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In this paper, we show that the property of tight affine frame decomposition of

functions inL2 can be extended in a stable way to functions in Sobolev spaces when

the generators of the tight affine frames satisfy certain mild regularity and vanishing

moment conditions. Applying the affine frame operatorsQj on j-th levels to any

function f in a Sobolev space reveals the detailed informationQjf of f in such

tight affine decompositions. We also study certain basic properties of the range of

the affine frame operatorsQj such as the topological property of closedness and the

notion of angles between the ranges for different levels, and thus establishing some

interesting connection to (tight) frames of shift-invariant spaces.

1. INTRODUCTION

The Sobolev spacesHs := Hs(R), s ∈ R, are often used for representing functionsf
in many applications. Since these are not sequence spaces, to transmit (store or analyze)
f ∈ Hs by using some ‘finite’ device, we may have to rely on a normalized tight frame
{eλ, λ ∈ Λ} of the Hilbert spaceL2 := H0; that is,

f =
∑
λ∈Λ

〈f, eλ〉eλ,

where the coefficient sequence{〈f, eλ〉} constitutes the tight frame decomposition off .
Hence, the transmission (storage or analysis) of the functionf reduces to that of this
sequence of coefficients. Furthermore, we may want to consider a finite representation of
f , if we choose an appropriate finite setΛ′ ⊂ Λ and quantizationsaλ of 〈f, eλ〉 specified
by certain allowable bit depths, so thatf̃ :=

∑
λ∈Λ′ aλeλ is a good approximation off .
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To be more specific, let us use a fixed integerM ≥ 2 as the dilation factor, and
consider a wavelet systemF := {ψj,k}ψ∈Ψ,j,k∈Z that is an orthonormal basis ofL2 gen-
erated by some wavelet familyΨ, where, as usual,ψj,k := M j/2ψ(M j · −k). Then
the orthonormal wavelet system can be used to decompose functions inL2. More-
over, the sequence of coefficients{〈f, ψj,k〉}ψ∈Ψ,j,k∈Z in the wavelet decomposition
f =

∑
ψ∈Ψ

∑
j,k∈Z〈f, ψj,k〉ψj,k of anL2 function gives the time-scale detailed infor-

mation off . In particular, under certain very mild assumption on the regularity, order
of vanishing moment, and decay at infinity of the wavelets inΨ, the wavelet systemF
can also be used for stable decomposition of functions in Sobolev spaces [20, 33]. As an
example, forM = 2, the Haar wavelet functionH,

H(x) =


1 for x ∈ [0, 1/2),
−1 for x ∈ [1/2, 1),
0 otherwise,

belongs to the Sobolev spaceHβ , β < 1/2 but notH1/2, and has compact support and
vanishing moment of order one, while any functionf in the Sobolev spaceHα, α ∈
(−1/2, 1/2), has a stable wavelet decompositionf =

∑
j,k∈Z〈f,Hj,k〉Hj,k, namely,

A‖f‖2,α ≤
( ∑
j,k∈Z

(1 + 22j)α|〈f,Hj,k〉|2
)1/2

≤ B‖f‖2,α,

for some positive constantsA,B, where‖ · ‖2,α is the usual Sobolev norm. Compactly
supported orthonormal wavelets with dilationM , and arbitrarily high regularity and order
of vanishing moments have been constructed in the literature, with the pioneer work of
Daubechies [14] (see the other literature [6, 15, 32, 33, 37]), but all of the known examples
with the exception of the above Haar wavelet, do not have explicit analytic formulation
expression. Unfortunately, in many applications, it is highly desirable to use wavelets
within a certain class of analytically representable functions.

Polynomial splines on a uniform mesh are piecewise polynomials, have explicit analytical
formulations, and hence, are the most natural candidates. But if the property of compact
support is required, shifts and dilations of such spline generators, other than the Haar
example as discussed above, do not form an orthonormal basis ofL2. When allowing
redundancy (such as relaxing from an orthonormal basis to a tight frame), compactly
supported tight frames generated by splines on uniform meshes can be explicitly constructed
by using more than one generators (see [7, 8, 9, 16, 34, 36]). A natural question then is to
ask if, analogous to orthogonal wavelet decomposition, the affine frame system associated
with splines can be used to decompose functions in a Sobolev space in a stable way. We
will give an affirmative answer to this question in this paper (see Theorem 3.1 and Corollary
3.3).

Recall that a finite collectionΨ of L2-functions is said to generate atight affine frame
of L2, (or, for convenience,Ψ is said to be a tight frame ofL2), if F := {ψj,k}ψ∈Ψ,j,k∈Z

is a tight frame ofL2, which we will assume, without loss of generality, to be normalized
with frame bound constant equal to1. Theaffine frame operatorQj on j-th level, j ∈ Z,
of such a tight affine frame is defined by

Qjf =
∑
ψ∈Ψ

∑
k∈Z

〈f, ψj,k〉ψj,k, f ∈ L2. (1)
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Hence, it follows from the tight frame representation

f =
∑
ψ∈Ψ

∑
j,k∈Z

〈f, ψj,k〉ψj,k, f ∈ L2, (2)

that the identity operatorI onL2 can be written as the sum of affine frame operatorsQj ,
namely:

I =
∑
j∈Z

Qj = · · ·+Q−1 +Q0 +Q1 + · · · . (3)

In this paper, we show that the sum in the above operator decomposition converges strongly
in Sobolev spaces, an analytic property of the affine frame operatorsQj , when the tight
affine frame generators inΨ satisfy some mild regularity and vanishing moment conditions
(see Theorem 3.1).

By the operator decomposition (3) of the identity operator onL2, we have the following
decomposition of the spaceL2,

L2 =
∑
j∈Z

Wj = · · ·+W−1 +W0 +W1 + · · · ,

whereWj = QjL
2, j ∈ Z. Clearly, if the systemF := {ψj,k}ψ∈Ψ,j,k∈Z generated by

dilation and shifts of functions inΨ is an orthonormal system ofL2, thenWj , j ∈ Z, are
the wavelet spaces, and hence are closed inL2 and mutually orthogonal. These properties
of space decompositions are no longer valid in general, when the wavelet decomposition is
replaced by the affine frame decomposition. In this paper, we characterize the closedness
of the spaceQjHα, a topological property for the affine frame operatorsQj , and study the
angle between differentQjHα, a geometrical property for the affine frame operatorsQj .
Loosely speaking, we show that there are three possible geometrical structures associated
with the affine frame operatorsQj : (i) The angles between differentQjHα, j ∈ Z, are
always zero (or equivalentlyQ0H

α is not closed inL2, or equivalently{ψ(· − k) : ψ ∈
Ψ, k ∈ Z} is not a frame), see Theorems 4.4 and 5.1; (ii) The angles between different
QjH

α, j ∈ Z, are alwaysπ/2 (or equivalently bothQ0H
α andP̃0H

α are closed inL2,
or equivalently{ψ(· − k) : ψ ∈ Ψ, k ∈ Z} is a tight frame), see Theorems 4.1 and 5.2;
(iii) The angles between differentQjHα, j ∈ Z, are always in the open interval(0, π/2)
(or equivalentlyQ0H

α is closed inL2 but P̃0H
α is not closed inL2, or equivalently

{ψ(·−k) : ψ ∈ Ψ, k ∈ Z} is a frame but not a tight frame), see Theorems 4.1 and 5.1. For
the second case, the frame decompositionf =

∑
j∈ZQjf is equivalent to an orthonormal

wavelet decomposition, in the sense thatQj is a projection operator fromL2 to the wavelet
spacesWj , the orthogonal complement ofVj in Vj+1, see Theorem 4.1. For the third case,
the asymptotic behaviour of the angles between spacesQ0H

α andQjHα is related to the
Sobolev exponent of the scaling functionφ, see Theorems 5.3 and 5.4.

The paper is organized as follows. In Section 2, we recall some preliminary results
on multiresolution analysis (or MRA) ofL2, tight affine frames associated with an MRA,
and frames of a finitely generated shift-invariant space. In Section 3, we establish the
property of stable homogeneous, nonhomogeneous and finite decomposition of functions
in a Sobolev space (see Theorems 3.1, 3.5 and 3.6). From Theorem 3.1, we conclude
that for a finite familyΨ of L2-functions, if it generates a tight affine frame ofL2, and if,
in addition, it satisfies certain mild regularity and vanishing moment conditions, then the
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corresponding affine frame decomposition is stable in the Sobolev spaces. In Section 4,
we study closedness of the shift-invariant spacesP̃0H

α andQjHα in L2, a topologoical
property for the affine frame operatorsQj (see Theorem 4.1), and discuss some interesting
connections to other shift-invariant spaces generated byΨ and the (tight) frame properties of
Ψ (see Theorem 4.4). In Section 5, we study the anglesθj betweenP̃0H

α andQjHα, j ≥ 0,
a geometric property for the affine frame operatorsQj (see Theorems 5.1, 5.2, 5.3 and 5.4
for details).

2. PRELIMINARIES

Let us first recall the definition of Sobolev spaces and some basic theory of multiresolution
analyses (MRA) with dilationM , tight affine frames associated with an MRA, and frames
of a finitely generated shift-invariant space.

2.1. Sobolev spaces

Forα ∈ R, letJα denote the Bessel potential operator, defined bŷJαf = (1+|·|2)α/2f̂ .
Then the Sobolev spaceHα, with norm‖ · ‖2,α, is defined by

Hα =
{
f : ‖f‖2,α :=

∥∥Jαf‖2 <∞
}
.

2.2. Multiresolution analyses and scaling functions
A multiresolution analysis (MRA) with dilationM is a sequence of closed subspaces

{Vj}j∈Z of L2 such that the following conditions hold: (i)Vj ⊂ Vj+1; (ii) ∪j∈ZVj
is dense inL2; (iii) ∩j∈ZVj = {0}; (iv) f ∈ Vj if and only if f(M ·) ∈ Vj+1; and
(v) there exists a compactly supportedL2-function φ such that{φ(· − k) : k ∈ Z}
is a Riesz basis ofV0 (see for example [6, 15, 32, 33, 37]). The functionφ in (v) is
called ascaling functionof the MRA {Vj}j∈Z. For an MRA with a compactly supported
scaling function, there always exists another compactly supported scaling functionf with
linear independent shifts (see for instance [25, 37]), meaning that the semi-convolution
f∗′ : {d(j)}j∈Z 7−→

∑
j∈Z d(j)f(·− j) is one-to-one on the space of all sequences onZ.

Hence, in this paper, the scaling function of an MRA is always assumed to have compact
support and linear independent shifts instead of global support and stable shifts (Riesz basis
property), as considered in the classical wavelet literatures [6, 15, 32, 33].

Let φ be a compactly supported scaling function with linear independent shifts. Since
V0 ⊂ V1, andφ has compact support and linear independent shifts, it follows that

φ =
∑
j∈Z

c0(j)φ(M · −j), (4)

for some finitely supported sequencec0 := {c0(j)}j∈Z on Z. Throughout this paper,
the Fourier transform̂f of an integrable functionf is given byf̂(ξ) =

∫
R
f(x)e−ixξdx.

Taking the Fourier transform of both sides of the refinement equation (4) yields

φ̂(Mξ) = H0(ξ)φ̂(ξ), (5)
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where the functionH0, known as the(two-scale) symbolof the scaling functionφ, is defined
by

H0(ξ) =
1
M

∑
j∈Z

c0(j)e−ijξ. (6)

2.3. Tight affine frames associated with an MRA

We say that a finite collectionΨ of compactly supportedL2-functions generates atight
affine frame associated with an MRA{Vj}j∈Z if Ψ ⊂ V1 and it generates a tight affine
frame. Letφ be a compactly supported scaling function of the MRA{Vj}j∈Z that has linear
independent shifts. Then any functionψ ∈ Ψ is in the algebraic span ofφ(M ·−k), k ∈ Z,
which yields

ψ̂(Mξ) = Hψ(ξ)φ̂(ξ), (7)

in the Fourier domain, whereHψ(ξ), ψ ∈ Ψ, are trigonometric polynomials. The tight
frame property ofΨ is characterized via the symbolH0 of the scaling functionφ in (6) and
the functionsHψ, ψ ∈ Ψ, in (7) (see [8, 9, 16, 36]).

Proposition 2.1. Let{Vj}j∈Z be an MRA with compactly supported scaling function
φ that has linear independent shifts. LetΨ be a finite collection of compactly supported
L2-functions given by (7). ThenΨ is a tight affine frame if and only if there exists a
trigonometric polynomialS(ξ) which satisfies (i)S(0) 6= 0; (ii) S(ξ) ≥ 0 for all ξ ∈ R;
(iii) S(ξ) = S(−ξ) for all ξ ∈ R; and (iv) for allm = 0, . . . ,M − 1,

S(Mξ)H0(ξ)H0

(
ξ +

2mπ
M

)
+

∑
ψ∈Ψ

Hψ(ξ)Hψ

(
ξ +

2mπ
M

)
= δm0S(ξ), (8)

whereH0 is the symbol of the scaling functionφ, andHψ, ψ ∈ Ψ, are given in (7).

By (8), we have

S(ξ) = S(Mξ)|H0(ξ)|2 +
∑
ψ∈Ψ

|Hψ(ξ)|2. (9)

By applying this formula iteratively, we have

S(ξ) = S(Mnξ)
n∏
j=0

|H0(M jξ)|2 +
n∑
j=0

( j−1∏
i=0

|H0(M iξ)|2
)( ∑

ψ∈Ψ

|Hψ(M jξ)|2
)
.

Hence, taking the limit and using the fact that
∏n
j=0 |H(M jξ)|2 → 0 asn → ∞ for all

ξ 6∈ 2πZ, (which follows from the assumptions thatφ is compactly supported, has linear
independent shifts, and belongs toL2), we obtain

S(ξ) =
∞∑
j=0

( j−1∏
i=0

|H0(M iξ)|2
)
×

( ∑
ψ∈Ψ

|Hψ(M jξ)|2
)
. (10)
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So the functionS(ξ), called vanishing moment recovery (VMR) functionin [8, 9], in
Proposition 2.1 is the same as thefundamental functionΘ of resolutionof the tight affine
frameΨ in [16, 36].

Multiplying f̂(ξ + 2kπ)φ̂(ξ + 2kπ)φ̂(ξ) to both sides of (10), and applying (5) and (7),
yields

f̂(ξ + 2kπ)φ̂(ξ + 2kπ)S(ξ)φ̂(ξ)

=
∞∑
j=1

∑
ψ∈Ψ

f̂(ξ + 2kπ)ψ̂(M j(ξ + 2kπ))ψ̂(M jξ), k ∈ Z.

