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Abstract— The goal of this paper is to develop a mathematical
framework to measure sparsity of state feedback controllers for
spatially interconnected systems. We introduce a new algebra
of infinite-dimensional matrices equipped with a matrix quasi-
norm which is defined using `q quasi–norm for 0 < q ≤ 1.
When q = 0, the value of the matrix quasi-norm is equal to the
maximum number of nonzero entries in rows or columns of a
matrix. When 0 < q ≤ 1, the proposed matrix algebra forms
a mathematical object so called q–Banach algebra, which is
not a Banach algebra. We show that this matrix algebra is
inverse-closed. Moreover, we prove that the unique solutions of
Lyapunov and Riccati equations belong to this matrix algebra.
We show that there exists a nonzero q for which the value of the
matrix quasi-norm reflects a reasonable estimate for sparsity
of a spatially decaying matrix.

I. INTRODUCTION

In number of important applications, automatic control
implementations are still spatially centralized, in the sense
that the controller interfaces with the physical system at
a fixed and relatively small number of actuators and sen-
sors. However, recent technological advances has opened
up new possibilities to change this picture by making the
idea of small devices with actuating, sensing, computing,
and telecommunications capabilities feasible. Distributing
a large array of such devices in a spatial configuration
gives unprecedented capabilities for control. This results in
distribution of the control variables in space, in addition to
the internal states of the underlying system, see [1] and
references in there. Important questions that arise are (i)
how to design controllers for these systems with regard to
global objectives; (ii) how to determine the communication
requirements in the controller array; and (iii) how can these
control algorithms be implemented in a distributed fashion.

The goal of this paper is to develop some of the fun-
damental insights and tools that will allow us to exploit
architectural properties of the underlying systems to design
optimal controllers with sparse information structures. Our
primary focus is on an important class of spatially dis-
tributed systems, so called spatially decaying (SD) systems,
for which the corresponding optimal controllers have an
inherently semi-decentralized architecture, which we refer
to as “localized” [1]–[4]. This architecture determines the
communication requirements in the controller array. We
propose a new methodology that is based on exploiting
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spatial decay property of the dynamics of the underlying
systems. The proposed novel method relates sparsity features
of a spatially decaying system to a mathematical object so
called q-Banach algebra, which is not a Banach algebra.

In this paper, we focus on a special class of q-Banach
algebras, the class of spatially decaying matrices. This q-
Banach algebra is denoted by Sq,w(G) where 0 < q ≤ 1
and w is a coupling weight function with certain properties,
and G is the underlying spatial domain. The matrix norm on
Sq,w(G) is defined using some weighted form of `q quasi–
norm. In order to get a sense on importance of this class of
matrix norms, let us assume that w = 1. When q = 0, the
matrix norm on Sq,w gives us exactly the maximum number
of nonzero entries in each row or column of a given matrix.

The family Sq,w(G) of infinite dimensional matrices on
G is known as Gröchenig-Schur class. It was introduced by
Schur [10] and Gröchenig and Leinert [7] for q = 1, by
Jaffard [8] for q =∞, and by Sun [11], [12] for 1 ≤ q ≤ ∞.
We refer the reader to [3], [5], [9], [13] for various families of
infinite dimensional matrices and their applications in frame
theory, time-frequency analysis, operator algebra, sampling
and optimization.

In Section II, it is shown that for the class of sub-
exponentially and polynomially decaying matrices, one can
compute an estimate for q, where 0 < q ≤ 1, such that the
value of the matrix norm on Sq,w(G) provides a reasonable
measure to estimate sparsity of a spatially decaying (SD)
matrix. In Section III, we introduce Sq,w(G) and verify
several algebraic properties for this family of matrices. We
show that Sq,w(G) is not a Banach algebra, but it is an
inverse-closed subalgebra of B(`2). This result enables us
later in Section IV to introduce spatially distributed systems
on Sq,w(G) and show that the unique solutions of Lyapunov
equations and algebraic Riccati equations belong to Sq,w(G).
These results are novel as our methodologies do not require
Sq,w(G) to be a Banach algebra.

