%) # 0 (31)
when |£| = #/M and
lp(E) =C(L+ €))7 (32)

for some e > 0.
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We first check (31). Write

2—ZM -z M
M2(2—-z-21)

H(z) = Ao(2).

Observe that

€

ImAg(€) = 4M>y sin 2 sin MEgnM £ 1)E

2 2

when 0 < [£] = «/M and Ag(1) = 1 = 0, where Imz denotes the imaginary part of
a complex number z. Therefore (31) holds.
Second, we check (32). Observe that

| Ag(€®)] =1+ 2M%*(a + 7) + 2M?|a — |

22

1+4yM251+?2(M+1)<M

I\

when M = 35. By direct numerical calculations, it is verified that
sup | Ag(e)Ag(e™)] < M?
¢ER

when 3 = M = 35. In fact

sup | Ao(e®)] <M
¢eR

when 3 = M = 35, except when M = 4. Therefore (32) holds by Lemma 5. Thus
we construct aclass of compactly supported scaling functions which are both orthonor-
mal and cardinal for M = 3.
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