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1. INTRODUCTION

Let M ¢ 2 be a fixed positive integer. A family of closed subspaces Vj , j √ Z , of
L 2 , the space of all square integrable functions on the real line, is said to be a
multiresolution of L 2 if the following conditions hold:

( i) Vj , Vj/1 , and f √ Vj if and only if f ( Mr) √ Vj/1 for all j √ Z ;
( ii ) <

j√Z
Vj is dense in L 2 and >

j√Z
Vj Å M;

( iii ) there exists a function f in V0 such that {f(r 0 k) ; k √ Z } is a Riesz
basis of V0 .

Here we say that {f(r 0 k) ; k √ Z } is a Riesz basis of V0 if there exist constants
0 õ A ° B õ ` such that
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114 BI, DAI, AND SUN

A( ∑
k√Z

Éd(k)É2) 1/2 ° S*
R

É ∑
k√Z

d(k)f(x 0 k)É2dxD1/2

° B( ∑
k√Z

Éd(k)É2) 1/2

for all square summable sequences {d(k)} and V0 is spanned by {f(r 0 k) ; k √
Z }. When A Å B Å 1, we say that {f(r 0 k) ; k √ Z } is an orthonormal basis of
V0 , or simply say that f is orthonormal.

The concept of multiresolution was introduced by Meyer and Mallat (see [4, 7,
22]) . The multiresolution above generalizes the one introduced by Meyer and Mallat,
but simplifies the one by Devore et al. [3] for our purpose.

From the definition of a multiresolution, the function f in ( iii ) , which is called
M-band scaling function or scaling function for short, satisfies the refinement equation

f(x) Å ∑
k√Z

ckf(Mx 0 k) , (1)

where {ck}, which is called the mask of the above refinement equation, satisfies
(

k√Z
ck Å M . In this paper, we always assume that f is compactly supported and that

the mask of the refinement equation (1) has finite length.
Let

H(z) Å 1
M

∑
k√Z

ckz
k (2)

be the symbol of the refinement equation (1), or of the refinable function f. Then
H(z) is a Laurent polynomial. By taking Fourier transform at both sides of (1) , we
have

f
O

(Mj) Å H(e0ij)f
O

(j) .

Here the Fourier transform f
O

of an integrable function is defined by

f
O

(j) Å *
R

e0ixjf ( x)dx ,

and the Fourier transform for a compactly supported distribution is understood
as usual.

There is considerable literature on the problem under which condition on f in (1)
or under which condition on the mask {ck} in (1) the family of spaces Vj spanned
by {M j /2f(M j

r0k) ; k √ Z } is a multiresolution of L 2 (see, for instance, [3] and
references therein) . In this paper, we give the following restriction on f: There exists
a compactly supported distribution h, which is the solution of another refinement
equation

h(x) Å ∑
k√Z

bkh(Mx 0 k)

h
P (0) Å 1, (3)
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115COMPACTLY SUPPORTED M-BAND WAVELETS

where the mask {bk} has finite length and (
k√Z

bk Å M , such that h(f(r 0 t)) is well

defined for all t √ R and

f ( x) Å ∑
k√Z

h( f (r / k))f(x 0 k) (4)

for every function f in the space spanned by {f(r 0 k)}. Obviously the distribution
h such that (3) and (4) hold is not unique in general. The above restriction on f

does not restrict us very much. Examples of h such that (3) and (4) hold are f when
{f(r 0 k)} is an orthonormal basis of V0 [7]; f

H

when f
H

and f are biorthogonal
[6]; d, the delta distribution, when f is cardinal which means that f is continuous
at integer points and f(k) Å 0 for k √ Z except f(0) Å 1 [21]; and f* when f* is
the dual of f defined by

f
O

*(j) Å f
O

(j)
(

k√Z
Éf

O

(j / 2kp)É2 .

