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In this paper, we show that the property of tight affine frame decomposition of
functions inL? can be extended in a stable way to functions in Sobolev spaces when
the generators of the tight affine frames satisfy certain mild regularity and vanishing
moment conditions. Applying the affine frame operat@rson j-th levels to any
function f in a Sobolev space reveals the detailed informadprf of f in such
tight affine decompositions. We also study certain basic properties of the range of
the affine frame operatofg; such as the topological property of closedness and the
notion of angles between the ranges for different levels, and thus establishing some
interesting connection to (tight) frames of shift-invariant spaces.

1. INTRODUCTION

The Sobolev spaced® := H*(R), s € R, are often used for representing functiofis
in many applications. Since these are not sequence spaces, to transmit (store or analyze)
f € H? by using some finite’ device, we may have to rely on a normalized tight frame
{ex, A € A} of the Hilbert spacd.? := H?; that is,

f = Z<f7 6/\>€)\,

AEA

where the coefficient sequen¢éf, e, )} constitutes the tight frame decomposition fof
Hence, the transmission (storage or analysis) of the functiseduces to that of this
sequence of coefficients. Furthermore, we may want to consider a finite representation of
f, if we choose an appropriate finite €t C A and quantizationa of (f, e,) specified

by certain allowable bit depths, so théat= > xear @xex is a good approximation of.
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To be more specific, let us use a fixed integdr > 2 as the dilation factor, and
consider a wavelet systeffi := {¢; ; }yew j kez that is an orthonormal basis @f gen-
erated by some wavelet family, where, as usual; ; := M7/2¢(M7 - —k). Then
the orthonormal wavelet system can be used to decompose functiob$. inMore-
over, the sequence of coefficienf$f, v; ) tyecw, jrez iN the wavelet decomposition
f = vew ezl ik of an L? function gives the time-scale detailed infor-
mation of f. In particular, under certain very mild assumption on the regularity, order
of vanishing moment, and decay at infinity of the wavelet@inthe wavelet systenf
can also be used for stable decomposition of functions in Sobolev spaces [20, 33]. As an
example, forM = 2, the Haar wavelet functiof/,

1 forzel0,1/2),
H(z)=< -1 forze[1/2,1),
0 otherwise,

belongs to the Sobolev spaét’, 3 < 1/2 but not H'/2, and has compact support and
vanishing moment of order one, while any functignin the Sobolev spacé/*, a €
(—1/2,1/2), has a stable wavelet decompositipr- >, , .7 (f. H k) Hj ;, namely,

) 1/2
Alfllza < (2 42 Hin) ) < Bl fllzas

J.kEZ

for some positive constant4, B, where|| - ||z, is the usual Sobolev norm. Compactly
supported orthonormal wavelets with dilatidf, and arbitrarily high regularity and order

of vanishing moments have been constructed in the literature, with the pioneer work of
Daubechies [14] (see the other literature [6, 15, 32, 33, 37]), but all of the known examples
with the exception of the above Haar wavelet, do not have explicit analytic formulation
expression. Unfortunately, in many applications, it is highly desirable to use wavelets
within a certain class of analytically representable functions.

Polynomial splines on a uniform mesh are piecewise polynomials, have explicit analytical
formulations, and hence, are the most natural candidates. But if the property of compact
support is required, shifts and dilations of such spline generators, other than the Haar
example as discussed above, do not form an orthonormal bagi$. ofVhen allowing
redundancy (such as relaxing from an orthonormal basis to a tight frame), compactly
supported tight frames generated by splines on uniform meshes can be explicitly constructed
by using more than one generators (see [7, 8, 9, 16, 34, 36]). A natural question then is to
ask if, analogous to orthogonal wavelet decomposition, the affine frame system associated
with splines can be used to decompose functions in a Sobolev space in a stable way. We
will give an affirmative answer to this question in this paper (see Theorem 3.1 and Corollary
3.3).

Recall that a finite collectio® of L2-functions is said to generatetight affine frame
of L2, (or, for conveniencey is said to be a tight frame df?), if F := {¢; x }yecv jrez
is a tight frame ofL2, which we will assume, without loss of generality, to be normalized
with frame bound constant equal 1o Theaffine frame operato€); on j-th leve| j € Z,
of such a tight affine frame is defined by

Qif = (f bimyin, f €L (1)

PEV kEZ
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Hence, it follows from the tight frame representation

F=Y" 0 (Fimtin feL? 2

Yev j,keZ

that the identity operataf on L? can be written as the sum of affine frame operays
namely:

I=3 Qj=+Q1+Q+Qi+- (3)

JEZ

In this paper, we show that the sum in the above operator decomposition converges strongly
in Sobolev spaces, an analytic property of the affine frame oper@grahen the tight
affine frame generators i satisfy some mild regularity and vanishing moment conditions
(see Theorem 3.1).

By the operator decomposition (3) of the identity operatoL.énwe have the following
decomposition of the spade?,

LP=) Wy=-+ W+ W+ Wi+,
JEZ

whereW; = Q;L?,j € Z. Clearly, if the systen? := {¢; 1 }yecv,jrez generated by
dilation and shifts of functions i is an orthonormal system df?, thenW;, j € Z, are
the wavelet spaces, and hence are closddf iand mutually orthogonal. These properties
of space decompositions are no longer valid in general, when the wavelet decomposition is
replaced by the affine frame decomposition. In this paper, we characterize the closedness
of the space),; H“, a topological property for the affine frame operatQrs and study the
angle between differer,; H*, a geometrical property for the affine frame operatgys
Loosely speaking, we show that there are three possible geometrical structures associated
with the affine frame operatorg;: (i) The angles between differeft; H*,j € Z, are
always zero (or equivalentl)o H is not closed inL.?, or equivalently{y)(- — k) : ¢ €
U,k € Z} is not a frame), see Theorems 4.4 and 5.1; (ii) The angles between different
Q;H",j € Z, are alwaysr/2 (or equivalently bothQ,H* and P,H* are closed in.2,
or equivalently{y)(- — k) : ¢» € U,k € Z} is a tight frame), see Theorems 4.1 and 5.2;
(iii) The angles between differel); H*, j € Z, are always in the open intervél, 7/2)
(or equivalentlyQoH® is closed inL? but P,H® is not closed inL?, or equivalently
{Y(-—k) :¢p € U,k € Z} is aframe but not a tight frame), see Theorems 4.1 and 5.1. For
the second case, the frame decomposifica ZJEZ Q; f is equivalent to an orthonormal
wavelet decomposition, in the sense tfatis a projection operator frorh? to the wavelet
spacedV;, the orthogonal complement &f in V. ;, see Theorem 4.1. For the third case,
the asymptotic behaviour of the angles between sp@gés™ andQ); H is related to the
Sobolev exponent of the scaling functipnsee Theorems 5.3 and 5.4.

The paper is organized as follows. In Section 2, we recall some preliminary results
on multiresolution analysis (or MRA) df?, tight affine frames associated with an MRA,
and frames of a finitely generated shift-invariant space. In Section 3, we establish the
property of stable homogeneous, nonhomogeneous and finite decomposition of functions
in a Sobolev space (see Theorems 3.1, 3.5 and 3.6). From Theorem 3.1, we conclude
that for a finite family® of L2-functions, if it generates a tight affine frame Bt, and if,
in addition, it satisfies certain mild regularity and vanishing moment conditions, then the
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corresponding affine frame decomposition is stable in the Sobolev spaces. In Section 4,
we study closedness of the shift-invariant spaBgs and@; H* in L?, a topologoical
property for the affine frame operataps (see Theorem 4.1), and discuss some interesting
connections to other shift-invariant spaces generatdddayd the (tight) frame properties of

¥ (see Theorem 4.4). In Section 5, we study the arﬁglbstweerf?oHa andQ;H*,j > 0,

a geometric property for the affine frame operatgrs(see Theorems 5.1, 5.2, 5.3 and 5.4

for details).

2. PRELIMINARIES

Letusfirstrecall the definition of Sobolev spaces and some basic theory of multiresolution
analyses (MRA) with dilationV/, tight affine frames associated with an MRA, and frames
of a finitely generated shift-invariant space.

2.1. Sobolev spaces

Fora € R, let7, denote the Bessel potential operator, definedioy = (1+|~|2)a/2f.
Then the Sobolev spadé®, with norm|| - ||z.., is defined by

H*={f:|If

2,0 = || Tafll2 < o0} .

2.2. Multiresolution analyses and scaling functions

A multiresolution analysis (MRA) with dilation/ is a sequence of closed subspaces
{V;},jez of L? such that the following conditions hold: (If; C Vji1; (i) UjezV;
is dense inL?; (iii) NjezV; = {0}; (v) f € V; if and only if f(M-) € V;11; and
(v) there exists a compactly supportéd-function ¢ such that{¢(- — k) : k € Z}
is a Riesz basis of}, (see for example [6, 15, 32, 33, 37]). The functiorin (v) is
called ascaling functiorof the MRA {V}} ;cz. For an MRA with a compactly supported
scaling function, there always exists another compactly supported scaling fuificibh
linear independent shifts (see for instance [25, 37]), meaning that the semi-convolution
[ {d(j) ez ¥ X2 ;ez () f(- — j) is one-to-one on the space of all sequenceZ.on
Hence, in this paper, the scaling function of an MRA is always assumed to have compact
support and linear independent shifts instead of global support and stable shifts (Riesz basis
property), as considered in the classical wavelet literatures [6, 15, 32, 33].

Let ¢ be a compactly supported scaling function with linear independent shifts. Since
Vo C V1, and¢ has compact support and linear independent shifts, it follows that

¢:§:%waﬁfﬁ7 (4)

for some finitely supported sequeneg := {co(j)}jez on Z. Throughout this paper,

the Fourier transforny of an integrable functiorf is given by f (&) = [ f(z)e™*da.
Taking the Fourier transform of both sides of the refinement equation (4) yields

S(ME) = Ho(€)o(€), (5)
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where the functiort{y, known as thé¢two-scale) symbalf the scaling functior, is defined
by

Ho(¢) = Vi Z co(j)e” "¢ (6)

2.3. Tight affine frames associated with an MRA

We say that a finite collectio® of compactly supported?-functions generatestaht
affine frame associated with an MRA(; };cz if ¥ C V; and it generates a tight affine
frame. Letp be a compactly supported scaling function of the MRA} ;cz that has linear
independent shifts. Then any functigne ¥ is in the algebraic span o M - —k), k € Z,
which yields

D(ME) = Hy(€)(€), (7)

in the Fourier domain, wherél,,(£),1 € ¥, are trigonometric polynomials. The tight
frame property ofl is characterized via the symb#l, of the scaling functior in (6) and
the functionsH,,, v € ¥, in (7) (see [8, 9, 16, 36]).

ProrosITION 2.1. Let{V]},cz be an MRA with compactly supported scaling function
¢ that has linear independent shifts. L&tbe a finite collection of compactly supported
L2-functions given by (7). TheW is a tight affine frame if and only if there exists a
trigonometric polynomials (€) which satisfies (i)5(0) # 0; (i) S(£) > 0 for all £ € R;

(i) S(&) = S(=¢) forall ¢ € R;and (iv) forallm =0,..., M — 1,

SOMOHo(€)Ho (€ + 20 ) + 3 Hy(€) Hy (6 + 2570 ) = 6,05(6),  (8)
Ppew

whereH), is the symbol of the scaling functignand H, ¢ € ¥, are given in (7).