Then summing overk ∈ Z and taking the inverse Fourier transform, we may conclude that

P̃0f =
∑
j<0

Qjf,

where the operators̃Pj , j ∈ Z, are defined by

P̃jf =
∑
k∈Z

〈f, φj,k〉φ̃j,k =
∑
k∈Z

〈f, φ̃j,k〉φj,k, (11)

and the functioñφ in V0 is given bŷ̃
φ(ξ) = S(ξ)φ̂(ξ). By (11) and the dilation invariance

of frame operators at different levels, we have

P̃j =
∑
k<j

Qk, j ∈ Z, (12)

and

Qj = P̃j+1 − P̃j , j ∈ Z. (13)

2.4. Frames of a finitely generated shift-invariant space

For a finite collectionΨ of compactly supportedL2 functions, we define the shift-
invariant spaceV 2(Ψ) by

V 2(Ψ) =
{ ∑
ψ∈Ψ

∑
k∈Z

cψ(k)ψ(· − k) : (cψ(k))k∈Z ∈ `2 for any ψ ∈ Ψ
}
. (14)

Here,`2 denotes, as usual, the space of all square summable sequences onZ. We also use
V 2(ψ1, . . . , ψN ) to denoteV 2(Ψ) whenΨ = {ψ1, . . . , ψN}, and say thatΨ is a frame of
the shift-invariant spaceV 2(Ψ) if there exist two positive constantsA andB such that

A‖f‖22 ≤
∑
ψ∈Ψ

∑
k∈Z

|〈f, ψ(· − k)〉|2 ≤ B‖f‖22, f ∈ V 2(Ψ).

If A = B, then we say thatΨ is a tight frame of the shift-invariant spaceV 2(Ψ). Further-
more, ifA = B = 1, the tight frame is said to be normalized.

The (tight) frame for a finitely generated shift-invariant space is characterized in the
Fourier domain in [2, 3].
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Proposition 2.2. Letψ1, . . . , ψN be compactly supportedL2-functions, and setΨ =
{ψ1, . . . , ψN}. Then

(i) Ψ is a frame of the shift-invariant spaceV 2(Ψ) if and only ifV 2(Ψ) is a closed linear
subspace ofL2, which, in turn, is equivalent to the property that the rank of theN × Z
matrix (ψ̂n(ξ + 2kπ))1≤n≤N,k∈Z is independent ofξ ∈ R;

(ii) Ψ is a tight frame of the shift-invariant spaceV 2(Ψ) if and only if the matrix

B(ξ) :=
( ∑
k∈Z

ψ̂n(ξ + 2kπ)ψ̂n′(ξ + 2kπ)
)

1≤n,n′≤N

satisfies

B(ξ)2 = C0B(ξ), ξ ∈ R, (15)

for some positive constantC0.

3. STABLE AFFINE FRAME DECOMPOSITION IN SOBOLEV SPACES

For the tight affine frame generated by a finite collectionΨ ofL2-functions, the following
stable frame decomposition property holds for anyf ∈ L2:

f =
∑
ψ∈Ψ

∑
j,k∈Z

〈f, ψj,k〉ψj,k,

while the convergence is unconditional inL2. The above frame decomposition can be
extended to functions in a Sobolev space when the tight affine frameΨ satisfies some mild
regularity and vanishing moment conditions.

Theorem 3.1. Letβ > 0, α ∈ (−β, β), and letΨ be a finite collection ofL2- functions
that generate a tight affine frame ofL2, such that any functionψ ∈ Ψ satisfies the regularity
condition: ∑

k∈Z

|ψ̂(ξ + 2kπ)|2(1 + |ξ + 2kπ|2)β ≤ Cβ , ξ ∈ R, (16)

as well as the vanishing moment condition:

|ψ̂(ξ)| ≤ Cβ |ξ|β as ξ → 0. (17)

Then the affine frame decomposition

f =
∑
ψ∈Ψ

∑
j,k∈Z

〈f, ψj,k〉ψj,k =
∑
j∈Z

Qjf, f ∈ Hα, (18)

holds, where the convergence is unconditional inHα. Furthermore, there exists a positive
constantC, independent off ∈ Hα, such that

C−1‖f‖22,α ≤
∑
j∈Z

M2αj+〈Qjf, f〉 ≤ C‖f‖22,α, (19)
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C−1‖f‖22,α ≤
∑
j∈Z

M2αj+‖Qjf‖22 ≤ C‖f‖22,α, (20)

and

C−1‖f‖22,α ≤
∑
j∈Z

‖Qjf‖22,α ≤ C‖f‖22,α, (21)

wherej+ stands formax(j, 0).

Remark 3.1. For a finite familyΨ of L2-functions, we say thatΨ hasstable shiftsif

A
∑
ψ∈Ψ

∑
k∈Z

|cψ(k)|2 ≤
∥∥∥ ∑
ψ∈Ψ

∑
k∈Z

cψ(k)ψ(· − k)
∥∥∥2

2
≤ B

∑
ψ∈Ψ

∑
k∈Z

|cψ(k)|2

holds for all sequences{cψ(k)}k∈Z ∈ `2, ψ ∈ Ψ. Observe that ifΨ has stable shifts, then

A〈Qjf, f〉 ≤ ‖Qjf‖22 ≤ B〈Qjf, f〉, f ∈ Hα

for the same positive constantsA,B independent ofj ∈ Z. Thus, the middle terms in
the estimates in (19) and (20) are equivalent to each other. On the other hand, as we will
discuss later, tight affine framesΨ do not have stable shifts in general (see Theorem 4.4 for
details). To the best of our knowledge, the estimate in (21) is new even forα = 0, when
the stable shift assumption ofΨ is dropped.

Forβ ≥ 0, we say thatψ ∈ Lip β if Dγψ, 0 ≤ γ ≤ β0, are continuous, and

|Dβ0ψ(x)−Dβ0ψ(y)| ≤ C|x− y|β−β0 , x, y ∈ R,

whereβ0 is the largest integer strictly less thanβ, andC is a positive constant. We denote
the class of all compactly supported functions inLip β by Lip0 β. The Sobolev exponent
s2(f) of anL2-functionf is defined by

s2(f) := sup{β : f satisfies (16)}

and the Ḧolder exponentα∞(f) of a continuous functionf by

α∞(f) := sup{β : f ∈ Lip β}.

For example, for themth order cardinalB-splineNm, we haves2(Nm) = m + 1/2 and
α∞(Nm) = m, and hence

s2(Nm) < s2(Nm).

In general, we have the following result on the Hölder exponent and Sobolev exponent of
a compactly supported continuous function.
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Proposition 3.2. Let ψ be a compactly supported continuous function. Then its
Hölder exponentα∞(ψ) and Sobolev exponents2(ψ) satisfy

α∞(ψ) ≤ s2(ψ). (22)

Remark 3.2. The estimates in (19) and (20) are known when the regularity condition
(16) forΨ is replaced byΨ ⊂ Lip0 β (see [18, 19, 20] and the references therein). In that
particular case,{ψj,k}ψ∈Ψ,j,k∈Z constitutes the so-called atoms of the Sobolev spaceHα,
as well as atoms of some Triebel-Lizorkin spaces and Besov spaces. In view of Proposition
3.2, the assertion in Theorem 3.1 generalizes this result of the frame decomposition of
functions in Sobolev spaces.

Remark 3.3. For a scaling functionφ, it is easier to verifyφ ∈ Hβ thanφ ∈ Lip0 β.
In particular, the question of whether or not a scaling functionφ belongs toHβ reduces to
finding the maximum norms of all eigenvalues of a finite matrix generated explicitly by the
symbol of the scaling functionφ (see for instance, [17, 27, 38]). So the regularity condition
(16) for the tight frameΨ is easier to be justified thanΨ ∈ Lip0 β, whenΨ is compactly
supported and is associated with some MRA, while most of known tight frames satisfy those
two conditions. For any compactly supported functionψ, the Sobolev exponents2(ψ) is
usually larger than the Ḧolder exponentα∞(ψ). So functions in a Sobolev spaceHα,
whereminψ∈Ψ α∞(ψ) ≤ α < minψ∈Ψ s2(ψ), have stable affine frame decomposition
by Theorem 3.1. In particular, for spline frames, an application of Theorem 3.1 gives the
following optimal result.

Corollary 3.3. LetNm be themth order cardinalB-spline, andΨ be a finite family
of compactly supported functions defined by

ψ̂(Mξ) = Hψ(ξ)N̂m(ξ)

for some trigonometric polynomialsHψ that satisfy

|Hψ(ξ)| ≤ C|ξ|m+1 as ξ → 0.

Letα ∈ (−m−1/2,m+1/2). Then ifΨ is a tight frame ofL2, any functionf ∈ Hα has a
stable frame decomposition of the form (18) and the coefficients in the frame decomposition
satisfies the estimates in (19), (20) and (21).

Remark 3.4. For a tight frameΨ of L2, the frame decomposition has minimal energy
in the sense that the energyE :=

∑
ψ∈Ψ

∑
j,k∈Z |aψ;j(k)|2 of a decompositionf =∑

ψ∈Ψ

∑
j,k∈Z aψ;j(k)ψj,k is minimum for the frame decomposition, that is,∑

ψ∈Ψ

∑
j,k∈Z

|〈f, ψj,k〉|2 ≤
∑
ψ∈Ψ

∑
j,k∈Z

|aψ;j(k)|2,
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(see [7]). A similar but weaker result can be established for frame decomposition of
functions in Sobolev spaces, as follows.

Corollary 3.4. Let β, α,Ψ be as in Theorem 3.1. Then the frame decomposition
has quasi-minimal energy in Sobolev spaceHα in the sense that there exists a positive
constantC, which depends only onα, β andΨ, such that iff ∈ Hα has a decomposition
f =

∑
ψ∈Ψ

∑
j,k∈Z aψ;j(k)ψj,k with finite energy

∑
ψ∈Ψ

∑
j,k∈ZM

2j+α|aψ;j(k)|2 in the
Sobolev spaceHα, then∑

ψ∈Ψ

∑
j,k∈Z

M2j+α|〈f, ψj,k〉|2 ≤ C
∑
ψ∈Ψ

∑
j,k∈Z

M2j+α|aψ;j(k)|2.

The assumptions in Theorem 3.1 that the tight affine frameΨ is compactly supported
and is associated with an MRA, can be removed. However, under these assumptions, in
addition to the property of homogeneous frame decomposition (18), functions in a Sobolev
space have nonhomogeneous frame decomposition (23) and finite frame decomposition
(28) as well.

Theorem 3.5. Let β > 0, α ∈ (−β, β), and letφ ∈ Hβ be a compactly supported
scaling function of an MRA{Vj}j∈Z that has linear independent shifts. Assume that
Ψ ⊂ V1 is a finite collection of compactly supportedL2 functions, which generate a tight
affine frame ofL2, and that any functionψ ∈ Ψ satisfies the vanishing moment condition
(17). LetP̃0 andφ̃ be defined as in (11). Then the nonhomogeneous frame decomposition

f = P̃0f +
∞∑
j=0

Qjf (23)

:=
∑
k∈Z

〈f, φ̃0,k〉φ0,k +
∞∑
j=0

∑
ψ∈Ψ

∑
k∈Z

〈f, ψj,k〉ψj,k, f ∈ Hα,

holds, where the convergence is unconditional inHα. Furthermore, there exists a positive
constantC such that

C−1‖f‖2,α ≤
( ∑
k∈Z

|〈f, φ̃0,k〉|2
)1/2

+
( ∞∑
j=0

∑
ψ∈Ψ

∑
k∈Z

M2jα|〈f, ψj,k〉|2
)1/2

=
( ∑
k∈Z

|〈f, φ̃0,k〉|2
)1/2

+
( ∞∑
j=0

M2jα〈Qjf, f〉
)1/2

≤ C‖f‖2,α, (24)

C−1‖f‖2,α ≤ ‖P̃0f‖2 +
( ∞∑
j=0

M2jα‖Qjf‖22
)1/2

≤ C‖f‖2,α, (25)

and

C−1‖f‖2,α ≤ ‖P̃0f‖2,α +
( ∞∑
j=0

‖Qjf‖22,α
)1/2

≤ C‖f‖2,α, f ∈ Hα. (26)
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Remark 3.5. If P̃j are projectors, i.e.,̃P 2
j = P̃j , then the estimate (25) follows

from inequalities of Bernstein and Jackson type. We refer to [5, 11, 13] for a detailed
presentation of such a mechanism. Note that ifP̃j are projectors, thenQj = P̃j+1 − P̃j
are also projectors, and this implies that bothP̃jL

2 andQjL2 are closed subspaces ofL2.
Thus, the scaling functionφ of the corresponding MRA{Vj}j∈Z has orthonormal shifts
by Theorem 4.1,QjL2 is the orthogonal complement ofVj in Vj+1, andQj are projectors
on the wavelet spaces obtained from the MRA{Vj}j∈Z. As a consequence, if̃Pj are
projectors, then the frame decomposition (23) becomes essentially the usual orthonormal
wavelet decomposition.

For the tight affine frameΨ associated with an MRA{Vj}j∈Z, we have the following
result on finite frame decomposition with uniform stability in Sobolev space norm.

Theorem 3.6. Letβ, α, φ,Ψ, S(ξ), P̃j be as in Theorem 3.5. In addition, assume that
the functionS(ξ) in (10) associated with the affine tight frameΨ satisfies

S(ξ) 6= 0 ∀ ξ ∈ R. (27)

Then any functionf ∈ VL, L ≥ 1, has the following finite frame decomposition,

f = P̃0hL +Q0hL + · · ·+QL−1hL (28)

=
∑
k∈Z

〈hL, φ̃0,k〉φ0,k +
L−1∑
j=0

∑
ψ∈Ψ

∑
k∈Z

〈hL, ψj,k〉ψj,k,

wherehL = (P̃L)−1f ∈ VL. Furthermore, there exists a positive constantC independent
ofL ≥ 1 andf ∈ VL, so that

C−1‖f‖2,α ≤
( ∑
k∈Z

|〈hL, φ̃0,k〉|2
)1/2

(29)

+
( L−1∑
j=0

M2jα〈QjhL, hL〉
)1/2

≤ C‖f‖2,α;

C−1‖f‖2,α ≤ ‖P̃0hL‖2 +
( L−1∑
j=0

M2jα‖QjhL‖22
)1/2

≤ C‖f‖2,α; (30)

and

C−1‖f‖2,α ≤ ‖P̃0hL‖2,α +
( L−1∑
j=0

‖QjhL‖22,α
)1/2

≤ C‖f‖2,α. (31)

Remark 3.6. The multiscale techniques have become indispensable tools in several
areas of mathematical applications, such as in the numerical treatment of differential (or
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integral) equations. The task is usually formulated to approximating an (implicitly) given
function (e.g., a unknown solution of a different equation) in some infinite dimensional
function spaceB by some subspacesSj ⊂ B at different levels, such as the spaces
Vj , j ∈ Z, in an MRA [5, 11, 13]. Corresponding to the above approximating spacesSj
are the approximating operatorsPj , that are the projectors fromB to Sj . In the affine
frame setting, an operator similar to the projectorPj is the operator̃Pj in (11), which is no
longer a projector, but is still an approximating identity. So for affine frame decomposition,
we use operator approximation of the identity instead of space approximation of the whole
space. Theorems 3.5 and 3.6 assure uniform stability over all levels of the affine frame
decomposition in view of the operator approach to approximation of the identity on a
Sobolev space.