In this paper, we only consider the two useful cases: h Å f and h Å d.
A central problem in wavelet analysis is to construct appropriate wavelet bases. On the

otherhand,almostallinterestingandusefulwaveletbasescanbeconstructedfrommultireso-
lutions,andthescalingfunctionsplayanessentialroleinmultiresolution.Sothereisconsid-
erableliteraturedevotedtotheconstructionofvariouskindofscalingfunctionsandtheprop-
ertiesofsuchscalingfunctions.ForMÅ2,thepopularwaveletsareDaubechies’orthonormal
wavelets; biorthogonalwaveletsbyCohen,Daubechies andFeauveau; splinewaveletsby
ChuiandWang;etc.ForM¢3,multiresolutionandM-bandwaveletsarewellstudied(see[1,
10–15,17–19,24,25,29],etc.) .Let

aM ,N(s) Å ∑
s1/rrr/sM01Ås

∏
M01

jÅ1

SN 0 1 / sj

sj
DS2 sin

jp

M D02s j

(5)

and

PM ,N(z) Å ∑
N01

sÅ0

aM ,N(s)(2 0 z 0 z01) s . (6)

Thenthefollowingexplicitformulatothesymboloforthonormalscalingfunctionisproved
byHeller[12]andindependentlybytheauthors[2] .

THEOREM 1. Let H(z) Å ((1 0 zM) /M(1 0 z))NQ(z) be the symbol of an ortho-
normal scaling function with compact support and PM ,N(z) be defined by (6) . Then

Q(z)Q(z01) Å PM ,N(z) / (1 0 z)N(1 0 z01)N ∑
M01

sÅ1

z sRs(zM) , (7)
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116 BI, DAI, AND SUN

where Rs(z01) Å zRM0s(z) and

PM ,N(z) / (1 0 z)N(1 0 z01)N ∑
M01

sÅ1

z sRs(zM) ¢ 0

for all z Å e ij.

It is known that the solution of the refinement equation (1) with symbol H(z)
satisfying (7) is not always an orthonormal scaling function of a multiresolution. But
when RsÅ 0 in (7) for 1° s°M0 1, it becomes true. In particular, the corresponding
solution, which we denote fM ,N , is an orthonormal scaling function and is the one
constructed by Daubechies in [8] when M Å 2. So we call fM ,N the Daubechies
scaling function even when M ¢ 2.

The first conclusion in this paper is on the asymptotic regularity of fM ,N . The
regularity of refinable function is an important factor in application. The regularity
widely considered are the Sobolev exponent, Hölder exponent and Besov exponent
(see [5, 7, 9, 16, 20, 22, 26–28], etc.) The Sobolev exponent sp( f ) , 0 õ p õ ` , is
defined by

sp( f ) Å supHs ; *
R

Éf
O

(j)Ép(1 / ÉjÉp) sdj õ `J
for 0 õ p õ ` and

s`( f ) Å sup{s ; f
O

(j)(1 / ÉjÉ) s is bounded}.

The Hölder exponent a( f ) is defined by

a( f ) Å sup{a; f √ Ca},

where Ca is the usual Hölder class. For compactly supported function f , the Sobolev
exponent and Hölder exponent are closed related,

sp( f ) 0 1
p
° sq( f ) 0 1

q
,

for 0 õ p ° q ° ` and

s1( f ) ° a( f ) ° s`( f ) .

In this paper, we use the Sobolev exponent s`( f ) as the index to the regularity of a
function f . The Sobolev exponent s`( f ) was introduced by Cohen and Conze in [5]
and sp( f ) , 1 õ p õ ` , was introduced by Herve in [16]. For simplicity, we write
s`(fM ,N) as aM ,N .
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117COMPACTLY SUPPORTED M-BAND WAVELETS

When M Å 2, Volker proved that

N 0 lnÉP2,N(e 2p i /3 )É
ln 4

0 1
2
° s2(f2,N) ° N 0 lnÉP2,N(e 2p i /3 )É

ln 4

in [28] and

a(f2,N) Å S1 0 ln 3
ln 4DN / o(N)

in [27]. The second result was also proved by Cohen and Conze in [5] . For M Å 3,
4, Heller and Wells proved similar estimates to s2 (fM ,N ) [15] . In this paper, we
will prove

THEOREM 2. Let fM ,N and aM ,N be defined as above. Then there exists a constant
C independent of N such that

ZaM ,N 0
ln N

4 ln MZ ° C (8)

when M is odd and

ZaM ,N 0
04N ln sin

Mp

2M / 2
/ ln N

4 ln M Z ° C (9)

when M is even.

