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Abstract. We investigate some topological and geometric properties of the
set R of all refinable functions in L2(Rd), and of the set of all MRA affine
frames. We prove that R is nowhere dense in L2(Rd); the unit sphere of
R is path-connected in the L2-norm; and for any M -dimensional hyperplane
generated by L2-functions f0, . . . , fM , either almost all the functions in the
hyperplane are refinable or almost all the functions in the hyperplane are not
refinable. We show that the set of all MRA affine frames is nowhere dense
in L2(Rd). We also obtain a new characterization of the L2-closure R of R,
and extend the above topological and geometric results from R to R, and even
further to the set of all refinable vectors and its L2-closure.

1. Introduction

Let N ∈ N, the set of all positive integers, and f1, . . . , fN ∈ L2 := L2(Rd). We
say that F := (f1, . . . , fN)T is a refinable vector (of lengthN) if f1(·/2), . . . , fN(·/2)
are in the L2-closure of the linear span of {fn(· − k) : 1 ≤ n ≤ N, k ∈ Zd} ([7]).
We denote by RN the set of all refinable vectors of length N , and by RN the L2-
closure of RN . For the scalar case (N = 1), a refinable vector is usually known as
a refinable function, and we use R, instead of R1, to denote the set of all refinable
functions.

The purpose of this paper is to investigate the topological and geometric prop-
erties of the set RN of refinable vectors, its closure RN , and the set of all MRA
affine frames. We will prove that while RN is nowhere dense in (L2)N , the unit
sphere of RN is path-connected in the L2-norm. Moreover, any M -dimensional
hyperplane generated by (L2)N -functions F0, ..., FM is either “almost” completely
contained in RN , or is “almost” completely contained in (L2)N \RN . In addition,
all these results remain valid for RN , the L2-closure of RN . We apply our results
to obtain that the set of all MRA affine frames (with a fixed number of generators
in the scaling space) is nowhere dense.
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We first investigate the path-connectedness of the set RN of refinable vectors
of length N . The set RN is always path-connected since it is homogeneous.
Therefore we are only interested in the path-connectedness of the unit sphere of
RN (we remark that in general the unit sphere of a path-connected set is not
necessarily path-connected). We shall prove the following result in Section 2:

Theorem 1.1. For every N ∈ N, the unit sphere of RN is a path-connected
subset of (L2)N .

We remark that the set of all scaling functions, an important subclass of RN ,
is shown to be path-connected in [23, 35] (see Section 7 for the precise definition
of a scaling function). For other related path-connectedness results for scaling
functions, wavelets and affine frames, the reader may refer to [3, 12, 16, 17, 19,
21, 22, 26, 30] etc.

Secondly, we study the geometrical properties of the setRN in Sections 3 and 4.
In particular, we establish the following (N + 2)-point rule, hyperplane property,
and nowhere dense property.

Theorem 1.2. Let N ∈ N, and F,G ∈ (L2)N . If F + εqG ∈ RN for distinct
scalars εq, 1 ≤ q ≤ N + 2, then F + tG ∈ RN for all t ∈ R, except for possibly
countably many t’s.

Theorem 1.3. Let M,N ∈ N. If F0, . . . , FM ∈ (L2)N such that {Fm − F0, 1 ≤
m ≤M} are linearly independent, then either g(t1, . . . , tM) := F0+

∑M
m=1 tmFm ∈

RN for almost all t := (t1, . . . , tM) ∈ RM , or g(t1, . . . , tM) 6∈ RN for almost all
t := (t1, . . . , tM) ∈ RM .

Theorem 1.4. For every N ∈ N, the set RN is nowhere dense in (L2)N . Hence
the interior of RN is the empty set.

Roughly speaking, the (N + 2)-point rule in Theorem 1.2 means that given
any line in (L2)N , if there exist N + 2 points on that line belonging to RN then
all except for possibly countable many points on that line belong to RN . On
the other hand, the hyperplane property in Theorem 1.3 means that given any
finite-dimensional hyperplane in (L2)N , either it is almost-completely contained
in RN , or it is almost-completely contained in the complement set (L2)N \ RN .

The condition and conclusion in the (N + 2)-point rule for RN are optimal
for the scalar case N = 1. In fact, for any two given distinct scalars ε1, ε2, we
can construct two L2-functions F and G such that F + tG is refinable only when
t = ε1, ε2 (Example 3.1). Also for a given countable subset T of R, we construct
two functions F and G such that F + tG is refinable for all real t except t ∈ T
(Example 3.2).

For the set of refinable vectors, we have not seen any result in the literature on
its geometric properties, like the (N + 2)-point rule and hyperplane property in
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Theorems 1.2 and 1.3. For the set of wavelets, a result of this nature is discussed
in [13, 21, 22], where it is shown that if ψ, ψ̃ are two orthonormal wavelets, then

tψ + (1− t)ψ̃ are (Riesz) wavelets for all real t except possibly when t = 1/2.
The nowhere dense property for the setRN in Theorem 1.4 follows immediately

from the nowhere dense property for its closure RN (see Theorem 1.7 below). We
point out that for the one-dimensional scalar case, i.e., d = N = 1, the nowhere
density property of the set of all refinable functions was obtained in [33] with a
different proof (see also [34]).

Define the Fourier transform f̂ of an integrable function f by

f̂(ξ) =

∫
Rd

e−ix·ξf(x)dx

and interpret the Fourier transform of a square-integrable function f as usual. For
every L ∈ N we denote by AL the class of all vectors F = (f1, . . . , fN)T ∈ (L2)N

such that any L× L submatrix of the (ZN × Z+)× Zd matrix

(1.1) F(ξ) :=
(
F̂
(
2j(ξ + 2kπ)

))
j∈Z+,k∈Zd

has zero determinant for almost all ξ ∈ Rd, where ZN := {1, . . . , N} and Z+ :=
{0} ∪ N. For a vector-valued function F = (f1, . . . , fN)T we use S(F ) to denote
the shift-invariant space span{fn(· − k) : 1 ≤ n ≤ N, k ∈ Zd} generated by F . In
general, for a countable set F , we use S(F ) to denote the smallest closed subspace
of L2(Rd) that contains {f(· − k) | f ∈ F, k ∈ Zd} (see [1, 2, 6, 7, 8, 11] and
references therein for the study of shift-invariant spaces).

The L2-closure RN of RN differs from the set RN (see [31] or Example 3.2
(ii)). Strang and Zhou ([31]) characterized the set R1, the L2 closure of the set
of all refinable functions, which can be stated as follows:

R1 = A2.

Our characterization below is a generalization of the above Strang-Zhou’s result
from the scalar case (N = 1) to the vector case (N ≥ 1), with a different proof
and additional characterization (see Section 5 for the proof) .

Theorem 1.5. Let N ≥ 1. Then RN = AN+1 = ∪Φ∈RN
(S(Φ))N .

For Ψ = (ψ1, . . . , ψN)T , define the Gramian fibers

(1.2) GΨ(ξ) =
(∑
k∈Zd

f̂(ξ + 2kπ)ĝ(ξ + 2kπ)
)
f,g∈FΨ

, ξ ∈ Rd,

where

FΨ =
{

2−jdψn(2−j·) : 1 ≤ n ≤ N, j ≥ 1
}
.
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The Gramian fibers have been used for the characterization of many properties
of the shift-invariant system

E(FΨ) =
{
f(· − k) : f ∈ FΨ, k ∈ Zd

}
,

and the dyadic wavelet system

X(Ψ) :=
{

2jd/2ψn(2j · −k) : 1 ≤ n ≤ N, j ∈ Z, k ∈ Zd
}

([10, 27, 28]). Define the multiplicity function MΨ : [−π, π]d 7−→ Z+ of the
shift-invariant space S(FΨ) by

(1.3) MΨ(ξ) = rank GΨ(ξ)

([4, 29]). The multiplicity function depends only on the underlying shift-invariant
space S(FΨ) ([7]). For any F = (f1, . . . , fN)T ∈ (L2)N , we note that F(ξ) in (1.1)
and the Gramian fibers GF (2·)(ξ) are related by

(1.4) GF (2·)(ξ) = 2−dF(ξ)(F(ξ))T , ξ ∈ Rd.

Therefore F ∈ AL+1 if and only if MF (2·)(ξ) ≤ L for almost all ξ ∈ Rd. For L ≥ 0,
define

(1.5) ML =
{
F = (f1, . . . , fN)T : MF (2·)(ξ) ≤ L for almost all ξ ∈ Rd

}
.

Thus by Theorem 1.5 we have the following characterization of RN via multiplic-
ity functions:

Corollary 1.6. Let N ≥ 1. Then RN =MN .

We next apply the characterization in Theorem 1.5 to investigate the topolog-
ical and geometric properties of RN in Section 6.

Theorem 1.7. Let M,N ∈ N. Then

(i) The unit sphere of the set RN is a path-connected subset of (L2)N .
(ii) If F,G ∈ (L2)N , and F + εqG ∈ RN for distinct scalars εq, 1 ≤ q ≤ N + 2,

then F + tG ∈ RN for all t ∈ R.
(iii) Let F0, . . . , FM ∈ (L2)N such that {Fm − F0, 1 ≤ m ≤ M} are linearly

independent. Then either g(t1, . . . , tM) := F0 +
∑M

m=1 tmFm ∈ RN for

all t := (t1, . . . , tM) ∈ RM , or g(t1, . . . , tM) 6∈ RN for almost all t :=
(t1, . . . , tM) ∈ RM .

(iv) The set RN is nowhere dense in (L2)N .

In Section 7, we give another application of our new characterization RN =
∪Φ∈RN

(S(Φ))N in Theorem 1.5. We establish the nowhere density of the set
FM,N of all MRA affine frames of length M associated with a multiresolution
analysis (MRA) having a scaling vector of length N (see Section 7 for the precise
definitions).
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Theorem 1.8. For any M ≥ N ≥ 1, the set FM,N is a nowhere dense subset of
(L2)M .

It was proved by M. Bownik [9] that the set of all affine frames is dense in L2.
However, the result in Theorem 1.8 for the special M = N = 1 case implies that
the set of all MRA affine frames is nowhere dense in L2. This indicates that there
are many affine frames that are not MRA affine frames.

2. Path-connectedness for the set of refinable vectors

To prove Theorem 1.1, we need the following characterization of a refinable
vector in the Fourier domain ([7]).

Lemma 2.1. Let F = (f1, . . . , fN)T ∈ (L2)N . Then F is refinable if and only if
there exists an N ×N-matrix-valued 2π-periodic measurable function m(ξ) such
that

(2.1) F̂ (2ξ) = m(ξ)F̂ (ξ) a.e. ξ ∈ Rd.

Now we start to prove Theorem 1.1.
Proof of Theorem 1.1. Let S be the refinable vector in RN whose first
component is the Shannon scaling function and whose other components are
identically zero, i.e.,

Ŝ(ξ) =
(
(2π)−d/2χ[−π,π]d(ξ), 0, · · · , 0

)T
.

Here χE is the characteristic function on a measurable set E. We will establish
Theorem 1.1 by constructing a continuous path in the unit sphere of RN con-
necting any given refinable vector in the unit sphere of RN to the refinable vector
S.