By (8), we have

S(€) = S(ME)[Ho(&)1* + Y |Hy (&) 9)

Ppew

By applying this formula iteratively, we have

st0=sara [imoree 55 ([T moro?) (5 mover)

j=0 =0 Yew

Hence, taking the limit and using the fact tdt_, |H(M¢)]> — 0 asn — oo for all
¢ & 2nZ, (which follows from the assumptions thatis compactly supported, has linear
independent shifts, and belongs/té), we obtain

i<H|H0 MOR) x (D [Hu (M), (10)

j=0 i=0 phev
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So the functionS(¢), called vanishing moment recovery (VMR) function[8, 9], in
Proposition 2.1 is the same as flidamental functio® of resolutionof the tight affine
frameW in [16, 36].

Multiplying f (¢ + 2km)d(& + 2km)p(€) to both sides of (10), and applying (5) and (7),
yields

(€ + 2km) (€ + 2km)S(E)B(E)
Z Z (€ + 2km)(MI (€ + 2km))p(MIE), k€ Z.

Then summing ovet € Z and taking the inverse Fourier transform, we may conclude that

Pof=Y_Q;f,

7<0
where the operatoré’j,j € Z, are defined by

Pif = (f.0jx)bik = > _(fr bk i (11)

kEZ keZ

and the functionp in V; is given byg(g) = S(f)q@(f). By (11) and the dilation invariance
of frame operators at different levels, we have

Pi=> Qw Jjeg, (12)
k<j
and
Qi=P—PF, jel (13)

2.4. Frames of a finitely generated shift-invariant space

For a finite collection¥ of compactly supported.? functions, we define the shift-
invariant spacé’?(¥) by

2(p) = { SN B — k) : (cp(k))rez € € forany ¢ € \1/} (14)

YEV kEZ

Here,¢2 denotes, as usual, the space of all square summable sequerite¥/eralso use
V2(ip1,...,1n) to denoteV (V) when¥ = {9y, ...,y }, and say tha is aframe of
the shift-invariant spac&?() if there exist two positive constantsand B such that

AIFI3 < YD A=k < BlIfI3. fe V(D).

YEV kEZ

If A= B, then we say tha¥ is atight frame of the shift-invariant spade?(¥). Further-
more, if A = B = 1, the tight frame is said to be normalized.

The (tight) frame for a finitely generated shift-invariant space is characterized in the
Fourier domain in [2, 3].



FRAME DECOMPOSITIONS AND SHIFT-INVARIANT SPACES 7

PROPOSITION 2.2. Letyy, ...,y be compactly supportetP-functions, and set =

{41,...,¥n}. Then

(i) ¥ is a frame of the shift-invariant spad€®(¥) if and only if V() is a closed linear
subspace of.2, which, in turn, is equivalent to the property that the rank of fie< Z
matrix (@n(é“ + 2km))1<n<n kez iS independent of € R;

(ii) W is atight frame of the shift-invariant spad€ () if and only if the matrix

B(E) i= (D2 $ul€ + 2km) s (€ + 26m))

1<n,n'<N
kEZ

satisfies
B(§)2 = COB(f)a f S R7 (15)

for some positive constani,.

3. STABLE AFFINE FRAME DECOMPOSITION IN SOBOLEV SPACES

For the tight affine frame generated by a finite collectioof L2-functions, the following
stable frame decomposition property holds for gny L?:

F=Y 0 (Fim ik

Yev j keZ

while the convergence is unconditional Iif. The above frame decomposition can be
extended to functions in a Sobolev space when the tight affine flasaisfies some mild
regularity and vanishing moment conditions.

TueoreM 3.1. Let3 > 0,a € (-4, 3), and let¥ be a finite collection of 2- functions
that generate a tight affine frame b¥, such that any functionr € U satisfies the regularity
condition:

D€+ 2km) 21+ [€ + 2k7[*)? < Cp, € €R, (16)
keZ

as well as the vanishing moment condition:

[0()] < Cplél’ as € —0. (17)

Then the affine frame decomposition

F=Y" 3 (fbimin=>_ Q;f. feH (18)

Yev j,keZ JEZ

holds, where the convergence is unconditionalfifi. Furthermore, there exists a positive
constant”, independent of € H¢, such that

CHFBo < D M*¥(Qif, £) < Cl13,0s (19)

JEZ



8 C. K. CHUI AND QIYU SUN

OB a <D M*9NQ5f15 < ClIfI3 0 (20)

JEZ

and

CHIAIB <D 1R 1

JEZ

50 S ClfI3.0, (21)

2, =

wherej, stands formax(j, 0).

REMARK 3.1. For a finite family¥ of L2-functions, we say thab hasstable shiftsf

AY el < || X S esbvt — b <BY S lesh)P
»

Yew keZ Yev keZ €V keZ

holds for all sequences:,; (k) }rez € €2, € V. Observe that ift has stable shifts, then

A<Q]f7f>S||Q]f||§§B<Qvaf>7 feHa

for the same positive constants B independent ofi € Z. Thus, the middle terms in

the estimates in (19) and (20) are equivalent to each other. On the other hand, as we will
discuss later, tight affine fram@sdo not have stable shifts in general (see Theorem 4.4 for
details). To the best of our knowledge, the estimate in (21) is new even fo1), when

the stable shift assumption @&fis dropped.

For s > 0, we say that) € Lip g if D7¢,0 < v < f3y, are continuous, and
| D4 (x) — D*p(y)| < Cla — y|*~™, 2,y € R,

wheref is the largest integer strictly less thA&nandC' is a positive constant. We denote
the class of all compactly supported functiond.ip 3 by Lip, 8. The Sobolev exponent
so(f) of an L2-function f is defined by

s2(f) :=sup{p : f satisfies (16)}

and the Hblder exponentv., (f) of a continuous functiorf by

aoo(f) :=sup{f: f € Lip 3}.

For example, for then'" order cardinalB-spline N,,,, we haves,(N,,) = m + 1/2 and
oo (Nm) = m, and hence

SQ(Nm) < SQ(NWL).

In general, we have the following result on théltler exponent and Sobolev exponent of
a compactly supported continuous function.
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ProposiTION 3.2. Let be a compactly supported continuous function. Then its
Holder exponentv., (1) and Sobolev exponesi (1)) satisfy

Qoo (V) < $2(9). (22)

REMARK 3.2. The estimates in (19) and (20) are known when the regularity condition
(16) for ¥ is replaced byl C Lip, g (see [18, 19, 20] and the references therein). In that
particular case{v; i }»cw,j,kcz COnstitutes the so-called atoms of the Sobolev sgate
as well as atoms of some Triebel-Lizorkin spaces and Besov spaces. In view of Proposition
3.2, the assertion in Theorem 3.1 generalizes this result of the frame decomposition of
functions in Sobolev spaces.

REMARK 3.3. For a scaling functiom, it is easier to verifyy € H” than¢ € Lip, 3.
In particular, the question of whether or not a scaling functidelongs tof” reduces to
finding the maximum norms of all eigenvalues of a finite matrix generated explicitly by the
symbol of the scaling functioa (see for instance, [17, 27, 38]). So the regularity condition
(16) for the tight framel is easier to be justified tha#t € Lip,, 5, when¥ is compactly
supported and is associated with some MRA, while most of known tight frames satisfy those
two conditions. For any compactly supported functionthe Sobolev exponent (v) is
usually larger than the dlder exponentv,,(¢)). So functions in a Sobolev spadé®,
wheremingcw oo (1) < a < mingecw s2(¢), have stable affine frame decomposition
by Theorem 3.1. In particular, for spline frames, an application of Theorem 3.1 gives the
following optimal result.

COROLLARY 3.3. LetN,, be them'™ order cardinal B-spline, and¥ be a finite family
of compactly supported functions defined by

~ ~

¢(Mf) = Hl/)(g)Nm(é.)
for some trigonometric polynomialsg,, that satisfy
|Hy(©)] < Clg)™ ™ as £ —0.

Leta € (—m—1/2,m+1/2). Thenif¥ is a tight frame of.2, any functionf € H® has a
stable frame decomposition of the form (18) and the coefficients in the frame decomposition
satisfies the estimates in (19), (20) and (21).

REMARK 3.4. For atight frame¥ of L2, the frame decomposition has minimal energy
in the sense that the energy := > > 1cz lay;(k)|* of a decompositionf =
Y wew 2ojrez @i (K)Yj.x is minimum for the frame decomposition, that is,

ST AP <D Y lagy ()

YEV j,keZ YEY j,kEZ
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(see [7]). A similar but weaker result can be established for frame decomposition of
functions in Sobolev spaces, as follows.

COROLLARY 3.4. Letf,a,¥ be as in Theorem 3.1. Then the frame decomposition
has quasi-minimal energy in Sobolev spdéeé in the sense that there exists a positive
constantC', which depends only om, 5 and ¥, such that iff € H* has a decomposition
= vcw 2 kez @i (k) with finite energyy "y, 3= e M2+ %ay,; (k)|? inthe
Sobolev spacé/«, then

S ME P <O ST Mg (k)P

Yev j,keZ YEW j,kEZ

The assumptions in Theorem 3.1 that the tight affine frame compactly supported
and is associated with an MRA, can be removed. However, under these assumptions, in
addition to the property of homogeneous frame decomposition (18), functions in a Sobolev
space have nonhomogeneous frame decomposition (23) and finite frame decomposition
(28) as well.

THEOREM 3.5. Lets > 0,a € (—3,3), and let¢ € H” be a compactly supported
scaling function of an MRAV;};cz that has linear independent shifts. Assume that
U C V; is a finite collection of compactly supportéd functions, which generate a tight
affine frame ofZ.2, and that any function) € ¥ satisfies the vanishing moment condition
(17). LetP, and¢ be defined as in (11). Then the nonhomogeneous frame decomposition

f= Rf+> Qif (23)
j=0
=) (fdor)bok+ D D> (Fi)tik  fe€H?,
keZ Jj=0¢ev keZ

holds, where the convergence is unconditionalfiti. Furthermore, there exists a positive
constant”' such that

M flan < (S1a0l) "+ (35 S a2 ru0p)

keZ 7=0v¢ev keZ
- 1/2 o ) 1/2
= (X don) T+ (2o MFQu 1)
keZ j=0
< Cllflza (24)
-1 D = 2ja 2 1/2
C Ml < WP fll2 + (D2 M¥NQifIB) T < Clflza (25)
7=0

and

~ o 1/2
C Sl < I Pof 20+ (D NQiSBa) < Cllfllaas fEHY  (26)
§j=0
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REMARK 3.5. If P; are projectors, i.e.P? = P;, then the estimate (25) follows
from inequalities of Bernstein and Jackson type. We refer to [5, 11, 13] for a detailed
presentation of such a mechanism. Note thdtifare projectors, the@); = P, — P;
are also projectors, and this implies that bﬁ?;h’ﬂ and@, L? are closed subspaces bf.

Thus, the scaling functios of the corresponding MRAV; } <z has orthonormal shifts

by Theorem 4.1¢); L? is the orthogonal complement bf in V.1, andQ; are projectors

on the wavelet spaces obtained from the MR };cz. As a consequence, #; are
projectors, then the frame decomposition (23) becomes essentially the usual orthonormal
wavelet decomposition.

For the tight affine frama& associated with an MRAV; };cz, we have the following
result on finite frame decomposition with uniform stability in Sobolev space norm.