From our result, we see that the Sobolev exponent of scaling functions fM ,N increases
almost linearly to N when M is even, and increases only at the rate of ln N when M
is odd. Such a phenomenon was also observed by Heller and Wells [15] and Villemoes
according to [7, p. 320]. In 1995, Shi and the third author constructed a class of M-
band scaling functions which Sobolev exponent grows proportionally to their symbol
support widths for all M ¢ 3 [23]. This also gives an affirmative answer to the
remark in [7, p. 338].

The second part of this paper is devoted to the problem h Å d in (3) and (4). In
this case we see that f is continuous at all integer points and f(k) takes value 1
when k Å 0 and 0 when k x 0. We call such a function as cardinal function.

In 1994, Lewis noticed the importance of constructing a cardinal scaling function.
An easy way to construct a cardinal function is by self-convolution of an orthonormal
function. Specifically, the function F defined by

F(x) Å *
R

f(y 0 x)f(y)dy

is a cardinal function when f is an orthonormal function. The construction of a
cardinal scaling function for M ¢ 3 was considered by Heller [11] and the authors
[2] independently. The following formula is taken from [2].

6119$$0236 02-09-99 12:56:39 achaal AP: ACHA



118 BI, DAI, AND SUN

Define

QM ,N(z) Å z0 (M01)N /2 ∑
[ (N01) /2]

sÅ0

bM ,N(s)(2 0 z 0 z01) s (10)

when M is odd,

QM ,N(z) Å z0 (M01)N /2 ∑
0°s°N /201

bM ,N(s)(2 0 z 0 z01) s (11)

when M and N are even, and

QM ,N(z) Å z0 (M01)N /201/2S ∑
0°s° (N01) /2

bM ,N(s)(2 0 z 0 z01) s

0 1 0 z

2
∑

0°s° (N03) /2

bM ,N(s)(2 0 z 0 z01) sD (12)

when M is even and N is odd, where

bM ,N(s) Å ∑
s1/rrr/s(M01)/2Ås

∏
(M01) /2

jÅ1

SN / sj 0 1

sj
DS2 sin

jp

M D02s j

when M is odd and

bM ,N(s) Å ∑
s1/rrr/sM /2Ås

∏
M /201

jÅ1

SN / sj 0 1

sj
DS2 sin

jp

M D02s j

1 S[(N / 1)/2] / sM /2 0 1

sM /2
D40sM /2 . (13)

when M is even. Then we have

THEOREM 3. Let QM ,N(z) be defined as in (10) – (12) . If a compactly supported
continuous solution f of (1) is cardinal, then its symbol H(z) Å ((1 0 zM) / (M 0
Mz))NQ(z) satisfies

Q(z) Å QM ,N(z) / (1 0 z)N ∑
M01

sÅ1

z sRs(zM) (14)

for some Laurent polynomials Rs(z) , 1 ° s ° M 0 1.

The proof of Theorem 3 may be found in [2, 11]. We omit the details here. In the
same way, the solution of the refinement equation (1) with symbol satisfying (14)
is not always cardinal. It is not continuous and not a scaling function of a multiresolu-
tion. But when Rs Å 0 in (14) for 1 ° s ° M 0 1, the corresponding solution is a
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119COMPACTLY SUPPORTED M-BAND WAVELETS

cardinal scaling function when N is sufficiently large, which we denote FM ,N . Observe
that

S2N / s 0 1

s D Å ∑
0°k°s

SN 0 1 / k

k DSN 0 1 / s 0 k

s 0 k D , 0 ° s ° N .

Therefore FM ,2N are the self-convolution of Daubechies’ scaling functions fM ,N , but
FM ,2N/1 are not the self-convolution of any scaling functions. So the class of cardinal
scaling functions FM ,N includes more cardinal scaling functions. Write the Sobolev
exponent s`(FM ,N) of FM ,N as bM ,N . Then we have

THEOREM 4. Let FM ,N and bM ,N be defined as above. Then there exists a constant
C independent of N such that

ZbM ,N 0
ln N

2 ln MZ ° C

when M is odd and

ZbM ,N 0
0N ln sin2 Mp

2M / 2
/ ln N

2 ln M Z ° C

when M is even.