II. SPARSITY MEASURE FOR SD MATRICES

In this section, we introduce a class of sparsity measures
for spatially decaying matrices. We consider the set of all
matrices A = [a(i, j)]i,j∈G which is equipped with the
following matrix quasi-norm

‖A‖qSq,1 := max
{

sup
i∈G

∑
j∈G
|a(i, j)|q, sup

j∈G

∑
i∈G
|a(i, j)|q

}
for some 0 < q ≤ 1, where G is the underlying spatial
domain. We focus on two families of matrices which appear
in most real-world applications:



(i) Sub-exponentially decaying matrices

|a(i, j)| ≤ Ce−α|i−j|
β

;

(ii) Polynomially decaying matrices

|a(i, j)| ≤ C(1 + |i− j|)−α,

where α > 0 and β ∈ (0, 1). In order to understand sparsity
measures for SD matrices, we consider spatial truncations
of a SD matrix. For a given matrix A and truncation length
T , we represent the truncated matrix by AT which can be
obtained by setting

a(i, j) = 0 if |i− j| ≥ T.

For the class of SD matrices, one can associate a truncation
threshold to T in the following sense: if |a(i, j)| ≤ ε(T ),
then replace a(i, j) with zero.

In theory, the small values of q leads to better estimate
of sparsity for SD matrices. This is particularly true for
SD matrices with slow decaying rates, e.g., polynomially
decaying matrices. However, for matrices with fast decaying
rates, such as sub-exponentially decaying matrices, larger
values of q could also result in reasonable estimate for
sparsity.

Our goal is to show that the value of matrix quasi-norm
‖A‖qSq,1 is a reasonable measure for sparsity of a SD matrix
if q is chosen appropriately. In this section, we only focus
on sub-exponential decay. Our discussion can be extended
to polynomial decay as well. Let us consider the class of
random matrices A for which the entries are defined by

a(i, j) = rij e
−α|i−j|β , (1)

where rij are drawn from the normal distribution N (0, σ2).
We define a quantity to study asymptotic behavior of our
proposed sparsity measure. For a given truncation length T
for matrix A, we introduce the following quantity

ϕA(δ, T ) =
1

2T − 1
E
[
‖AT ‖qSq,1

]
where E is the expectation operation. For a given truncation
length T , we compute a truncation threshold through

ε(T ) = e−αT
β

. (2)

In order to reach to the acceptable error range δ, we select
q to satisfy

εq = 1− δ, (3)

and its value is given by

q(T ) =
ln(1− δ)−1

α
T−β . (4)

Proposition 2.1: Suppose that A is a random matrix de-
fined by (1) and 0 < δ < 1. If we assume that δ× 100 indi-
cates the acceptable percentage error for estimating sparsity
of the band matrix AT , then

lim
T→∞

ϕA(δ, T ) ≥ 1− δ (5)
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Fig. 1: By a smart selection of parameter 0 < q ≤ 1, one can
filter out entries of a matrix which are less than a given threshold
ε. This figure shows that εq ≈ 0.9 for q = 0.1 and ε ≈ 0.3.

where q := q(T ) is chosen as in (4).

Proof: In the proof, we simply use q instead of q(T )
in (4). In order to calculate the expected value of the matrix
norm, we use the expected value of the central absolute
moments of each entry which is given by

E[|rij |q] = σq
2
q
2 Γ( q+1

2 )
√
π

. (6)

From the norm definition, we have

‖AT ‖qSq,1 ≥
∑
|i−j|<T

|a(i, j)|q ≥ e−αqT
β ∑
|i−j|<T

|rij |q,

for every i ∈ G. Let us fix i and take expectations from both
sides of the inequality, it follows that

E[‖AT ‖qSq,1 ] ≥ e−αqT
β ∑
|i−j|<T

E[|rij |q].

From (2), (3), and (6), we have

E[‖AT ‖qSq,1 ] ≥ (1− δ) (2T − 1) σq
2
q
2 Γ( q+1

2 )
√
π

We emphasize that q depends on T and is given by (4).
Therefore,

lim
T→∞

q(T ) = 0.