THEOREM 3.6. Lets, a, ¢, ¥, S(), }5]- be as in Theorem 3.5. In addition, assume that
the functionS(¢) in (10) associated with the affine tight frankesatisfies

S(E)£0 YEER. 27)

Then any functiorf € Vi, L > 1, has the following finite frame decomposition,

f = Pohy +Qohy +---+Qr_1hr (28)
L—1
= > (hp,Gor)bok + D D> (b, ik ik,
keZ j=0 eV keZ

wherehy = (PL)*lf e Vr.. Furthermore, there exists a positive constahindependent
of L>1andf € V;, sothat

. 1/2
Mo < (D0 Khe, o)) (29)
keZ
L-1 . 1/2
(X M5 Qha b)) < Ol
j=0
—1 D = 2ja 2 1/2
CM 2 < I Pohellz + (D2 M¥*Qihel) < Cllflaas  (30)
j=0

and

R L-1 1/2
CHflza < 1Pohrllze + (D 1QsheBe) < Clfla (B2)
j=0

REMARK 3.6. The multiscale techniques have become indispensable tools in several
areas of mathematical applications, such as in the numerical treatment of differential (or



12 C. K. CHUI AND QIYU SUN

integral) equations. The task is usually formulated to approximating an (implicitly) given
function (e.g., a unknown solution of a different equation) in some infinite dimensional
function spaceB by some subspaceS; C B at different levels, such as the spaces
V;,j € Z,in an MRA [5, 11, 13]. Corresponding to the above approximating spéices

are the approximating operatofy, that are the projectors from® to S;. In the affine
frame setting, an operator similar to the projed®is the operaton in (11), which is no
longer a projector, but is still an approximating identity. So for affine frame decomposition,
we use operator approximation of the identity instead of space approximation of the whole
space. Theorems 3.5 and 3.6 assure uniform stability over all levels of the affine frame
decomposition in view of the operator approach to approximation of the identity on a
Sobolev space.

REMARK 3.7. Given finite collectionsl := {¢y,...,¢¥n} and ¥ := {¢, ..., Yn}
of L? functions. We say thalr and ¥ generate @i-frame of L2(R%) if both F :=
{¥nijkt1<n<njez keze ANAF := {n ik 1<n<nN,jrcz are frames of.2(R%), and if

N
j{: j{: fawngk wngk: jg: ji: ffwnjk ¢njk: fOfaHj?G L2(I{d)
n=1jeZ ke

n=1jeZ keZ?

wherey,,.; . = M7/ %, (M7 -—k) ([8, 9, 16, 36]). We remark that all results in Theorems
3.1, 3.5 and 3.6 can be generalized to the bi-frame case with standard modification: the
tight frame assumption fo¥ by the bi-frame assumption fob := {¢1,...,¥n} and

U := {41,...,n}; the regularity assumption (16) and vanishing moment assumption
(17) for ¥ by the same assumptions for bothand ¥; the affine frame operatap ;
associated with the tight affine frarieby the affine frame operatdt; associated with the
bi-frame ¥ and ¥,

N
ji: j{: f’wnd, wn4$ vleELQ
n=1keZd

and(Q; f, f) in Theorems 3.1, 3.5 and 3.6 @nNzl > keza (s Vi) |2

3.1. Proof of Theorem 3.1
To prove Theorem 3.1, we need the following two lemmas.

LEmMA 3.7. Letf > 0and|a| < 8. Assume that satisfies the regularity condition
(16) and the vanishing moment condition (17). Then there exists a positive co@stant
such that, for all functiong; = 3", .7 ¢; k0.5 With {c; x }rez € 2,j € Z,

(Tugis Tagi)| < O M—B=leDli=5"l ppls+i})e (32)

(Z \c]yk|2)1/2(z |cjg;.c\2)1/2, j.j' € Z.

keZ kEZ
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Proof. Without loss of generality, we assume that j'. LetA;(§) = >, o5 cjre”
be the Fourier series of the sequentes; }rcz,j € Z. Now, since
Tagj(€) = (14 |E[*)* /2 A; (MM (Mg),

we have

(Tagjs Tagjr)] (33)
= MO [ (1 ), (e A (TS
R

G(MIEVY(M ' €)de

< M G++il)atG—3")d0
) ) - 1/2
([ 1P 4 25 )P () P
, y ~ 1/2
([ 1@ P QI M ey Pag)

wheredy = 8 — |a| andz_ = min(0,x). For¢ € [—m, 7], it follows from (16) and (17)
that

S (M M- € + 2k [2)* € + 2k (¢ + 2k) 2 (34)
keZ
< Cr+Cr Y (L €+ 2km?)%[¢ + 2k %] + 2km)? < C
0#£k€EZ

for0 <jeZ,and
S (M 4 M- | + 2k 2) ¢ + 2knP0 (€ + 2km)2 (35)
keZ
< Gy Y (14 | + 2k |?) ™+ |€ + 2k (€ + 2km) > < Cy

keZ

for 0 > j € Z, whereCy,C5, C3,C, are positive constants independentjof Z and
¢ € [—m,w]. Similarly by (16) and (17), we have

D (M 4 M7 4 2k |?)°E + 2k | T20[ (6 + 2km) P < C5 (36)
keZ

forall j € Z and¢ € [—m, «], whereC} is a positive constant independentjoand&.
Combining (33), (34), (35) and (36), we obtain

[(Tagi» Tagi)l
< M(j++j/+)a+(j—j')5o(/w

—T

aPae) ([ 1apopag) "

) ) ~ 1/2
x(sup (M2 4 M= (¢ 4+ 2hr]) € + 20| D(E + 26m) )
[§1<m kcZ

y . ~ 1/2
x((sup DM 4 Mg + 2hem[2)?€ + 2|2 |(E + 20m)[?)
[§]<m keZ
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’ . ./ 1/2 1/2
< OMU+HI)eti=i )60(2 ‘Cj,k|2> / (Z|Cj’,k|2> / :

kEZ kEZ

for some positive constaidt independent of, j' € Z, and{c; x}, {c;  x} € ¢£*. Hence,

(32) follows. m

LeEmMA 3.8. Let3 > 0, a € (—f,0), and let¥ be a finite collection of.2-functions
such that any function) € ¥ satisfies the regularity condition (16) and the vanishing
moment condition (17). Define

ZZ%J ¥k

YEV kEZ

for somel?-sequencegc,.;(k)}rez, v € ¥,j € Z. Then for anye > 0, there exists a
positive constan€’. such that

. ) /2
l9slle0 < CMTgjlla+ M (D23 lewy (W) iz @D
YeW kEZ

Proof. Leth, be the characteristic function of the annu{us< |¢| < s~!}, wheres is
some sufficiently small positive number to be assigned later. Note that

35(6) = M2 3" Ay (MI€)p(MI¢),

Yew
whereA,,; is the Fourier series of the sequereg,; (k) }rez. Then
[FH (G (R (M) ||, < Cs™ 10742 gl (38)

for some positive constart independent of € Z ands € (0,1). By (16) and (17), we
obtain

IF 1@ () (1 = he (M3, (39)

= . 2 2 ad
</|€|<Mj3+/|€|2Mjs—1 )|gj(f)| (14 1&|%)>de
| Ay (P19 ()P + MY [¢[*)dg

IA
Q
M
—

we\p H s
oY / A (O)PIBE)P(1 + M |¢[2)2de
Ve g|>s—t
< Camax(1+ MY g x / S Ay (€) P
ﬂwe\y
WAIEEDS / Ay (©PIBOP + [eP) ~lag
pew
< CBMQHG 2(B—|al) Z/ |ij |d§7

PYew
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whereC, Cs, C3 are positive constants independensaf (0,1) andj € Z. Combining

(38) and (39), we have, for sufficiently smallthe estimate (37).

Proof (Proof of Theorem 3.1). First we establish the inequalities on the right-hand side
of (19), (20) and (21). Recall that)f’, _, |ﬁ(f +2kn)|? is bounded, there exists a positive
constaniC so that

2
> ant-w| <oy laf
keZ keZ
for all 2 sequencec;}. Therefore the inequality on the right-hand side of (20) follows
from the inequality on the right-hand side of (19). Clearly, the inequality on the right-hand
side of (21) follows from Lemma 3.8 and the inequalities on the right-hand side of (19) and
(20). Therefore it suffices to establish the second inequality in (19). This, in turn, depends
on the estimate:

> MP(f 0 < CIfI3 0, | € HY, (40)

J.kEZ

for any functiony that satisfies (16) and (17), for some positive constamdependent of
f. For any compactly supported functign we have

Z (f, 50012

keZ
2

= / S FOMI (€ + 2km))i (€ + 2kr) | de

T kezZ

CoM [R FOL6)[21d(¢) e

IN

+C M+ /W d§( Z |F(MI (€ + 2km))[2(1 4+ M7+ |¢ + 2kn])>™
- k0
(L 16+ 2krr]) =28 ) s (37 (¢ + 2km)P(1 + | + 2k])*)
k0

where( is a positive constant independentfofThus, for any function) satisfying (16)
and (17), we obtain

Z MPIE|(f, ) 2

< / FOR S M¥ee|f(ie)Pde

j—*OO

C 14+ MI+—9|eN2%(1 + M7 2(at+8) 4
oy /|§|>Mjﬂf(£)l( M) (1 4 M g]) =20 g

j=—00

< / FOP S M min( Mg, M= ¢|2)de

j=—00
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(gl o |
+03/R|f(§)|2 Z (1 4+ MI+3|g])2(1 + M~ |¢])~ 2P ge

j=—00

< Cullf113,0:

whereCy, C3, Cy are positive constants independenfaf H*. This completes the proof
of (40), and hence the second inequality in (19).

Next, we establish the first inequalities in (19), (20), and (21). The first inequality in
(20) follows from the first inequality of (21), Lemma 3.8, and the second inequality in (19).
On the other hand, the first inequality in (19) follows from the first inequality in (20) and
the trivial estimate|Q; f|13 < C(Q; f, f). Therefore, it suffices to prove the validity of
the first inequality in (21). In this situation, we recdll= .., Q;f =: > ,cz9;. By
Lemma 3.7 and the second inequality in (19), we obtain

%,a = Z <\7agj’t70¢gj'>

J:J'€Z

<C Z M—0li=i"l ppl+it)e Z (Z I(f, "/}j,k>‘2> 1/2

li—3'I>L YeV keZ

1/2
() D 1Tags el Tag

kez li—3'I<L

I/

IN

CM_(SOLHfH%,a + CLZ Hjanggv
j€z

wheredy = 6 — |a|, L > 1, andC is a positive constant independentlaf Hence, for
sufficient largel in the above estimate, we obtain

1130 <O lgill3a (41)

JEZ

for some positive constaidf. This completes the proof of the first inequality in (21), and
hence all the inequalities in (19), (20), and (21) are established.

Finally, we prove the unconditional convergence of the affine frame decomposition (18).
By Lemma 3.7, we have

2 .
H Z aj,M/Jj,kHQa <C Z M2+%|q; 1|2 (42)

Jk€EZ jkeZ

for some constant’ wheny) satisfies the regularity condition (16) and the vanishing moment
condition (17). Hence, the unconditional convergence of the frame decomposition (18) fol-

lows directly from (19) and (42). m

3.2. Proof of Proposition 3.2

Clearly if 1/ satisfies (16) themy € H”. Conversely ify) is a compactly supported
function in H” thenv satisfies (16). Indeed, for agyc R,

> 1(E + 2km) (1 + [€ + 2kn]?)”

kEZ
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IN

Cs [ (3 Ih(e + 2k = )1+ 1€ + 2bf)?) D) Py

keZ

o /R BmIR(1 + 1)y < o,

IN

whereh is a compactly supporte@° function h with ¢ = hi, andCy, C, are positive
constants independent §f Therefore a compactly supported functigrsatisfies (16) if
and only ifyy € H”. From this, the proof of (22) reduces to showing that

Lip, o C HP foralla > 8> 0. (43)

Lety € Lip, a, a > 3 > 0, g be acompactly supportéd™ satisfyingg(¢) = O(£>+1)
as¢ — 0andg(¢) # 0asl/2 < [¢] < 1, andg;(z) = 27g(27z) for j > 1. Then the
functionsg; * 1, j > 1, obtained by the convolution betwegnand+ are supported in a
bounded sef (independent of), and theirL>°-norm are bounded bg'2-7* for some
constantC independent of > 1, namely,

lg; * ¥lloe < C279%, j > 1.