Until now we have considered the problem about orthonormal or cardinal scaling
functions with compact support. It is natural to ask whether there exists a compactly
supported scaling function which is both orthonormal and cardinal. A result in [21]
tells us that such a function does not exist when M Å 2. In Section 4, we give examples
of such scaling functions for M ¢ 3.

Let

HI(z) Å 2 0 zM 0 z0M

M 2(2 0 z 0 z0M) S1 / M 2(a / g)
2

(1 0 z01)(z 0 zM =/1)

/ M 2(a 0 g)
2

(1 0 z)(z01 0 z0M =01)D ,

where

a Å M 2 0 1
12M 2M*

, g Å a

√
12M *(M * / 1)

M 2 0 1
0 1

and M * is the integral part of (M 0 1)/2. Let fI be the solution of (1) with the
symbol HI(z) . It will be shown that fI is a compactly supported scaling function
which is both orthonormal and cardinal.

When M Å 2, Daubechies proved in [8] that the only symmetric scaling function
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120 BI, DAI, AND SUN

of a multiresolution is the Haar function. This example shows that in some sense it
is possible that some properties which do not hold when M Å 2 may hold when M
¢ 3, or that there is more space to choose appropriate wavelet bases for M ¢ 3 than
for M Å 2.

The paper is organized as follows. In Section 2 and 3, we give the proofs of
Theorems 2 and 4, respectively. Section 4 is devoted to the construction of both
orthonormal and cardinal scaling functions for M ¢ 3.

2. ORTHONORMAL SCALING FUNCTIONS

In this section, we will give the proof of Theorem 2. To prove it we need some
lemmas.

LEMMA 1. Let M ¢ 3 and

f ( x1 , . . . , xM01) Å ∑
M01

jÅ1

(1 / xj) ln(1 / xj) 0 xj ln xj 0 xj ln sin2 jp

M
,

where 0 ° xj ° 1 and (
M01

jÅ1
xj Å 1 . Then f takes its maximum 2 ln M at

bj Å
sin2p / (2M)

sin2 jp /M 0 sin2p / (2M)
, 1 ° j ° M 0 1.

Proof. By computation, we have

Ì 2

ÌxjÌxj =
f ( x) Å H0(xj / x 2

j )01 õ 0, when j Å j *,

0, when j x j *.

Therefore f cannot take its maximum at the boundary of

V Å {(x1 , . . . , xM01) ; 0 ° xj ° 1, ∑
M01

jÅ1

xj Å 1},

if there exists a constant l such that the equation

S ÌÌxj
D f ( x1 , . . . , xM01) Å ln l, 1 ° j ° M 0 1,

has a solution in the interior of the domain V. Observe that

S ÌÌxj
D f ( x1 , . . . , xM01) Å ln

xj / 1
xj

0 ln sin2 jp

M
.
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121COMPACTLY SUPPORTED M-BAND WAVELETS

Then the matter reduces to

ln
xj / 1

xj

0 ln sin2 jp

M
Å ln l, 1 ° j ° M 0 1, ∑

M01

jÅ1

xj Å 1, 0 õ xj õ 1. (15)

By (15), we have

xj Å Sl sin2 jp

M
0 1D01

.

Hence it suffices to solve the equation about l,

∑
M01

jÅ1
Sl sin2 jp

M
0 1D01

Å 1, l ú 2Ssin
p

MD
02

. (16)

Let u Å 4l01 and

h(u) Å ∏
M01

jÅ1

Su 0 4 sin2 jp

M D .

Then we can write (16) as

0uh *(u) Å h(u) , 0 õ u õ 2 sin2 p

M
, (17)

where h *(u) denotes the derivative of h(u) . Let z0 be a complex number such that
2 0 z0 0 z01

0 Å u . Then

h(u) Å 2 0 zM
0 0 z0M

0

2 0 z0 0 z01
0

.