Remark 3.7. Given finite collectionsΨ := {ψ1, . . . , ψN} andΨ̃ := {ψ̃1, . . . , ψ̃N}
of L2 functions. We say thatΨ and Ψ̃ generate abi-frame of L2(Rd) if both F :=
{ψn;j,k}1≤n≤N,j∈Z,k∈Zd andF̃ := {ψ̃n;j,k}1≤n≤N,j,k∈Z are frames ofL2(Rd), and if

f =
N∑
n=1

∑
j∈Z,k∈Zd

〈f, ψn;j,k〉ψ̃n;j,k =
N∑
n=1

∑
j∈Z,k∈Zd

〈f, ψ̃n;j,k〉ψn;j,k for all f ∈ L2(Rd),

whereψn;j,k = M jd/2ψn(M j ·−k) ([8, 9, 16, 36]). We remark that all results in Theorems
3.1, 3.5 and 3.6 can be generalized to the bi-frame case with standard modification: the
tight frame assumption forΨ by the bi-frame assumption forΨ := {ψ1, . . . , ψN} and
Ψ̃ := {ψ̃1, . . . , ψ̃N}; the regularity assumption (16) and vanishing moment assumption
(17) for Ψ by the same assumptions for bothΨ and Ψ̃; the affine frame operatorQj
associated with the tight affine frameΨ by the affine frame operatorRj associated with the
bi-frameΨ andΨ̃,

Rj =
N∑
n=1

∑
k∈Zd

〈f, ψn;j,k〉ψ̃n;j,k ∀ f ∈ L2;

and〈Qjf, f〉 in Theorems 3.1, 3.5 and 3.6 by
∑N
n=1

∑
k∈Zd |〈f, ψn;j,k〉|2.

3.1. Proof of Theorem 3.1
To prove Theorem 3.1, we need the following two lemmas.

Lemma 3.7. Letβ > 0 and |α| < β. Assume thatψ satisfies the regularity condition
(16) and the vanishing moment condition (17). Then there exists a positive constantC,
such that, for all functionsgj =

∑
k∈Z cj,kψj,k with {cj,k}k∈Z ∈ `2, j ∈ Z,

|〈Jαgj ,Jαgj′〉| ≤ CM−(β−|α|)|j−j′|M (j++j′+)α (32)( ∑
k∈Z

|cj,k|2
)1/2( ∑

k∈Z

|cj′,k|2
)1/2

, j, j′ ∈ Z.
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Proof. Without loss of generality, we assume thatj ≤ j′. LetAj(ξ) =
∑
k∈Z cj,ke

−ikξ

be the Fourier series of the sequences{cj,k}k∈Z, j ∈ Z. Now, since

Ĵαgj(ξ) = (1 + |ξ|2)α/2Aj(M−jξ)M−j/2ψ̂(M−jξ),

we have

|〈Jαgj ,Jαgj′〉| (33)

= M−(j+j′)/2

∫
R

(1 + |ξ|2)αAj(M−jξ)Aj′(M−j′ξ)

ψ̂(M−jξ)ψ̂(M−j′ξ)dξ

≤ M (j++j′+)α+(j−j′)δ0

×
( ∫

R

|Aj(ξ)|2(M−2j+ +M2j− |ξ|2)α|ξ|2δ0 |ψ̂(ξ)|2dξ
)1/2

×
( ∫

R

|Aj′(ξ)|2(M−2j′+ +M2j′− |ξ|2)α|ξ|−2δ0 |ψ̂(ξ)|2dξ
)1/2

,

whereδ0 = β − |α| andx− = min(0, x). Forξ ∈ [−π, π], it follows from (16) and (17)
that ∑

k∈Z

(M−2j+ +M2j− |ξ + 2kπ|2)α|ξ + 2kπ|2δ0 |ψ̂(ξ + 2kπ)|2 (34)

≤ C1 + C1

∑
0 6=k∈Z

(1 + |ξ + 2kπ|2)α|ξ + 2kπ|2δ0 |ψ̂(ξ + 2kπ)|2 ≤ C2

for 0 ≤ j ∈ Z, and∑
k∈Z

(M−2j+ +M2j− |ξ + 2kπ|2)α|ξ + 2kπ|2δ0 |ψ̂(ξ + 2kπ)|2 (35)

≤ C3

∑
k∈Z

(1 + |ξ + 2kπ|2)α+ |ξ + 2kπ|2δ0 |ψ̂(ξ + 2kπ)|2 ≤ C4

for 0 ≥ j ∈ Z, whereC1, C2, C3, C4 are positive constants independent ofj ∈ Z and
ξ ∈ [−π, π]. Similarly by (16) and (17), we have∑

k∈Z

(M−2j′+ +M−2j′− |ξ + 2kπ|2)α|ξ + 2kπ|−2δ0 |ψ̂(ξ + 2kπ)|2 ≤ C5 (36)

for all j ∈ Z andξ ∈ [−π, π], whereC5 is a positive constant independent ofj andξ.
Combining (33), (34), (35) and (36), we obtain

|〈Jαgj ,Jαgj′〉|

≤ M (j++j′+)α+(j−j′)δ0
( ∫ π

−π
|Aj(ξ)|2dξ

)1/2( ∫ π

−π
|Aj′(ξ)|2dξ

)1/2

×
(

sup
|ξ|≤π

∑
k∈Z

(M−2j+ +M2j− |ξ + 2kπ|)α|ξ + 2kπ|2δ0 |ψ̂(ξ + 2kπ)|2
)1/2

×
(

sup
|ξ|≤π

∑
k∈Z

(M−2j′+ +M2j′− |ξ + 2kπ|2)α|ξ + 2kπ|−2δ0 |ψ̂(ξ + 2kπ)|2
)1/2
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≤ CM (j++j′+)α+(j−j′)δ0
( ∑
k∈Z

|cj,k|2
)1/2( ∑

k∈Z

|cj′,k|2
)1/2

,

for some positive constantC independent ofj, j′ ∈ Z, and{cj,k}, {cj′,k} ∈ `2. Hence,

(32) follows.

Lemma 3.8. Letβ > 0, α ∈ (−β, β), and letΨ be a finite collection ofL2-functions
such that any functionψ ∈ Ψ satisfies the regularity condition (16) and the vanishing
moment condition (17). Define

gj =
∑
ψ∈Ψ

∑
k∈Z

cψ;j(k)ψj,k

for some`2-sequences{cψ;j(k)}k∈Z, ψ ∈ Ψ, j ∈ Z. Then for anyε > 0, there exists a
positive constantCε such that

‖gj‖2,α ≤ CεM
j+α‖gj‖2 + εM j+α

( ∑
ψ∈Ψ

∑
k∈Z

|cψ;j(k)|2
)1/2

, j ∈ Z. (37)

Proof. Let hs be the characteristic function of the annulus{s ≤ |ξ| ≤ s−1}, wheres is
some sufficiently small positive number to be assigned later. Note that

ĝj(ξ) = M−j/2
∑
ψ∈Ψ

Aψ;j(M−jξ)ψ̂(M−jξ),

whereAψ;j is the Fourier series of the sequence{cψ;j(k)}k∈Z. Then∥∥F−1
(
ĝj(·)ĥs(M−j ·)

)∥∥
2,α

≤ Cs−|α|M j+α‖gj‖2 (38)

for some positive constantC independent ofj ∈ Z ands ∈ (0, 1). By (16) and (17), we
obtain

‖F−1(ĝj(·)(1− ĥs(M−j ·))‖22,α (39)

=
( ∫

|ξ|≤Mjs

+
∫
|ξ|≥Mjs−1

)
|ĝj(ξ)|2(1 + |ξ|2)αdξ

≤ C1

∑
ψ∈Ψ

∫
|ξ|≤s

|Aψ;j(ξ)|2|ψ̂(ξ)|2(1 +M2j |ξ|2)αdξ

+C1

∑
ψ∈Ψ

∫
|ξ|≥s−1

|Aψ;j(ξ)|2|ψ̂(ξ)|2(1 +M2j |ξ|2)αdξ

≤ C2 max
|ξ|≤s

(1 +M2j |ξ|2)α|ξ|2β ×
∫
|ξ|≤π

∑
ψ∈Ψ

|Aψ;j(ξ)|2dξ

+C2M
2j+α

∑
ψ∈Ψ

∫
|ξ|≥s−1

|Aψ;j(ξ)|2|ψ̂(ξ)|2(1 + |ξ|2)|α|dξ

≤ C3M
2j+αs2(β−|α|)

∑
ψ∈Ψ

∫ π

−π
|Aψ;j(ξ)|2dξ,
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whereC1, C2, C3 are positive constants independent ofs ∈ (0, 1) andj ∈ Z. Combining

(38) and (39), we have, for sufficiently smalls, the estimate (37).

Proof (Proof of Theorem 3.1). First we establish the inequalities on the right-hand side
of (19), (20) and (21). Recall that if

∑
k∈Z |ĥ(ξ+2kπ)|2 is bounded, there exists a positive

constantC so that ∥∥∥ ∑
k∈Z

ckh(· − k)
∥∥∥2

2
≤ C

∑
k∈Z

|ck|2

for all `2 sequence{ck}. Therefore the inequality on the right-hand side of (20) follows
from the inequality on the right-hand side of (19). Clearly, the inequality on the right-hand
side of (21) follows from Lemma 3.8 and the inequalities on the right-hand side of (19) and
(20). Therefore it suffices to establish the second inequality in (19). This, in turn, depends
on the estimate: ∑

j,k∈Z

M2j+α|〈f, ψj,k〉|2 ≤ C‖f‖22,α, f ∈ Hα, (40)

for any functionψ that satisfies (16) and (17), for some positive constantC independent of
f . For any compactly supported functionψ, we have∑

k∈Z

|〈f, ψj,k〉|2

= M j

∫ π

−π

∣∣∣ ∑
k∈Z

f̂(M j(ξ + 2kπ))ψ̂(ξ + 2kπ)
∣∣∣2dξ

≤ C1M
j

∫
R

|f̂(M jξ)|2|ψ̂(ξ)|2dξ

+C1M
j−2j+α

∫ π

−π
dξ

( ∑
k 6=0

|f̂(M j(ξ + 2kπ))|2(1 +M j+ |ξ + 2kπ|)2α

(1 + |ξ + 2kπ|)−2(α+β)
)
×

( ∑
k 6=0

|ψ̂(ξ + 2kπ)|2(1 + |ξ + 2kπ|)2β
)
,

whereC1 is a positive constant independent off . Thus, for any functionψ satisfying (16)
and (17), we obtain∑

j,k∈Z

M2j+α|〈f, ψj,k〉|2

≤ C2

∫
R

|f̂(ξ)|2
∞∑

j=−∞
M2j+α|ψ̂(M−jξ)|2dξ

+C2

∞∑
j=−∞

∫
|ξ|≥Mjπ

|f̂(ξ)|2(1 +M j+−j |ξ|)2α(1 +M−j |ξ|)−2(α+β)dξ

≤ C3

∫
R

|f̂(ξ)|2
∞∑

j=−∞
M2j+α min(|M−jξ|2β , |M−jξ|−2β)dξ
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+C3

∫
R

|f̂(ξ)|2
lnM (|ξ|/π)∑
j=−∞

(1 +M j+−j |ξ|)2α(1 +M−j |ξ|)−2(α+β)dξ

≤ C4‖f‖22,α,

whereC2, C3, C4 are positive constants independent off ∈ Hα. This completes the proof
of (40), and hence the second inequality in (19).

Next, we establish the first inequalities in (19), (20), and (21). The first inequality in
(20) follows from the first inequality of (21), Lemma 3.8, and the second inequality in (19).
On the other hand, the first inequality in (19) follows from the first inequality in (20) and
the trivial estimate‖Qjf‖22 ≤ C〈Qjf, f〉. Therefore, it suffices to prove the validity of
the first inequality in (21). In this situation, we recallf =

∑
j∈ZQjf =:

∑
j∈Z gj . By

Lemma 3.7 and the second inequality in (19), we obtain

‖f‖22,α =
∑
j,j′∈Z

〈Jαgj ,Jαgj′〉

≤ C
∑

|j−j′|>L

M−δ0|j−j′|M (j++j′+)α
∑
ψ∈Ψ

( ∑
k∈Z

|〈f, ψj,k〉|2
)1/2

×
( ∑
k∈Z

|〈f, ψj′,k〉|2
)1/2

+
∑

|j−j′|≤L

‖Jαgj‖2‖Jαgj′‖2

≤ CM−δ0L‖f‖22,α + CL
∑
j∈Z

‖Jαgj‖22,

whereδ0 = β − |α|, L ≥ 1, andC is a positive constant independent ofL. Hence, for
sufficient largeL in the above estimate, we obtain

‖f‖22,α ≤ C
∑
j∈Z

‖gj‖22,α (41)

for some positive constantC. This completes the proof of the first inequality in (21), and
hence all the inequalities in (19), (20), and (21) are established.

Finally, we prove the unconditional convergence of the affine frame decomposition (18).
By Lemma 3.7, we have∥∥∥ ∑

j,k∈Z

aj,kψj,k

∥∥∥2

2,α
≤ C

∑
j,k∈Z

M2j+α|aj,k|2 (42)

for some constantC whenψ satisfies the regularity condition (16) and the vanishing moment
condition (17). Hence, the unconditional convergence of the frame decomposition (18) fol-

lows directly from (19) and (42).

3.2. Proof of Proposition 3.2

Clearly if ψ satisfies (16) thenψ ∈ Hβ . Conversely ifψ is a compactly supported
function inHβ thenψ satisfies (16). Indeed, for anyξ ∈ R,∑

k∈Z

|ψ̂(ξ + 2kπ)|2(1 + |ξ + 2kπ|2)β
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≤ C1

∫
R

( ∑
k∈Z

|ĥ(ξ + 2kπ − η)|(1 + |ξ + 2kπ|2)β
)
|ψ̂(η)|2dη

≤ C2

∫
R

|ψ̂(η)|2(1 + |η|2)βdη <∞,

whereh is a compactly supportedC∞ functionh with ψ = hψ, andC1, C2 are positive
constants independent ofξ. Therefore a compactly supported functionψ satisfies (16) if
and only ifψ ∈ Hβ . From this, the proof of (22) reduces to showing that

Lip0 α ⊂ Hβ for all α > β ≥ 0. (43)

Letψ ∈ Lip0 α, α > β ≥ 0, g be a compactly supportedC∞ satisfyingĝ(ξ) = O(ξα+1)
asξ → 0 and ĝ(ξ) 6= 0 as1/2 ≤ |ξ| ≤ 1, andgj(x) = 2jg(2jx) for j ≥ 1. Then the
functionsgj ∗ ψ, j ≥ 1, obtained by the convolution betweengj andψ are supported in a
bounded setK (independent ofj), and theirL∞-norm are bounded byC2−jα for some
constantC independent ofj ≥ 1, namely,

‖gj ∗ ψ‖∞ ≤ C2−jα, j ≥ 1.

By the standard Littlewood-Paley decomposition of compactly supported Hölder continu-
ous functions [20], we see that∫

R

(1 + |ξ|2)β |ψ̂(ξ)|2dξ

≤ 2β‖ψ‖22 + 2β
∞∑
j=1

22jβ

∫
2j−1≤|ξ|≤2j

|ψ̂(ξ)|2dξ

≤ C‖ψ‖22 + C
∞∑
j=1

22jβ‖gj ∗ ψ‖22

≤ C ′‖ψ‖2∞ + C ′
∞∑
j=1

22jβ‖gj ∗ ψ‖2∞ <∞

whereC,C ′ are positive constants. This proves (43) and completes the proof of the
Proposition.