By the standard Littlewood-Paley decomposition of compactly supportédied continu-
ous functions [20], we see that

/ (1 -+ €2)°(€) [2de
R

< P2 +27 S 228 / | 1) Pde
j=1 27-1<[¢]<27
< ClIlI3+CD 257 g =I5
j=1
< C)% +C' Y 2298 gy 5 )% < oo
j=1

where C, C’ are positive constants. This proves (43) and completes the proof of the
Proposition.

3.3. Proof of Corollary 3.3
From its Fourier transform formulation

- __—ig\ M1
M=)

we see that thex*® order cardinalB-spline IV,,, satisfies the regularity condition (18) for
any0 < 8 < m + 1/2. Hence, the conclusion follows from Theorem 3.1.

3.4. Proof of Corollary 3.4
The conclusion follows directly from (19) and (42).

3.5. Proof of Theorem 3.5
Since¢ is compactly supported, we have that= h¢ for some compactly supported
C® function h. Taking the Fourier transform on both sides¢of= h¢ and noting that
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¢ € H?, we have

D 1€ + 2km)P(1 + € + 2k7[*)” (44)
kEZ
< O Y [ (le 2bm = nP) g x (14 |¢ + 2hr)?
kez’R
< Coldlls s EE€R,

for some positive constants;, C>. This proves thap satisfies the regularity condition
(16).
By the Holder inequality, we have

S 1ol < [ (3 1Fe+2em)e + 2hm)) e

keZ T keZ
< [ (S 1Fie+ mmP+ie + 2ka)e)
T keZ
X (D 1906 + 2Km) 21+ ¢ + 20/m[?) 7 ) de.
k'€Z

This, together with (44), implies that

> 1S bow) > < ClEIG o (45)

keZ

forall f € H* a € (-, 3), whereC is a positive constant.
By (44) and the assumption thathas linear independent shifts, there exists a positive
constantC such that

CTh <Y lo(e +2km)P < €
kEZ
and
C <> T o(E + 2km)P(1 + €+ 2km1)* < O, EER.
keZ

For any f, € Vj, we have thatfo(g) = a(€)¢(€) for some2r-periodic functiona(¢).
Thus,

s T

C7H [ a(@)Pds < [Ifol3 < C | la(&)I*de,

—T —1T

and
[ la©Pds < 1l < € [ la©)Pae.
This proves that
C Y foll2 < llfoll2.a < Clifollas  fo € Vo, (46)

for some positive constant.
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By (44) and the assumption o#i, we see that any functioh € ¥ satisfies (16).
Therefore the inequalities on the right-hand sides of (23), (25) and (26) follow directly
from (45), (46), and the inequalities on the right-hand sides of (19), (20) and (21). The
inequalities on the left-hand sides of (23), (25) and (26) follow by using a similar method
as in the proof of Theorem 3.1. We can therefore safely omit the details of the proof here.

3.6. Proof of Theorem 3.6

For any fy € V,, we havefo(f) = a(&)p(€) for some square-integrabfer-periodic
functiona. Thus,

Pofo(€) = a(€)S(6)D(E)B(€) = SE)D(E) Fo &),

where®(£) =3, .5 |6(& + 2km)|2. This, together with strict positivity of (¢) and® (),
implies thatP, has a bounded inverse &f. Hence, we obtain, from dilation invariance,
that

IPLfll2 > Cllfll2, f€ VL, (47)

for some positive constait independent of. > 0. By (13) and (47), the following finite
frame decomposition property holds for apy Vi.:

f = Qr_1hr + -+ Qohr + Pohr

L1
Z Z Z<hLﬂ/’j,k>1/)j,k + Z(hL, G0.k) Do,k

j=0 pEeV keZ keZ

wherehp = Pglf € V. The estimates in (29), (30) and (31) can be proved by using a
similar method as in the proof of Theorems 3.1 and 3.5. It is then safe to omit the details
of the proof here.

4. RANGES OF THE OPERATORS P; AND Q

We have shown that by Theorem 3.5, for a tight affine framassociated with an MRA,
the identity operator on the Sobolev space has a stable decomposition. Corresponding to
the operator decomposition of the identity operator is the decomposition of the Sobolev
spaceH %, namely:

H® = Py)H" + > Q;H".
7=0
An interesting question that arises then is whether or not the subspadé$ and
Q;H,j € Z, are Hilbert subspaces &f~.

We say that a subspateof L? is ashift-invariant spacéf f(- — k) € V foranyf € V
andk € Z. For a tight affine frame associated with an MRA, the rangBsL? andQ L>
are shift-invariant subspacesbf. If both the scaling functios of the MRA{V; } ;cz and
the tight affine frame associated with this MRA satisfy the regularity condition (16), then
following the proof of (45), we have th@, H* is a shift-invariant subspace &f = V2(¢)
and thatQo, H® is a shift-invariant subspace f?(¥). This motivates our study of the
rangesP, H* andQ,H* via the theory of shift-invariant spaces.
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THEOREM 4.1. Letf > 0,a € (—4, 3), and let{V} } ;cz be an MRA with compactly
supported scaling function € H” that has linear independent shifts. Assume thas a
finite family of compactly supporte?-functions inV; that generate a tight affine frame
of L2, and that any function) € V¥ satisfies the vanishing moment condition (17). Then
the following statements are equivalent:

(i) Both PByH* andQ; H*, j € Z, are closed inL? (or equivalently inH®).

(i) QoH* is the orthogonal complement & in V; c L2, and ¢ has orthonormal
shifts, i.e.,(¢, (- — k)) = dko, k € Z.

(ii) {w(- — k) : o € ¥, k € Z} is a tight frame of the shift-invariant spad&’ (¥).

For a tight framel associated with an MRAV; } <z, we note that if the scaling function
¢ of this MRA has orthonormal shifts, and the rangeH“ of the frame operatof); at
each level is the same as the wavelet space at the corresponding level, then the affine frame
decomposition of a functiorf in H* becomes essentially the usual orthogonal wavelet
decomposition. So by Theorem 4.1, the ranggs and@;H are not closed ir.? in
general.

Recall that for a compactly supported scaling functioa H<, there exists @ > 0 so
thatp € H**+ (see for instance [31]). Therefore, by Theorem 4.1, we have the following
result, which generalizes a result in [21].

CoOROLLARY 4.2. Let{V;};cz be an MRA with compactly supported scaling function
¢ that has linear independent shifts, and fetbe a finite family of compactly supported
L2-functions inV;. Assume thall generates a tight affine frame af, and also a tight
frame of the shift-invariant spadé? (). Theng has orthonormal shifts.

The rest of this section is divided into three parts. In the first and second parts, we give
various characterizations of the topological property of closednes,#r* and(),; H <,
respectively. The proof of Theorem 4.1 is given in the last part of this section.

4.1. Range of the operatorP,
In this subsection, we study the topological property of closedness of the range of the
operatorP, in the Sobolev spacE . We remark that in the following result, the function
¢ needs not be a scaling function and tfateeds not be the vanishing moment recovery
function of a tight affine frame, even though we use the same notation as before.

THEOREM 4.3. LetB > 0, a € (—3,0), and¢ € HP be a compactly supported
function that has linear independent shifts. Assume$ti&j is a nontrivial trigonometric
polynomial, and define the operatéy on H* by

Pof =Y {f.dox) b0k

keZ

whereg(g) = S(§)$(§). Then the following statements are equivalent:

(i) PyH" is closed inL? (or equivalently inF®).
(i) S(¢) £0forall ¢ € R.
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(iiy PoH® = V?(¢).

Proof. First we prove ()= (ii). Suppose, on the contrary, th&t¢,) = 0 for some
& € R. Then there exist a positive constagt> 0 and a functionA(¢) € L3, supported
in [€0, &0 + do] s0 thatS(¢) # 0 for all £ € (&0, &o + do], and A()S(€) " & L3, Here,
L3, denotes, as usual, the space of all square-integeableeriodic functions. For any
0 € (0,dp), we introduce the functiong andg;s by setting

o~

F5(6) = A(€)xE, (£)9(£),

and

~ -1

5:(6) = A©)S© xmy (O D 16(6 + 2km)I2) (),

keZ

whereEs = [¢) + 6, & + o] + 2nZ. Theng; belongs toH® and satisfiesygs = fs,
which, in turn, implies thafs € P,H. Also we note thaf; tends tof, asé tends to zero,
wherefy(€) = A(€)d(€). Therefore, since the spaégH* is closed fy = Pygo for some
go € H*. Taking the Fourier transform of both sides, we have, by the property of linear
independent shifts of the scaling functign

=

3 Go(€ + 2km)B(€ + 2km) = A(6)S(6) 7,

keZ

which leads to a contradiction, since the left-hand side belonds tdbut the right-hand
side does not.

Next, we prove (ii)=> (iii). Let S(£) # 0 for all £ € R. Following the proof of (47),
we see that the restriction of the operaigron V2(¢) has a bounded inverse. Recall that
V2(¢) Cc H* by the assumption op. Therefore the above two observations together lead
to the assertion thaty H* = V().

Finally, the implication (iii)=> (i) follows easily since the spadé€?(¢) is closed inL.? as
wellasinH®. &

REMARK 4.1. For functionsy,, anszn,l < n < N, satisfying (16) withG = 0, we
define the operatak on L? by

N
Rf =" (fitbhal-—k))u(-—k) V [feL (48)

n=1keZ

Using the Fourier technique (c.f. [2, 3]), one may prove the following results for an operator
R of the form (48): RL? is closed inL? if and only if there exists a positive constafit
such that

2
C™H(Au(€)? A5 (6) (Aw(©))2 < (4w (€)' A5 (€)(Aw(€))/?)
< CAY*(©A5(OA* () (49)

holds for almost alt € R?, and RV?(®) is closed inL? if and only if there exists a
positive constant’ such that

O™ s 0(O)A4/(©)Au 0(6) < (As5() A5/ Au0(©))
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< CAp w(§)Ag(§)Awa(§) (50)

holds for almost alt € R?, where® = {¢,,,1 < n < N’} satisfies (16) with3 = 0 for
every¢, € ®. Here the correlation matridy (&) is defined by

Ava(€) =Y W(E+2km)D(E + 2k7r)T

keZ

and the auto-correlation matriks (€) := Ag (). If we further assume thdt),, (- — k) :

1 <n < N,k € Z} for a Riesz basis for its generating spac&¥) and any function
Y € U satisfies (16) with3 = «, then RH® is closed inL? if and only if there exists a
positive constant’ such that

C™1A5(8) < (Ag()? < CAx(9) (51)

holds for almost al € R¢. This characterization for the closednessR¥“ simply
implies the equivalence of the statements (i) and (ii) in Theorem 4.3.