Hence the first equation in (17) can be written as

(01 / z02
0 )01(0zM01

0 / z0M01
0 ) Å 0. (18)

Then z0 x {1 and z0 Å e{ilp / M for some integer 1 ° l ° M 0 1 are the solutions
of Eq. (18 ) , but only z0 Å e{ip / M and hence u Å 4 sin 2 p / 2M is the solution of
( 17 ) . Hence f takes maximum at (b1 , . . . , bM01 ) , where 0 õ bj õ 1 is defined
by

bj Å
sin 2p / ( 2M )

sin 2 jp /M 0 sin 2p / ( 2M )
, 1 ° j ° M 0 1. (19 )
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122 BI, DAI, AND SUN

We now compute the maximum of f . By (19 ) , we have

f (b1 , . . . , bM01 ) Å ∑
M01

jÅ1

ln (1 / bj) 0 ln sin 2 p

2M

Å ∑
M01

jÅ1

lnS 4 sin 2 jp

M D
/ ln Z∏M01

jÅ1

S 4 sin 2 p

2 M
0 4 sin 2 jp

M D Z 0 ln sin 2 p

2M

Å ln M 2 / ln sin 2 p

2M
0 ln sin 2 p

2M
Å 2 ln M .

Hence Lemma 1 is proved.

LEMMA 2. Let aM ,N be defined by (5) . Then there exists a constant C independent
of N such that

C01M 2NN01/2 ° 4N01aM ,N(N 0 1) ° CM 2NN01/2 .

Proof. By the Stirling formula n! Ç nne0n
√
n , we obtain

SN 0 1 / s

s D Ç s01/2expS(N 0 1)(1 / y) ln(1 / y) 0 (N 0 1)y ln yD ,

where 0 ° y Å s / (N 0 1) ° 1. Hereafter two terms A and B are said to be equivalent
to each other, denoted by A Ç B , if there exists a constant C independent of various
parameters which would take place in the formula such that

C01A ° B ° CA .

Observe that

4N01a2,N(N 0 1) Å S2N 0 1

N 0 1 D
when M Å 2. Therefore Lemma 2 holds for M Å 2 by the Stirling formula. So it
remains to prove Lemma 2 for M ¢ 3.

By the definition of f in Lemma 1 and the Stirling formula, we have

∏
M01

jÅ1

SN 0 1 / sj

sj
DSsin

jp

M D02s j

Ç e (N01) f (x ) ∏
M01

jÅ1

s01/2
j ,

where x Å (x1 , . . . , xM01) , xj Å sj/ (N 0 1).

Let e ú 0 and let Ke be defined as the set of (s1 , . . . , sM01) such that (
M01

jÅ1
sj Å N
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123COMPACTLY SUPPORTED M-BAND WAVELETS

0 1 and Ésj/ (N 0 1) 0 bjÉ õ e. The complement of Ke in the set of all (s1 , . . . ,

sM01) such that (
M01

jÅ1
sj Å N 0 1 is denoted K*e . Then for sufficient small e ú 0, there

exist positive constants C1 and C2 such that

C1 ∑
M01

jÅ1
S sj

N 0 1
0 bjD2

° 2 ln M 0 f S s1

N 0 1
, . . . ,

sM01

N 0 1D
° C2 ∑

M01

jÅ1
S sj

N 0 1
0 bjD2

(20)

when (s1 , . . . , sM01) √ Ke . Therefore we have

∑
(s1,. . . ,sM01)√Ke

∏
M01

jÅ1

SN 0 1 / sj

sj
D Ssin

jp

MD02s j

° CN0 (M01) /2M 2N ∑
(s1,. . . ,sM01)√Ke

expS0C(N 0 1) ∑
M01

jÅ1

(sj/ (N 0 1) 0 bj)
2D

° CN0 (M01) /2M 2N *
Éxj0bjÉ°e,2°j°M01

dx1rrrdxM01

1 expS0C(N 0 1) ∑
M01

jÅ2

(xj 0 bj)
2 0 C(N 0 1) ( ∑

M01

jÅ2

(xj 0 bj))2D
° CM 2NN01/2 *

ÉxjÉõ
√
Ne,2°j°M01

expS0C ∑
M01

jÅ2

ÉxjÉ
2 0 C( ∑

M01

jÅ2

xj)
2Ddx1rrrdxM01

° CM2NN01/2 . (21)

For (s1 , . . . , sM01) √ K*e , by the continuity of f and the fact that (b1 , . . . , bM01)
is the unique point in V for which f takes the maximum, there exists d ú 0 such that

f S s1

N 0 1
, . . . ,

sM01

N 0 1D ° 2 ln(M 0 d) .