Take any refinable vector F ∈ SN , the unit sphere of RN . By Lemma 2.1,

(2.2) F̂ (2ξ) = m(ξ)F̂ (ξ)

for some matrix-valued 2π-periodic function m(ξ).

From (2.2) and the assumption F ∈ SN it follows that the restriction of F̂ (ξ)
on the torus [−π, π]d is not identically zero, i.e.,

(2.3) F̂χ[−π,π]d 6= 0,

for otherwise using (2.2) iteratively we will have that F̂ (ξ) = 0 for almost all
ξ ∈ Rd, a contradiction to the assumption F ∈ SN .
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For 0 ≤ t ≤ 1, we define Ψt = (ψ1,t, . . . , ψN,t)
T by

(2.4) Ψ̂t(ξ) =

{
(1− t)

∑∞
j=1 a(2−jξ)F̂ (ξ) if 0 ≤ t < 1

F̂ (ξ)χ[−π,π]d(ξ) if t = 1,

where a(ξ) is a 2π-periodic function whose restriction on [−π, π]d is the charac-
teristic function on [−π, π]d\[−π/2, π/2]d. From (2.4), it follows that

(2.5) Ψ0 = F,

and

(2.6) Ψ̂t(2ξ) = mt(ξ)Ψ̂t(ξ), t ∈ [0, 1],

where

mt(ξ) =

{
(1− t)a(ξ)m(ξ) if 0 ≤ t < 1
(1− a(ξ))m(ξ) if t = 1.

Again from (2.4), we obtain

(2.7) lim
t→t0

Ψ̂t(ξ) = Ψ̂t0(ξ) a.e. ξ ∈ Rd

for all t0 ∈ [0, 1], and

(2.8) |F̂ (ξ)χ[−π,π]d(ξ)| ≤ |Ψ̂t(ξ)| ≤ |F̂ (ξ)| a.e. ξ ∈ Rd

for all t ∈ [0, 1]. By (2.3), (2.7) and (2.8),

(2.9) lim
t→t0
‖Ψt −Ψt0‖2 = 0, t0 ∈ [0, 1],

and

(2.10) 0 < ‖F̂ (·)χ[−π,π]d(·)‖2 ≤ ‖Ψ̂t‖2 ≤ ‖F̂‖2, 0 ≤ t ≤ 1.

Denote the normalization of Ψt, 0 ≤ t ≤ 1, by

(2.11) Φt :=
Ψt

‖Ψt‖2

which is well-defined by (2.10). From (2.5), (2.6), (2.9) and (2.10), it follows
that Φt, 0 ≤ t ≤ 1, form a continuous path in SN connecting F ∈ SN and Φ1 in
(2.11). Also from (2.4), (2.6) and (2.11), the function Φ1 = (φ1,1, . . . , φN,1)T has
the following properties:

(2.12) Φ̂1(ξ) =
F̂ (ξ)χ[−π,π]d(ξ)

‖F̂ (·)χ[−π,π]d‖2

,

and

(2.13) Φ̂1(2ξ) = m1(ξ)Φ̂1(ξ)

for some matrix-valued 2π-periodic function m1(ξ).
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Define Ψt = (ψ1,t, . . . , ψN,t)
T , 1 ≤ t ≤ 2, by

(2.14)

Ψ̂t(ξ) =

{ (
φ̂1,1(ξ)

|φ̂1,1(ξ)|

√
|φ̂1,1(ξ)|2 + (−3 + 4t− t2)|Φ̂′1(ξ)|2, (2− t)Φ̂′1(ξ)

)T
if φ̂1,1(ξ) 6= 0,(√

−3 + 4t− t2|Φ̂′1(ξ)|, (2− t)Φ̂′1(ξ))
)T if φ̂1,1(ξ) = 0,

where Φ̂′1(ξ) = (φ̂2,1(ξ), . . . , φ̂N,1(ξ)). From the definition of Ψt, 1 ≤ t ≤ 2, we
have that

(2.15)


Ψ1 = Φ1,

|Ψ̂t(ξ)| = |Φ̂1(ξ)| for all t ∈ [1, 2],
‖Ψt‖2 = 1 for all t ∈ [1, 2], and
limt→t0 ‖Ψt −Ψt0‖2 = 0 for all t0 ∈ [1, 2].

Here we have used the observation that for all t0 ∈ [1, 2], limt→t0 Ψ̂t(ξ) = Ψ̂t0(ξ)
for almost all ξ ∈ Rd. We also note that

(2.16) Ψ̂t(ξ) = At(ξ)Φ̂1(ξ)

for some matrix-valued 2π-periodic function At(ξ) with its restriction on [−π, π]d

being defined by

At(ξ) =



 √
1 + (−3 + 4t− t2)

|Φ̂′1(ξ)|2

|φ̂1,1(ξ)|2
0

0 (2− t)IN−1

 if φ̂1,1(ξ) 6= 0,(
1
√
−3 + 4t− t2 Φ̂′1(ξ)

|Φ̂′1(ξ)|
0 (2− t)IN−1

)
if φ̂1,1(ξ) = 0,

where Il is the l× l identity matrix. Combining (2.13) and (2.16), and using the
nonsingularity of the matrix At(ξ), 1 ≤ t < 2, for almost all ξ ∈ Rd, we obtain
the refinability of Ψt, 1 ≤ t < 2,

(2.17) Ψ̂t(2ξ) = At(2ξ)Φ̂1(2ξ) = At(2ξ)m1(ξ)Φ̂1(ξ) = mt(ξ)Ψ̂t(ξ)

where

mt(ξ) = At(2ξ)m1(ξ)(At(ξ))
−1, 1 ≤ t < 2.

Write

Ψ̂2(ξ) = (ψ̂1,2(ξ), . . . , ψ̂N,2(ξ))T .

Then ψ̂k,2(ξ), 2 ≤ k ≤ N , are zero functions. This together with (2.13) and (2.15)
proves the refinability of Ψt for t = 2,

(2.18) Ψ̂2(2ξ) = m2(ξ)Ψ̂2(ξ)
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for the matrix-valued 2π-periodic function m2(ξ) with its restriction on [−π, π]d

being defined by

m2(ξ) =


(

ψ̂1,2(2ξ)

ψ̂1,2(ξ)
0

0 IN−1

)
if |Φ̂1(ξ)| 6= 0,

IN if |Φ̂1(ξ)| = 0.

Therefore it follows from (2.15), (2.17) and (2.18) that the functions Φt, 1 ≤ t ≤ 2,
defined by

(2.19) Φt := Ψt,

form a continuous path in SN from Φ1 in (2.11) to Φ2 in (2.19).

From the definition of Φ2 = (φ1,2, . . . , φN,2)T , we have that φk,2 ≡ 0 for 2 ≤ k ≤
N and φ1,2 is a nonzero refinable function with its Fourier transform supported
in [−π, π]d. Now we define Ψt = (ψt, 0, . . . , 0)T , 2 ≤ t ≤ 3, by

(2.20) ψ̂t(ξ) =


φ̂1,2(ξ)

|φ̂1,2(ξ)|t−2
if φ̂1,2(ξ) 6= 0 and ξ ∈ [−π, π]d,

t− 2 if φ̂1,2(ξ) = 0 and ξ ∈ [−π, π]d,
0 if ξ /∈ [−π, π]d.

Clearly,

(2.21) Ψ2 = Φ2,

(2.22) |ψ̂t0(ξ)| > 0, ξ ∈ [−π, π]d

for every 2 < t0 ≤ 3, and

(2.23)


limt→t0 ψ̂t(ξ) = ψ̂t0(ξ), ξ ∈ Rd

|ψ̂t0(ξ)| ≤ max(|φ̂1,2(ξ)|, 1), ξ ∈ [−π, π]d,

|ψ̂t0(ξ)| ≥ min(|φ̂1,2(ξ)|, 1), ξ ∈ supp φ̂1,2,

for all 2 ≤ t0 ≤ 3. Then

(2.24) ‖Ψ̂t‖2 ≥ ‖min(|φ̂1,2(·)|, 1)‖2, 2 ≤ t ≤ 3

by (2.21) and (2.23),

(2.25) lim
t→t0
‖Ψ̂t‖2 = ‖Ψ̂t0‖2, 2 ≤ t0 ≤ 3,

by (2.23), and

(2.26) Ψ̂t(2ξ) = mt(ξ)Ψ̂t(ξ), 2 < t ≤ 3

by (2.22), where mt is a 2π-periodic function whose restriction on [−π, π]d is given
by

mt(ξ) :=

(
ψ̂t(2ξ)/ψ̂t(ξ) 0

0 IN−1

)
.
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Therefore by (2.18), (2.21) and (2.24) –(2.26), the functions Φt, 2 ≤ t ≤ 3, which
are defined by

(2.27) Φt :=
Ψt

‖Ψt‖2

,

form a continuous path in SN connecting Φ2 in (2.19) and Φ3 in (2.27).

From (2.20) and (2.27), we see that the function Φ3 = (φ1,3, 0, . . . , 0)T has the
following property:

(2.28) φ̂1,3(ξ) =
(
(2π)−d/2χ[−π,π]d(ξ)eiθ(ξ), 0, . . . , 0

)T
for some real-valued measurable function θ(ξ). Define Ψt, 3 ≤ t ≤ 4, by

(2.29) Ψ̂t(ξ) =
(
(2π)−d/2χ[−π,π]d(ξ)ei(4−t)θ(ξ), 0, . . . , 0

)T
.

Using similar arguments as the those used in the proofs of various properties
of Ψt, 2 ≤ t ≤ 3, we have the following properties for Ψt, 3 ≤ t ≤ 4: Ψ3 = Φ3,
limt→t0 ‖Ψt−Ψt0‖2 = 0 for all t0 ∈ [3, 4], and Ψt ∈ SN . Using the above properties
of Ψt, 3 ≤ t ≤ 4, we conclude that the functions Φt, 3 ≤ t ≤ 4, which are defined
by

(2.30) Φt := Ψt,

form a continuous path in SN connecting Φ3 in (2.27) and Φ4 in (2.30).

By (2.29) and (2.30),

(2.31) Φ4 = S.

Hence Φt, 0 ≤ t ≤ 4, is a continuous path in SN connecting F and the fixed
element S ∈ SN . Therefore the path-connectedness of the unit sphere SN follows.

�

Remark 2.2. Let RN([−π, π]d) be the set of all refinable vectors with their
Fourier transforms supported in [−π, π]d. From the above proof of the path-
connectedness of the unit sphere of the set RN , we have the path-connectedness
of the unit sphere of the set RN([−π, π]d) in the topology induced from (L2)N .

3. (N + 2)-point rule for the set of refinable vectors

In this section, we study the (N + 2)-point rule for the set of refinable vectors,
and give an elementary proof of Theorem 1.2 for the scalar case (N = 1). Our
proof of Theorem 1.2 for the general case (N ≥ 2) is much more complicated and
different from the scalar case, and will be given in Appendix A. In this section,
we also show by two examples that this (N + 2)-point rule is optimal for the
scalar case, N = 1. In particular, in Example 3.1 given any two distinct scalars
ε1 and ε2 we construct two L2 functions F and G such that F + tG is not refinable
for all real t except t = ε1, ε2, while in Example 3.2 given any countable subset
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T of R we construct two functions F and G such that the functions F + tG are
refinable for all real t except those t in T .