4.2. Range of the operatoQ,

In this subsection, we consider the problem of whether ohdi® is closed inL? (or
equivalently inH%). Thus we establish some connections among the topological property
of closedness afy H%, the frame property of the shifts of functionsin and the existence
of tight affine frames with a minimal number of generators.

THEOREM 4.4. Letf > 0,a € (—f,3), and let{V} };cz be an MRA with compactly
supported scaling function € H* that has linear independent shifts. Assume that V;
be a finite collection of compactly supported functions that generates a tight affine frame
of L2. Write

00 = Hy(5)3(5) v ew, (52)
set

2mm

H(¢) = (Hy(¢+ =5 (53)

))1/;6\11,05mglw—17
and letS(¢) be defined as in (10). Then the following statements are equivalent:

(i) QuH* is a closed subspace &f.

(i) QoH® = V2(¥).

(i) {v(- — k) : ¢ € U,k € Z} is a frame of/2(¥).

(iv) There exist compactly supported functiasis . .., 5,_; in Vi such that®* :=
{4%,...,¢% 1} generates a tight affine frame &f and that{v}, (- — k) : 1 <m <
M — 1,k € Z} is a Riesz basis df ?(¥).

(v) Therank ofH(¢) is M — 1 forall £ € R.

(vi) S(¢) satisfies

M-1

Z%’HO(SJrT))QLfeR. (54)

m=0
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(vii) The rank of(zZ(é + 2k7))yew, kez is independent of in a neighborhood of the
origin.
(viii) There exist a positive constatt and negative integek;, such that

0

> (Qif /) = Clfl3, feV(D). (55)

Jj=L1

REMARK 4.2. By the dilation invariance of the Sobolev spai€, the space&), H*
is closed inL? if and only if all the subspace@; H*,j € Z, are closed in.2. Thus, the
condition (i) in Theorem 4.4 is equivalent to the closedness of the subspaégs, j ¢ Z,
in L? (or in H by (46)).

REMARK 4.3. A finite family ¥ of compactly supported functions may generate differ-
ent shift-invariant subspaces for different purposes, sua@s? for the theory of frames,
V2(W) in (14) for sampling theory [1, 2], an8?(¥) for approximation theory [4, 23, 26].
Here, 52 (W) is the L2-closure of the algebraic span of the shifts of functionirClearly,
we have

QoL? C V(W) C S*().

In [2], it is shown thatl’2(¥) = S2(¥) if and only if V2(¥) is a closed subspace &Ff.
This, together with Theorem 4.4, implies that either

QoL? = V(W) = S%(0),
or

QuL? # V(W) # S*(V).

REMARK 4.4. If the scaling functionp has orthonormal shifts, then the corresponding
symbol H, satisfies

3 ‘H0(§+ 2’””)‘2:1. (56)

M-1
M
m

=0
The converse does not hold, as can be seen from the examplédfat= (1 + e~3¥)/2
for M = 2 satisfies (56) but the corresponding refinable functigys) does not have
orthonormal shifts. It is shown in [30] that the functign= x (o 3/2] — X[3/2,3) g€nerates
a tight affine frame ofL2. On the other hand, one may easily verify thahas linear
independent shifts. The family* := {¢7,...,%},_,} in (iv) of Theorem 4.4 has

similar properties, namely{v;  : k € Z} generates a Riesz basis for evgr¢ Z, but
Ujez{¥jk : k € Z} is a tight affine frame of..

To prove Theorem 4.4, we recall a result on tight frames With- 1 generators, given
in [8] for M = 2 and [9] forM > 2.



24 C. K. CHUI AND QIYU SUN

LeEMMA 4.5. Let{V]} ez be an MRA with compactly supported scaling functichat
has linear independent shifts, and I be the symbol of the scaling functign Assume
that W := {+1,...,%n_1} C Vi generates a tight affine frame 6f. Then

N 2m7r)‘2

05+2m7r/M)’ o(e+ 20| =1, (57)

m=

where the functiory(£) is defined as in (10). Conversely, if the trigonometric polynomial
S satisfies (57)S(0) # 0, S(€) > 0 and S(&) = S(—¢) for all ¢ € R, then there exists
U= {41,...,9%p_1} C Vi such that¥ generates a tight affine frame 6f, andS(¢) is
defined as in (10) with the above tight affine fraine

To prove Theorem 4.4, we also need a result about dense subspaces of a shift-invariant
space.

LEmMMA 4.6. Let3 > 0, a € (—4,0), and let¢y, ..., ¢ be compactly supported
functions that have linear independent shifts and satisfy (16). Alsagylet., vy be in
the algebraic span of¢,(- — k) : 1 <1< L,k € Z}, and define

N
QOf = Z Z(fﬂl}n( - k)>¢n( - k)7 f € H.

n=1keZ

If the rank of theV x Z matrix (@(50 + 2k7r))1<n<N ez is L for someg, € R, then
the closure of)o H in L2 is V2(¢y, ..., ¢1). The converse also holds.

Proof First we prove the density af)oH® in V2(¢y,...,¢1). Write ¢, (€) =
S Hot(€)du(€). Since (r(€ + 2km)) | cyer ez has rankL for all ¢ € R by the
linear mdependent shifts afq, ..., ¢ [28, 35], it follows that the rank of the&v x
matrix (@n(é‘ + 2k7r))1<n<N7k€Z is the same as that of th& x L matrix H(¢) :=
(Hn1(€))1<n<n,1<i<r. By the assumption oth,,, 1 < n < N, H(&) is of full rank, and
henceH (&) is of full rank except for finitely many points, say in the && {¢1,...,&},
since all entries oH(¢) are trigonometric polynomials. For any functi¢n’n the shift-
invariant spacé’2(¢, ..., ¢, ) generated by, ..., 1, f(£) = Zl LA ) (€) for
someA; € L3 ,1 <1 < L. Clearly, the functions/. defined byfe(g) = f(§)XR\E€
tends tof in L? ase tends to zero, wherg, = U3 _, (£ + (—¢, €) + 27Z). Therefore, it
suffices to prove thaf. € Qo H* forall e € (0, ¢y), wherex is a sufficiently small positive

number so chosen that the matH}(g)TH(g) is nonsingular and its inverse is bounded for
all ¢ € R\E,. DefineA; ((§),...,Ar.(§) by

T -1

(Al,e(g)a RS AL,E(§)>T = (% H(f))
X(Al(f)”"vAL(g))TXEe(g)a (58)

and defingz by Gc(€) = 3/, Arc(€)y (&), wheredy € V2(¢n,...,¢1),1 <1 < L, is
some bi-orthogonal dual ¢ty ..., ¢r},i.e.,{¢;, dv (-—k)) = oo forall 1 < 1,1 < L
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andk € Z. Then we have

L

Qoge(§) = Z Z w1 (€) Ho 1r(€)

o~

€+ 20m) (€ + 20m) ) (€)
kEZ

Z A (&) (€)xE.(€) = fe(6).

"=1
Hence,Qog. = f.. This, together withg. € H<, proves thatQ,H“ is dense in
V2(¢1,...,0L).

To establish the converse, it suffices to show that if the rank ofNhe Z matrix
(@(5 + 2k7r)) | <n<N keZ is strictly less tharl for all £ € R, then there exists a function
go € V%(¢1,...,¢1), which does not belong to the2-closure of Qo H®. Let H and
#1,1 <1 < L, be as in the proof of the previous conclusion. Then the rarl @) is
at mostL — 1. Therefore there exists a nonzero vecAdi¢) = (a1 (£),...,ar(£))T with
trigonometric polynomial entries so thH(g)A(f)A: 0 for all ¢ € R. One may verify
that the functionp defined byg(&) = S5, a(€)¢,(€) satisfies(i, (- — k), ) = 0 for
alll1 <n < N,k € Z, and hencédf,¢) = 0 forall f € QoH*™. On the other hand, the
functiongy € V2(¢y, ..., ¢r) defined bygo(€) = S5, ai(€)di(€) satisfies(go, ¢) # 0.

This proves thag is not in theL2-closure ofQ, H* and hence the conclusion followsm

Now we start to prove Theorem 4.4.

Proof (Proof of Theorem 4.4.). We sé&t := {v1,...,%y} and divide the proof into
the following steps: (viii}= (vii) = (Vi) = (V) = (iv) = (iii) = (viii), (ii) —
(v), ()=(vi), and (i)=(i).

(Proof of (viii)==(vii)): This proof is by indirect argument. Suppose, on the contrary,
that the rank o(@n &+ 2k7r))1<n<N rez depends oy in any small neighborhood of the
origin. Denote the rank qu/)n (2k:7r))1<n<N rez by ko. Therefore, there eX|sts a nonsin-
gular matrixP such that the matrl(qz; (2km))1<n<ky,kez has rankk, andw “(2km) =0
forall kg +1 < n < N andk € Z, where(¢y5,...,¢¥5)T == P(¢1,...,vn)T. B
the assumption, there exists a functigf) ,ko + 1 < no < N, such that the vector
(1 (€ + 2k7))pez is Not in the space spanned by (€ + 2k7))kez, 1 < n < ko, in any
small neighborhood of the origin. Defineby

ko
D) = U5 (&) = Y an(E)Y5(6), (59)
n=1

where the2r-periodic functionsa,,(£),1 < n < ko, are so chosen that their Fourier
coefficient sequences are summable and

> (€ + 2km)ii (€ + 2km) = 0 (60)
kEZ

for1 < n < ko and|¢| < dg, for somed, > 0. From the construction ap, the vector
(¥ (&€ + 2km))kez is not identically zero on any neighborhood of the origin, but

V(2kn) =0, k € Z, (61)
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and

B(€) = m(E/M)p(e/M), (62)

for some2r-periodic functionm () that has summable Fourier coefficient sequence and
satisfiesn(0) = 0. Choose any small positiveand defingf, byﬁ(f) = a.()Y(€), where

a. Is a square-integrablzr-periodic function with support contained {f¢| < do} + 27Z

for some sufficiently small numbér:= J(¢) to be assigned later. Clearfy € V?2(¥),

and

2 < / lac(ME)m(€)Pd < C| |12 (63)

by (62) and the assumption thahas linear independent shifts. By (62) and the assumption
oniy, we see thaEi” 01 |m(& + 2sm/M)|? is not identically zero in any neighborhood of
the origin, which together with (63) proves that= 0 when the support ai. is chosen
appropriately.

Let a, ., be so chosen thafn(le) — Zk‘) A, wn (2kw) = 0 for all k € Z.
The existence of such functions follows from the nonsingularity of the magtriand
the assumption that the rank @L(Qkﬂ'))lgngkmkez is ko. By the equality from the

orthogonal property (60), we have

Z |<fea wn;07/€>|2 (64)
keZ
:/ ac(OF 32 B(e + 2km)Bale + 2km)| de
keZ
=/ lac(©)| 3 (¢ + 26m)
keZ

X (1% (€& + 2km) — f: a,w@;";\/(é + 2k7r)> ‘2d§

n'=1
[ RS ()

><( i (Z ‘q?(“];‘” —|—2k7r)‘ X | (€ + 257 + 2k M)

s=0 keZ

M 1

IN

ko

_ Z 5 (€ + 257 + 2Mk7r)])2)d£

n’=1

< c@/ @) 3 [m(S5FT) e
—T s=0

< C€2erH§7
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where we have used the constructionagf,,; and (63) to obtain the second and third
inequalities, respectively. Fdr; < j < —1, we also have

Z ‘<fea¢n;j7k>|2

keZ
> ac (M (& + 2km) (M (€ + 2kr) by (€ + 2krr)

. s
= MJ/
T keZ

M [ o OPOR| S G0+ 2km) T (€+ 201k e

kEZ

‘ 2

dg

where the fact thai. is supported in a small neighborhood2fZ has been used. Hence,

M-1

S et < M0 [ lacapgR Y- m(AEEET) [
keZ - s=0
M-—-1
; (;Z’qs(Mjluifjmm)(
><|1Zn(§+2M*j(s+kM)7r)|)2d§
L [T 4 21&171 L 2emp2
< o [ leargr 3 m(ar e 57 ) e
< Ce|fll3, (65)

where we have used the estimate:

3 ‘&(Mj”g n %T n 2kM7r) ’ % |Dn(E +2M (s + kM)T)| < e (66)
keZ
for all |¢] < M~96 and sufficiently smalb. Here, the estimate (66) follows, since
¥ (0) = 0 and,,(2M ~kr) = H,(0)¢(2M 7~ km) = 0 for all nonzero integek.
Combining (64) and (64) yields

0
D D e i) P < (IS5 # 0 (67)

j=L1 k€Z

for some positive constantindependent of. ande, which contradicts with the assumption
(viii).