Hence

∑
(s1,. . . ,sM01)√K*

e

∏
M01

jÅ1

SN 0 1 / sj

sj
DSsin

jp

M D02s j

° C(M 0 d)2NN (M01) /2 . (22)

Combining (21) and (22), we obtain

∑
s1/rrr/sM01ÅN01

∏
M01

jÅ1

SN 0 1 / sj

sj
D Ssin

jp

M D02s j

° CM 2NN01/2 . (23)
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124 BI, DAI, AND SUN

On the other hand,

∑
s1/rrr/sM01ÅN01

∏
M01

jÅ1

SN 0 1 / sj

sj
D Ssin

jp

M D02s j

¢ ∑
(s1,rrr,sM01)√Ke

∏
M01

jÅ1

SN 0 1 / sj

sj
D Ssin

jp

M D02s j

¢ CN0 (M01) /2M 2N ∑
(s1,rrr,sM01)√Ke

expS0C(N 0 1) ∑
M01

jÅ1

(sj/ (N 0 1) 0 bj)
2D

¢ CM 2NN01/2 ,

where the second inequality follows from (20) and the last one may be proved by
the same computation used in (21). Hence

4N01aM ,N(N 0 1) ¢ CM 2NN01/2 . (24)

This proves Lemma 2 by combining (23) and (24).

LEMMA 3. Let M ¢ 2 be an even integer. Then Ésin j /2 sin Mj /2É decreases on
[Mp /( M / 1) , p] .

Proof. Let g(j) Å tan Mj /2 / M tan j /2. Then g *(j) ú 0 on [Mp / (M / 1),
p] and

gS Mp

M / 1D Å (M 0 (01)M /2 ) tan
Mp

2M / 2
ú 0.

By computation, we have

2Ssin
j

2
sin

Mj

2 D*
Å cos

Mj

2
cos

j

2
g(j) .

It is easy to see that cos Mj /2 ¢ 0 on [Mp / (M / 1), p] when M /2 is even, and
cos Mj /2 ° 0 on [Mp / (M / 1), p] when M /2 is odd. Then Lemma 3 follows from
sin j /2 sin Mj /2 Å 0 when j Å p.

LEMMA 4. Let M be an even integer and j0 Å 2 arcsin(sin2Mp / (2M / 2)) . Then
there exists a constant C independent of N such that

C01M 2NN01/2sin2N j0

2
° PM ,N(e ij0 ) ° CM 2NN01/2sin2N j0

2

Proof. By (5), we have

aM ,N(s)4 s ° 1
2

sin2 p

M
aM ,N(s / 1)4 s/1 , 0 ° s ° N 0 2.
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125COMPACTLY SUPPORTED M-BAND WAVELETS

Hence

PM ,N(eij0) ° aM ,N(N 0 1)sin2N02 j0

2
∑

N01

sÅ0
S sin2p /M

2 sin2j0/2D
N010s

° C1M2NN01/2sin2N j0

2
,

where the last inequality follows from Lemma 2 and

sin2 j0

2
Å sin4 Mp

2M / 2
ú 1

2
sin2 p

M

for all M ¢ 2. On the other hand,

PM ,N(e ij0 ) ¢ aM ,N(N 0 1)sin2N02 j0

2
¢ C2M 2NN01/2sin2N j0

2

by Lemma 2. Hence Lemma 4 follows by letting C Å max(C1 , C01
2 ) .

LEMMA 5. Let H(z) Å ((1 0 zM) /M(1 0 z))NQ(z) and f
O

(j) Å ∏
`

nÅ1

H(e ij /Mn
) .

Define

Bj Å sup
j√R

Z ∏
j

nÅ1
Q(e ij /Mn

)Z2

and bj Å ln Bj/ (2 j ln M) for some positive integer j. Then

Éf
O

(j)É ° C(1 / ÉjÉ) b j0N , ∀j √ R ,

for some constant C, and

s`(f) ¢ N 0 bj .

A similar result can be found in [5] . Lemma 5 can be proved by the same procedure
used there. We omit the details here.