Proof of Theorem 1.2 for N = 1. Let

T̃ =
{
t ∈ R : µ{ξ ∈ Rd : F̂ (ξ) + tĜ(ξ) = 0 and Ĝ(ξ) 6= 0} > 0

}
,

where µ is the Lebesgue measure. Then T̃ is at most countable by Lemma A.1
in Appendix A. We will prove that F + tG is refinable when t /∈ T̃ ∪ {0}.

For each i = 1, 2, 3, by the refinability of F + εiG,

(3.1) F̂ (2ξ) + εiĜ(2ξ) = mi(ξ)(F̂ (ξ) + εiĜ(ξ))

for some 2π-periodic functions mi(ξ). This implies that

(ε2 − ε1)Ĝ(2ξ) = (m2(ξ)−m1(ξ))F̂ (ξ) + (ε2m2(ξ)− ε1m1(ξ))Ĝ(ξ),

and

(ε3 − ε1)Ĝ(2ξ) = (m3(ξ)−m1(ξ))F̂ (ξ) + (ε3m3(ξ)− ε1m1(ξ))Ĝ(ξ).

Thus

(3.2) α(ξ)F̂ (ξ) + β(ξ)Ĝ(ξ) = 0, a.e. ξ ∈ Rd,

where

(3.3) α(ξ) = (ε3 − ε1)(m2(ξ)−m1(ξ))− (ε2 − ε1)(m3(ξ)−m1(ξ)),

and

(3.4) β(ξ) = (ε3 − ε1)(ε2m2(ξ)− ε1m1(ξ))− (ε2 − ε1)(ε3m3(ξ)− ε1m1(ξ)).

For t 6∈ T̃ ∪ {0}, we let

ct(ξ) =
t− ε2
ε1 − ε2

m1(ξ) +
ε1 − t
ε1 − ε2

m2(ξ), dt(ξ) =
t− ε2
ε1 − ε2

ε1m1(ξ) +
ε1 − t
ε1 − ε2

ε2m2(ξ).

Then by (3.1),

(3.5) F̂ (2ξ) + tĜ(2ξ) = ct(ξ)F̂ (ξ) + dt(ξ)Ĝ(ξ).

Let 
E1 = {ξ ∈ Rd : α(ξ) 6= 0, β(ξ) 6= 0},
E2 = {ξ ∈ Rd : α(ξ) 6= 0, β(ξ) = 0},
E3 = {ξ ∈ Rd : α(ξ) = 0, β(ξ) 6= 0},
E4 = {ξ ∈ Rd : α(ξ) = 0, β(ξ) = 0}.

Since α and β are 2π-periodic, we have that

(3.6) ∪4
i=1Ei = Rd and Ei + 2πZd = Ei, i = 1, 2, 3, 4.

For ξ ∈ E1, we obtain from (3.2) and (3.5) that

(3.7) F̂ (2ξ) + tĜ(2ξ) =
(
ct(ξ)− dt(ξ)α(ξ)/β(ξ)

)
F̂ (ξ).
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Define m on E1 by

m(ξ) =

{
0 if ξ ∈ E5 ∩ E1,(
1− tα(ξ)/β(ξ)

)−1(
ct(ξ)− dt(ξ)α(ξ)/β(ξ)

)
if ξ ∈ E1\E5,

where E5 := {ξ ∈ Rd : (Ĝ(ξ + 2kπ))k∈Zd = 0}. The 2π-periodic function m is
well-defined on E1, that is, 1− tα(ξ)/β(ξ) 6= 0 for almost all ξ ∈ E1\E5, since

(1−tα(ξ)/β(ξ))(F̂ (ξ+2kπ))k∈Zd =
(
(F̂+tĜ)(ξ+2kπ)

)
k∈Zd 6= 0 a.e. ξ ∈ E1\E5

by (3.2) and the assumption t 6∈ T̃ . Therefore it follows from (3.2) and (3.7) that

(3.8) F̂ (2ξ) + tĜ(2ξ) = m(ξ)(F̂ (ξ) + tĜ(ξ)), ξ ∈ E1.

For ξ ∈ E2, we obtain from (3.2) that F̂ (ξ) = 0. This together with (3.5)
implies that

(3.9) F̂ (2ξ) + tĜ(2ξ) = dt(ξ)Ĝ(ξ) = m(ξ)(F̂ (ξ) + tĜ(ξ)), ξ ∈ E2,

where m(ξ) = 1
t
dt(ξ) is a 2π-periodic function on E2 and t 6∈ T̃ ∪ {0}.

Similarly for ξ ∈ E3, we obtain from (3.2) that Ĝ(ξ) = 0, and

(3.10) F̂ (2ξ) + tĜ(2ξ) = m(ξ)(F̂ (ξ) + tĜ(ξ)), ξ ∈ E3,

where m(ξ) = ct(ξ) is a 2π-periodic function on E3.
Finally for ξ ∈ E4, we have that α(ξ) = β(ξ) = 0. Solving the equations (3.3)

and (3.4) leads to

m3(ξ) = m2(ξ) = m1(ξ), ξ ∈ E4.

This together with (3.5) implies

(3.11) F̂ (2ξ) + tĜ(2ξ) = m(ξ)(F̂ (ξ) + tĜ(ξ)), ξ ∈ E4,

where m(ξ) = m1(ξ) is a 2π-periodic function on E4.
Combining (3.6) and (3.8) – (3.11) proves the refinability of F + tG with t 6∈

T̃ ∪ {0}. �

Example 3.1. Let ε1, ε2 be two distinct numbers. Define the functions f and g
by

f =
ε2f0 − ε1g0

ε2 − ε1
and g =

g0 − f0

ε2 − ε1
,

where f0 is the Haar function χ[0,1] and g0(x) := max(1−|x|, 0) is the hat function.
Since f + ε1g = f0 and f + ε2g = g0, both f + ε1g and f + ε2g are refinable, and
hence both belong to R1. Noting that

f + tg =
ε2 − t
ε2 − ε1

f0 +
t− ε1
ε2 − ε1

g0,
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and using the explicit formulas for the Fourier transform of f0 and g0,

f̂0(ξ) =
1− e−iξ

iξ
and ĝ0(ξ) =

(1− e−iξ

iξ

)2

,

one can verify that for all t 6= ε1, ε2,

det

(
f̂ + tg(ξ + 2kπ) f̂ + tg(ξ)

f̂ + tg(2(ξ + 2kπ)) f̂ + tg(2ξ)

)
6≡ 0

for all k ∈ Z\{0}. Therefore f + tg are not refinable for all t 6= ε1, ε2, Moreover,
using the characterization of the L2-closure of the set of all refinable functions
(Theorem 1.5), f + tg are not included in the L2-closure of the set of refinable
functions for all t 6= ε1, ε2.

Example 3.2. Let T = {tj}Lj=1 be a countable subset of R.
(i) For L = 0, we let f be refinable and g = 0. Then f + tg is refinable for all
t ∈ R.
(ii) For L = 1, one may verify that for the functions f and g defined by f̂ =
χ[π/2,π]− t1χ[0,π/2] and ĝ = χ[0,π/2], f + tg are refinable for all real t except t = t1.

This also shows that R1 6= R1.
(iii) If 2 ≤ L ≤ +∞, we let {Ej, 2 ≤ j ≤ L} be a partition of the interval [0, π/4]
with µ(Ej) > 0, 2 ≤ j ≤ L, and we define

f̂(ξ) =


−t1 if π

2
≤ ξ ≤ π,

−tj if ξ ∈ π/4 + Ej,
−t1 if 0 ≤ ξ ≤ π

4
,

0 otherwise,

and

ĝ(ξ) = χ[0,π](ξ).

Then for any real t,

f̂(ξ) + tĝ(ξ) =


−t1 + t if π

2
≤ ξ ≤ π,

−tj + t if ξ ∈ π
4

+ Ej,
−t1 + t if 0 ≤ ξ ≤ π

4
,

0 otherwise.

Therefore for any t 6∈ T , f + tg is refinable since

f̂(2ξ) + tĝ(2ξ) = m(ξ)(f̂(ξ) + tĝ(ξ)), ξ ∈ R,

for a 2π-periodic function m(ξ) whose restriction onto [−π, π] is defined by

m(ξ) =

{
f̂(2ξ)+tĝ(2ξ)

f̂(ξ)+tĝ(ξ)
if ξ ∈ [0, π],

0 if ξ ∈ [−π, 0).
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For t = t1, f + tg is not refinable since

f̂(2ξ) + tĝ(2ξ) = t1 − t2 6= 0 and f̂(ξ) + tĝ(ξ) = 0

for all ξ ∈ (π/4 + E2)/2. For t = tj, 2 ≤ j ≤ L, f + tg is not refinable since

f̂(2ξ) + tĝ(2ξ) = tj − t1 6= 0 and f̂(ξ) + tĝ(ξ) = 0

for all ξ ∈ π/4 + Ej. Therefore the functions f + tg are refinable for all real t
except those t ∈ T .

4. Hyperplane property for the set of refinable vectors

We prove Theorem 1.3 by induction on the dimension M of the hyperplane

(4.1) T (F0, . . . , FM) :=
{
F0 +

M∑
m=1

tmFm : t := (t1, . . . , tM) ∈ RM
}
.

By Theorem 1.2, the conclusion in Theorem 1.3 holds for M = 1. Inductively
assume that the conclusion in Theorem 1.3 holds for M ≥ 1. Let F0, . . . , FM+1 be
functions in (L2)N such that Fm − F0, 1 ≤ m ≤M + 1, are linearly independent.
For any scalar tM+1, we define

(4.2) R(tM+1) =
{

(t1, ..., tM) : F0 + tM+1FM+1 +
M∑
m=1

tmFm ∈ RN

}
.

By the inductive hypothesis, either µ(R(tM+1)) = 0 or µ(RM \ R(tM+1)) = 0,
where µ is the Lebesgue measure. If there do not exist distinct numbers tqM+1, 1 ≤
q ≤ N + 2, such that RM \ R(tqM+1) has zero measure for any q = 1, · · · , N + 2,
then the set

(4.3) E =
{

(t1, ..., tM+1) : F0 +
M+1∑
m=1

tmFm ∈ RN

}
has measure zero since

µ(E) =

∫
R
µ(R(tM+1))dtM+1 = 0.

Otherwise, there exist distinct scalars t1M+1, . . . , t
N+2
M+1 such that

(4.4) µ
(
RM \R(tqM+1)

)
= 0, 1 ≤ q ≤ N + 2.

By Theorem 1.2, for any (t1, ..., tM) ∈ T := ∩N+2
q=1 R(tqM+1), we have that F0 +∑M

m=1 tmfm + tfM+1 ∈ RN for all real t except countable many t’s. Thus the set

E(t1, ..., tM) =
{
t ∈ R : F0 +

M∑
m=1

tmFm + tFM+1 ∈ RN

}
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satisfies

(4.5) µ(R \ E(t1, ..., tM)) = 0.