(Proof of (vii) = (vi)): Since@n(g) = Hn(g/M)gg(g/M) and¢ has linear inde-
pendent shifts, the rank c@ﬁn(f + 2k7))1<n<n ez IS the same as that #1(¢). On the
other hand, the rank df(0) is at mostM — 1, because?,,(0) = 0forall1 <n < N
by the frame property o¥. Therefore the rank df () is strictly less tham/ on a small
neighborhood of the origin, which, together with Proposition 2.1, implies that

A(6) = diag(S(g), L S(E+2(M — 1)7T/M))

—S(M¢) (Ho(g ¥ 2mm /M) Ho(€ + 2m'7r/M)) (68)

0<m,m/<M—1




28 C. K. CHUI AND QIYU SUN

is singular in a small neighborhood of the origin. So
det A(&) =0, (69)

where we have also used the fact that the determinaAtisfa trigopnometric polynomial.
It is known that forA € C**™ andv,w € C", we have

det(A —vw’) = det A — wl A#v, (70)
whereA# denotes the adjoint matrix whose entrj/dajéC are the cofactord,, ; of A. Thus,

M—-1

det AS) = [] S(§+2m—7r)

m=0

2mm 2im
st 3 [ e+ 257 L s(ensy)
by (67) and (70). Hence (vi) follows from (69).
(Proof of (viz=-(v)): Let A(£) be as in (67). Also, le5;(£) be a trigonometric
polynomial with real coefficients and satisfg; (¢)|> = S(£). The existence ob(€)
follows from the Riesz Lemma. Then we can wik€¢) as

A(&) =D(&)(In — an(§)an(§))D(E), (71)

whereD(¢) = diag(S51(£), ..., S1({+2(M —=1)m/M)) andag (§) = (Ho(§), - - -, Ho({+
2(M — 1)m/M))T and Hy(¢) = S1(ME)Ho(£)/S1(€). By Proposition 2.1,H, (&) is
continuous orR and A (¢) = %TH(E). Therefore, it suffices to prove that(¢) has
rank M — 1 for all £ € R. By the assumptiony (&) is a unit vector for all, which
implies thatl — a(&)ao(€)” has rankM — 1 for all ¢ € R. For any¢; € R such that
S(& 4+ 2mn /M) # 0forallm € Z, D(&;) is nonsingular and, hence, it follows from (71)
that A(¢1) has rankM — 1. For any¢; € R such thatS(&; + 2mn /M) = 0 for some
m € Z, it follows from the assumption (vi) thetf(M¢;) = 0 andS(&; + 2m/w/M) # 0
forallm’ —m ¢ MZ (see[12, 29]). Thereforeiag(S(&1),...,S(& +2(M —1)n/M))
has rankM — 1, which together with (67), implies that (¢;) = diag(S(gl), S+
2(M — 1)z/M)) has rankM — 1 for all those¢; with S(&; + 2mm /M) = 0 for some
0 <m < M — 1. This completes the proof of the assertion (v).

(Proof of (v} =-(iv)): AssumethaH (¢) hasranklf —1forall ¢ € R. Thenthe matrix
A (&) in (67) is singular by Proposition 2.1, which implies (57). Therefore by Lemma 4.5,
there exist some trigonometric polynomids;,,1 < m < M — 1, so that the functions

Vi, .., ¥i_q, defined by

V(&) = HI(E/M)p(E/M), 1 <m < M —1,

generate a tight affine frame &f and have the same fundamental functtoas the one of
¥1,...,%y. Note that the rank of the matri O * (€ +2kT))1<m<m—1 ez IS the same as
the rank ofHH(¢), and hence is equal f — 1. Therefore the shiftsaf’,, 1 <m < M —1,
form a Riesz basis of the corresponding shift-invariant spage)s, ..., ¢35, ). So it
suffices to prove that

VA, . 1) = V2, UN). (72)
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As before, letS; (¢) be the trigonometric polynomial with real coefficients so ti9at¢) |

29

S(¢). DefineHy (&) = Si1(M&)Ho(€)/S1(€) and H, (€) = Hn(€)/51(£),1 < n < N,
and similarly defined; () = S1(ME&)Ho(€)/S1(€) andH (&) = H 1<s<
M — 1. By Proposition 2.1, the vectors
— (H(€), ..., H (€ +2(M = )r/M))", 0<s < M —1,
form an orthonormal basis & for any¢ € R, and the vectors
w, = (Ho(€), ..., Ho(€ +2(M — 1)r/M))", 0 <n < N,
form a tight frame oRM for any¢ € R. Thus, we have
N
Ve = Z(vs,un>un, 0<s<M-1,
n=0
and
M-—1
u, = Z (up,vs)vs, 0<n < N.
s=0
Recall thatug = v, which implies that
(vs,up) = (vs,vg) =0, 1 <s <M —1.
By the tight frame property, we ha\En o u,ul = I,;, wherel,, stands for thel/-
dimensional identity matrix. Thus,
N
(10, u)[* + ) [(ug, un)[* = (ug, uo),
n=1
which together withug| = 1, implies that
<un7V0> = <lln,ll0> =0,1<n<N.
Therefore, we obtain
N
V= Z(Vs,un>u7,,, 1<s<M-1,
n=1
and
M-1
u, = Z (u,,vs)vs, 1 <n < N.
s=1
We can now formulate the above two identities as
N
bon(ME)H,(£), 1< s < M —1, (73)

n=1
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and

Fa€) = 3 an (MO (€), 1 <n < N, (74)

wherea,s(§) andbs, () are trigonometric polynomials. Multiplying‘l(f)(g(g) to both
sides of (73) and (74) yields

and

M-1

s=1
This proves (72), and hence the assertion (iv).
(Proof of (iv)==>(iii)): By the assumption (iv), the shift-invariant spa¢& (¥) is
closed. Then the assertion (iii) follows from Proposition 2.2.
(Proof of (iii)=(viii)):  This implication is obvious.
(Proof of (ii)<=(v)): Foranyf € H*, we have

&1 = 3 Fe+2hm i, (S22

n=1keZ

(“2‘”) 0 (37)(r)
SO ACES T PACH

n=1 s=0

for someA € L3_. Conversely, for anyl € L2 _, the functionf,, defined by

o= () (S ') ()

belongs toH~ and satisfies

N M—1——p—p5——
Qe =3 3 () a(E52 ) ()

n=1 s=0

This shows that the spacg H = {9 : g € QoH*} is characterized by

M—-1

- N
QoH* = {Z

n=1 s=0

(SR st
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One may easily verify that for the spat@(¥), the corresponding spad‘«é’/(\\ll) = {f:
f € V2(¥)} in the Fourier domain is

:{iAn(g)Hn(ﬂi)Zs(]\i) A € L2, 1§n§N}. (76)
n=1

Since¢ has linear independent shifts, it follows from (75) and (76) gt ® = V2(¥)
if and only if for anyA,, € L% ,1 <n < N, there existsA € L so that

M—-1

i Z () () @7
= f:An(§)Hn(£+AjS,W) VO<s <M-—1;
n=1
that is,
(A1(§)7...,An(§))H(%) 78)

= (A A2 () ()

By the Smith decomposition, we have tHi{¢) = H; (§)D(£)Hs(€), wheredet Hy (€)
anddet Hy (&) are nonzero monomials addl(¢) is a diagonal matrix. This, together with
(77) and (78), proves tha@,H~ = V2(¥) if and only if the rank of the matri (&) is
independent of € R. Therefore, since the rank #1(0) is M — 1 by (8) and the fact
that Hy(2mm /M) = 0 for 1 < m < M — 1, the equivalence of the assertions (v) and (ii)
follows.

(Proof of (iy=(vi)): Let Sy(£),an(£), Hy(€), A(€) be as in the proof of (V=(v).
By (67) and Proposition 2.1,(¢) is continuous andA (¢) = H(¢) H(¢). Therefore
by (71), it suffices to show thaH (&) is not of full rank for any¢ € R, since this
implies thatag(€) is a unit vector for anyt € R and the assertion (vi) then follows.
Suppose, on the contrary, thBE(¢y) is of full rank for some{, € R. By Lemma
4.6, the closure 06y H* in L? is V;, which together with our assumption (i), leads to
QoH™ = V2(¢(M-),..., (M - —M + 1)) = V;. Hence V3(¥) = QuH* = V; since
QoH® C V2(¥) C V4, and then (v) holds by the equivalence of the assertions (i) and (v),
which is a contradiction.

(Proofof (ii)==(i)): By the equivalence of the assertions (ii) and (iv), the spateP)
is a closed subspace @f. This, together with the assumption (i), proves the assertion

(). m

4.3. Proof of Theorem 4.1
First we prove (i3=-(ii). By Theorem 4.4, we have

ZS§+2m7r/M)’ (SJFMJ)‘ =1,¢cR. (79)

m=0
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Therefore,
H s(§+2ﬂ) - S(Mg)%f I S(§+2"]C[/”)

xH(ng%%) _( 5—2’”—”) ¢eC.  (80)

Note that all the roots of are real, since otherwise the right-hand side of (79) becomes
zero até,/M while the left-hand side does not, whefgis a root of.S with nonzero
imaginary part so that the magnitude of the imaginary pag,d$ the minimal root with
nonzero imaginary part, and this leads to a contradiction. Also we note from Theorem
4.3 thatS(¢) # 0 for all ¢ € R. ThereforeS(¢) is a constant function. Substituting this
back into (79) and using the linear independence gields thaty has orthonormal shifts
(see [15, 32]). Lewy,...,¢,_, be the orthonormal wavelets generated from the above
multiresolution, which is also a tight affine frame. Moreover, the fundamental function
of resolution corresponding to the above tight affine frame is the same as the one with
generators)y, . .., ¥y since both are equal to one. Using the same method as the one in
the proof of the implication (\8=-(iv) of Theorem 4.4, the space spanned by the shifts of
Vi, ..., ¥y, is the same as the one spanned by the shifts of. . , 4. This concludes
thatV2() is the orthogonalL?-complement ol in V;.

Next we prove (ii}=(iii). By the tight frame property, we havgjez Q; = 1. Thus,
by the orthogonal property of the spadés := Q; H* from our assumption (ii), we have

I£13 = (@, f. ) = (Qof. f)

JEZ

for any f € Wy. Hence (iii) is valid.