Moreover,

lim
T→∞

σq
2
q
2 Γ( q+1

2 )
√
π

= lim
q→0

σq
2
q
2 Γ( q+1

2 )
√
π

= 1.

From this result, we can conclude that

lim
T→∞

1

2T − 1
E[‖AT ‖qSq,1 ] ≥ (1− δ).

III. q-BANACH ALGEBRAS OF INFINITE MATRICES

In this section, we will briefly introduce an important
class of matrices, denoted by Sq,w, and their properties
which are essential for development of a general theory to
study sparsity in spatially distributed systems. This class of
matrices forms a mathematical object so called q-Banach
Algebra [6], which is not a Banach algebra, but it is an
inverse-closed subalgebra of B(`2). In the following, we
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Fig. 2: This curves depicts asymptotic behavior of φA(T ) as a
function of T for a 100 × 100 sub-exponentially decaying matrix
defined by (1) with parameters α = 0.6, β = 0.8, and σ = 3. For
δ = 0.1, it shows that matrix norm ‖AT ‖qSq,1 represents sparsity
of matrix AT with at most 10% error for all 2 ≤ T ≤ 50. It turns
out that q is a strictly decreasing function of T . For this example,
every 0 < q ≤ 0.08 results in at most 10% error in measuring
sparsity of matrix AT for all 2 ≤ T ≤ 50.

will define Sq,w and examine its properties. In order to
characterize how fast/slow entries of a SD matrix decays
to zero, we use weight functions.

Definition 3.1: A weight function w on G×G satisfies

(i) w(i, j) ≥ 1 for all i, j ∈ G,
(ii) w(i, j) = w(j, i) for all i, j ∈ G,
(iii) supi∈G w(i, i) <∞.

We can interpret w(i, j) as communication cost between
subsystems i and j. The property (i) implies that there is a
minimal cost for such a communication, after normalization,
we assume that the minimal cost is one unit. The property
(ii) indicates that the communication cost is symmetric and
independent of communication direction, i.e., the cost from
subsystem i to subsystem j is the same as the communication
cost from subsystem j to subsystem i. The property (iii)
implies that the operation cost for subsystem i is uniformly
bounded, in other words, there are finite self-loop for all
subsystems.

Definition 3.2: Let 0 < q ≤ 1 and w be a weight function
on G×G. We define the class of spatially decaying infinite
matrices on G by

Sq,w =
{
A = (a(i, j))i,j∈G : ‖A‖Sq,w <∞

}
, (7)

where

‖A‖Sq,w := max
{

sup
i∈G

(∑
j∈G
|a(i, j)|qw(i, j)

)1/q

,

sup
j∈G

(∑
i∈G
|a(i, j)|qw(i, j)

)1/q}
. (8)

This class of spatially decaying matrices is not a Banach
algebra as its quasi-norm does not satisfy the triangular
inequality. In the following, we verify some of the basic
properties of this class.

Proposition 3.3: Suppose that 0 < q ≤ 1 and w is a
weight function on G × G. The algebra (Sq,w, ‖ · ‖Sq,w)

satisfies the following properties:

(i) If A ∈ Sq,w, then cA ∈ Sq,w for all c ∈ R. Moreover

‖cA‖Sq,w = |c|‖A‖Sq,w (9)

for all c ∈ R and A ∈ Sq,w.
(ii) If A ∈ Sq,w, then A is a bounded operator on `2.

Moreover, its operator norm is dominated by its Sq,w
norm,

‖A‖B(`2) ≤ ‖A‖Sq,w (10)

for all A ∈ Sq,w.
(iii) If A,B ∈ Sq,w, then A+B ∈ Sq,w. Moreover

‖A+B‖qSq,w ≤ ‖A‖
q
Sq,w + ‖B‖qSq,w (11)

for all A,B ∈ Sq,w.
(iv) If there exists a positive number K such that

w(i, j) ≤ Kw(i, k)w(k, j) for all i, j, k ∈ G, (12)

then
‖AB‖qSq,w ≤ K‖A‖

q
Sq,w‖B‖

q
Sq,w (13)

for all A,B ∈ Sq,w.