3.3. Proof of Corollary 3.3
From its Fourier transform formulation

N̂m(ξ) =
(

1− e−iξ

iξ

)m+1

,

we see that themth order cardinalB-splineNm satisfies the regularity condition (18) for
any0 < β < m+ 1/2. Hence, the conclusion follows from Theorem 3.1.

3.4. Proof of Corollary 3.4
The conclusion follows directly from (19) and (42).

3.5. Proof of Theorem 3.5
Sinceφ is compactly supported, we have thatφ = hφ for some compactly supported

C∞ functionh. Taking the Fourier transform on both sides ofφ = hφ and noting that
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φ ∈ Hβ , we have∑
k∈Z

|φ̂(ξ + 2kπ)|2(1 + |ξ + 2kπ|2)β (44)

≤ C1

∑
k∈Z

∫
R

(1 + |ξ + 2kπ − η|2)−2β−1|φ̂(η)|2dη × (1 + |ξ + 2kπ|2)β

≤ C2‖φ‖22,β , ξ ∈ R,

for some positive constantsC1, C2. This proves thatφ satisfies the regularity condition
(16).

By the Hölder inequality, we have

∑
k∈Z

|〈f, φ0,k〉|2 ≤
∫ π

−π

( ∑
k∈Z

|f̂(ξ + 2kπ)||φ̂(ξ + 2kπ)|
)2

dξ

≤
∫ π

−π

( ∑
k∈Z

|f̂(ξ + 2kπ)|2(1 + |ξ + 2kπ|2)α
)

×
( ∑
k′∈Z

|φ̂(ξ + 2k′π)|2(1 + |ξ + 2k′π|2)−α
)
dξ.

This, together with (44), implies that∑
k∈Z

|〈f, φ0,k〉|2 ≤ C‖f‖22,α, (45)

for all f ∈ Hα, α ∈ (−β, β), whereC is a positive constant.
By (44) and the assumption thatφ has linear independent shifts, there exists a positive

constantC such that

C−1 ≤
∑
k∈Z

|φ̂(ξ + 2kπ)|2 ≤ C,

and

C−1 ≤
∑
k∈Z

|φ̂(ξ + 2kπ)|2(1 + |ξ + 2kπ|2)α ≤ C, ξ ∈ R.

For anyf0 ∈ V0, we have thatf̂0(ξ) = a(ξ)φ̂(ξ) for some2π-periodic functiona(ξ).
Thus,

C−1

∫ π

−π
|a(ξ)|2dξ ≤ ‖f0‖22 ≤ C

∫ π

−π
|a(ξ)|2dξ,

and

C−1

∫ π

−π
|a(ξ)|2dξ ≤ ‖f0‖22,α ≤ C

∫ π

−π
|a(ξ)|2dξ.

This proves that

C−1‖f0‖2 ≤ ‖f0‖2,α ≤ C‖f0‖2, f0 ∈ V0, (46)

for some positive constantC.
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By (44) and the assumption onΨ, we see that any functionψ ∈ Ψ satisfies (16).
Therefore the inequalities on the right-hand sides of (23), (25) and (26) follow directly
from (45), (46), and the inequalities on the right-hand sides of (19), (20) and (21). The
inequalities on the left-hand sides of (23), (25) and (26) follow by using a similar method
as in the proof of Theorem 3.1. We can therefore safely omit the details of the proof here.

3.6. Proof of Theorem 3.6

For anyf0 ∈ V0, we havef̂0(ξ) = a(ξ)φ̂(ξ) for some square-integrable2π-periodic
functiona. Thus,

̂̃P0f0(ξ) = a(ξ)S(ξ)Φ(ξ)φ̂(ξ) = S(ξ)Φ(ξ)f̂0(ξ),

whereΦ(ξ) =
∑
k∈Z |φ̂(ξ+2kπ)|2. This, together with strict positivity ofS(ξ) andΦ(ξ),

implies thatP̃0 has a bounded inverse onV0. Hence, we obtain, from dilation invariance,
that

‖P̃Lf‖2 ≥ C‖f‖2, f ∈ VL, (47)

for some positive constantC independent ofL ≥ 0. By (13) and (47), the following finite
frame decomposition property holds for anyf ∈ VL:

f = QL−1hL + · · ·+Q0hL + P̃0hL

=
L−1∑
j=0

∑
ψ∈Ψ

∑
k∈Z

〈hL, ψj,k〉ψj,k +
∑
k∈Z

〈hL, φ̃0,k〉φ0,k,

wherehL = P̃−1
L f ∈ VL. The estimates in (29), (30) and (31) can be proved by using a

similar method as in the proof of Theorems 3.1 and 3.5. It is then safe to omit the details
of the proof here.

4. RANGES OF THE OPERATORS P̃J AND QJ

We have shown that by Theorem 3.5, for a tight affine frameΨ associated with an MRA,
the identity operator on the Sobolev space has a stable decomposition. Corresponding to
the operator decomposition of the identity operator is the decomposition of the Sobolev
spaceHα, namely:

Hα = P̃0H
α +

∞∑
j=0

QjH
α.

An interesting question that arises then is whether or not the subspacesP̃0H
α and

QjH
α, j ∈ Z, are Hilbert subspaces ofHα.

We say that a subspaceV of L2 is ashift-invariant spaceif f(· − k) ∈ V for anyf ∈ V
andk ∈ Z. For a tight affine frameΨ associated with an MRA, the rangesP̃0L

2 andQ0L
2

are shift-invariant subspaces ofL2. If both the scaling functionφ of the MRA{Vj}j∈Z and
the tight affine frameΨ associated with this MRA satisfy the regularity condition (16), then
following the proof of (45), we have that̃P0H

α is a shift-invariant subspace ofV0 = V 2(φ)
and thatQ0H

α is a shift-invariant subspace ofV 2(Ψ). This motivates our study of the
rangesP̃0H

α andQ0H
α via the theory of shift-invariant spaces.
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Theorem 4.1. Letβ > 0, α ∈ (−β, β), and let{Vj}j∈Z be an MRA with compactly
supported scaling functionφ ∈ Hβ that has linear independent shifts. Assume thatΨ is a
finite family of compactly supportedL2-functions inV1 that generate a tight affine frame
of L2, and that any functionψ ∈ Ψ satisfies the vanishing moment condition (17). Then
the following statements are equivalent:

(i) Both P̃0H
α andQjHα, j ∈ Z, are closed inL2 (or equivalently inHα).

(ii) Q0H
α is the orthogonal complement ofV0 in V1 ⊂ L2, andφ has orthonormal

shifts, i.e.,〈φ, φ(· − k)〉 = δk0, k ∈ Z.

(iii) {ψ(· − k) : ψ ∈ Ψ, k ∈ Z} is a tight frame of the shift-invariant spaceV 2(Ψ).

For a tight frameΨ associated with an MRA{Vj}j∈Z, we note that if the scaling function
φ of this MRA has orthonormal shifts, and the rangeQjHα of the frame operatorQj at
each level is the same as the wavelet space at the corresponding level, then the affine frame
decomposition of a functionf in Hα becomes essentially the usual orthogonal wavelet
decomposition. So by Theorem 4.1, the rangesP̃0H

α andQjHα are not closed inL2 in
general.

Recall that for a compactly supported scaling functionφ ∈ Hα, there exists aδ > 0 so
thatφ ∈ Hα+δ (see for instance [31]). Therefore, by Theorem 4.1, we have the following
result, which generalizes a result in [21].

Corollary 4.2. Let{Vj}j∈Z be an MRA with compactly supported scaling function
φ that has linear independent shifts, and letΨ be a finite family of compactly supported
L2-functions inV1. Assume thatΨ generates a tight affine frame ofL2, and also a tight
frame of the shift-invariant spaceV 2(Ψ). Thenφ has orthonormal shifts.

The rest of this section is divided into three parts. In the first and second parts, we give
various characterizations of the topological property of closedness forP̃0H

α andQjHα,
respectively. The proof of Theorem 4.1 is given in the last part of this section.

4.1. Range of the operatorP̃0

In this subsection, we study the topological property of closedness of the range of the
operatorP̃0 in the Sobolev spaceHα. We remark that in the following result, the function
φ needs not be a scaling function and thatS needs not be the vanishing moment recovery
function of a tight affine frame, even though we use the same notation as before.

Theorem 4.3. Let β > 0, α ∈ (−β, β), and φ ∈ Hβ be a compactly supported
function that has linear independent shifts. Assume thatS(ξ) is a nontrivial trigonometric
polynomial, and define the operator̃P0 onHα by

P̃0f =
∑
k∈Z

〈f, φ̃0,k〉φ0,k,

wherễ
φ(ξ) = S(ξ)φ̂(ξ). Then the following statements are equivalent:

(i) P̃0H
α is closed inL2 (or equivalently inHα).

(ii) S(ξ) 6= 0 for all ξ ∈ R.
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(iii) P̃0H
α = V 2(φ).

Proof. First we prove (i)=⇒ (ii). Suppose, on the contrary, thatS(ξ0) = 0 for some
ξ0 ∈ R. Then there exist a positive constantδ0 > 0 and a functionA(ξ) ∈ L2

2π supported
in [ξ0, ξ0 + δ0] so thatS(ξ) 6= 0 for all ξ ∈ (ξ0, ξ0 + δ0], andA(ξ)S(ξ)−1 6∈ L2

2π. Here,
L2

2π denotes, as usual, the space of all square-integrable2π-periodic functions. For any
δ ∈ (0, δ0), we introduce the functionsfδ andgδ by setting

f̂δ(ξ) = A(ξ)χEδ
(ξ)φ̂(ξ),

and

ĝ
δ
(ξ) = A(ξ)S(ξ)−1χEδ

(ξ)
( ∑
k∈Z

|φ̂(ξ + 2kπ)|2
)−1

φ̂(ξ),

whereEδ = [ξ0 + δ, ξ0 + δ0] + 2πZ. Thengδ belongs toHα and satisfies̃P0gδ = fδ,
which, in turn, implies thatfδ ∈ P̃0H

α. Also we note thatfδ tends tof0 asδ tends to zero,
wheref̂0(ξ) = A(ξ)φ̂(ξ). Therefore, since the spacẽP0H

α is closed,f0 = P̃0g0 for some
g0 ∈ Hα. Taking the Fourier transform of both sides, we have, by the property of linear
independent shifts of the scaling functionφ,∑

k∈Z

ĝ0(ξ + 2kπ)φ̂(ξ + 2kπ) = A(ξ)S(ξ)−1,

which leads to a contradiction, since the left-hand side belongs toL2
2π but the right-hand

side does not.
Next, we prove (ii)=⇒ (iii). Let S(ξ) 6= 0 for all ξ ∈ R. Following the proof of (47),

we see that the restriction of the operatorP̃0 onV 2(φ) has a bounded inverse. Recall that
V 2(φ) ⊂ Hα by the assumption onφ. Therefore the above two observations together lead
to the assertion that̃P0H

α = V 2(φ).
Finally, the implication (iii)=⇒ (i) follows easily since the spaceV 2(φ) is closed inL2 as

well as inHα.

Remark 4.1. For functionsψn andψ̃n, 1 ≤ n ≤ N , satisfying (16) withβ = 0, we
define the operatorR onL2 by

Rf =
N∑
n=1

∑
k∈Z

〈f, ψn(· − k)〉ψ̃n(· − k) ∀ f ∈ L2. (48)

Using the Fourier technique (c.f. [2, 3]), one may prove the following results for an operator
R of the form (48):RL2 is closed inL2 if and only if there exists a positive constantC
such that

C−1(AΨ(ξ))1/2AΨ̃(ξ)(AΨ(ξ))1/2 ≤
(
(AΨ(ξ))1/2AΨ̃(ξ)(AΨ(ξ))1/2

)2

≤ CA
1/2
Ψ (ξ)AΨ̃(ξ)A1/2

Ψ (ξ) (49)

holds for almost allξ ∈ Rd; andRV 2(Φ) is closed inL2 if and only if there exists a
positive constantC such that

C−1AΦ,Ψ(ξ)AΨ̃(ξ)AΨ,Φ(ξ) ≤
(
AΦ,Ψ(ξ)AΨ̃(ξ)AΨ,Φ(ξ)

)2
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≤ CAΦ,Ψ(ξ)AΨ̃(ξ)AΨ,Φ(ξ) (50)

holds for almost allξ ∈ Rd, whereΦ = {φn, 1 ≤ n ≤ N ′} satisfies (16) withβ = 0 for
everyφn ∈ Φ. Here the correlation matrixAΨ,Φ(ξ) is defined by

AΨ,Φ(ξ) =
∑
k∈Z

Ψ̂(ξ + 2kπ)Φ̂(ξ + 2kπ)
T

and the auto-correlation matrixAΦ(ξ) := AΦ,Φ(ξ). If we further assume that{ψn(· − k) :
1 ≤ n ≤ N, k ∈ Z} for a Riesz basis for its generating spaceV 2(Ψ) and any function
ψ ∈ Ψ satisfies (16) withβ = α, thenRHα is closed inL2 if and only if there exists a
positive constantC such that

C−1AΨ̃(ξ) ≤ (AΨ̃(ξ))2 ≤ CAΨ̃(ξ) (51)

holds for almost allξ ∈ Rd. This characterization for the closedness ofRHα simply
implies the equivalence of the statements (i) and (ii) in Theorem 4.3.

4.2. Range of the operatorQ0

In this subsection, we consider the problem of whether or notQ0H
α is closed inL2 (or

equivalently inHα). Thus we establish some connections among the topological property
of closedness ofQ0H

α, the frame property of the shifts of functions inΨ, and the existence
of tight affine frames with a minimal number of generators.

Theorem 4.4. Letβ > 0, α ∈ (−β, β), and let{Vj}j∈Z be an MRA with compactly
supported scaling functionφ ∈ Hβ that has linear independent shifts. Assume thatΨ ⊂ V1

be a finite collection of compactly supported functions that generates a tight affine frame
ofL2. Write

ψ̂(ξ) = Hψ

( ξ

M

)
φ̂
( ξ

M

)
, ψ ∈ Ψ, (52)

set

H(ξ) =
(
Hψ

(
ξ +

2mπ
M

))
ψ∈Ψ,0≤m≤M−1

, (53)

and letS(ξ) be defined as in (10). Then the following statements are equivalent:

(i) Q0H
α is a closed subspace ofL2.

(ii) Q0H
α = V 2(Ψ).

(iii) {ψ(· − k) : ψ ∈ Ψ, k ∈ Z} is a frame ofV 2(Ψ).
(iv) There exist compactly supported functionsψ∗1 , . . . , ψ

∗
M−1 in V1 such thatΨ∗ :=

{ψ∗1 , . . . , ψ∗M−1} generates a tight affine frame ofL2 and that{ψ∗m(· − k) : 1 ≤ m ≤
M − 1, k ∈ Z} is a Riesz basis ofV 2(Ψ).

(v) The rank ofH(ξ) isM − 1 for all ξ ∈ R.
(vi) S(ξ) satisfies

M−1∑
m=0

S(Mξ)
S(ξ + 2mπ/M)

∣∣∣H0

(
ξ +

2mπ
M

)∣∣∣2 = 1, ξ ∈ R. (54)
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(vii) The rank of(ψ̂(ξ + 2kπ))ψ∈Ψ,k∈Z is independent ofξ in a neighborhood of the
origin.