For the set E in (4.3),

RM+1 \ E ⊂
(

(RM \ (∩N+2
q=1 R(tqM+1)))× R

)
∪ Ẽ,(4.6)

where

Ẽ =
{

(t1, ..., tM , tM+1) : tM+1 ∈ R \ E(t1, ..., tM), (t1, ..., tM) ∈ ∩N+2
q=1 R(tqM+1)

}
.

By (4.4), (4.5), and (4.6), we obtain

µ(RM+1 \ E) ≤ µ
(

(RM \ (∩N+2
q=1 R(tqM+1)))× R

)
+ µ(Ẽ)

= 0 +

∫
∩N+2

q=1 R(tqM+1)

µ(R \ E(t1, ..., tM))dt1...dtM = 0.

This complete the proof of Theorem 1.3. �

5. L2-closure of the set of refinable vectors

In this section, we characterize the L2-closure RN of all refinable vectors, and
give some related remarks on the sets of all M -refinable vectors and of all poly-
scale refinable vectors.

Now we start to prove Theorem 1.5, with the arrangement of the proof in such
a way that it will be used in the proof of Theorem 1.7.

Proof of Theorem 1.5. We will prove the following inclusions:

(5.1) RN ⊂ AN+1,

(5.2) ∪Φ∈RN
(S(Φ))N ⊂ AN+1,

(5.3) AN+1 ⊂ RN ,

and

(5.4) AN+1 ⊂ ∪Φ∈RN
(S(Φ))N .

(i) The proof of (5.1). Let F = (f1, . . . , fN)T ∈ RN . Suppose that the se-
quence Fn ∈ RN , n ≥ 1, satisfies limn→∞ ‖Fn − F‖2 = 0. By Parseval’s formula,

limn→∞ ‖F̂n − F̂‖2 = 0. Without loss of generality, we further assume that

(5.5) lim
n→∞

F̂n(ξ) = F̂ (ξ) a.e.,
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for otherwise we may replace the sequence {Fn} by a subsequence satisfying (5.5).
As each Fn is in RN ,

F̂n(2ξ) = mn(ξ)F̂n(ξ) a.e.

for some matrix-valued 2π-periodic function mn(ξ). For any j ∈ N, applying the
above refinement equation iteratively implies that

F̂n(2jξ) = mn,j(ξ)F̂n(ξ) a.e.

for some 2π-periodic function mn,j(ξ). Therefore any (N+1)×(N+1) submatrix

An(ξ) of the (ZN ×Z+)×Zd matrix
(
F̂n(2j(ξ+ 2kπ))

)
j∈Z+,k∈Zd can be written as

An(ξ) = Bn(ξ)Cn(ξ),

where Bn(ξ) is an (N+1)×N matrix with entries being 2π-periodic functions, and

Cn(ξ) = (F̂n(ξ + 2kiπ))1≤i≤N+1 for some distinct integers ki ∈ Zd, 1 ≤ i ≤ N + 1.
This implies that

detAn(ξ) = 0 a.e.

Taking limit in the above equality and using (5.5) prove (5.1).

(ii) The proof of (5.2). Take any F ∈ ∪Φ∈RN
(S(Φ))N . Let Φ ∈ RN such that

(5.6) F̂ (ξ) = m1(ξ)Φ̂(ξ)

and

(5.7) Φ̂(2ξ) = m0(ξ)Φ̂(ξ)

for some N × N matrix-valued 2π-periodic functions m0(ξ) and m1(ξ). For any
j ∈ Z+, using (5.6) and (5.7) repeatedly leads to

(5.8) F̂ (2jξ) = m2j (ξ)Φ̂(ξ)

for some N ×N matrix-valued 2π-periodic functions m2j (ξ). Therefore any (N +

1)×(N+1) submatrix A(ξ) of the (ZN×Z+)×Zd matrix
(
F̂ (2j(ξ+2kπ))

)
j∈Z+,k∈Zd

can be written as

A(ξ) = B(ξ)C(ξ),

(hence detA(ξ) = 0 for almost all ξ ∈ Rd), where B(ξ) is an (N + 1)×N matrix

with entries being 2π-periodic functions, and C(ξ) = (Φ̂(ξ + 2kiπ))1≤i≤N+1 for
some distinct ki ∈ Zd, 1 ≤ i ≤ N + 1. Therefore (5.2) follows.

(iii) The proof of (5.3). Take any function F = (f1, . . . , fN)T ∈ (L2)N such that
‖F‖2 = 1 and any (N + 1) × (N + 1) submatrix of the matrix F(ξ) in (1.1)
has zero determinant for almost all ξ ∈ Rd. Denote by rj(F )(ξ) the rank of the

((j + 1)N)×Zd matrix
(
F̂ (2i(ξ + 2kπ))

)
0≤i≤j,k∈Zd . We let Z(F ) be the set of all
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ξ ∈ Rd such that F(ξ) is a zero matrix, and EJ,K(F ) be the set of all ξ ∈ Rd such
that

rj(F )(ξ) =


0 if 0 ≤ j < j0,
k0 if j0 ≤ j < j1,
...
kM−1 if jM−1 ≤ j < jM ,
kM if j ≥ jM ,

where J := (j0, j1, . . . , jM) and K := (k0, k1, . . . , kM), with 0 ≤ j0 < j1 <
. . . < jM and 1 ≤ k0 < k1 < . . . < kM ≤ N , where 0 ≤ M ≤ N − 1. From
our constructions and assumptions on F , the sets EJ,K(F ) and Z(F ) have the
following properties:

(1) They are shift-invariant, i.e., EJ,K(F ) + 2πZd = EJ,K(F ) and Z(F ) +
2πZd = Z(F ).

(2) They are mutually disjoint, i.e., EJ,K(F )∩EJ ′,K′(F ) and EJ,K(F )∩Z(F )
have zero Lebesgue measure for all (J,K) and (J ′, K ′) with (J ′, K ′) 6=
(J,K).

(3) They form a decomposition of Rd:

(5.9) Rd = Z(F ) + ∪J,KEJ,K(F ).

For ξ ∈ EJ,K(F ), we let Aj0(ξ), . . . , AjM (ξ) be N×N permutation matrices such

that Ajs(ξ+2kπ) = Ajs(ξ) for all k ∈ Zd and 0 ≤ s ≤M , and (F̂J,K(ξ+2kπ))k∈Zd

has rank rM , where we define

(5.10) F̂J,K(ξ) := (Aj0(ξ))−1

M∑
s=0

 0ks−1 0 0
0 Iks−ks−1 0
0 0 0N−ks

Ajs(ξ)F̂ (2jsξ),

denote by Il the l × l identity matrix, and set k−1 = 0. If j0 = 0, we further
require that the permutation matrix Aj0(ξ) be so chosen that

∥∥∥{( Ik0 0
0 0N−k0

)
Aj0(ξ)F̂ (ξ + 2kπ)

}
k∈Zd

∥∥∥
`2(Zd)

≥ 1

N

∥∥∥{Aj0(ξ)F̂ (ξ + 2kπ)
}
k∈Zd

∥∥∥
`2(Zd)

a.e. ξ ∈ EJ,K(F ).(5.11)

The existence of such measurable permutation matrices Aj0(ξ), . . . , AjM (ξ) fol-
lows from the definition of the set EJ,K(F ). From the above construction of the
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function F̂J,K , we see that

Aj0(ξ)F̂J,K(ξ) =
(
f̂nk−1+1

(2j0ξ), . . . , f̂nk0
(2j0ξ)︸ ︷︷ ︸

k0−k−1

, . . . ,

f̂nkM−1+1
(2jM ξ), . . . , f̂nkM

(2jM ξ)︸ ︷︷ ︸
kM−kM−1

, 0, . . . , 0︸ ︷︷ ︸
N−kM

)T
where 1 ≤ nj ≤ N for 1 ≤ j ≤ kM , and that Aj0(ξ)(F̂J,K(ξ + 2kπ))k∈Zd has
rank kM on EJ,K(F ). (This implies that for any 1 ≤ n ≤ kM , the submatrix

chosen from the first n rows of the matrix Aj0(ξ)(F̂J,K(ξ + 2kπ))k∈Zd has rank n
on EJ,K(F ).)

For 0 ≤ t ≤ 1, we define Ψt ∈ (L2)N by

(5.12) Ψ̂t(ξ) =

{
F̂ (ξ) + tF̂J,K(ξ) if ξ ∈ EJ,K(F ),
0 if ξ ∈ Z(F ).

The functions Ψt, 0 ≤ t ≤ 1, are well defined by (5.9) and (5.10). Moreover, one
may easily verify that

(5.13) Ψ0 = F,

(5.14) lim
t→t0

Ψ̂t(ξ) = Ψ̂t0(ξ) a.e.

for all t0 ∈ [0, 1], and

(5.15) |Ψ̂t(ξ)| ≤ 2
∞∑
j=0

|F̂ (2jξ)| a.e.

for all t ∈ [0, 1]. By direct computation, we obtain∥∥∥ ∞∑
j=0

|F̂ (2jξ)|
∥∥∥

2
≤

∞∑
j=0

‖F̂ (2jξ)‖2

=
∞∑
j=0

2−j/2‖F‖2 <∞.(5.16)

Combining (5.14), (5.15) and (5.16), we conclude by the dominated convergence
theorem that

(5.17) lim
t→t0
‖Ψt −Ψt0‖2 = 0, t0 ∈ [0, 1],

and

(5.18) ‖Ψt‖2 ≤ (1 +
√

2)‖F‖2, t ∈ [0, 1].
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From the definition of Ψt, 0 ≤ t ≤ 1, and the construction of the function

F̂J,K(ξ) on EJ,K(F ), we have that

‖Ψt‖2
2 =

∑
J,K

∫
EJ,K(F )

|F̂ (ξ) + tF̂J,K(ξ)|2dξ

≥
∑

J,K with j0=0

∫
EJ,K(F )

|F̂ (ξ) + tF̂J,K(ξ)|2dξ

≥
∑

J,K with j0=0

∫
EJ,K(F )

(1 + t)2
∣∣∣ ( Ik0 0

0 0N−k0

)
Aj0(ξ)F̂ (ξ)

∣∣∣2dξ
≥ (1 + t)2

∑
J,K with j0=0

∫
EJ,K(F )

(
1

N

)2

|F̂ (ξ)|2dξ =
(1 + t)2‖F‖2

2

N2
.(5.19)

Now we prove the refinability of Ψt, 0 < t ≤ 1. Since there exist finitely many
N × N permutations, we may divide the set EJ,K(F ) into the union of finitely
many mutually disjoint subsets EJ,K,p(F ), p ∈ PJ,K , such that EJ,K,p(F )+2πZd =
EJ,K,p(F ), and the permutation matrices Aj0(ξ), . . . , AjM (ξ) in the definition of

F̂J,K(ξ) are constant matrices on EJ,K,p(F ) for every p ∈ PJ,K . Noting that the

matrices (Ψ̂t(ξ + 2kπ))k∈Zd and (F̂ (2j(ξ + 2kπ)))0≤j∈Z,k∈Zd have the same dimen-
sion kM for any ξ ∈ EJ,K,p(F ), there exist matrix-valued 2π-periodic functions

mJ,K,p
j (ξ), 0 ≤ j ∈ Z, such that

(5.20) F̂ (2jξ) = mJ,K,p
j (ξ)Ψ̂t(ξ) a.e. ξ ∈ EJ,K,p(F ).