Proof: Due to space limitations, we eliminate the proof.

We observe that Sq,w is a sub-algebra of B(`2), but it is
not a Banach sub-algebra of B(`2). Nonetheless, we show
that Sq,w is inverse-closed. Before stating this result, we need
to make the following assumption on weight functions.

Assumption 3.4: We assume that there exist a companion
weight u, a positive exponent θ ∈ (0, 1), and a positive
constant D such that

w(i, j) ≤ w(i, k)u(k, j) + u(i, k)w(k, j) (14)

for all i, j, k ∈ G, and

sup
i∈G

inf
τ≥0

(( ∑
ρ(i,j)<τ,j∈G

|u(i, j)|2/(2−q)
)1−q/2

+

t sup
ρ(i,j)≥τ,j∈G

u(i, j)

w(i, j)

)
≤ Dtθ, (15)

where t ≥ 1 and ρ is a nonnegative symmetric function on
G×G.

A weight w satisfying (12) is known to be submultiplica-
tive [7], [12], [13]. One may verify that a weight satisfying
(14) and (15) is submultiplicative with K ≤ 2D [12], [13].

Example 3.5: In this example, we discuss the weight
assumptions (14) and (15). First, consider the polynomial
weight function

wα(i, j) = (1 + |i− j|)α, α > 0.

For the polynomial weight wα, we have

wα(i, j) ≤ 2α(wα(i, k) + wα(k, j)). (16)

The reason is that at least one of |i− k| and |k− j| is larger
than or equal to |i− j|/2, which implies that (1 + |i− j|) ≤
max(1+2|i−k|, 1+2|k−j|) ≤ 2 max(1+|i−k|, 1+|k−j|).



Thus, we may select the companion weight uα(i, j) = 2α.
It is straightforward to verify that uα is a weight function.
Moreover, it satisfies (15) with D = 2α+2 and θ = (1 −
q/2)/(α+ 1− q/2). This is true because

inf
τ≥0

( ∑
|i−j|<τ

(uα(i, j))2/(2−q)
)1−q/2

+ t sup
|i−j|≥τ

u(i, j)

w(i, j)

≤ 2α inf
τ≥0

(( ∑
|i−j|<τ

1
)1−q/2

+ 2αt(1 + τ)−α
)

≤ 2α inf
τ≥0

(
(1 + 2τ)1−q/2 + t(1 + τ)−α

)
≤ 2α+1 inf

τ≥0

(
(1 + τ)1−q/2 + t(1 + τ)−α

)
≤ 2α+2t(1−q/2)/(α+1−q/2).

The above argument shows that the polynomial weight
function wα(i, j) = (1 + |i − j|)α, α > 0, satisfies the
requirement for the weight w in Assumption 3.4.

Next, let us consider the sub-exponential weight function
eD,δ(i, j) = eD|i−j|

δ

where D > 0 and δ ∈ (0, 1). We recall
that (1 + t)δ ≤ 1 + (2δ − 1)tδ for all t ∈ [0, 1] as both
sides are equal when t = 0 and t = 1 and derivative of
the function (1 + t)δ − 1 − (2δ − 1)tδ has only one zero
(2δ − 1)1/(1−δ)/