(viii) There exist a positive constantC and negative integerL1, such that

0∑
j=L1

〈Qjf, f〉 ≥ C‖f‖22, f ∈ V 2(Ψ). (55)

Remark 4.2. By the dilation invariance of the Sobolev spaceHα, the spaceQ0H
α

is closed inL2 if and only if all the subspacesQjHα, j ∈ Z, are closed inL2. Thus, the
condition (i) in Theorem 4.4 is equivalent to the closedness of the subspacesQjH

α, j ∈ Z,
in L2 (or inHα by (46)).

Remark 4.3. A finite family Ψ of compactly supported functions may generate differ-
ent shift-invariant subspaces for different purposes, such as,Q0L

2 for the theory of frames,
V 2(Ψ) in (14) for sampling theory [1, 2], andS2(Ψ) for approximation theory [4, 23, 26].
Here,S2(Ψ) is theL2-closure of the algebraic span of the shifts of functions inΨ. Clearly,
we have

Q0L
2 ⊂ V 2(Ψ) ⊂ S2(Ψ).

In [2], it is shown thatV 2(Ψ) = S2(Ψ) if and only if V 2(Ψ) is a closed subspace ofL2.
This, together with Theorem 4.4, implies that either

Q0L
2 = V 2(Ψ) = S2(Ψ),

or

Q0L
2 6= V 2(Ψ) 6= S2(Ψ).

Remark 4.4. If the scaling functionφ has orthonormal shifts, then the corresponding
symbolH0 satisfies

M−1∑
m=0

∣∣∣H0

(
ξ +

2mπ
M

)∣∣∣2 = 1. (56)

The converse does not hold, as can be seen from the example thatH0(ξ) = (1 + e−3iξ)/2
for M = 2 satisfies (56) but the corresponding refinable functionχ[0,3] does not have
orthonormal shifts. It is shown in [30] that the functionψ := χ[0,3/2] − χ[3/2,3] generates
a tight affine frame ofL2. On the other hand, one may easily verify thatψ has linear
independent shifts. The familyΨ∗ := {ψ∗1 , . . . , ψ∗M−1} in (iv) of Theorem 4.4 has
similar properties, namely:{ψj,k : k ∈ Z} generates a Riesz basis for everyj ∈ Z, but
∪j∈Z{ψj,k : k ∈ Z} is a tight affine frame ofL2.

To prove Theorem 4.4, we recall a result on tight frames withM − 1 generators, given
in [8] for M = 2 and [9] forM ≥ 2.
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Lemma 4.5. Let{Vj}j∈Z be an MRA with compactly supported scaling functionφ that
has linear independent shifts, and letH0 be the symbol of the scaling functionφ. Assume
thatΨ := {ψ1, . . . , ψM−1} ⊂ V1 generates a tight affine frame ofL2. Then

M−1∑
m=0

S(Mξ)
S(ξ + 2mπ/M)

∣∣∣H0

(
ξ +

2mπ
M

)∣∣∣2 = 1, (57)

where the functionS(ξ) is defined as in (10). Conversely, if the trigonometric polynomial
S satisfies (57),S(0) 6= 0, S(ξ) ≥ 0 andS(ξ) = S(−ξ) for all ξ ∈ R, then there exists
Ψ := {ψ1, . . . , ψM−1} ⊂ V1 such thatΨ generates a tight affine frame ofL2, andS(ξ) is
defined as in (10) with the above tight affine frameΨ.

To prove Theorem 4.4, we also need a result about dense subspaces of a shift-invariant
space.

Lemma 4.6. Let β > 0, α ∈ (−β, β), and letφ1, . . . , φL be compactly supported
functions that have linear independent shifts and satisfy (16). Also, letψ1, . . . , ψN be in
the algebraic span of{φl(· − k) : 1 ≤ l ≤ L, k ∈ Z}, and define

Q0f =
N∑
n=1

∑
k∈Z

〈f, ψn(· − k)〉ψn(· − k), f ∈ Hα.

If the rank of theN × Z matrix
(
ψ̂n(ξ0 + 2kπ)

)
1≤n≤N,k∈Z

is L for someξ0 ∈ R, then

the closure ofQ0H
α in L2 is V 2(φ1, . . . , φL). The converse also holds.

Proof. First we prove the density ofQ0H
α in V 2(φ1, . . . , φL). Write ψ̂n(ξ) =∑L

l=1Hn,l(ξ)φ̂l(ξ). Since
(
φ̂l(ξ + 2kπ)

)
1≤l≤L,k∈Z

has rankL for all ξ ∈ R by the
linear independent shifts ofφ1, . . . , φL [28, 35], it follows that the rank of theN × Z
matrix

(
ψ̂n(ξ + 2kπ)

)
1≤n≤N,k∈Z

is the same as that of theN × L matrix H(ξ) :=
(Hn,l(ξ))1≤n≤N,1≤l≤L. By the assumption onψn, 1 ≤ n ≤ N , H(ξ0) is of full rank, and
henceH(ξ) is of full rank except for finitely many points, say in the setΞ = {ξ1, . . . , ξs},
since all entries ofH(ξ) are trigonometric polynomials. For any functionf in the shift-
invariant spaceV 2(φ1, . . . , φL) generated byφ1, . . . , φL, f̂(ξ) =

∑L
l=1Al(ξ)φ̂l(ξ) for

someAl ∈ L2
2π, 1 ≤ l ≤ L. Clearly, the functionsfε defined byf̂ε(ξ) = f̂(ξ)χR\Eε

tends tof in L2 asε tends to zero, whereEε = ∪ss′=1

(
ξs′ + (−ε, ε) + 2πZ

)
. Therefore, it

suffices to prove thatfε ∈ Q0H
α for all ε ∈ (0, ε0), whereε0 is a sufficiently small positive

number so chosen that the matrixH(ξ)
T
H(ξ) is nonsingular and its inverse is bounded for

all ξ ∈ R\Eε. DefineA1,ε(ξ), . . . , AL,ε(ξ) by

(A1,ε(ξ), . . . , AL,ε(ξ))T =
(
H(ξ)

T
H(ξ)

)−1

×(A1(ξ), . . . , AL(ξ))TχEε
(ξ), (58)

and definegε by ĝε(ξ) =
∑L
l=1Al,ε(ξ)

̂̃
φl(ξ), whereφ̃l ∈ V 2(φ1, . . . , φL), 1 ≤ l ≤ L, is

some bi-orthogonal dual of{φ1, . . . , φL}, i.e.,〈φl, φ̃l′(·−k)〉 = δll′δk0 for all 1 ≤ l, l′ ≤ L
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andk ∈ Z. Then we have

Q̂0gε(ξ) =
N∑
n=1

L∑
l,l′,l′′=1

Al′,ε(ξ)Hn,l(ξ)Hn,l′′(ξ)

×
( ∑
k∈Z

̂̃
φl′(ξ + 2kπ)φ̂l(ξ + 2kπ)

)
φ̂l′′(ξ)

=
L∑

l′′=1

Al′′(ξ)φ̂l′′(ξ)χEε
(ξ) = f̂ε(ξ).

Hence,Q0gε = fε. This, together withgε ∈ Hα, proves thatQ0H
α is dense in

V 2(φ1, . . . , φL).
To establish the converse, it suffices to show that if the rank of theN × Z matrix(
ψ̂n(ξ + 2kπ)

)
1≤n≤N,k∈Z

is strictly less thanL for all ξ ∈ R, then there exists a function

g0 ∈ V 2(φ1, . . . , φL), which does not belong to theL2-closure ofQ0H
α. Let H and

φ̃l, 1 ≤ l ≤ L, be as in the proof of the previous conclusion. Then the rank ofH(ξ) is
at mostL− 1. Therefore there exists a nonzero vectorA(ξ) = (a1(ξ), . . . , aL(ξ))T with
trigonometric polynomial entries so thatH(ξ)A(ξ) = 0 for all ξ ∈ R. One may verify

that the functionφ̃ defined bŷ̃φ(ξ) =
∑L
l=1 al(ξ)

̂̃
φl(ξ) satisfies〈ψn(· − k), φ̃〉 = 0 for

all 1 ≤ n ≤ N, k ∈ Z, and hence〈f, φ̃〉 = 0 for all f ∈ Q0H
α. On the other hand, the

functiong0 ∈ V 2(φ1, . . . , φL) defined bŷg0(ξ) =
∑L
l=1 al(ξ)φ̂l(ξ) satisfies〈g0, φ̃〉 6= 0.

This proves thatg0 is not in theL2-closure ofQ0H
α and hence the conclusion follows.

Now we start to prove Theorem 4.4.

Proof (Proof of Theorem 4.4.). We setΨ := {ψ1, . . . , ψN} and divide the proof into
the following steps: (viii)=⇒ (vii) =⇒ (vi) =⇒ (v) =⇒ (iv) =⇒ (iii) =⇒ (viii), (ii) ⇐⇒
(v), (i)=⇒(vi), and (ii)=⇒(i).

(Proof of (viii)=⇒(vii)): This proof is by indirect argument. Suppose, on the contrary,
that the rank of(ψ̂n(ξ + 2kπ))1≤n≤N,k∈Z depends onξ in any small neighborhood of the
origin. Denote the rank of(ψ̂n(2kπ))1≤n≤N,k∈Z by k0. Therefore, there exists a nonsin-
gular matrixP such that the matrix(ψ̂∗n(2kπ))1≤n≤k0,k∈Z has rankk0, andψ̂∗n(2kπ) = 0
for all k0 + 1 ≤ n ≤ N andk ∈ Z, where(ψ∗1 , . . . , ψ

∗
N )T := P (ψ1, . . . , ψN )T . By

the assumption, there exists a functionψ∗n0
, k0 + 1 ≤ n0 ≤ N , such that the vector

(ψ̂∗n(ξ + 2kπ))k∈Z is not in the space spanned by(ψ̂∗n(ξ + 2kπ))k∈Z, 1 ≤ n ≤ k0, in any
small neighborhood of the origin. Defineψ by

ψ̂(ξ) = ψ̂∗n0
(ξ)−

k0∑
n=1

an(ξ)ψ̂∗n(ξ), (59)

where the2π-periodic functionsan(ξ), 1 ≤ n ≤ k0, are so chosen that their Fourier
coefficient sequences are summable and∑

k∈Z

ψ̂(ξ + 2kπ)ψ̂∗n(ξ + 2kπ) = 0 (60)

for 1 ≤ n ≤ k0 and |ξ| ≤ δ0, for someδ0 > 0. From the construction ofψ, the vector
(ψ̂(ξ + 2kπ))k∈Z is not identically zero on any neighborhood of the origin, but

ψ̂(2kπ) = 0, k ∈ Z, (61)
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and

ψ̂(ξ) = m(ξ/M)φ̂(ξ/M), (62)

for some2π-periodic functionm(ξ) that has summable Fourier coefficient sequence and
satisfiesm(0) = 0. Choose any small positiveε, and definefε by f̂ε(ξ) = aε(ξ)ψ̂(ξ), where
aε is a square-integrable2π-periodic function with support contained in{|ξ| ≤ δ0}+ 2πZ
for some sufficiently small numberδ := δ(ε) to be assigned later. Clearlyfε ∈ V 2(Ψ),
and

C−1‖fε‖22 ≤
∫ π

−π
|aε(Mξ)m(ξ)|2dξ ≤ C‖fε‖22 (63)

by (62) and the assumption thatφ has linear independent shifts. By (62) and the assumption
onψ, we see that

∑M−1
s=0 |m(ξ + 2sπ/M)|2 is not identically zero in any neighborhood of

the origin, which together with (63) proves thatfε 6≡ 0 when the support ofaε is chosen
appropriately.

Let an,n′ be so chosen that̂ψn(2kπ) −
∑k0
n′=1 an,n′ ψ̂

∗
n′(2kπ) = 0 for all k ∈ Z.

The existence of such functions follows from the nonsingularity of the matrixP and
the assumption that the rank of(ψ̂∗n(2kπ))1≤n≤k0,k∈Z is k0. By the equality from the
orthogonal property (60), we have

∑
k∈Z

|〈fε, ψn;0,k〉|2 (64)

=
∫ π

−π
|aε(ξ)|2

∣∣∣ ∑
k∈Z

ψ̂(ξ + 2kπ)ψ̂n(ξ + 2kπ)
∣∣∣2dξ

=
∫ π

−π
|aε(ξ)|2

∣∣∣ ∑
k∈Z

ψ̂(ξ + 2kπ)

×
(
ψ̂n(ξ + 2kπ)−

k0∑
n′=1

an,n′ ψ̂∗n′(ξ + 2kπ)
)∣∣∣2dξ

≤ C

∫ π

−π
|aε(ξ)|2

(M−1∑
s=0

∣∣∣m(ξ + 2sπ
M

)∣∣∣2)
×

(M−1∑
s=0

( ∑
k∈Z

∣∣∣φ̂(ξ + 2sπ
M

+ 2kπ
)∣∣∣× ∣∣ψ̂n(ξ + 2sπ + 2kMπ)

−
k0∑
n′=1

an,n′ ψ̂
∗
n′(ξ + 2sπ + 2Mkπ)

∣∣)2)
dξ

≤ Cε2
∫ π

−π
|aε(ξ)|2

M−1∑
s=0

∣∣∣m(ξ + 2sπ
M

)∣∣∣2dξ
≤ Cε2‖fε‖22,
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where we have used the construction ofan,n′ and (63) to obtain the second and third
inequalities, respectively. ForL1 ≤ j ≤ −1, we also have∑

k∈Z

|〈fε, ψn;j,k〉|2

= M j

∫ π

−π

∣∣∣ ∑
k∈Z

aε(M j(ξ + 2kπ))ψ̂(M j(ξ + 2kπ))ψ̂n(ξ + 2kπ)
∣∣∣2dξ

= M j

∫ π

−π
|aε(M jξ)|2

∣∣∣ ∑
k∈Z

ψ̂(M jξ + 2kπ)ψ̂n(ξ + 2M−jkπ)
∣∣∣2dξ,

where the fact thataε is supported in a small neighborhood of2πZ has been used. Hence,

∑
k∈Z

|〈fε, ψn;j,k〉|2 ≤ M j

∫ π

−π
|aε(M jξ)|2

M−1∑
s=0

∣∣∣m(M jξ + 2sπ
M

)∣∣∣2
M−1∑
s=0

( ∑
k∈Z

∣∣∣φ̂(
M j−1ξ +

2sπ
M

+ 2kπ
)∣∣∣

×
∣∣ψ̂n(ξ + 2M−j(s+ kM)π)

∣∣)2

dξ

≤ Cε2
∫ π

−π
|aε(M jξ)|2

M−1∑
s=0

∣∣∣m(
M j−1ξ +

2sπ
M

)∣∣∣2dξ
≤ Cε2‖fε‖22, (65)

where we have used the estimate:∑
k∈Z

∣∣∣φ̂(
M j−1ξ +

2sπ
M

+ 2kMπ
)∣∣∣× |ψ̂n(ξ + 2M−j(s+ kM)π)| ≤ ε (66)

for all |ξ| ≤ M−jδ and sufficiently smallδ. Here, the estimate (66) follows, since
ψ̂n(0) = 0 and ψ̂n(2M−jkπ) = Hn(0)φ̂(2M−j−1kπ) = 0 for all nonzero integerk.
Combining (64) and (64) yields

0∑
j=L1

∑
k∈Z

|〈fε, ψn;j,k〉|2 ≤ Cε2‖fε‖22 6= 0 (67)

for some positive constantC independent offε andε, which contradicts with the assumption
(viii).