On the other hand, from the definition of the set Z(F ) we have that

(5.21) Ψ̂t(ξ) = F̂ (2jξ) = 0, ξ ∈ Z(F ).

Combining (5.20) and (5.21) and using (5.9), we conclude that for any 0 ≤ j ∈ Z,
there exists a matrix-valued 2π-periodic function mj such that

(5.22) F̂ (2jξ) = mj(ξ)Ψ̂t(ξ), 0 ≤ j ∈ Z.

From the construction of the function Ψt and the sets EJ,K,p(F ), there exist

constant matrices m̃J,K,p
j such that

(5.23) Ψ̂t(ξ) =

{ ∑M
j=0 m̃

J,K,p
j F̂ (2kjξ) ξ ∈ EJ,K,p,

0 ξ ∈ Z(F ).

Then by (5.22) and (5.23),

Ψ̂t(2ξ) = mJ,K,p(ξ)Ψ̂t(ξ) if 2ξ ∈ EJ,K,p
and

Ψ̂t(2ξ) = mZ(ξ)Ψ̂t(ξ) if 2ξ ∈ Z(F )
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for some matrix-valued 2π-periodic functions mJ,K,p and mZ . Hence

Ψ̂t(2ξ) =
( ∑
J,K,p

mJ,K,p(ξ)χEJ,K,p(F )/2(ξ) +mZ(ξ)χZ(F )/2(ξ)
)

Ψ̂t(ξ),

where χE is the characteristic function on a set E. This proves the refinability of
Ψt, 0 < t ≤ 1.

From the above arguments, we conclude that the functions Φt, 0 ≤ t ≤ 1,
defined by

(5.24) Φt =
Ψt

‖Ψt‖2

,

have the following properties:

(5.25)


Φ0 = F ;
‖Φt‖2 = 1;
Φt is refinable for every 0 < t ≤ 1; and
limt→t0 ‖Φt − Φt0‖2 = 0 for all t0 ∈ [0, 1].

This proves that F ∈ RN , and hence (5.3) follows.

(iv) The proof of (5.4). Take any F ∈ AN+1 and let Φt, 0 ≤ t ≤ 1, be as in (5.25).
We define an N ×N matrix-valued 2π-periodic function m by

m(ξ) =


0 if ξ ∈ Z(F ) or ξ ∈ EJ,K(F ) with j0 6= 0,

‖Ψ1‖2
2
AJ,K(ξ)

(
Ik0 0
0 0

)
Aj0(ξ) if ξ ∈ EJ,K(F ) with j0 = 0,

where Ψ1 and Aj0(ξ) are defined as in (5.12) and (5.10) respectively, and the
matrix AJ,K(ξ) is chosen so that

AJ,K(ξ)

(
Ik0 0
0 0

)
Aj0(ξ)F̂ (ξ) = F̂ (ξ) a.e. ξ ∈ EJ,K(F ).

The existence of such a matrix AJ,K(ξ) follows from the fact that both (F̂ (ξ +

2kπ))k∈Zd and

(
Ik0 0
0 0

)
Aj0(ξ)

(
F̂ (ξ+2kπ)

)
k∈Zd have the same rank k0 for almost

all ξ ∈ EJ,K(F ).
Let Φ1 be as in (5.24). For ξ ∈ Z(F ) ∪ (∪J,K with j0 6=0EJ,K(F )), we have that

F̂ (ξ + 2kπ) = 0, which yields

(5.26) F̂ (ξ) = m(ξ)Φ̂1(ξ) = 0 a.e. ξ ∈ Z(F ) ∪ (∪J,K with j0 6=0EJ,K(F )).
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For ξ ∈ EJ,K(F ) with j0 = 0, from (5.10) it follows that

m(ξ)Φ̂1(ξ) =
1

2
AJ,K(ξ)

(
Ik0 0
0 0

)

×
(
Aj0(ξ)F̂ (ξ) +

M∑
s=0

 0ks−1 0 0
0 Iks−ks−1 0
0 0 0N−ks

Ajs(ξ)F̂ (2jsξ)
)

= AJ,K(ξ)

(
Ik0 0
0 0

)
Aj0(ξ)F̂ (ξ)

= F̂ (ξ).(5.27)

Combining (5.9), (5.26) and (5.27) proves F̂ (ξ) = m(ξ)Φ̂1(ξ) for almost all ξ ∈ Rd.
Hence (5.4) follows from the refinability of the function Φ1. �

Remark 5.1. A d×d matrix M with integer entries is said to be a dilation if all its
eigenvalues have norm strictly larger than one. We say that F = (f1, . . . , fN)T ∈
(L2)N is an M-refinable vector if it satisfies a refinement equation

(5.28) F̂ (MT ξ) = m(ξ)F̂ (ξ),

where m(ξ) is a matrix-valued 2π-periodic function. Using similar arguments, we
may extend the result in Theorem 1.5 for RN to the L2-closure of the set of all
M -refinable vectors.

Theorem 5.2. Let M be a dilation, N ∈ N and F ∈ (L2)N . Then the following
statements are equivalent:

(i) F is in the (L2)N -closure of the set of all M-refinable vectors.

(ii) Any (N+1)×(N+1) submatrix of the (ZN×Z+)×Zd matrix
(
F̂
(
(MT )j(ξ+

2kπ)
))
j∈Z+,k∈Zd has zero determinant for almost all ξ ∈ Rd.

(iii) There exists a M-refinable vector Φ and a matrix-valued 2π-periodic func-
tion m(ξ) such that

F̂ (ξ) = m(ξ)Φ̂(ξ) a.e. ξ ∈ Rd.

Remark 5.3. For a vector F = (f1, . . . , fN)T ∈ (L2)N , we say that F is poly-scale
M-refinable if there exist 2π-periodic functions mi, 1 ≤ i ≤ I, such that

(5.29) F̂ (ξ) =
I∑
i=1

mi(B
−iξ)F̂ (B−iξ),

where B = MT . Clearly the poly-scale M -refinability becomes the M -refinability
when the scale I becomes one (see [15, 32] for the poly-scale refinability and its
applications). It is known that if F is poly-scale refinable, then the vector F̃ ,
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whose Fourier transform is given by

̂̃F (ξ) =

F̂ (BI−1ξ)
...

F̂ (ξ)

 ,

satisfies the following refinement equation

(5.30) ̂̃F (Bξ) = H̃(ξ) ̂̃F (ξ),

where

H̃(ξ) =



m1(BI−1ξ) m2(BI−2ξ) · · · mI−1(Bξ) mI(ξ)
IN 0 · · · 0 0
0 IN · · · 0 0
...

...
. . .

...
...

0 0 · · · IN 0
0 0 · · · 0 IN

 .

Denote the set of all poly-scale M -refinable vectors by RN,I , and its L2-closure
by RN,I . Using similar arguments as in the proof of Theorem 1.5, we have the
following result for the set RN,I :

Theorem 5.4. Let N, I ≥ 1. If F ∈ RN,I , then any (NI + 1) × (NI + 1)

submatrix of the (ZN × Z+)× Zd matrix
(
F̂
(
(MT )j(ξ + 2kπ)

))
j∈Z+,k∈Zd has zero

determinant for almost all ξ ∈ Rd.

6. Topological and geometrical properties of RN

In this section, we give the proof of Theorem 1.7.

Proof of Theorem 1.7. (i) For any F = (f1, . . . , fN)T ∈ RN with ‖F‖2 = 1,
define Φ0 = F and let Φt, 0 < t ≤ 1, be as in (5.24). By (5.25), the functions
Φt, 0 ≤ t ≤ 1, form a continuous path in the unit sphere of RN connecting the
function F in the unit sphere of RN and Φ1 in the unit sphere of RN . This
together with the path-connectedness of the unit sphere of RN (Theorem 1.1)
proves the path-connectedness of the unit sphere of RN .

(ii) For JN = {j1, . . . , jN+1} ⊂ Z+ × {1, . . . , N} and KN = {k1, . . . , kN+1} ⊂
Zd with cardinality N + 1, we denote by AJN ,KN

(ξ, t) the (N + 1) × (N + 1)
submatrix by taking the j1-th, . . . , jN+1-th rows and the k1-th, . . ., kN+1-th

columns of the matrix
(
(F̂ + tĜ)(2j(ξ + 2kπ))

)
j∈Z+,k∈Zd . Then the determinant

of AJN ,KN
(ξ, t), denoted by PJN ,KN

(ξ, t), is a polynomial in t with degree at most
N + 1. By Theorem 1.5 and the assumption that F + ε1G, . . . , F + εN+2G ∈ RN ,
we have

PJN ,KN
(ξ, εi) = 0 a.e. ξ ∈ Rd
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for 1 ≤ i ≤ N + 2. Therefore PJN ,KN
(ξ, t) is a zero polynomial in t. Hence

(6.1) F + tG ∈ RJN ,KN
for all t ∈ R,

where
(6.2)
RJN ,KN

= {H = (h1, . . . , hN)T ∈ (L2)N : detAJN ,KN
(ξ) = 0, a. e. ξ ∈ Rd},

and AJN ,KN
(ξ) is the (N+1)×(N+1) submatrix by taking the j1-th, . . ., jN+1-th

rows and k1-th, . . ., kN+1-th columns of the matrix
(
Ĥ(2j(ξ + 2kπ))

)
j∈Z+,k∈Zd .

By Theorem 1.5, we have

(6.3) RN = ∩JN ,KN
RJN ,KN

.

Therefore F + tG ∈ RN by (6.1) and (6.3).
(iii) We prove the conclusion by induction on the dimension M of the hy-

perplane T (F0, . . . , FM) in (4.1). For M = 1 the conclusion follows from the
(N + 2)-point rule for RN , the second conclusion of this theorem. Inductively
we assume that the conclusion holds for M ≥ 1. Let T (F0, F1, ..., FM+1) be the
hyperplane generated by F0, . . . , FM+1. Then by the inductive hypothesis, for
any tM+1 ∈ R, the set R(tM+1) in (4.2) either has zero Lebesgue measure (i.e.,
µ(R(tM+1)) = 0), or is the whole space (i.e., R(tM+1) = RM).

If there do not exist (N + 2) distinct numbers tnM+1, 1 ≤ n ≤ N + 2, such that
R(tnM+1) = RM , 1 ≤ n ≤ N + 2, then the set

E =
{

(t1, ..., tM+1) : F0 +
M+1∑
m=1

tmFm ∈ RN

}
has Lebesgue measure zero since

µ(E) =

∫
tM+1

µ(R(tM+1))dtM+1 = 0.