(
1− (2δ − 1)1/(1−δ)). Therefore,

eD,δ(i, j) ≤ eD,δ(i, k)eD(2δ−1),δ(k, j) +

eD,δ(i, k)eD(2δ−1),δ(k, j)

for all i, j, k ∈ Z. This holds as either |i − k| ≥ |k − j| or
|i−k| ≤ |k− j|. Therefore, we may select eD(2δ−1),δ as the
companion weight. The weight eD(2δ−1),δ satisfies properties
of Definition 3.1 and inequality (14). Now, let us verify (15)
by taking θ ∈ (2δ − 1, 1),

inf
τ≥0

{( ∑
|i−j|<τ

eD(2δ−1),δ(i− j))2/(2−q)
)1−q/2

+

t sup
|i−j|≥2

eD(2δ−2),δ(i− j)
}

≤ inf
τ≥0

{
eD(2δ−1)τδ

( ∑
|i−j|<τ

1
)1−q/2

+ t eD(2δ−2)τδ
}

≤ inf
τ≥0

{
eD(2δ−1)τδ(1 + 2τ)1−q/2 + t eD(2δ−2)τδ

}
≤ t2

δ−1
(
(1 + 2(ln t/D)1/δ)1−q/2 + 1

)
.

This proves that the sub-exponential weight function also
satisfies conditions of Assumption 3.4.

The following result shows that if a matrix in Sq,w is
invertible with an inverse in B(`2), then the inverse also
belongs to Sq,w. This result is particularly important to us as
it enables us to prove that the unique solution of the algebraic
Riccati equation also belongs to Sq,w.

Theorem 3.6: Let 0 < q ≤ 1 and w be a weight function
satisfying (14) and (15). For any A ∈ Sq,w with A−1 ∈
B(`2), we have that A−1 ∈ Sq,w.

Proof: Due to space limitations, we eliminate the proof.

IV. SPATIALLY DISTRIBUTED SYSTEMS DEFINED ON
q-BANACH ALGEBRAS

The introduction of algebra Sq,w automatically leads to
the introduction of the class of spatially decaying systems
over Sq,w. Consider a linear system with constant matrices:

ẋ = Ax + Bu (17)
y = Cx + Du (18)

where x, u, y ∈ L2([0,∞); `2).
Definition 4.1: The linear system (17)-(18) is called spa-

tially decaying if A,B,C,D ∈ Sq,w for some 0 < q ≤ 1
and weight function w on G×G satisfying (14) and (15).

Definition 4.2: We say that A is exponentially stable if

‖etA‖B(`2) ≤ Ee−αt for all t ≥ 0. (19)
The following result shows that the unique positive definite
solution to the Lyapunov equation is in Sq,w.

Theorem 4.3: Suppose that q ∈ (0, 1] and w is a weight
satisfying (14) and (15). If Q ∈ Sq,w is a strictly positive
definite operator on `2, and A ∈ Sq,w is exponentially stable
on `2, then the unique strictly positive definite solution P of
the Lyapunov equation

AP + PAT +Q = 0. (20)

belongs to Sq,w.
In order to prove Theorem 4.3, we need the following

result about exponential stability for infinite matrices in Sq,w.
Lemma 4.4: Let 0 < q ≤ 1 and w be a weight satisfying

(14) and (15). If A ∈ Sq,w satisfies

‖etA‖B(`2) ≤ Ee−αt for all t ≥ 0, (21)

where E,α > 0, then for any β < α, there exists a positive
constant Eβ such that

‖etA‖Sq,w ≤ Eβe−βt for all t ≥ 0. (22)

Proof: Due to space limitations, we eliminate the proof.

Applying this result, we proceed to prove Theorem 4.3.
Proof: [Proof of Theorem 4.3] From our assumptions,

A ∈ Sq,w satisfies the exponential stability condition

‖etA‖B(`2) ≤ Ee−αt, t ≥ 0 (23)

where E,α > 0. By taking t0 > 0 and β ∈ (0, α), we define

Qt0 =

∞∑
n,m=0

tm+n+1
0

(m+ n+ 1)m!n!
(AT )mQAn. (24)

Then

‖Qt0‖
q
Sq,w ≤

∞∑
n,m=0

( tm+n+1
0

(m+ n+ 1)m!n!

)q
‖(AT )mQAn‖qSq,w

≤
∞∑

n,m=0

( tm+n+1
0

(m+ n+ 1)m!n!