(Proof of (vii) =⇒ (vi)): Since ψ̂n(ξ) = Hn(ξ/M)φ̂(ξ/M) andφ has linear inde-
pendent shifts, the rank of(ψ̂n(ξ + 2kπ))1≤n≤N,k∈Z is the same as that ofH(ξ). On the
other hand, the rank ofH(0) is at mostM − 1, becauseHn(0) = 0 for all 1 ≤ n ≤ N

by the frame property ofΨ. Therefore the rank ofH(ξ) is strictly less thanM on a small
neighborhood of the origin, which, together with Proposition 2.1, implies that

A(ξ) := diag
(
S(ξ), . . . , S(ξ + 2(M − 1)π/M)

)
−S(Mξ)

(
H0(ξ + 2mπ/M)H0(ξ + 2m′π/M)

)
0≤m,m′≤M−1

(68)



28 C. K. CHUI AND QIYU SUN

is singular in a small neighborhood of the origin. So

detA(ξ) ≡ 0, (69)

where we have also used the fact that the determinant ofA is a trigonometric polynomial.
It is known that forA ∈ Cn×n andv,w ∈ Cn, we have

det(A− vwT ) = detA−wTA#v, (70)

whereA# denotes the adjoint matrix whose entriesA#
i,k are the cofactorsAk,i of A. Thus,

detA(ξ) =
M−1∏
m=0

S
(
ξ +

2mπ
M

)
−S(Mξ)

M−1∑
m=0

∣∣∣H(
ξ +

2mπ
M

)∣∣∣2 ∏
0≤i 6=m≤M−1

S
(
ξ +

2iπ
M

)
by (67) and (70). Hence (vi) follows from (69).

(Proof of (vi)=⇒(v)): Let A(ξ) be as in (67). Also, letS1(ξ) be a trigonometric
polynomial with real coefficients and satisfy|S1(ξ)|2 = S(ξ). The existence ofS1(ξ)
follows from the Riesz Lemma. Then we can writeA(ξ) as

A(ξ) = D(ξ)(IM − α0(ξ)α0(ξ))D(ξ), (71)

whereD(ξ) = diag(S1(ξ), . . . , S1(ξ+2(M−1)π/M)) andα0(ξ) = (H̃0(ξ), . . . , H̃0(ξ+
2(M − 1)π/M))T and H̃0(ξ) = S1(Mξ)H0(ξ)/S1(ξ). By Proposition 2.1,H̃0(ξ) is

continuous onR andA(ξ) = H(ξ)
T
H(ξ). Therefore, it suffices to prove thatA(ξ) has

rankM − 1 for all ξ ∈ R. By the assumption,α0(ξ) is a unit vector for allξ, which
implies thatI − α0(ξ)α0(ξ)T has rankM − 1 for all ξ ∈ R. For anyξ1 ∈ R such that
S(ξ1 +2mπ/M) 6= 0 for allm ∈ Z, D(ξ1) is nonsingular and, hence, it follows from (71)
thatA(ξ1) has rankM − 1. For anyξ1 ∈ R such thatS(ξ1 + 2mπ/M) = 0 for some
m ∈ Z, it follows from the assumption (vi) thatS(Mξ1) = 0 andS(ξ1 + 2m′π/M) 6= 0
for allm′−m 6∈MZ (see [12, 29]). Therefore,diag(S(ξ1), . . . , S(ξ1 +2(M − 1)π/M))
has rankM − 1, which together with (67), implies thatA(ξ1) = diag

(
S(ξ1), . . . , S(ξ1 +

2(M − 1)π/M)
)

has rankM − 1 for all thoseξ1 with S(ξ1 + 2mπ/M) = 0 for some
0 ≤ m ≤M − 1. This completes the proof of the assertion (v).

(Proof of (v)=⇒(iv)): Assume thatH(ξ) has rankM−1 for all ξ ∈ R. Then the matrix
A(ξ) in (67) is singular by Proposition 2.1, which implies (57). Therefore by Lemma 4.5,
there exist some trigonometric polynomialsH∗

m, 1 ≤ m ≤ M − 1, so that the functions
ψ∗1 , . . . , ψ

∗
M−1, defined by

ψ̂s(ξ) = H∗
s (ξ/M)φ̂(ξ/M), 1 ≤ m ≤M − 1,

generate a tight affine frame ofL2 and have the same fundamental functionS as the one of
ψ1, . . . , ψN . Note that the rank of the matrix(ψ̂∗m(ξ+ 2kπ))1≤m≤M−1,k∈Z is the same as
the rank ofH(ξ), and hence is equal toM−1. Therefore the shifts ofψ∗m, 1 ≤ m ≤M−1,
form a Riesz basis of the corresponding shift-invariant spaceV 2(ψ∗1 , . . . , ψ

∗
M−1). So it

suffices to prove that

V 2(ψ∗1 , . . . , ψ
∗
M−1) = V 2(ψ1, . . . , ψN ). (72)
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As before, letS1(ξ)be the trigonometric polynomial with real coefficients so that|S1(ξ)|2 =
S(ξ). DefineH̃0(ξ) = S1(Mξ)H0(ξ)/S1(ξ) andH̃n(ξ) = Hn(ξ)/S1(ξ), 1 ≤ n ≤ N ,
and similarly defineH̃∗

0 (ξ) = S1(Mξ)H0(ξ)/S1(ξ) andH̃∗
s (ξ) = H∗

s (ξ)/S1(ξ), 1 ≤ s ≤
M − 1. By Proposition 2.1, the vectors

vs =
(
H̃∗
s (ξ), . . . , H̃

∗
s (ξ + 2(M − 1)π/M)

)T
, 0 ≤ s ≤M − 1,

form an orthonormal basis ofRM for anyξ ∈ R, and the vectors

un =
(
H̃n(ξ), . . . , H̃n(ξ + 2(M − 1)π/M)

)T
, 0 ≤ n ≤ N,

form a tight frame ofRM for anyξ ∈ R. Thus, we have

vs =
N∑
n=0

〈vs,un〉un, 0 ≤ s ≤M − 1,

and

un =
M−1∑
s=0

〈un,vs〉vs, 0 ≤ n ≤ N.

Recall thatu0 = v0, which implies that

〈vs,u0〉 = 〈vs,v0〉 = 0, 1 ≤ s ≤M − 1.

By the tight frame property, we have
∑N
n=0 unuTn = IM , whereIM stands for theM -

dimensional identity matrix. Thus,

|〈u0,u0〉|2 +
N∑
n=1

|〈u0,un〉|2 = 〈u0,u0〉,

which together with|u0| = 1, implies that

〈un,v0〉 = 〈un,u0〉 = 0, 1 ≤ n ≤ N.

Therefore, we obtain

vs =
N∑
n=1

〈vs,un〉un, 1 ≤ s ≤M − 1,

and

un =
M−1∑
s=1

〈un,vs〉vs, 1 ≤ n ≤ N.

We can now formulate the above two identities as

H̃∗
s (ξ) =

N∑
n=1

bsn(Mξ)H̃n(ξ), 1 ≤ s ≤M − 1, (73)
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and

H̃n(ξ) =
M−1∑
s=1

ans(Mξ)H̃∗
s (ξ), 1 ≤ n ≤ N, (74)

whereans(ξ) andbsn(ξ) are trigonometric polynomials. MultiplyingS1(ξ)φ̂(ξ) to both
sides of (73) and (74) yields

ψ̂∗s (ξ) =
N∑
n=1

bsn(ξ)ψ̂n(ξ), 1 ≤ s ≤M − 1,

and

ψ̂n(ξ) =
M−1∑
s=1

ans(ξ)ψ̂∗s (ξ), 1 ≤ n ≤ N.

This proves (72), and hence the assertion (iv).
(Proof of (iv)=⇒(iii)): By the assumption (iv), the shift-invariant spaceV 2(Ψ) is

closed. Then the assertion (iii) follows from Proposition 2.2.
(Proof of (iii)=⇒(viii)): This implication is obvious.
(Proof of (ii)⇐⇒(v)): For anyf ∈ Hα, we have

Q̂0f(ξ) =
N∑
n=1

∑
k∈Z

f̂(ξ + 2kπ)Hn

(ξ + 2kπ
M

)
×φ̂

(ξ + 2kπ
M

)
Hn

( ξ

M

)
φ̂
( ξ

M

)
=

N∑
n=1

M−1∑
s=0

Hn

(ξ + 2sπ
M

)
A

(ξ + 2sπ
M

)
Hn

( ξ

M

)
φ̂
( ξ

M

)
for someA ∈ L2

2π. Conversely, for anyA ∈ L2
2π, the functionf0, defined by

f̂0(ξ) = A
( ξ

M

)( ∑
k∈Z

∣∣∣φ̂( ξ

M
+ 2kπ

)∣∣∣2)−1

φ̂
( ξ

M

)
,

belongs toHα and satisfies

Q̂0f0(ξ) =
N∑
n=1

M−1∑
s=0

Hn

(ξ + 2sπ
M

)
A

(ξ + 2sπ
M

)
Hn

( ξ

M

)
φ̂
( ξ

M

)
.

This shows that the spacêQ0Hα = {ĝ : g ∈ Q0H
α} is characterized by

Q̂0Hα =
{ N∑
n=1

M−1∑
s=0

Hn

(ξ + 2sπ
M

)
A

(ξ + 2sπ
M

)
(75)

×Hn

( ξ

M

)
φ̂
( ξ

M

)
: A ∈ L2

2π

}
.
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One may easily verify that for the spaceV 2(Ψ), the corresponding spacêV 2(Ψ) := {f̂ :
f ∈ V 2(Ψ)} in the Fourier domain is

̂V 2(Ψ) =
{ N∑
n=1

An(ξ)Hn

( ξ

M

)
φ̂
( ξ

M

)
: An ∈ L2

2π, 1 ≤ n ≤ N
}
. (76)

Sinceφ has linear independent shifts, it follows from (75) and (76) thatQ0H
α = V 2(Ψ)

if and only if for anyAn ∈ L2
2π, 1 ≤ n ≤ N , there existsA ∈ L2

2π so that

N∑
n=1

M−1∑
s=0

Hn

(ξ + 2sπ
M

)
A

(ξ + 2sπ
M

)
Hn

(ξ + 2s′π
M

)
(77)

=
N∑
n=1

An(ξ)Hn

(ξ + 2s′π
M

)
∀ 0 ≤ s′ ≤M − 1;

that is, (
A1(ξ), . . . , An(ξ)

)
H

( ξ

M

)
(78)

=
(
A

( ξ

M

)
, . . . , A

(ξ + 2(M − 1)π
M

))
H

( ξ

M

)T
H

( ξ

M

)
.

By the Smith decomposition, we have thatH(ξ) = H1(ξ)D(ξ)H2(ξ), wheredetH1(ξ)
anddetH2(ξ) are nonzero monomials andD(ξ) is a diagonal matrix. This, together with
(77) and (78), proves thatQ0H

α = V 2(Ψ) if and only if the rank of the matrixH(ξ) is
independent ofξ ∈ R. Therefore, since the rank ofH(0) is M − 1 by (8) and the fact
thatH0(2mπ/M) = 0 for 1 ≤ m ≤ M − 1, the equivalence of the assertions (v) and (ii)
follows.

(Proof of (i)=⇒(vi)): Let S1(ξ), α0(ξ), H̃0(ξ),A(ξ) be as in the proof of (vi)=⇒(v).

By (67) and Proposition 2.1,̃H0(ξ) is continuous andA(ξ) = H(ξ)
T
H(ξ). Therefore

by (71), it suffices to show thatH(ξ) is not of full rank for anyξ ∈ R, since this
implies thatα0(ξ) is a unit vector for anyξ ∈ R and the assertion (vi) then follows.
Suppose, on the contrary, thatH(ξ0) is of full rank for someξ0 ∈ R. By Lemma
4.6, the closure ofQ0H

α in L2 is V1, which together with our assumption (i), leads to
Q0H

α = V 2(φ(M ·), . . . , φ(M · −M + 1)) = V1. Hence,V 2(Ψ) = Q0H
α = V1 since

Q0H
α ⊂ V 2(Ψ) ⊂ V1, and then (v) holds by the equivalence of the assertions (ii) and (v),

which is a contradiction.
(Proof of (ii)=⇒(i)): By the equivalence of the assertions (ii) and (iv), the spaceV 2(Ψ)

is a closed subspace ofL2. This, together with the assumption (ii), proves the assertion
(i).

4.3. Proof of Theorem 4.1
First we prove (i)=⇒(ii). By Theorem 4.4, we have

M−1∑
m=0

S(Mξ)
S(ξ + 2mπ/M)

∣∣∣H(
ξ +

2mπ
M

)∣∣∣2 = 1, ξ ∈ R. (79)
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Therefore,

M−1∏
m=0

S
(
ξ +

2mπ
M

)
= S(Mξ)

M−1∑
m=0

∏
0≤m′ 6=m≤M−1

S
(
ξ +

2m′π

M

)
×H

(
ξ +

2mπ
M

)
H

(
− ξ − 2mπ

M

)
, ξ ∈ C. (80)

Note that all the roots ofS are real, since otherwise the right-hand side of (79) becomes
zero atξ0/M while the left-hand side does not, whereξ0 is a root ofS with nonzero
imaginary part so that the magnitude of the imaginary part ofξ0 is the minimal root with
nonzero imaginary part, and this leads to a contradiction. Also we note from Theorem
4.3 thatS(ξ) 6= 0 for all ξ ∈ R. ThereforeS(ξ) is a constant function. Substituting this
back into (79) and using the linear independence ofφ yields thatφ has orthonormal shifts
(see [15, 32]). Letψ∗1 , . . . , ψ

∗
M−1 be the orthonormal wavelets generated from the above

multiresolution, which is also a tight affine frame. Moreover, the fundamental function
of resolution corresponding to the above tight affine frame is the same as the one with
generatorsψ1, . . . , ψN since both are equal to one. Using the same method as the one in
the proof of the implication (v)=⇒(iv) of Theorem 4.4, the space spanned by the shifts of
ψ∗1 , . . . , ψ

∗
M−1 is the same as the one spanned by the shifts ofψ1, . . . , ψN . This concludes

thatV 2(Ψ) is the orthogonalL2-complement ofV0 in V1.
Next we prove (ii)=⇒(iii). By the tight frame property, we have

∑
j∈ZQj = I. Thus,

by the orthogonal property of the spacesWj := QjH
α from our assumption (ii), we have