Now we start to prove Theorem 2 by dividing into two cases: M is odd and even.
Case 1: M is odd. Observe that

0 ° PM ,N(e ij) ° PM ,N(01) Å ∑
N01

sÅ0

aM ,N(s)4 s

and

aM ,N(s)4 s ° 1
2

sin2 p

M
aM ,N(s / 1)4 s/1 ° 1

2
aM ,N(s / 1)4 s/1 , 0 ° s ° N 0 2

by (5). Therefore by Lemma 2, we obtain
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∑
N01

sÅ0

aM ,N(s)4 s ° 2aM ,N(N 0 1)4N01 ° CM 2NN01/2

and

∑
N01

sÅ0

aM ,N(s)4 s ¢ aM ,N(N 0 1)4N01 ¢ C01M 2NN01/2 .

Hence by Lemma 5 we have

aM ,N ¢
ln N

4 ln M
0 C .

On the other hand, there exists a constant C independent of j by (5) such that

ÉfM ,N

s

(M jp)É2 Å (M02NPM ,N(01)) j
ÉfM ,N

s

(p)É2 ¢ (CN01/2 ) j , j ¢ 1.

Hence

aM ,N °
ln N

4 ln M
/ C

by Lemma 5 and the conclusion of Theorem 2 holds for the case M is odd.
Case 2: M is even. By the definition of PM ,N , we have

PM ,N(e ij) ° maxSPM ,N(e ij0 ) , PM ,N(e ij0 )S sin2j /2
sin2j0 /2D

N01D ,

where j0 Å 2 arcsin(sin2 (Mp /2M / 2)) . Therefore

ÉPM ,N(e ij)É ° PM ,N(e ij0 )Ssin
j0

2 D
02N/2

sin2N02 Mp

2M / 2

° CM 2NN01/2sin2N02 Mp

2M / 2
(25)

by Lemma 4 when ÉjÉ ° Mp / (M / 1) and

ÉPM,N(e ij)PM ,N(eiMj)É ° (PM,N(e ij0)) 2S sin2j /2
sin2j0 /2D

N01

maxS1, Ssin2Mj /2
sin2j0 /2 D

N01D
° (PM ,N(e ij0 ) ) 2Ssin

j0

2 D
02N/2

maxS1, Ssin
j0

2 D
02N/2
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1 sup
Mp / (M/1)°ÉjÉ°p

Ssin
j

2
sin

Mj

2 D2N02D
° (PM,N(e ij0 )) 2Ssin

j0

2D
02N/2

° CM 4NN01Ssin
Mp

2M / 2D
4N04

(26)

when Mp / (M / 1) ° ÉjÉ ° p, where the third inequality follows from Lemma 3
and the definition of j0 , and the last one holds because of Lemma 4. Combining (25)
and (26), we have

BN Å sup
j√R

∏
N01

nÅ0

PM ,N(e ij /Mn
) ° SCM 2NN01/2sin2N Mp

2M / 2D
N

M 2N ,

where BN is defined as in Lemma 5. Therefore

aM ,N ¢
ln N 0 4N ln sin

Mp

2M / 2
4 ln M

0 C

by Lemma 5. On the other hand

ZfM ,N

s SM 2 j/1p

M / 1 DZ
2

Å (M02NPM ,N(e iMp / (M/1) ) ) jZfM ,N

s S Mp

M / 1DZ
2

¢ SCN01/2sin2N Mp

2M / 2D
2 j

for every j ¢ 1. Hence

aM ,N °
ln N 0 4N ln sin (Mp / (2M / 2))

4 ln M
/ C

by Lemma 5. This proves the conclusion for the case M is even and hence completes
the proof of Theorem 2.

3. CARDINAL SCALING FUNCTIONS

In this section we will give the proof of the asymptotic regularity of cardinal scaling
functions.

Proof of Theorem 4. By the proof of Lemma 2, there exists a constant C indepen-
dent of N such that
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C01MNN01/2 ° bM ,NSFN 0 1
2 GD ° CMNN01/2 ,

where [x] denotes the integral part of x . Also notice that for z Å e ij ,

QM ,N(z)QM ,N(z01) Å ( ∑
0°s°[ (N01) /2]

bM ,N(s)(2 0 z 0 z01) s)2 ,

when M is odd or N is even, and

SbM ,NSN 0 1
2 DD2

(2 0 z 0 z01)N01 / 2 / z / z01

2

1 S ∑
0°s° (N/1) /2

bM ,N(s)(2 0 z 0 z01) sD 2

° QM ,N(z01)QM ,N(z)

° 4S ∑
0°s° (N01) /2

bM ,N(s)(2 0 z 0 z01) sD 2

when M is even and N is odd. Then we may conclude Theorem 4 by the procedure
to prove Theorem 2 line by line.