Otherwise there exist (N + 2) distinct numbers tnM+1, 1 ≤ n ≤ N + 2, such that

R(tnM+1) = RM , 1 ≤ n ≤ N + 2. Then by the (N + 2)-point rule for RN we see

that any function F = F0 +
∑N+1

m=1 tmFm is in RN . Hence T (F0, ..., FM+1) ⊂ RN .
This completes the inductive proof.

(iv) Take any ε > 0 and F = (f1, . . . , fN)T ∈ (L2)N . We need to show that
B(F, ε) ∩ ((L2)N \ RN) 6= ∅, where B(F, ε) = {H = (h1, . . . , hN)T ∈ (L2)N :
‖H − F‖2 < ε}. Take G = (g1, . . . , gN)T ∈ L2 \ RN with ‖G‖2 = 1. (The
existence of such a function follows from the obvious observation that RN is a
proper closed subset of (L2)N , see Example 3.1.) By the (N+2)-point rule forRN

(the second conclusion in Theorem 1.7) and the fact that G 6∈ RN , there exists
0 < δ1 < ε such that Hδ := δF +G /∈ RN for all δ > (δ1)−1. On the other hand,
‖δ−1Hδ − F‖2 = δ−1‖G‖2 < ε. Therefore δ−1Hδ ∈ B(F, ε) ∩ ((L2)N \ RN). �
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For JN = {j1, . . . , jN+1} ⊂ Z+ × {1, . . . , N} and KN = {k1, . . . , kN+1} ⊂ Zd,
from the proof of Theorem 1.7, we have the following (N + 2)-point rule and
nowhere density for the set RJN ,KN

in (6.2).

Theorem 6.1. Let JN ⊂ Z+×{1, . . . , N}N , KN ⊂ Zd, and F,G ∈ (L2)N . Then

(i) ((N + 2)-point rule) If there are N + 2 distinct numbers ε1, . . . , εN+2 such
that each F + εiG ∈ RJN ,KN

for 1 ≤ i ≤ N + 2, then F + tG ∈ RJN ,KN

for t ∈ R.
(ii) (Hyperplane property) Let F0, . . . , FM ∈ (L2)N such that F1−F0, . . . , FM−

F0 are linearly independent. Then either g(t1, . . . , tm) := F0+
∑M

m=1 tmFm ∈
RJN ,KN

for almost all t := (t1, . . . , tM) ∈ RM , or g(t1, . . . , tm) 6∈ RJN ,KN

for almost all t := (t1, . . . , tM) ∈ RM .
(iii) (Nowhere density property) The set RJN ,KN

is nowhere dense in (L2)N .

7. Nowhere Density of MRA affine frames

In this section, we study the nowhere density of all MRA affine frames and
prove Theorem 1.8.

For this purpose, we first recall a few definitions. In this paper, a multireso-
lution analysis (MRA) means a family of subspaces {Vj}j∈Z of L2 which satisfies
the following conditions:

(i) Vj ⊂ Vj+1 for all j ∈ Z;
(ii) Vj = {f(2j·) : f ∈ V0} for all j ∈ Z;
(iii) ∩j∈ZVj = {0} and ∪j∈ZVj = L2; and
(iv) There exist a function Φ = (φ1, . . . , φN)T , called a scaling vector, such

that the core scaling space V0 is the shift-invariant space S(Φ), which is
defined as the minimal closed subspace of L2 containing {φn(· − k) : 1 ≤
n ≤ N, k ∈ Zd}.

From the nested property V−1 ⊂ V0 in the condition (i), the scaling vector Φ is a
refinable vector of length N .

Remark 7.1. There are several slightly different (but not equivalent) definitions
of a multiresolution analysis, especially on the technical condition (iv). For in-
stance, in a standard definition ([14, 18, 24, 25]), the core scaling space V0 has
an orthonormal basis {φn(·− k) : k ∈ Zd, 1 ≤ n ≤ N} generated by finitely many
functions φ1, . . . , φN , while in the frame MRA (FMRA) theory (cf. [6]), the core
scaling space V0 has a shift-invariant frame {φn(· − k) : 1 ≤ n ≤ N, k ∈ Zd}.
More generally, {Vj}j∈Z is called a GMRA (cf. [4, 5]) when the core scaling space
V0 is only assumed to be shift-invariant, that is, f ∈ V0 if and only if f(·−k) ∈ V0

for all k ∈ Zd.

Let ψ1, . . . , ψM ∈ L2. We say that Ψ := (ψ1, . . . , ψM)T is an affine frame of L2

(or ψ1, . . . , ψM are affine frames of L2) if {ψm;j,k := 2jd/2ψm(2j · −k) : j ∈ Z, k ∈
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Zd, 1 ≤ m ≤ M} is a frame for L2, that is, there exist positive constants A,B
such that

(7.1) A‖f‖2 ≤
( M∑
m=1

∑
j∈Z,k∈Zd

|〈f, ψm;j,k〉|2
)1/2

≤ B‖f‖2 ∀ f ∈ L2.

MRA-frames of length M , that are associated with a multiresolution analysis hav-
ing a scaling vector of length N , are those affine frames Ψ = (ψ1, . . . , ψM)T such
that ψ1, . . . , ψM belong to the dilated scaling space V1 for some multiresolution
analysis {Vj}j∈Z with a scaling vector Φ = (φ1, . . . , φN)T of length N . We denote
the set of all such MRA-frames by FM,N .

Now we give the proof of Theorem 1.8, where the new characterization RN =
∪Φ∈RN

(S(Φ))N of the set RN in Theorem 1.5 plays a crucial role.

Proof of Theorem 1.8. By Theorems 1.5 and 1.7, the set T := ∪Φ∈RN
(S(Φ))N is

a nowhere dense subset of (L2)N . For any vector Ψ = (ψ1, . . . , ψM)T ∈ FM,N ,

we cut Ψ to a vector of length N , which is denoted by Ψ̃ = (ψ1, . . . , ψN)T . We

denote the set of all such vectors Ψ̃ associated with Ψ ∈ FM,N by F̃M,N . Since

F̃M,N ⊂ {f(2·) : f ∈ T}, we have that F̃M,N is a nowhere dense subset of

(L2)N . On the other hand, one may easily verify that FM,N ⊂ F̃M,N × (L2)M−N .
Therefore the nowhere density of the set FM,N in (L2)M follows. �

In view of the previous results, we make the following conjectures on MRA
affine frames.

Conjectures: (i) The set ∪∞N=1FM,N is a nowhere dense subset of (L2)M for
any M ≥ 1. (ii) The set FM,N is path-connected for all M,N ≥ 1.

Appendix A. Proof of Theorem 1.2 for general N

In this appendix, we give the proof of Theorem 1.2 for N ≥ 2. For this purpose,
we need several technical lemmas:

Lemma A.1. Let M ∈ N, g0, . . . , gM be measurable functions on a subset E ⊂ Rd

with finite Lebesgue measure, K = {ξ ∈ E : (g0(ξ), . . . , gM(ξ))T 6= 0}, and

T =
{
t ∈ R :

M∑
m=0

gm(ξ)tm 6= 0 for almost all ξ ∈ K
}
.

Then T c := R\T is at most countable.

Proof. Let Km′ , 0 ≤ m′ ≤ M , be the subsets of K such that gm′(ξ) 6= 0 on Km′

but gm(ξ) = 0 for all m′ < m ≤M . Then

(A.1) K = ∪Mm′=0Km′ ,
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and for any 1 ≤ m′ ≤M ,

(A.2)
M∑
m=0

gm(ξ)tm = gm′(ξ)
m′∏
i=1

(t− hm′,i(ξ)) a.e. ξ ∈ Km′

for some measurable functions hm′,1, . . . , hm′,m′ onKm′ . By (A.2),
∑M

m=0 gm(ξ)tm =
0 on a subset of Km′ that has positive Lebesgue measure if and only if the set

Km′,i(t) = {ξ ∈ Km′ : hm′,i(ξ) = t}

has positive Lebesgue measure for some 1 ≤ i ≤ m′. This together with (A.1)
leads to

T c = ∪1≤m′≤M,1≤i≤m′{t : µ(Km′,i(t)) > 0}
= ∪1≤m′≤M,1≤i≤m′,1≤n,k∈ZEm′,i(n, k),(A.3)

where Em′,i(n, k) = {t ∈ R : µ(Km′,i(t)) > n−1, k−1 ≤ |t| ≤ k}. Since

#(Em′,i(n, k))

n
≤ k

∑
t∈Em′,i(n,k)

|t|µ(Km′,i(t))

≤ k

∫
ξ∈Km′

min{|hm′,i(ξ)|, k}dξ ≤ µ(E)k2 <∞,

where #(S) denotes the cardinality of a set S, we have that the set Em′,i(n, k)
has finite cardinality. This together with (A.3) proves that the set T c is at most
countable. �

Lemma A.2. Let F,G ∈ (L2)N and Ht := F + tG, t ∈ R. Then there exist a sub-
set T of R (depending on F and G only), and subsets EJn,Kn of [−π, π]d associated
with the index sets Jn := {j1, . . . , jn} ⊂ {1, . . . , N} and Kn := {k1, . . . , kn} ⊂ Zd

having cardinality n, where 1 ≤ n ≤ N , such that:

(i) The set T c := R\T is at most countable.
(ii) For any t ∈ T , the n × n submatrix obtained from taking the j1-th, . . .,

jn-th rows and the k1-th, . . ., kn-th columns of the N ×Zd matrix (Ĥt(ξ+
2kπ))k∈Zd is nonsingular for almost all ξ ∈ EJn,Kn.

(iii) For any t ∈ R, the rank of the matrix (Ĥt(ξ + 2kπ))k∈Zd is at most n for
almost all ξ ∈ EJn,Kn.

(iv) For any t ∈ R, (Ĥt(ξ + 2kπ))k∈Zd = 0 holds for almost all ξ ∈ E0 :=
[−π, π]d\ ∪Nn=1 ∪Jn,KnEJn,Kn.

Proof. For 1 ≤ n ≤ N , Jn = {j1, . . . , jn} ⊂ {1, . . . , N} and Kn = {k1, . . . , kn} ⊂
Zd having cardinality n, we denote by PJn,Kn(ξ, t) the determinant of the n × n
submatrix obtained from taking the j1-th, . . ., jn-th rows and the k1-th, . . ., kn-th
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columns of the N × Zd matrix (Ĥt(ξ + 2kπ))k∈Zd . Then

(A.4) PJn,Kn(ξ, t) =
n∑

m=0

hm,Jn,Kn(ξ)tm

for some measurable functions h0,Jn,Kn , . . . , hn,Jn,Kn on [−π, π]d. We let

(A.5) ẼJn,Kn =
{
ξ ∈ [−π, π]d : (h0,Jn,Kn(ξ), . . . , hn,Jn,Kn(ξ))T 6= 0

}
,

(A.6) EJn,Kn = ẼJn,Kn\(∪Nn′=n+1 ∪Jn′ ,Kn′
ẼJn′ ,Kn′

),

TJn,Kn = {t ∈ R : PJn,Kn(ξ, t) 6= 0 for almost all ξ ∈ EJn,Kn},(A.7)

and

T = ∩Nn=1 ∩Jn,Kn TJn,Kn .