‖f‖22 =
∑
j∈Z

〈Qjf, f〉 = 〈Q0f, f〉

for anyf ∈W0. Hence (iii) is valid.
Finally, we prove (iii)=⇒(i). By Theorem 4.4, the spacesQjHα, 0 ≤ j ∈ Z, are closed

subspaces ofL2. Then by Theorem 4.3, it suffices to prove thatS(ξ) is a nonzero constant,
whereS(ξ) is the fundamental function of resolution of the tight affine frameΨ. By Theo-
rem 4.4, the functionS(ξ) satisfies (54), which implies that̃H0(ξ) := S1(Mξ)H0(ξ)/S1(ξ)
is a trigonometric polynomial and satisfies

M−1∑
m=0

∣∣∣H̃0

(
ξ +

2mπ
M

)∣∣∣2 = 1, (81)

whereS1(ξ) is the trigonometric polynomial with real coefficients so that|S1(ξ)|2 = S(ξ).
By unitary extension, there exist trigonometric polynomialsH̃∗

1 , · · · , H̃∗
M−1 so that

M∑
m=0

H̃s

(
ξ +

2mπ
M

)
H̃t

(
ξ +

2mπ
M

)
= δst, 0 ≤ s, t ≤M − 1,

or in matrix formulation,

U(ξ)U(ξ)T = IM , (82)

whereU(ξ) = (α0(ξ) . . . αM−1(ξ))andαs(ξ) =
(
H̃s(ξ), . . . , H̃s(ξ+2(M − 1)π/M)

)T
, 0 ≤

s ≤M − 1. By (15) and the assumption (iii), we have(
H(ξ)diag

(
Φ(ξ), . . . ,Φ(ξ + 2(M − 1)π/M)

)
H(ξ)

T
)2
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= C0H(ξ)diag
(
Φ(ξ), . . . ,Φ(ξ + 2(M − 1)π/M)

)
H(ξ)

T
(83)

for some nonzero constantC0, whereH(ξ) is defined as in (53), andΦ(ξ) =
∑
k∈Z |φ̂(ξ+

2kπ)|2. By Proposition 2.1, we have

H(ξ)
T
H(ξ) = diag(S1(ξ), . . . , S1(ξ + 2(M − 1)π/M)

)
×(IM − α0(ξ)α0(ξ)T )diag(S1(ξ), . . . , S1(ξ + 2(M − 1)π/M)

)
. (84)

Combining (82) and (83) and using(IM − α0(ξ)α0(ξ)T )2 = IM − α0(ξ)α0(ξ)T , we see
that the matrix

B(ξ) :=
(
IM − α0(ξ)α0(ξ)T

)
diag

(
Φ̃(ξ), . . . , Φ̃

(
ξ +

2(M − 1)π
M

))
×

(
IM − α0(ξ)α0(ξ)T

)
.

satisfies

B(ξ)2 = C0B(ξ), (85)

whereΦ̃(ξ) = |S1(ξ)|2Φ(ξ). On the other hand, we have

B(ξ) = U(ξ)
(

0 0
0 IM−1

)
U(ξ)T

×diag
(
Φ̃(ξ), . . . , Φ̃

(
ξ +

2(M − 1)π
M

))
U(ξ)

(
0 0
0 IM−1

)
U(ξ)T

=: U(ξ)
(

0 0
0 β(ξ)

)
U(ξ)T . (86)

Here,β(ξ) has rankM − 1 for almost allξ, since

(v1, . . . , vM−1)β(ξ)(v1, . . . , vM−1)T

=
M−1∑
m=0

∣∣∣M−1∑
t=1

vtH̃t

(
ξ +

2mπ
M

)∣∣∣2Φ̃(
ξ +

2mπ
M

)
6= 0

for any nonzero vector(v1, . . . , vM−1)T ∈ RM−1 and anyξ satisfyingS(ξ+2mπ/M) 6=
0, 0 ≤ m ≤M − 1. Therefore,

β(ξ) = C0IM−1 (87)

by (82), (85) and (85). Substituting the above formula ofβ(ξ) into (85) and applying (82)
yields

B(ξ) = C0U(ξ)U(ξ)T − C0U(ξ)
(

1 0
0 0

)
U(ξ)T (88)

= C0(IM − α0(ξ)α0(ξ)T ).

Then comparing the non-diagonal terms of the both sides of (88), we obtain

Φ̃
(
ξ +

2πs
M

)
+ Φ̃

(
ξ +

2πs′

M

)
−
M−1∑
m=0

∣∣∣H̃0

(
ξ +

2πm
M

)∣∣∣2Φ̃(
ξ +

2πm
M

)
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= C0 0 ≤ s 6= s′ ≤M − 1. (89)

Now we divide the argument into two cases,M ≥ 3 andM = 2, to show thatS is a
nonzero constant. ForM ≥ 3, applying (88) with(s, s′) = (0, 1) and (s, s′) = (0, 2)
leads toΦ̃(ξ) = Φ̃(ξ + 2π/M). ThusΦ̃(ξ) = D(Mξ) for some trigonometric polynomial
D. Substituting this back to the definition ofB(ξ), we obtainB(ξ) = D(Mξ)(IM −
α0(ξ)α0(ξ)T ). This, together with (88), yieldsD(Mξ) = C0, and hencẽΦ(ξ) is a constant
function. Recall that̃Φ(ξ) = Φ(ξ)|S1(ξ)|2, Therefore, bothΦ(ξ) andS(ξ) = |S1(ξ)|2 are
constant-valued functions.

ForM = 2, it follows from (81) and (88) that

(Φ̃(ξ)− C0)|H̃0(ξ + π)|2 = −(Φ̃(ξ + π)− C0)|H̃0(ξ)|2. (90)

By (81), the trigonometric polynomials|H̃0(ξ+π)|2 and|H̃0(ξ)|2 do not have any common
root. These conclusions, along with (90) itself, leads to the existence of a trigonometric
polynomialD(ξ), such that

Φ̃(ξ) = C0 + e−iξD(2ξ)|H̃0(ξ)|2. (91)

Also, from the definition of̃Φ and the refinement equation̂φ(Mξ) = H0(ξ)φ̂(ξ), it follows
that

Φ̃(2ξ) = |H̃0(ξ)|2Φ̃(ξ) + |H̃0(ξ + π)|2Φ̃(ξ + π). (92)

Substituting the formulation (91) of̃Φ into (92) and applying (81), we obtain

e−2iξD(4ξ)|H̃0(2ξ)|2 = e−iξD(2ξ)
(
|H̃0(ξ)|4 − |H̃0(ξ + π)|4

)
= e−iξD(2ξ)

(
|H̃0(ξ)|2 − |H̃0(ξ + π)|2

)
. (93)

From Φ̃(−ξ) = Φ̃(ξ), it follows thatD(−ξ) = e−iξD(ξ). Therefore, by (92) and the
above “symmetry” ofD, we conclude thatD(ξ) ≡ 0, since otherwise the degree of the
trigonometric polynomial of the left-hand side of (92) is strictly larger than that of the
right-hand side. Hence,̃Φ(ξ) is a constant function by (91). This proves thatS(ξ) is also
a nonzero constant function whenM = 2.

5. ANGLES BETWEEN VJ AND QJHα

Let H be a Hilbert space with inner product〈·, ·〉, and letH1,H2 be its two nontrivial
linear subspaces (which are not necessarily Hilbert subspaces). We consider the angle
θ ∈ [0, π/2] betweenH1 andH2, defined by

cos θ = sup
0 6=f∈H1,0 6=g∈H2

|〈f, g〉|
‖f‖‖g‖

.

By Theorem 3.5, we have the space decomposition property of the Sobolev space as follows:

Hα = P̃0H
α +

∞∑
j=0

QjH
α.
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In this section, we study the angles between the spacesP̃0H
α andQjHα, j ∈ Z. First we

give a characterization of whether or not the angles between those spaces are nonzero, and
show that those angles are nonzero if and only ifQjH

α are closed subspaces ofL2.

Theorem 5.1. Letβ > 0, α ∈ (−β, β), and let{Vj}j∈Z be an MRA with a compactly
supported scaling functionφ ∈ Hβ that has linear independent shifts. Assume thatΨ ⊂ V1

is a finite collection of compactly supported functions, which generates a tight affine frame
ofL2. Then the following five statements are equivalent:

(i) The angle betweeñP0H
α andQjHα (as subspaces ofL2) is nonzero for somej ≥ 0.

(ii) The angle betweenQjHα andQj′Hα (as subspaces ofL2) is nonzero for some
j 6= j′.

(iii) Q0H
α is closed inL2.

(iv) The angles between betweenQjHα andQj′Hα (as subspaces ofL2) are nonzero
for all j 6= j′.

(v) The angles betweeñP0H
α andQj′Hα (as subspaces ofL2) are nonzero for all

j ≥ 0.

Remark 5.1. We remark that the above characterization holds when the spacesP̃0H
α

andQjHα, 0 ≤ j ≤ Z, are considered as subspaces of the Sobolev spaceHα instead of
subspaces ofL2. The proof is almost the same as that of Theorem 5.1, and hence we may
safely omit its details.

Theorem 5.2. Letβ > 0, α ∈ (−β, β), and let{Vj}j∈Z be an MRA with a compactly
supported scaling functionφ ∈ Hβ that has linear independent shifts. Assume thatΨ ⊂ V1

is a finite collection of compactly supported functions, which generates a tight affine frame
ofL2. Then the following five statements are equivalent:

(i) The angle betweeñP0H
α andQjHα (as subspaces ofL2) is π/2 for somej ≥ 0.

(ii) The angle betweenQjHα andQj′Hα (as subspaces ofL2) is π/2 for somej 6= j′.

(iii) Both Q0H
α andP̃0H

α are closed inL2.

(iv) The angles between betweenQjHα andQj′Hα (as subspaces ofL2) are π/2 for
all j 6= j′.

(v) The angles betweeñP0H
α andQj′Hα (as subspaces ofL2) areπ/2 for all j ≥ 0.

Remark 5.2. Letψ be a Schwartz function such that the support of its Fourier transform
ψ̂ is contained in{ξ : 1

2 ≤ |ξ| ≤ 2} and that
∑
j∈Z |ψ̂(2jξ)|2 = 1 for all 0 6= ξ ∈ R. Then

{ψj,k}j,k∈Z is a tight affine frame ofL2, and can also be used to characterize Sobolev spaces
[18, 19, 20]. LetQj , j ∈ Z, be the frame operator on thej-th level corresponding to the
above tight affine frame. One may verify thatQ0H

α is not closed inL2, and that the angle
betweenQjHα andQj′Hα is zero when|j − j′| ≤ 1 and is given byπ/2 otherwise. So
it gives rise to a completely different phenomenon as compared to the topological property
of closedness of the rangeQjHα of the frame operatorQj , and the angle between ranges
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QjH
α at different levels in Theorems 4.1 and 5.1. We believe that the main reason is that

this tight affine frame system is not associated with an MRA.

If the angle betweeñP0H
α andQjHα is nonzero, we have the following estimate of

this angle via the Sobolev exponent of the scaling function.

Theorem 5.3. Letβ > 0, |α| < β, and{Vj}j∈Z be an MRA generated by a compactly
supported scaling functionφ ∈ Hβ that has linear independent shifts. LetΨ ⊂ V1 be
a finite collection of compactly supported functions inV1, which generates a tight affine
frame ofL2, and assume thatQ0H

α is closed. Then the angleθj betweenP̃0H
α and

QjH
α (as subspaces ofL2) and the angleθj,j′ betweenQj′Hα andQjHα, j, j′ ∈ Z (also

as subspaces ofL2) satisfy

| cos θj | ≤ CM−jβ , 0 ≤ j ∈ Z, (94)

and

| cos θj,j′ | ≤ CM−|j−j′|β , j, j′ ∈ Z, (95)

respectively, whereC is a positive constant independent ofj, j′.

Remark 5.3. The estimate in (5.3) cannot be improved in general. For example, let
{Vj}j∈Z be the MRA with the characteristic functionχ[0,1] on the unit interval[0, 1] as its
scaling function. The functionψ := χ[0,3/2] − χ[3/2,3] is a tight affine frame [30]. For
f = χ[0,1] andg = 2j/2ψ(2j · −1), we see that〈f, g〉 = −2−j/2, which implies that the
angleθj betweenP̃0H

α andQjHα satisfies| cos θj | ≥ 2−j/2. On the other hand,φ ∈ Hβ

for all 0 < β < 1/2.

In general, we also have the following result on the converse of the above theorem.

Theorem 5.4. Let {Vj}j∈Z be an MRA with a compactly supported scaling function
φ ∈ L2 that has linear independent shifts, and letΨ ⊂ V1 be a finite collection of
compactly supported functions which generates a tight affine frame ofL2. Assume that
V 2(Ψ) is closed. If the angleθj betweenV0 andWj = {M j/2f(M j ·) : f ∈ V 2(Ψ)} (as
subspaces ofL2) satisfies

0 < | cos θj | ≤ CM−jγ , 0 ≤ j ∈ Z, (96)

whereC andγ are positive constants independent ofj ≥ 0, thenφ ∈ Hβ for all β < γ.

Remark 5.4. The lower bound assumption in (96) cannot be dropped in general,
since for a scaling functionφ ∈ L2 with orthonormal shifts, the angleθj between the
corresponding spacesV0 andWj is alwaysπ/2, or cos θj = 0 for all j ≥ 0.
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Remark 5.5. For the affine frame operatorsQj , we conclude from Theorems 4.1, 4.4,
5.1, 5.2, 5.3 and 5.4 that under the assumption in Theorem 5.1, there are three possible
geometrical structures associated with those affine frame operators:

(i) The angles between differentQjHα, j ∈ Z, are always zero (or equivalentlyQ0H
α

is not closed inL2, or equivalently{ψ(· − k) : ψ ∈ Ψ, k ∈ Z} is not a frame).

(ii) The angles between differentQjHα, j ∈ Z, are alwaysπ/2 (or equivalently both
Q0H

α andP̃0H
α are closed inL2, or equivalently{ψ(· − k) : ψ ∈ Ψ, k ∈ Z} is a tight

frame).

(iii) The angles between differentQjHα, j ∈ Z, are always in the open interval(0, π/2)
(or equivalentlyQ0H

α is closed inL2 but P̃0H
α is not closed inL2, or equivalently

{ψ(· − k) : ψ ∈ Ψ, k ∈ Z} is a frame, but not a tight frame). In this case, the asymptotic
behaviour of those angles is related to the Sobolev exponent of the scaling functionφ.

5.1. Proof of Theorem 5.1
First we prove (i)=⇒ (iii), and (ii) =⇒ (iii). Suppose, on the contrary, thatQ0H

α is
not closed inL2. By the argument used in the proof of (i)=⇒(vi) of Theorem 4.4, the rank
of (ψ̂(ξ0 + 2kπ))ψ∈Ψ,k∈Z is M for someξ0 ∈ R, which implies that theL2-closure of
QjH

α is Vj+1 by Lemma 4.6. Thus, the angles betweenP̃0H
α ⊂ V0 andQjHα, j ≥ 0,

and between differentQjHα are always zero, sinceVj ⊂ Vj+1 by the definition of an
MRA. This leads to a contradiction.