Finally, we prove (iii}=(i). By Theorem 4.4, the spacé€s H*,0 < j € Z, are closed
subspaces af2. Then by Theorem 4.3, it suffices to prove tlt) is a nonzero constant,
whereS(¢) is the fundamental function of resolution of the tight affine fraineBy Theo-
rem 4.4, the functios (¢) satisfies (54), which implies thak, (¢) := Sy (M&)Ho(€)/51(€)
is a trigonometric polynomial and satisfies

M-1 ~ 2UnT (2
> |mo(s+ 7)) =1 (1)

m=

whereS; (¢) is the trigonometric polynomial with real coefficients so tHat¢)|> = S(¢).
By unitary extension, there exist trigonometric polynomils, - - -, H;,_, so that

ZH (§+m—ﬂ)Ht(§+2%r) by, 0<st<M-—1,

or in matrix formulation,
U(U()" = I, (82)

whereU(¢) = (ap(€) ... an—1(&))anday () = (H.(€),. .., Hy(+2(M — 1)m/M))",0 <
s < M — 1. By (15) and the assumption (iii), we have

(H(g)diag(q>(§), B+ 2(M — 1)W/M))%T)2
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= CoH(€)diag(®(€), ..., B(€ +2(M — 1)r/M))H(E) (83)

for some nonzero constafif, whereH (¢) is defined as in (53), anBl(&) = >, 5, (6 +
2k7)|%. By Proposition 2.1, we have

H() H(E) = diag(S1(€), ., S1(& +2(M — 1)m/M))
x(In — ap(€)ao(€)T)diag(S1(8), ..., S1(E+2(M — V) /M)). (84)

Combining (82) and (83) and usitig; — ao (&) (€)")? = Ins — a0 (o (§)T, we see
that the matrix

B(&) = (In — ao(§ao(§)T)diag(®(),..., (£ + W))

x(In — WE)%(&)T)-
satisfies
B(¢)* = CuB(¢), (85)

whered (&) = [S1(€)[2®(¢). On the other hand, we have

(g 4, Juer

xdiag(®(¢), ..., (¢ + M))(&)(S IN? 1>U(§)T

c

B(¢) =

M _
=T (g ey ) VO™ (36)
Here,3(¢) has ranklM — 1 for almost allg, since
(Fla"'7vM—1)ﬁ(§)(U17 y UM — 1)T
MZ_:l’M ! H f 2m7r)’2q)(£ QmW)#O
= v _|_ _ _|_ -
m=0 t=1 o M M

for any nonzero vectdws, . .., vy —1)T € RM~1 and any satisfyingS (¢ +2mm /M) #
0,0 <m < M — 1. Therefore,

B(&) = Coln— (87)

by (82), (85) and (85). Substituting the above formulg¢f) into (85) and applying (82)
yields

B(O) ~ GUEUET - GTE ( 4 ¢ ) U© (@8)
= Co(In — ao(§)ao(&)).
Then comparing the non-diagonal terms of the both sides of (88), we obtain

21s 2rs’ N 2mm 2mm
Be+ )+ bler T - X [ole+ | B S
0

m=
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=Cy 0<s#s<M-1. (89)

Now we divide the argument into two cased, > 3 and M = 2, to show thatS is a
nonzero constant. Fa¥/ > 3, applying (88) with(s,s") = (0,1) and(s,s’) = (0,2)
leads tod (&) = ®(& + 2r/M). Thus®(£) = D(M¢) for some trigonometric polynomial
D. Substituting this back to the definition ®&(¢), we obtainB(¢) = D(M&)(Iy —
an()an(€)T). This, together with (88), yield® (M ¢) = Cy, and henc@ (&) is a constant
function. Recall thaf®(¢) = ®(¢£)|S(€)|?, Therefore, botld(£) andS(€) = |S;(€)|? are
constant-valued functions.

For M = 2, it follows from (81) and (88) that

(®(8) = Co)[Ho(& + m)[* = —(2(£ + m) — Co)|Ho(§) - (90)

By (81), the trigonometric polynomial#l, (¢ +)|? and| Hy (€)|? do not have any common
root. These conclusions, along with (90) itself, leads to the existence of a trigonometric
polynomial D(&), such that

®(€) = Co + e D(26)[Ho (&) > (91)

Also, from the definition ofb and the refinement equatigii}M &) = Hy(£)¢(€), it follows
that

®(2€) = [Ho (&)@ (&) + [Ho(§ +m)P@(€ + ). (92)
Substituting the formulation (91) @ into (92) and applying (81), we obtain

e ¥ D) Ho(26)]* = ¢ “D(28)(|Ho(&)|" — [Ho(& +m)]")
= e DG (Ho(O)P = [Ho(€+m)%).  (93)

From ®(—¢) = &(¢), it follows that D(—¢) = e~ D(¢). Therefore, by (92) and the
above “symmetry” ofD, we conclude thaD(¢) = 0, since otherwise the degree of the
trigonometric polynomial of the left-hand side of (92) is strictly larger than that of the
right-hand side. Hencé(f) is a constant function by (91). This proves ti¥4t) is also
a nonzero constant function whaii = 2.

5. ANGLES BETWEEN V; AND Q;H“

Let H be a Hilbert space with inner produgt -), and letH;, Hs be its two nontrivial
linear subspaces (which are not necessarily Hilbert subspaces). We consider the angle
6 € [0, 7/2] betweenH; and Ho, defined by

(£, 9)|

cosf = sup AT
oz fet 02gei; LfIllgll

By Theorem 3.5, we have the space decomposition property of the Sobolev space as follows:

H*=PH*+> Q;H".

=0
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In this section, we study the angles between the spBgHS' andQ,; H®, j € Z. First we
give a characterization of whether or not the angles between those spaces are nonzero, and
show that those angles are nonzero if and ony it/ are closed subspacesbf.

THEOREM 5.1. Letg > 0,a € (-4, (), and let{V} } ,cz be an MRA with a compactly
supported scaling function € H” that has linear independent shifts. Assume that 1;
is a finite collection of compactly supported functions, which generates a tight affine frame
of L2. Then the following five statements are equivalent:

(i) The angle betweeR, H* andQ@; H* (as subspaces d@f?) is nonzero for somg > 0.

(ii) The angle betwee); H* and Q; H* (as subspaces df?) is nonzero for some
i#J.

(i) QoH® is closed inL2.

(iv) The angles between betwe@nH* and Q- H* (as subspaces df?) are nonzero
forall j # j'.

(v) The angles betweeR, H* and Q; H" (as subspaces af?) are nonzero for all
j>0.

REMARK 5.1. We remark that the above characterization holds when the spaéEs
and@;H%,0 < j < Z, are considered as subspaces of the Sobolev dp&dastead of
subspaces af2. The proof is almost the same as that of Theorem 5.1, and hence we may
safely omit its details.

THEOREM 5.2. Lets > 0,a € (—3,3), and let{V} };cz be an MRA with a compactly
supported scaling function € H* that has linear independent shifts. Assume that V;
is a finite collection of compactly supported functions, which generates a tight affine frame
of L2. Then the following five statements are equivalent:

(i) The angle betweeR, H* andQ, H* (as subspaces df?) is 7/2 for somej > 0.

(ii) The angle betwee®, H* andQ ;s H* (as subspaces df?) is 7 /2 for somej # j'.

(iii) Both Qo H* and P, H are closed inL2.

(iv) The angles between betwe@pnH* and Q,;» H* (as subspaces df?) are «r/2 for
all j # 5.

(v) The angles betwedh, H andQ; H® (as subspaces df?) are /2 for all j > 0.

REMARK 5.2. Lety be a Schwartz function such thatthe support of its Fourier transform
¢ is contained if(¢ : 1 < |¢[ < 2} and that~ ey 1(27¢)[2 = 1forall0 # ¢ € R. Then
{; x }; kez is atight affine frame of 2, and can also be used to characterize Sobolev spaces
[18, 19, 20]. LetQ;,j € Z, be the frame operator on theth level corresponding to the
above tight affine frame. One may verify th@§ H is not closed in.?, and that the angle
betweenQ; H* andQ; H* is zero wherjj — j’| < 1 and is given byr/2 otherwise. So
it gives rise to a completely different phenomenon as compared to the topological property
of closedness of the rangg; H* of the frame operataf);, and the angle between ranges
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Q;H* at different levels in Theorems 4.1 and 5.1. We believe that the main reason is that
this tight affine frame system is not associated with an MRA.

If the angle betwee, H* and Q;H" is nonzero, we have the following estimate of
this angle via the Sobolev exponent of the scaling function.

THEOREM 5.3. Letf > 0,|a| < 8, and{V;};cz be an MRA generated by a compactly
supported scaling functiop € H” that has linear independent shifts. L&tc V; be
a finite collection of compactly supported functionsiin which generates a tight affine
frame of L2, and assume tha),H® is closed. Then the anglg betweenP, H* and
Q;H® (as subspaces df?) and the angl®, ;, betweerQ,;, H* andQ,H*, j, ;' € Z (also
as subspaces df?) satisfy

|cost;| <CM P, 0<jeZ, (94)
and
|cos 1| <CM™I=318 ] 5 i € Z, (95)

respectively, wher€’ is a positive constant independentjof’.

REMARK 5.3. The estimate in (5.3) cannot be improved in general. For example, let
{V;}jez be the MRA with the characteristic functiar, ;; on the unit interval0, 1] as its
scaling function. The function := x(o,3/2] — X3/2,3) IS @ tight affine frame [30]. For
f = Xy andg = 29/2y(27 - —1), we see thatf, g) = —279/2, which implies that the
angled; betweenP, H* andQ, H* satisfieg cos 6;| > 27/2. On the other handj € H”
forall0 < 8 < 1/2.

In general, we also have the following result on the converse of the above theorem.

THEOREM 5.4. Let{V]},cz be an MRA with a compactly supported scaling function
¢ € L? that has linear independent shifts, and &t c V; be a finite collection of
compactly supported functions which generates a tight affine frani&.ofAssume that
V2() is closed. If the anglé; betweerl, andW; = {M7/2f(M3.) : f € V(¥)} (as
subspaces af?) satisfies

0<|cost;| <CM™7, 0<je€Z, (96)
whereC and~ are positive constants independentjof 0, thens € H” for all 3 < .
REMARK 5.4. The lower bound assumption in (96) cannot be dropped in general,

since for a scaling functio € L? with orthonormal shifts, the anglg; between the
corresponding spacég andWV; is alwaysr/2, or cos 6; = 0 for all j > 0.
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REMARK 5.5. For the affine frame operato€®;, we conclude from Theorems 4.1, 4.4,
5.1, 5.2, 5.3 and 5.4 that under the assumption in Theorem 5.1, there are three possible
geometrical structures associated with those affine frame operators:

(i) The angles between differett; H<, j € Z, are always zero (or equivalently, H“
is not closed inL.2, or equivalently{+)(- — k) : v € ¥, k € Z} is not a frame).

(if) The angles between differed@; H*,j € Z, are alwaysr/2 (or equivalently both
QoH® and PyH* are closed in.2, or equivalently{y(- — k) : v € U,k € Z} is a tight
frame).

(iii) The angles between differe@; H*, j € Z, are always in the open intervid, /2)

(or equivalentlyQoH is closed inL? but PyH® is not closed inL?, or equivalently
{Y(-—k) : ¢ € ¥,k € Z} is aframe, but not a tight frame). In this case, the asymptotic
behaviour of those angles is related to the Sobolev exponent of the scaling fufiction

5.1. Proof of Theorem 5.1

First we prove (i)=> (iii), and (iij) = (iii). Suppose, on the contrary, th@, H* is
not closed inL2. By the argument used in the proof of-}(vi) of Theorem 4.4, the rank
of (@(50 + 2k7))pew kez is M for some¢, € R, which implies that thel.?-closure of
Q;H* is Vj,, by Lemma 4.6. Thus, the angles betwe@H*> c V, andQ,; H®,j > 0,
and between differen); H* are always zero, sincg; C V;;, by the definition of an
MRA. This leads to a contradiction.