)q
(2D)m+n ×

‖A‖(m+n)q
Sq,w ‖Q‖qSq,w



≤ ‖Q‖qSq,w t
q
0

( ∞∑
m=0

(2D)m(t0‖A‖Sq,w)qm

(m!)q

)2

< ∞,

where the second inequality follows from (13). Therefore
Qt0 belongs to Sq,w and also is a bounded operator on `2.
Moreover, Qt0 is positive definite as Q is positive definite
and

〈Qt0x, x〉 =

∞∑
m,n=0

tm+n+1
0

(m+ n+ 1)m!n!
xT (AT )mQAnx

=

∫ t0

0

xT etA
T

QetAxdt > 0 (25)

for any 0 6= x ∈ `2.

Define Pn, n ≥ 0, iteratively by

P0 = Q0, (26)

and
Pn = et0A

T

Pn−1e
t0A +Q0 for n ≥ 1. (27)

By induction, we can show that Pn ≥ Q0, n ≥ 0, are positive
definite by (25), and

Pn =

n∑
k=0

ekt0A
T

Q0e
kt0A, n ≥ 0. (28)

By Lemma 4.4, there exists a positive constant Eβ for any
β < α such that

‖etA‖Sq,w ≤ Eβe−βt for all t ≥ 0. (29)

This implies that Pn, n ≥ 0, belong to Sq,w, and Pn, n ≥ 1,
converges as
∞∑
k=1

‖ekt0A
T

Q0e
kt0A‖qSq,w ≤ 4D2E2

β‖Q0‖qSq,w
∞∑
k=1

e−2βqt0k

< ∞. (30)

Now, we define

P∞ = lim
n→∞

Pn. (31)

The above limit converges in the Sq,w norm and then also
in the operator norm on `2 by (28) and (30). Then P∞ is
strictly positive definite and belongs in Sq,w. Moreover, we
have

ATP∞ + P∞A+Q

= lim
n→∞

AT
( n∑
k=0

AT ekt0A
T ( ∫ t0

0

et0A
T

QetAdt
)
ekt0A

)
+
( n∑
k=0

ekt0A
T ( ∫ t0

0

et0A
T

QetAdt
)
ekt0A

)
A+Q

= lim
n→∞

AT
(∫ (n+1)t0

0

etA
T

QetAdt
)

+
(∫ (n+1)t0

0

et0A
T

QetAdt
)
A+Q

= lim
n→∞

∫ (n+1)t0

0

d

dt
(etA

T

QetA)dt+Q

= lim
n→∞

e(n+1)t0A
T

Qe(n+1)t0A = 0 (32)

where the last limit holds as

‖e(n+1)t0A‖qB(`2) ≤ Ee
−(n+1)t0α → 0 as n→∞

by exponential stability of the matrix A. Therefore, P∞ is
the desired strictly positive definite matrix in Sq,w.

Theorem 4.5: Suppose that q ∈ (0, 1] and w is a weight
function satisfying (14) and (15), A,R,Q ∈ Sq,w, R strictly
positive definite and Q positive definite matrices on `2.
If (A,Q

1
2 ) is exponentially detectable, then there exists a

unique strictly positive definite solution X ∈ B(`2) to the
algebraic Riccati equation

A∗X +XA−XRX +Q = 0 (33)

and AX = A−RX is exponentially stable on `2. Moreover,
X ∈ Sq,w.

Proof: The results on `2 are well-known [15]. Consider
the algebra of all 2×2 matrices with entries from Sq,w which
is denoted by M2(Sq,w). the corresponding Hamiltonian
matrix

H =

[
A −R
−Q −A∗

]

Thus, it follows that spectrum σ(AX) is contained in the
open left half complex plane. Suppose that Ω is a Cauchy
domain contained in the open left half complex plane such
that σ(AX) ⊂ Ω, and Γ be the boundary of the Cauchy
domain Ω. Then λI − AX is invertible and has bounded
inverse in B(`2) for all γ ∈ Γ. Moreover its inverse (λI −
AX)−1 is continuous and bounded on λ ∈ Γ,

sup
λ∈Γ
‖(λI −AX)−1‖B(`2) <∞. (34)