Now we show that the sets T and EJn,Kn satisfy all the conclusions in the lemma.
(i) T c = ∪Nn=1 ∪Jn,Kn (R\TJn,Kn) is a countable set by Lemma A.1.
(ii) From the definition of PJn,Kn , we see that for any t ∈ T , PJn,Kn(ξ, t) 6= 0

for almost all ξ ∈ EJn,Kn . Hence the second conclusion follows.
(iii) From the definition of the sets EJn,Kn , any (n+ 1)× (n+ 1) submatrix

of (Ĥt(ξ + 2kπ))k∈Zd has zero determinant on EJn,Kn . This implies that for any

t ∈ R, the matrix (Ĥt(ξ+ 2kπ))k∈Zd has rank at most n for almost all ξ ∈ EJn,Kn .

(iv) Since E0 = [−π, π]d\(∪Nn=1∪Jn,KnEJn,Kn) = [−π, π]d\(∪Nn=1∪Jn,KnẼJn,Kn),
the polynomial PJ1,K1(ξ, t) is identically zero on E0 for any J1 and K1. This proves

that for any t ∈ R, (Ĥt(ξ + 2kπ))k∈Zd = 0 for almost all ξ ∈ E0. �

Denote by Ij the identity matrix of size j × j.

Lemma A.3. Let N,M ≥ 1, and A(ξ), B(ξ) be N × M matrices whose en-
tries are measurable functions on a measurable set E. Suppose that there exists
{j1, . . . , jM} ⊂ {1, . . . , N} such that the determinant of the M ×M submatrix,
which is obtained by taking the j1-th, . . ., jM -th rows of the matrix A(ξ)+tB(ξ), is
not a zero polynomial in t ∈ R for almost all ξ ∈ E. Then there exist a finite index
set P, a partition {Ep}p∈P of the set E, i.e., ∪p∈PEp = E and Ep∩Ep′ = ∅ for any
p 6= p′, and for each p ∈ P, an integer n0(p) ∈ [0,M ] and matrices Pp(ξ) of size
N ×N , Qp(ξ) of size M ×M and Dp(ξ) of size n0(p)×n0(p), X1,p(ξ) and Y1,p(ξ)
of size n0(p)×(M−n0(p)), X2,p(ξ) and Y2,p(ξ) of size (M−n0(p))×(M−n0(p)),
X3,p(ξ) and Y3,p(ξ) of size (N − n0(p))× (M − n0(p)), such that

(A.8) detPp(ξ) detQp(ξ) 6= 0,

(A.9) det(X2,p(ξ) + tY2,p(ξ)) = 1 when n0(p) < M,
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and

Pp(ξ)(A(ξ) + tB(ξ))Qp(ξ) =

tIn0(p) +Dp(ξ) X1,p(ξ) + tY1,p(ξ)
0 X2,p(ξ) + tY2,p(ξ)
0 X3,p(ξ) + tY3,p(ξ)

(A.10)

for almost all ξ ∈ Ep, where t ∈ R.

Proof. For any matrices A(ξ) and B(ξ) of size N ×M , we will show that there
exist a finite partition of E, say {Ep, p ∈ P}, and matrices Pp(ξ), Qp(ξ), Cp(ξ)
and Dp(ξ) on Ep whose entries are measurable functions such that

(A.11) detPp(ξ) detQp(ξ) 6= 0 a.e. ξ ∈ Ep,
and

Pp(ξ)(A(ξ) + tB(ξ))Qp(ξ)

=



Cp(ξ) tIn0(p) +Dp(ξ) X01,t(ξ) X02,t(ξ) · · · · · · X0l,t(ξ)

0 0 X̃01,t(ξ) X̃02,t(ξ) · · · · · · X̃0l,t(ξ)
0 0 In1(p) X12,t(ξ) · · · · · · X1l,t(ξ)

0 0 0 X̃12,t(ξ) · · · · · · X̃1l,t(ξ)

0 0 0 In2(p)
. . . . . . X2l,t(ξ)

0 0 0 0
. . . . . .

...

0 0 0 0
. . . . . .

...

0 0 0 0 · · · · · · X̃(l−1)l,t(ξ)
0 0 0 0 · · · · · · Inl(p)

0 0 0 0 · · · · · · 0
0 0 0 0 · · · · · · 0



(A.12)

for almost all ξ ∈ Ep, where n0(p), n1(p), . . . , nl(p) ∈ Z+ := {0} ∪N, and Xij,t(ξ)

and X̃ij,t(ξ) are matrices of the form X(ξ) + tY (ξ) for some matrices X(ξ) and
Y (ξ), which may be different at different occurrence.

We will prove, by induction on N ≥ 1, the decomposition (A.12) for any matrix
A(ξ) + tB(ξ) of size N ×M . Indeed, it suffices to prove the conclusion under the
additional assumption that B(ξ) has constant rank m on the set E; for otherwise,
we partition the set E into a finite union of Em, 0 ≤ m ≤ min(N,M), so that the
matrix B(ξ) has rank m on Em, and prove the conclusion for each Em.

First we prove the conclusion for N = 1. In this case, M ≥ 1 and either m = 0
or m = 1.

(i) m = 0: In this case, A(ξ) + tB(ξ) = A(ξ). We may further assume that
A(ξ) has constant rank m′ for almost all ξ ∈ E; for otherwise we partition
the set E into a finite union of Em′ , 0 ≤ m′ ≤ min(N,M) = 1, so that
the matrix A(ξ) has constant rank m′ on Em′ . Therefore by the above
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assumption on A(ξ) and B(ξ), there exist nonsingular matrices P (ξ) of
size 1× 1 and Q(ξ) of size M ×M such that

(A.13) P (ξ)(A(ξ) + tB(ξ))Q(ξ) = P (ξ)A(ξ)Q(ξ) =

{
(0 | 1) if m′ = 1

0 if m′ = 0

holds for almost all ξ ∈ E.
(ii) m = 1: In this case, we choose nonsingular matrices P (ξ) of size 1 × 1

and Q(ξ) of size M ×M so that

P (ξ)B(ξ)Q(ξ) = (0 | 1),

which implies that

(A.14) P (ξ)(A(ξ) + tB(ξ))Q(ξ) = (C(ξ) | tI1 +D(ξ))

holds for some matrix-valued measurable functions C(ξ) of size 1×(M−1)
and D(ξ) of size 1× 1.

Then the decomposition (A.12) for N = 1 follows from (A.13) and (A.14).
Inductively, we assume that the decomposition (A.12) holds for any matrix

A(ξ) + tB(ξ) of size n×M , where 1 ≤ n ≤ N . Consider any matrices A(ξ), B(ξ)
of size (N + 1) × M with B(ξ) having constant rank m on E without loss of
generality. Clearly, either m = N + 1 or m ≤ N .

(i) m = N + 1: Let P (ξ) and Q(ξ) be nonsingular matrices so chosen that
P (ξ)B(ξ)Q(ξ) = (0 | Im). Then the decomposition (A.12) follows in this
case, since

(A.15) P (ξ)(A(ξ) + tB(ξ))Q(ξ) = (C(ξ) | tIm +D(ξ))

for some matrices C(ξ) and D(ξ) of sizes m × (M − m) and m × m
respectively.

(ii) m ≤ N : Choose a nonsingular matrix P1(ξ) so that

P1(ξ)B(ξ) =

(
B1(ξ)

0

)
,

where B1(ξ) is a matrix of size m×M . Then

(A.16) P1(ξ)(A(ξ) + tB(ξ)) =

(
A1(ξ) + tB1(ξ)

A2(ξ)

)
for some matrices A1(ξ), A2(ξ) whose entries are measurable functions on
E. Moreover, without loss of generality, we may assume that the rank
of A2(ξ) is a constant m′ on E, for otherwise we partition the set E into
finite subsets so that A2(ξ) has constant rank for almost all ξ in every
subset of that partition. There are two subcases:
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(a) m′ = 0. In this case,

(A.17) P1(ξ)(A(ξ) + tB(ξ)) =

(
A1(ξ) + tB1(ξ)

0

)
.

Then the decomposition (A.12) for A(ξ) + tB(ξ) follows by using
(A.17) and applying the inductive hypothesis to the m ×M matrix
A1(ξ) + tB1(ξ) since m ≤ N .

(b) m′ ≥ 1: In this case, we select nonsingular matrices P2(ξ) and Q2(ξ)
so that

(A.18) P2(ξ)A2(ξ)Q2(ξ) =

(
0 Im′
0 0

)
.

Combining (A.16) and (A.18), we obtain that(
Im 0
0 P2(ξ)

)
P1(ξ)(A(ξ) + tB(ξ))Q1(ξ)Q2(ξ)

=

 A3(ξ) + tB2(ξ) A4(ξ) + tB3(ξ)
0 Im′
0 0

(A.19)

for some matrices A3(ξ), A4(ξ), B2(ξ), B3(ξ) with measurable entries
on E. Therefore the decomposition (A.12) for A(ξ) + tB(ξ) follows
by using (A.19) and applying the inductive hypothesis for the matrix
A3(ξ) + tB2(ξ) of size (N −m′)× (M −m′).

This completes the inductive proof of (A.12).

Denote by A1(ξ) + tB1(ξ) the M ×M submatrix obtained by taking the j1-th,
. . ., jM -th rows of the matrix A(ξ) + tB(ξ). Then by the assumption on A(ξ)
and B(ξ), the determinant of A1(ξ) + tB1(ξ) is not a zero polynomial in t ∈ R
for almost all ξ ∈ E. Therefore by Lemma A.1, there exists a set T such that
R\T is at most a countable set and that for any t ∈ T the matrix A1(ξ) + tB1(ξ)
is nonsingular for almost all ξ ∈ E. This implies that for those t ∈ T , the
matrix A(ξ) + tB(ξ) has rank M for almost all ξ ∈ E. Similarly for the matrix
tIn0(p)+Dp(ξ) in (A.12), we can find a set T1 such that R\T1 is at most a countable
set and tIn0(p) +Dp(ξ) is nonsingular for almost all ξ ∈ E when t ∈ T1. Therefore
it follows from (A.12) that

n0(p) + n1(p) + · · ·+ · · ·+ nl(p) = M

and the matrix Cp(ξ) has size n0(p)× 0. Hence (A.10) follows. �

Now we start to prove Theorem 1.2 for N ≥ 2.
Proof of Theorem 1.2 for N ≥ 2. We let Ht := (f1 + tg1, . . . , fN +
tgN)T =: (h1,t, . . . , hN,t)

T , the sets T and EJn,Kn be as in Lemma A.2, and
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E0 = [−π, π]d\(∪Nn=1 ∪Jn,Kn EJn,Kn), where t ∈ R, 1 ≤ n ≤ N , and Jn =
{j1, . . . , jn} ⊂ {1, . . . , N} and Kn = {k1, . . . , kn} ⊂ Zd have cardinalities n.
By Lemma A.2, T c := R\T is at most countable. Therefore it suffices to prove
that for any t ∈ T there exist measurable functions mt

0 on E0 and mt
Jn,Kn

on

EJn,Kn , 1 ≤ n ≤ N , such that for all k ∈ Zd,

(A.20) Ĥt(2(ξ + 2kπ)) = mt
0(ξ)Ĥt(ξ + 2kπ) a.e. ξ ∈ E0,

and

(A.21) Ĥt(2(ξ + 2kπ)) = mt
Jn,Kn

(ξ)Ĥt(ξ + 2kπ) a.e. ξ ∈ EJn,Kn .