Next, we prove (iii)=⇒ (iv), and (iii) =⇒ (v). By the property of dilation invariance
and the nest conditionVj ⊂ Vj+1 in the definition of an MRA, the implications reduce the
argument of showing that the angle betweenV0 andQ0H

α is nonzero whenQ0H
α is a

closed subspace ofL2. Suppose, on the contrary, that the angle betweenV0 andQ0H
α is

zero. Then there exists a nontrivial functionf in V0 ∩ Q0H
α, since bothV0 andQ0H

α

are closed subspaces ofL2. Write Ψ = {ψ1, . . . , ψN} and defineHn, 1 ≤ n ≤ N , by
ψ̂n(Mξ) = Hn(ξ)φ̂(ξ). By Theorem 4.4, we have

f̂(ξ) = A0(ξ)H0

( ξ

M

)
φ̂
( ξ

M

)
=

N∑
n=1

An(ξ)Hn

( ξ

M

)
φ̂
( ξ

M

)
for some2π-periodic functionsA0(ξ), A1(ξ), . . . , AN (ξ) inL2

2π. By the property of linear
independent shifts ofφ, the above identity yields

A0(Mξ)H0(ξ) =
N∑
n=1

An(Mξ)Hn(ξ). (97)

On the other hand, it follows from Proposition 2.1 that

S(Mξ)H0

(
ξ +

2sπ
M

)
H0

(
ξ +

2s′π
M

)
(98)

+
N∑
n=1

Hn

(
ξ +

2sπ
M

)
Hn

(
ξ +

2sπ
M

)
= S(ξ)δss′
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for all 0 ≤ s, s′ ≤M − 1. Hence, substituting (97) into (98) leads to

S(Mξ)
N∑

n,n′=1

(
A0(Mξ)A0(Mξ)δnn′ +An(Mξ)An′(Mξ)

)
×Hn

(
ξ +

2sπ
M

)
Hn′

(
ξ +

2s′π
M

)
= S

(
ξ +

2sπ
M

)
A0(Mξ)A0(Mξ)δss′ ,

where0 ≤ s, s′ ≤M − 1, or in matrix formulation,

H(ξ)TB(ξ)H(ξ) = |A0(Mξ)|2diag
(
S(ξ), . . . , S

(
ξ +

2(M − 1)π
M

))
, (99)

where

H(ξ) =
(
Hn

(
ξ +

2sπ
M

))
1≤n≤N,0≤s≤M−1

and

B(ξ) = S(Mξ)|A0(Mξ)|2IN
+S(Mξ)

(
A0(Mξ), . . . , AN (Mξ)

)T (
A0(Mξ), . . . , AN (Mξ)

)
.

By Theorem 4.4, the rank ofH(ξ) is M − 1. This, together with (99), implies that
A0(ξ) = 0 for almost allξ ∈ R. Thus,f is the zero function, which is a contradiction.

Finally, the implications (v)=⇒(i) and (iv)=⇒(ii) are obvious.

5.2. Proof of Theorem 5.2

First we prove (iii)=⇒(iv) and (iii)=⇒(v). By Theorem 4.1,̃P0H
α = V0, andQjHα is

the orthogonal complement ofVj in Vj+1 for anyj ∈ Z. This proves (iv) and (v).
Next, we prove (ii)=⇒ (iii). By dilation invariance, we may assume thatj′ = 0

andj ≥ 1. By Theorem 5.1, we have thatQjHα is a closed subspace ofL2 for every
j ∈ Z. Therefore by Theorem 4.4, without loss of generality, we may assume that
Ψ = {ψ1, . . . , ψM−1}, {ψs(· − k) : 1 ≤ s ≤ M − 1, k ∈ Z} is a Riesz basis ofV 2(Ψ),
andQ0H

α = V 2(Ψ). Moreover, the matrixU(ξ), to be defined by

U(ξ) =
(
H̃s(ξ + 2mπ/M)

)
0≤s,m≤M−1

,

is a unitary matrix by Proposition 2.1,

U(ξ)U(ξ)
T

= IM , (100)

where H̃s(ξ) = S1(Mξ)Hs(ξ)/S1(ξ), S1(ξ) is a trigonometric polynomial with real
coefficients such that|S1(ξ)|2 = S(ξ), the functionH0 is the symbol of the scaling
functionφ, the functionsHs, 1 ≤ s ≤ M − 1, are defined bŷψs(Mξ) = Hs(ξ)φ̂(ξ), and
the trigonometric functionS is defined as in (10). FromQ0H

α = V2(Ψ) and the Riesz
property of{ψs(· − k) : 1 ≤ s ≤M − 1, k ∈ Z}, we obtain:

Q̂jHα =
{M−1∑

s=1

Bs(ξ/M j)ψ̂s(ξ/M j) : Bs(ξ), 1 ≤ s ≤M − 1, (101)

are 2π−periodic and square− integrable
}
.
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By the assumption on the angle betweenQ0H
α andQjHα, we have that

0 = 〈ψ1, g〉 =
∫
R

ψ̂1(ξ)ĝ(ξ)dξ (102)

=
M−1∑
s=1

∫
R

H1

( ξ

M

)
H0

( ξ

M2

)
· · ·H0

( ξ

M j+1

)
Bs

( ξ

M j

)
Hs

( ξ

M j+1

)∣∣∣φ̂( ξ

M j+1

)∣∣∣2dξ
= M j

M−1∑
s=1

∫ π

−π
H1(M j−1ξ)H0(M j−2ξ) · · ·H0(ξ)Bs(ξ)Rs(ξ)dξ,

whereg ∈ QjHα has its Fourier transform being of the form
∑M−1
s=1 Bs(ξ/M j)ψ̂s(ξ/M j)

for some2π-periodic square-integrable functionsBs(ξ), 1 ≤ s ≤M − 1,

Rs(ξ) =
M−1∑
m=0

H0

(ξ + 2mπ
M

)
Hs

(ξ + 2mπ
M

)
Φ

(ξ + 2mπ
M

)
, 1 ≤ s ≤M − 1,

and

Φ(ξ) =
∑
l∈Z

|φ̂(ξ + 2lπ)|2.

SinceBs(ξ) are arbitrarily chosen, and bothH0 andH1 are nonzero trigonometric poly-
nomials, we then obtain from (102) that

Rs(ξ) = 0 ∀ ξ ∈ R, 1 ≤ s ≤M − 1. (103)

This implies that the vectorv0(ξ), to be defined by

v0(ξ) =
(
H̃0(ξ + 2mπ/M)S(ξ + 2mπ/M)Φ(ξ + 2mπ/M)/S(Mξ)

)
0≤m≤M−1

,

is orthogonal to the vectors(H̃s(ξ + 2mπ/M))0≤m≤M−1, 1 ≤ s ≤ M − 1. Hence
by (100), there exists a2π-periodic functionR such thatv0(ξ) = R(Mξ)(H̃0(ξ +
2mπ/M))0≤m≤M−1, which implies that

S(ξ)Φ(ξ) = S(Mξ)R(Mξ) := R̃(Mξ). (104)

By the assumption onφ, Φ(ξ) is a trigonometric polynomial and is positive for allξ ∈ R.
By Theorem 4.4, all zeros of the trigonometric polynomialS(ξ) lies on the real line if there
is. Combining the above two facts forΦ andS(ξ) with (104) implies that eitherS(ξ) has no
zeros, or has a factor of the form(eiMξ − e−iξ0) for someξ0 ∈ R. Since the conclusion in
the later case contradicts to (54), we then conclude thatS(ξ) has not zeros, or equivalently,
it is a constant. HencẽP0H

α is closed inL2 by Theorem 4.3.
Finally, the implications (i)=⇒(ii), (iv)=⇒(ii), and (v)=⇒(i) are obvious.

5.3. Proof of Theorem 5.3
The estimate (95) follows easily from the estimate (94) and the conditionQjH

α ⊂
Vj+1. So it suffices to prove (94). By Theorem 4.4, we may assume that withΨ =
{ψ1, . . . , ψM−1}, the collection of integer shifts{ψm(· − k); 1 ≤ m ≤ M − 1, k ∈ Z}



40 C. K. CHUI AND QIYU SUN

is a Riesz basis ofQ0H
α, and thatψ̂m(ξ) = Hm(ξ/M)φ̂(ξ/M) for some trigonometric

polynomialsHm, 1 ≤ m ≤M − 1.
Let f :=

∑
k∈Z a(k)φ(· − k) ∈ V0 andg :=

∑M−1
m=1

∑
k∈Z dm(k)ψm;j,k ∈ QjH

α,
where{a(k)} and {dm(k)}, 1 ≤ m ≤ M − 1, are `2 sequences. By the Riesz basis
property of the integer shifts ofφ, and ofψ1, . . . , ψM−1, there exists a positive constantC
(independent off andg), so that

C−1‖f‖22 ≤
∑
k∈Z

|c(k)|2 ≤ C‖f‖22 (105)

and

C−1‖g‖22 ≤
M−1∑
m=1

∑
k∈Z

|dm(k)|2 ≤ C‖g‖22. (106)

Setting

cm(l) =
∫
R

φ(x)ψm(M jx− l)dx, 1 ≤ m ≤M − 1, l ∈ Z, (107)

and using the support properties of the functionsφ andψm, 1 ≤ m ≤M − 1, we obtain

|〈f, g〉| ≤ M j/2
M−1∑
m=1

∑
k,k′∈Z

|a(k)||dm(k′)||〈φ(· − k), ψm(M j · −k′)〉|

≤ M j/2
M−1∑
m=1

∑
k,k′∈Z,|M−jk′−k|≤C0

|a(k)||dm(k′)||cm(k′ −M jk)|

≤ M j/2
M−1∑
m=1

∑
k∈Z

|a(k)|
( ∑
|M−jk′−k|≤C0

|dm(k′)|2
)1/2( ∑

l∈Z

|cm(l)|2
)1/2

≤ M j/2
(M−1∑
m=1

∑
l∈Z

|cm(l)|2
)1/2( ∑

k∈Z

|a(k)|2
)1/2

×
(M−1∑
m=1

∑
k∈Z

∑
|M−jk′−k|≤C0

|dm(k′)|2
)1/2

,

whereC0 is a positive constant. This, together with (105) and (106), yields the following
estimate of the angleθj betweenP̃0H

α andQjHα:

cos θj ≤ CM j/2
(M−1∑
m=1

∑
k∈Z

|cm(k)|2
)1/2

, (108)

for all 0 ≤ j ∈ Z, whereC is a positive constant independent ofj. By (107) and (108),
the proof of the estimate (94) reduces to the following estimate:∫ π

−π

( ∑
k∈Z

|φ̂(M j(ξ + 2kπ))||ψ̂m(ξ + 2kπ)|
)2

dξ ≤ CM−j(1+min(γ0,2β)), (109)
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for all 1 ≤ m ≤M − 1, whereC is an absolute constant.
Write the symbolH0(ξ) of the scaling functionφ as

H0(ξ) =
(

1− e−iMξ

M −Me−iξ

)γ0
H̃0(ξ) (110)

for some positive integerγ0 and some trigonometric polynomial̃H0(ξ) not divisible by
(1− e−iMξ)/(1− e−iξ). Then it follows fromφ ∈ Hβ that

β ≤ γ0 (111)

(see [24]). By (110), we have

H0(ξ + 2mπ/M) = O(ξγ0) as ξ → 0, 1 ≤ m ≤M − 1, (112)

Combining (54) and (112), we obtain

S(Mξ)|H0(ξ)|2 − S(ξ) = O(ξ2γ0) as ξ → 0.

Thus,

Hm(ξ) = O(ξγ0) as ξ → 0, 1 ≤ m ≤M − 1, (113)

by (9). By the property of linear independent shifts ofφ, there exists a compact setK that
contains a neighborhood of the origin, such thatK + 2πZ = R and |φ̂(ξ)| is bounded
below from zero on the setK [10, 15]. This observation, together with (111), (112), (113),
Proposition 2.1, and the refinement relationφ̂(Mξ) = H0(ξ)φ̂(ξ), implies that∫ π

−π

( ∑
k∈Z

|φ̂(M j(ξ + 2kπ))||ψ̂m(ξ + 2kπ)|
)2

dξ

=
∫ π

−π

j−1∏
i=0

|H0(M iξ)|2
( ∑
k∈Z

|φ̂(ξ + 2kπ)||ψ̂m(ξ + 2kπ)|
)2

dξ

≤ C1

∫ π

−π
|1− e−iξ|2γ0

j−1∏
i=0

|H0(M iξ)|2dξ

≤ C2

∫
K

|ξ|2γ0 |φ̂(M jξ)|2dξ

≤ C3M
−j(1+2β)

∫
MjK

(1 + |ξ|2)β |φ̂(ξ)|2dξ

≤ C4M
−j(1+2β),

whereCi, 1 ≤ i ≤ 4, are positive constants independent of0 ≤ j ∈ Z. This completes
the proof of (109), and hence the desired estimate (94).

5.4. Proof of Theorem 5.4
By Theorem 5.1 and the assumption on the angles betweenV0 andQjHα, we may

conclude thatQ0H
α is a closed subspace ofL2. Therefore by Theorem 4.4, we may
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assume, without loss of generality, that{ψm(· − k) : 1 ≤ m ≤ M − 1, k ∈ Z}, with
Ψ = {ψ1, . . . , ψM−1}, is a Riesz basis ofV 2(Ψ). By the assumption on the angle, we
have〈φ, ψ〉 6= 0 for someψ ∈ V 2(Ψ), since otherwise the angle betweenV0 andV 2(Ψ)
is zero. In particular, we may selectψ to be compactly supported, sinceφ has compact
support. In the following, we use the bracket product notation:

[φ̂, ψ̂](ξ) :=
∑
k∈Z

φ̂(ξ + 2kπ)ψ̂(ξ + 2kπ),

and consider the functiong ∈Wj , defined by

ĝ(M jξ) = H(M j−1ξ) · · ·H(ξ)[φ̂, ψ̂](ξ)ψ̂(ξ).

Theng 6≡ 0, and

‖g‖22 = M j

∫ π

−π
|H(ξ) · · ·H(M j−1ξ)|2|[φ̂, ψ̂](ξ)|2[ψ̂, ψ̂](ξ)dξ

≤ CM j

∫ π

−π
|H(ξ) · · ·H(M j−1ξ)|2|[φ̂, ψ̂](ξ)|2dξ, (114)

whereC is a positive constant independent ofj. By direct computation, we also have

〈φ, g〉 = M j

∫ π

−π
|H(M j−1ξ) · · ·H(ξ)|2|[φ̂, ψ̂](ξ)|2dξ.

This, together with (96) and (113), implies that∫ π

−π
|H(M j−1ξ) · · ·H(ξ)|2|[φ̂, ψ̂](ξ)|2dξ ≤ CM−j(2γ+1). (115)

Let δ > 0 be so chosen that[φ̂, ψ̂](ξ) 6= 0 for all δ ≤ |ξ| ≤ Mδ, and|H(ξ) − 1| ≤ 1/2
for all |ξ| ≤ δ. The existence of such a numberδ follows from the facts thatH(0) = 1 and
that[φ̂, ψ̂](ξ) is a nonzero trigonometric polynomial. Therefore, it follows from (115) that∫

δ≤|ξ|≤Mδ

|φ̂(M jξ)|2dξ ≤ CM−j(2γ+1) (116)

for some positive constantC independent of0 ≤ j ≤ Z, which proves thatφ ∈ Hβ for all
β < γ.
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