Recall the spectrum of A∗X is also contained in the open
left half complex plane and λ is contained in the left half
complex plane for any γ ∈ Γ. Thus λI+A∗X has its spectrum
contained in the open left half complex plane for any γ ∈ Γ.
Thus λI +A∗X is invertible and its inverse (λI +A∗X)−1 is
continuous and bounded on Γ,

sup
λ∈Γ
‖(λI +A∗X)−1‖B(`2) <∞. (35)

By direct computation, we have that

λI2−H =

[
I 0
X I

][
λI −AX R

0 λI +A∗X

][
I 0
X I

]−1

where I2 =

[
I 0
0 I

]
is the unit matrix in M2(Sq,w).

This together with the continuity and boundedness of (λI −
AX)−1 and (λI +A∗X)−1 implies that

E :=
1

2πi

∫
Γ

(λI2 −H)−1dλ (36)



belongs to B(`2). A careful verification indicates that

(λI2 −H)−1 =

[
I 0
X I

]
×[

(λI −AX)−1 −(λI −AX)−1R(λI +A∗X)−1

0 (λI +A∗X)−1

]
×[

I 0
X I

]−1

. (37)

Hence, (λI2 − H)−1 is analytic on a neighborhood of the
set Γ. Applying functional calculus implies that

E =

[
I 0
X I

] [
I Z
0 0

] [
I 0
X I

]−1

=

[
I − ZX Z

X(I − ZX) XZ

]
(38)

for some operator Z ∈ B(`2). As HE = EH , we see that
Z satisfies the Lyapunov equation

AXZ + ZA∗X +R = 0. (39)

As AX has its spectrum on the open half complex plane and
R is strictly positive definitive, Z is uniquely determined by
the above equation. According to Theorem 4.3, we have

Z is strictly positive definitive. (40)

By the assumption on R,Q and A, both λI2 − H =[
λI −A R
Q λI +A∗

]
belong toM2(Sq,w) for any λ ∈ Γ.

Recall from (34), (36) and (35) that λI2 − H is invertible
on B(`2). This together with the strict positivity of R gives
that λI2−H has inverse in the algebra M2(Sq,w). Also we
see that (λI2 − H)−1 is analytic about λ ∈ Γ, and hence
E ∈ Sq,w. This together with (38) implies that both Z and
XZ belong to Sq,w. On the other hand, as shown in (40), Z
is strictly positive definite solution of a Lyapunov equation
(39), then Z−1 ∈ Sq,w by the inverse-closedness of Sq,w in
B(`2) obtained in Theorem 3.6. Hence X = (XZ)Z−1 ∈
Sq,w. This proves the desired conclusion.

Remark 4.6: In the proof of Theorem 4.5, we use some
of the ideas of [14]. However, we highlight that Sq,w is not
a Banach algebra. Therefore, we have taken some additional
steps to show that the unique solution of the Riccati equation
belongs to Sq,w. Our proof only uses algebraic and inverse-
closedness properties of Sq,w. A recent result in [16], which
considers the special case q = 1, also uses properties of
Banach algebras. Our results does not require the underlying
algebra to be a Banach algebra.

V. CONCLUSIONS

We introduce a useful class of matrix algebras so called q-
Banach algebras and focus on a special class of such matrix
algebras which is equipped with a quasi-norm. It is shown
that the quasi-norm plays an important role in measuring
sparsity in spatially distributed systems. Our next goal is to
find reasonable estimates for parameter 0 < q ≤ 1 such
that the value of the matrix quasi-norm reflects a reasonable

estimate for sparsity of the unique solutions of Lyapunov and
Riccati equations for spatially decaying systems.
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[7] K. Gröchenig and M. Leinert, “Symmetry of matrix algebras and
symbolic calculus for infinite matrices,” Trans, Amer. Math. Soc.,
358(2006), 2695–2711.

[8] S. Jaffard, “Properiétés des matrices bienlocalisées prés de leur diag-
onale et quelques applications,” Ann. Inst. Henri Poincaré, 7(1990),
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