Next, we prove (iil=- (iv), and (iii) = (v). By the property of dilation invariance
and the nest conditiol; C V;, in the definition of an MRA, the implications reduce the
argument of showing that the angle betwégnand Qo H is nonzero wher@oH® is a
closed subspace d@f. Suppose, on the contrary, that the angle betwigeandQ,H is
zero. Then there exists a nontrivial functignn Vo N Qo H®, since bothly and Qo H*“
are closed subspaces bf. Write U = {¢y,...,%x} and defineH,,,1 < n < N, by
U (ME) = H,(€)$(€). By Theorem 4.4, we have

Fl&) = Aoy (£)3() = i 1. (57)7(7)

for some2r-periodic functionsd (€), A1 (€), ..., An(€) in LZ_. By the property of linear
independent shifts af, the above identity yields

N
Ao(MEHo() = D An(ME)H, (6). (97)
n=1
On the other hand, it follows from Proposition 2.1 that

S(ME)Hy (5 + 2T Hy (64 2T (98)

+;H a6+ 2ﬂ) H, (& + %ﬂ) — S(€)84s
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forall 0 < s,s’ < M — 1. Hence, substituting (97) into (98) leads to

N
S(ME) Y (Ao(MEA(ME b + An(ME) A, (ME) )

n,n’'=1

2sm

xHy (64 20 H (64 200) = 5+ 27 ) Ag(ME ABTE 50

where0 < s, s’ < M — 1, or in matrix formulation,

H(E) B = [Ao(Me) Pding(5(0), .. s(e+ 2 DT)) (99)
where
2sm

H(O) = (Ha(¢+ 57

M )) 1<n<N,0<s<M-—1

and

B(€) = S(ME)|Ag(ME)[* I
+S(ME) (Ag(ME), ..., An(ME))T (Ag(ME), ..., Ay (ME)).

By Theorem 4.4, the rank dfL(¢) is M — 1. This, together with (99), implies that
Ap(€) = 0 for almost allé € R.. Thus,f is the zero function, which is a contradiction.
Finally, the implications (\\=-(i) and (iv)=>(ii) are obvious.

5.2. Proof of Theorem 5.2

First we prove (iii}=(iv) and (iii)==(v). By Theorem 4.1P,H® =V}, and@;H* is
the orthogonal complement & in V; for anyj € Z. This proves (iv) and (v).

Next, we prove (ii)=> (iii). By dilation invariance, we may assume thit= 0
andj > 1. By Theorem 5.1, we have thg; H* is a closed subspace &f for every
j € Z. Therefore by Theorem 4.4, without loss of generality, we may assume that
U= {h1,..., 01}, {s(- — k) : 1 < s < M—1,k € Z} is a Riesz basis df 2(¥),
andQoH® = V?(¥). Moreover, the matrisU(¢), to be defined by

U(§) = (ﬁs(f + 2m7T/M>)O§s,m§M—1’

is a unitary matrix by Proposition 2.1,

U©UE) = I, (100)

where H,(¢) = S1(ME)H,(£)/S1(€), S1(€) is a trigonometric polynomial with real
coefficients such thatS; (¢)|?> = S(€), the function Hy is the symbol of the scaling
function ¢, the functionsH,, 1 < s < M — 1, are defined by),(M¢) = H,(¢)$(¢), and
the trigonometric functiorf is defined as in (10). Fro@yH® = V,(¥) and the Riesz
property of{¢ps(- — k) : 1 <s< M — 1,k € Z}, we obtain:

M-—1
Qi = {37 Bu(e/MI)dy(¢/M): By©)1<s<M—1,  (101)
s=1

are 2w —periodic and square — integrable}.
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By the assumption on the angle betwéggd “ and@; H“, we have that

0 = (Pr,9) = R%(f)@(&)ds (102)

R (%)HO(%)"'HO(M§+1)BS(%)HS(M§+1)‘(E(Mfﬂ)rdg

M—-1

Mj Z1 /—7; Hl(Mj_lg)HO(Mj_Qg) U HO(g)Bs(g)Rs(g)dga

|
]

T
m

whereg € Q,; H has its Fourier transform being of the folm!” ' B, (¢/M7)¢(¢/M7)
for some2x-periodic square-integrable functiofs (£),1 < s < M — 1,

M-1

R =Y H@(M)Hs(f—i—Qmw)@(f-ﬁ-an)’1 Cs<M—1,
m=0

M M M

and

B(E) =D |p(¢ +2m)[*.

I€Z

Since B, () are arbitrarily chosen, and boffi, and H; are nonzero trigonometric poly-
nomials, we then obtain from (102) that

R(§)=0 VEeR,1<s<M-—1. (103)
This implies that the vector, (), to be defined by

vo(§) = (Hol¢ +2mm/M)S( + 2mm/M)P(¢ + 2mm/M)/S(ME)) ,

<m<M-1
is orthogonal to the vector(sf[s(g + 2mn/M))o<m<m—1,1 < s < M — 1. ~Hence
by (100), there exists &r-periodic functionR such thatvy(¢) = R(ME)(Ho(¢ +
2m7T/M))OSmS]\471, which |mp||eS that
S(E)D(E) = S(ME)R(ME) := R(ME). (104)

By the assumption on, (&) is a trigonometric polynomial and is positive for &l R.
By Theorem 4.4, all zeros of the trigonometric polynonti&f) lies on the real line if there
is. Combining the above two facts férandS (&) with (104) implies that eithef (¢) has no
zeros, or has a factor of the forfa™¢ — e~%¢0) for someg, € R. Since the conclusion in
the later case contradicts to (54), we then concludestigthas not zeros, or equivalently,
it is a constant. Hencg&, H is closed inL? by Theorem 4.3.

Finally, the implications (B=>(ii), (iv) =(ii), and (v}=(i) are obvious.

5.3. Proof of Theorem 5.3
The estimate (95) follows easily from the estimate (94) and the condfjipi* C
Vi+1. So it suffices to prove (94). By Theorem 4.4, we may assume that Witk
{%1,...,¥m—1}, the collection of integer shift§y,, (- — k);1 <m < M — 1,k € Z}
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is a Riesz basis af)y H¢, and thatzZm(g) = Hm(g/M)qAS(g/M) for some trigonometric
polynomialsH,,,1 <m < M —1.

Let f = Y,z a(k)o(- — k) € Vo andg := S0 Sy don(K)bmij i € Qi HE,
where {a(k)} and {d,,(k)},1 < m < M — 1, are/? sequences. By the Riesz basis
property of the integer shifts af, and ofy, ..., Y1, there exists a positive constarit
(independent of andg), so that

CTHIFIB <D le®)P < ClIfII3 (105)
keZ
and
M-—1
CHIgl3 < Y2 ldm(B)* < Cllgll. (106)
m=1 kecZ
Setting
em(l) = / (@) om(MPz — l)dz, L <m < M —1, [ € Z, (107)
R

and using the support properties of the functigrend,,,, 1 < m < M — 1, we obtain

(il < M2 S S Rl G — B im0 —4)
m=1k,k'€Z
) M-—-1 )
< M2y > |a(k)|dm (K')l|em (K — M k)|

m=1 k,k'€Z,|M—ik'—k|<C

MJ'/QMz_:lza(kﬂ( 3 )1/2(2% )1/2

m=1ke€Z \M*jk’—k|§CU l€EZ

(3 Y len@P) (S atr)

m=11€Z keZ

(XYY wwp)”

m=1k€Z |M~Ik'—k|<Cy

IN

IN

whereCj is a positive constant. This, together with (105) and (106), yields the following
estimate of the angl@; betweenP, H* and(@; H:

M—-1

cosf; < CMW( >3 \cm(k)|2)1/2, (108)

m=1keZ

forall 0 < j € Z, whereC is a positive constant independentjofBy (107) and (108),
the proof of the estimate (94) reduces to the following estimate:

/ (X 1B € + 2k (€ + 26m)]) e < CMIHI0029) - (109)

keZ
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foralll1 <m < M — 1, whereC is an absolute constant.
Write the symbolH, (€) of the scaling functior as

1— e*iMf

Yo
) (110

)= (

for some positive integef, and some trigonometric polynomiél,(¢) not divisible by
(1 — e ™M&) /(1 — e7%). Then it follows from¢ € H” that

B < (111)
(see [24]). By (110), we have
Ho(§+2mn/M)=0(£°) as—0,1<m<M-—1, (112)
Combining (54) and (112), we obtain
S(ME|Hy () - S(§) = 0(6*™) asg — 0.
Thus,
Ho(€) = 0(€") as€—0,1<m< M -1, (113)
by (9). By the property of linear independent shiftsiothere exists a compact sktthat
contains a neighborhood of the origin, such that+ 27Z = R and|4(¢)| is bounded

below from zero on the sét [10, 15]. Thistservation, together with (111), (112), (113),
Proposition 2.1, and the refinement relatiid/¢) = Hy(£)o(€), implies that

/W (D" 1807 (& + 26m))|[$m (€ + 2k7r)|)2d§

T keZ

[ T issrter (316t + 2kmlldm(e + 260

T =0 keZ

IA

T j—1
cy / 1 — e T |Ho(M€) Pde

=0

IN

C / €270 J(M7€) 2 de
K
< CyMI0+29) / (1+ [€12)°18(6)|2de

MiK
< C4M—j(1+2[3)’

whereC;,1 < i < 4, are positive constants independenbof j € Z. This completes
the proof of (109), and hence the desired estimate (94).

5.4. Proof of Theorem 5.4
By Theorem 5.1 and the assumption on the angles betWgeand Q; H, we may
conclude thatQoH® is a closed subspace @P. Therefore by Theorem 4.4, we may
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assume, without loss of generality, that,,(- — k) : 1 < m < M — 1,k € Z}, with

U = {¢1,...,%n_1}, is @ Riesz basis of 2(¥). By the assumption on the angle, we
have(s, ) # 0 for somey € V2(¥), since otherwise the angle betwenand V2 ()

is zero. In particular, we may selegtto be compactly supported, singehas compact
support. In the following, we use the bracket product notation:

~

[0, 901(€) ==Y (& + 2km)(€ + 2kn),

kEZ

and consider the functiopne W, defined by

-~

GMIE) = H(MIYe) - H(€)[d, D) (€)1 (£).

Theng # 0, and

w3 [ ) HOE R, IO, Dl de

-7

lgll3

< o [ " H(E) - B OPR16,5)(6)de (114)

—T

where(' is a positive constant independentjofBy direct computation, we also have

T

(6.9) = M7 / HMIE) - B[, §)(6)de.

—T

This, together with (96) and (113), implies that

|1 P8, D0 Pae < carimen. aas)
Let§ > 0 be so chosen thdb, 1] (¢) # 0 for all § < |¢| < M4, and|H (&) — 1| < 1/2

for all |¢] < 4. The existence of such a numbfollows from the facts that7 (0) = 1 and
that[¢, ¥](€) is a nonzero trigonometric polynomial. Therefore, it follows from (115) that

/ BOMIE)Pde < CAr-ICIHD (116)
o< |E|<MS

for some positive constant independent o < j < Z, which proves thap ¢ H? for all
B <.
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