4. ORTHONORMAL AND CARDINAL SCALING FUNCTIONS

In this section we will construct examples of compactly supported scaling functions
which are both orthonormal and cardinal for all M ¢ 3.

It is proved in [21] that there does not exist a compactly supported scaling function
which is both orthonormal and cardinal when M Å 2. So we shall assume M ¢ 3 in
this section.

Define M * Å (M 0 1)/2 when M is odd and M * Å M /2 0 1 when M is even.
Define HI(z) by

HI(z) Å 2 0 zM 0 z0M

M 2(2 0 z 0 z01) S1 / M 2(a / g)
2

(1 0 z01)(z 0 zM =/1)

/ M 2(a 0 g)
2

(1 0 z)(z01 0 z0M =01)D , (27)

where

a Å M 2 0 1
12M 2M*

and g Å a

√
12M *(M * / 1)

M 2 0 1
0 1 .
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For HI , it is easy to check that HI(1) Å 1,

∑
0°s°M01

HI(ze 2p is /M) Å 1 (28)

and

∑
M01

sÅ0

HI(ze 2p is /M)HI(z01e02p is /M) Å 1 / S2aM* 0 M 2 0 1
6M 2 D(2 0 zM 0 z0M)

/ MM*Sa 2 / g 2

2
0 a(M * / 1)

2M 2 D(2 0 zM 0 z0M)2 Å 1, (29)

because

HI(z)HI(z01) Å M04S2 0 zM 0 z0M

2 0 z 0 z01 D2

/ aM02 (2 0 zM 0 z0M)2

2 0 z 0 z01

1 ( ∑
M =

jÅ1

z j / ∑
M =

jÅ1

z0 j) / (2 0 zM 0 z0M)2

1 Sa 2 / g 2

4
∑

M =01

jÅ0M =/1

(M * 0 É jÉ)z j / a 2 0 g 2

4
(( ∑

M =

jÅ1

z j)2 / ( ∑
M =

jÅ1

z0 j)2)D .

Let fI be the compactly supported solution of the refinement equation

fI(x) Å ∑
k√Z

ckfI(Mx 0 k) , f
O

I(0) Å 1, (30)

where {ck} are the coefficients of zk in the symbol HI , i.e.,

HI(z) Å 1
M

∑
k√Z

ckz
k .

Hence by (28) and (29), fI in (30) is a compactly supported scaling function which
is both cardinal and orthonormal if the following statements hold,

HI(e ij) x 0 (31)

when ÉjÉ ° p /M and

Éf
O

(j)É ° C(1 / ÉjÉ)010e (32)

for some e ú 0.
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We first check (31). Write

H(z) Å 2 0 zM 0 z0M

M 2(2 0 z 0 z01)
A0(z) .

Observe that

ImA0(e ij) Å 4M 2g sin
j

2
sin

M *j

2
sin

(M * / 1)j
2

x 0

when 0 õ ÉjÉ ° p /M and A0(1) Å 1 x 0, where Imz denotes the imaginary part of
a complex number z . Therefore (31) holds.

Second, we check (32). Observe that

ÉA0(e ij)É ° 1 / 2M 2(a / g) / 2M 2
Éa 0 gÉ

° 1 / 4gM 2 ° 1 / 2
√
2

3
(M / 1) õ M

when M ¢ 35. By direct numerical calculations, it is verified that

sup
j√R

ÉA0(e ij)A0(e iMj)É õ M 2

when 3 ° M ° 35. In fact

sup
j√R

ÉA0(e ij)É õ M

when 3 ° M ° 35, except when M Å 4. Therefore (32) holds by Lemma 5. Thus
we construct a class of compactly supported scaling functions which are both orthonor-
mal and cardinal for M ¢ 3.
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