On the set E0, it follows from Lemma A.2 that for all k ∈ Zd,

(A.22) F̂ (ξ + 2kπ) = Ĝ(ξ + 2kπ) = 0 a.e. ξ ∈ E0.

By the refinability of F + εqG, 1 ≤ q ≤ N + 2, we have that for all k ∈ Zd,

F̂ (2(ξ + 2kπ)) + εqĜ(2(ξ + 2kπ)) = 0 a.e. ξ ∈ E0,

which implies that for all k ∈ Zd,

(A.23) F̂ (2(ξ + 2kπ)) = Ĝ(2(ξ + 2kπ)) = 0 a.e. ξ ∈ E0.

Then (A.20) follows from (A.22) and (A.23) by letting mt
0(ξ) = 0 on E0.

We prove (A.21) first for the case n = N . In this case, JN = {1, . . . , N}. For
any 1 ≤ n′ ≤ N,KN = {k1, . . . , kN} ⊂ Zd, and k ∈ Zd\KN , define

Gn′,k,t(ξ) :=

(
Ĥt(ξ + 2k1π) · · · Ĥt(ξ + 2kNπ) Ĥt(ξ + 2kπ)

ĥn′,t(2(ξ + 2k1π)) · · · ĥn′,t(2(ξ + 2kNπ)) ĥn′,t(2(ξ + 2kπ))

)
on EJN ,KN

. Then

detGn′,k,t(ξ) =
N+1∑
i=0

tiPn′,k,i(ξ)

for some measurable functions Pn′,k,i(ξ), 0 ≤ i ≤ N + 1, on EJN ,KN
. By the

refinability of the functions Hε1 , · · · , HεN+2
, there exist some vector-valued 2π-

periodic functions mn′,εq , 1 ≤ q ≤ N + 2, such that

ĥn′,εq(2(ξ + 2lπ)) = mn′,εq(ξ)Ĥεq(ξ + 2lπ), l ∈ Zd,

which implies that for t = εq, 1 ≤ q ≤ N + 2,

(A.24)
N+1∑
i=0

tiPk,n′,i(ξ) = 0 a.e. ξ ∈ EJN ,KN
.

This leads to the crucial conclusion that (A.24) holds for all t ∈ R, which in
turn yields that for any real t, the rank of the matrix Gn′,k,t(ξ) is at most N for
almost all ξ ∈ EJN ,KN

. On the other hand, for t ∈ T , the N × N submatrix
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(Ĥt(ξ + 2k1π) | · · · | Ĥt(ξ + 2kNπ)) of Gn′,k,t(ξ) has rank N for almost all ξ ∈
EJn,Kn . Therefore for 1 ≤ n′ ≤ N and t ∈ T , there exist vector-valued measurable
functions mn′,t(ξ) such that for all k ∈ KN , and hence by (A.24) for all k ∈ Zd,

(A.25) ĥn′,t(2(ξ + 2kπ)) = mn′,t(ξ)Ĥt(ξ + 2kπ) a.e. ξ ∈ EJN ,KN
.

The equation (A.21) then follows for the case n = N .

Now we prove (A.21) for the case 1 ≤ n ≤ N−1. By Lemma A.2, for any t ∈ T
the n × n submatrix obtained by taking the j1-th, . . ., jn-th rows of the N × n
matrix Ĥt,Kn(ξ) :=

(
Ĥt(ξ + 2k1π) | · · · | Ĥt(ξ + 2knπ)

)
is nonsingular for almost

all ξ ∈ EJn,Kn , which implies that the determinant of the above n×n submatrix is
not a zero polynomial in t ∈ R for almost all ξ ∈ EJn,Kn . Hence applying Lemma

A.3 with E = EJn,Kn and A(ξ) + tB(ξ) = Ĥt,Kn(ξ) and without loss of generality,
assuming no partition of the set EJn,Kn necessary, we can find an integer 0 ≤ n0 ≤
n, matrices PJn,Kn(ξ), QJn,Kn(ξ), DJn,Kn(ξ), and XJn,Kn,i(ξ), YJn,Kn,i(ξ), 1 ≤ i ≤ 3,
of different sizes such that for almost all ξ ∈ EJn,Kn ,

(A.26) detPJn,Kn(ξ) detQJn,Kn(ξ) 6= 0,

(A.27) det
(
XJn,Kn,2(ξ) + tYJn,Kn,2(ξ)

)
= 1 when n0 < n,

and
(A.28)

PJn,Kn(ξ)Ĥt,Kn(ξ)QJn,Kn(ξ) =

tIn0 +DJn,Kn(ξ) XJn,Kn,1(ξ) + tYJn,Kn,1(ξ)
0 XJn,Kn,2(ξ) + tYJn,Kn,2(ξ)
0 XJn,Kn,3(ξ) + tYJn,Kn,3(ξ)


where t ∈ R. Then it follows from the second conclusion in Lemma A.2 that for
any t ∈ T ,

(A.29) det
(
tIn0 +DJn,Kn(ξ)

)
6= 0 for almost all ξ ∈ EJn,Kn .

For any k ∈ Zd\Kn, we write

PJn,Kn(ξ)
(
Ĥt,Kn(ξ) | Ĥt(ξ + 2kπ)

)(
QJn,Kn(ξ) 0

0 1

)

=

tIn0 +DJn,Kn(ξ) XJn,Kn,1(ξ) + tYJn,Kn,1(ξ)
∑1

i=0 t
iC1,i,k(ξ)

0 XJn,Kn,2(ξ) + tYJn,Kn,2(ξ)
∑1

i=0 t
iC2,i,k(ξ)

0 XJn,Kn,3(ξ) + tYJn,Kn,3(ξ)
∑1

i=0 t
iC3,i,k(ξ)

(A.30)

for some vectors Ci,j,k(ξ), 1 ≤ i ≤ 3, 0 ≤ j ≤ 1, with components being measur-
able functions on EJn,Kn . We need the following claim to establish (A.21).

Claim: For any t ∈ R, there exists a matrix RJn,Kn,t(ξ) such that

(A.31) detRJn,Kn,t(ξ) = 1



32 DEGUANG HAN, QIYU SUN, AND WAI-SHING TANG

and

RJn,Kn,t(ξ)PJn,Kn(ξ)
(
Ĥt,Kn(ξ) | Ĥt(ξ + 2kπ)

)(
QJn,Kn(ξ) 0

0 1

)

=

tIn0 +DJn,Kn(ξ) XJn,Kn,1(ξ) + tYJn,Kn,1(ξ)
∑1

i=0 t
iC1,i,k(ξ)

0 XJn,Kn,2(ξ) + tYJn,Kn,2(ξ)
∑1

i=0 t
iC2,i,k(ξ)

0 0 0

(A.32)

for almost all ξ ∈ EJn,Kn.
Proof of the Claim. First we assume that 1 ≤ n0 ≤ n − 1. By (A.29), for

every t ∈ T the matrix tIn0 + DJn,Kn(ξ) has nonzero determinant for almost all
ξ ∈ EJn,Kn . By Lemma A.2, for every t ∈ R any (n + 1) × (n + 1) submatrix of

the N × (n+ 1) matrix (Ĥt,Kn(ξ) | Ĥt(ξ + 2kπ)) has zero determinant for almost
all ξ ∈ EJn,Kn . The above two observations together with (A.27) lead to the
following conclusion: for all t ∈ T ,

1∑
i=0

tiC3,i,k(ξ) =
(
XJn,Kn,3(ξ) + tYJn,Kn,3(ξ)

)
×
(
XJn,Kn,2(ξ) + tYJn,Kn,2(ξ)

)−1( 1∑
i=0

tiC2,i,k(ξ)
)

=
(
XJn,Kn,3(ξ) + tYJn,Kn,3(ξ)

)
×adj

(
XJn,Kn,2(ξ) + tYJn,Kn,2(ξ)

)
×
( 1∑
i=0

tiC2,i,k(ξ)
)

(A.33)

for almost all ξ ∈ EJn,Kn , where adj(A) is the adjoint of a matrix A. Note that
for every ξ ∈ EJn,Kn , both sides of the above equation (A.33) are polynomials in t
by (A.27). Hence for all t ∈ R, (A.33) holds for almost all ξ ∈ EJn,Kn . Therefore
for 1 ≤ n0 ≤ n− 1, (A.31) and (A.32) hold by letting

RJn,Kn,t(ξ) =

In0 0 0
0 In−n0 0
0 SJn,Kn,t(ξ) IN−n


and

SJn,Kn,t(ξ) = −(XJn,Kn,3(ξ) + tYJn,Kn,3(ξ)) adj
(
XJn,Kn,2(ξ) + tYJn,Kn,2(ξ)

)
.

For n0 = 0, (A.33) follows directly from (A.27), (A.30) and the fact that the rank
of the matrix (

XJn,Kn,2(ξ) + tYJn,Kn,2(ξ)
∑1

i=0 t
iC2,i,k(ξ)

XJn,Kn,3(ξ) + tYJn,Kn,3(ξ)
∑1

i=0 t
iC3,i,k(ξ)

)
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is equal to n for almost all ξ ∈ EJn,Kn . In particular for n0 = 0, (A.31) and (A.32)
hold by letting

RJn,Kn,t(ξ) =

(
In 0

SJn,Kn,t(ξ) IN−n

)
.

For n0 = n, we have that n− n0 = 0 and hence

PJn,Kn(ξ)
(
Ĥt,Kn(ξ) | Ĥt(ξ + 2kπ)

)(
QJn,Kn(ξ) 0

0 1

)
=

(
tIn +DJn,Kn(ξ)

∑1
i=0 t

iC1,i,k(ξ)

0
∑1

i=0 t
iC3,i,k(ξ)

)
by (A.28) and (A.30). Then for all t ∈ T (hence for all t ∈ R),

1∑
i=0

tiC3,i,k(ξ) = 0 for almost all ξ ∈ EJn,Kn ,

as for all t ∈ T the rank of the matrix

(
tIn +DJn,Kn(ξ)

∑1
i=0 t

iC1,i,k(ξ)

0
∑1

i=0 t
iC3,i,k(ξ)

)
is the

same as that of the matrix
(
Ĥt,Kn(ξ) | Ĥt(ξ + 2kπ)

)
by (A.26), and hence is at

most n for almost all ξ ∈ EJn,Kn by Lemma A.2. Therefore for n0 = n, (A.31)
and (A.32) hold by letting RJn,Kn,t(ξ) = IN .

Let us return to the proof of the equation (A.21). For any 1 ≤ n′ ≤ N and
k ∈ Zd\Kn, we define
(A.34)

Un′,k,t(ξ) =

tIn0 +DJn,Kn(ξ) XJn,Kn,1(ξ) + tYJn,Kn,1(ξ)
∑1

i=0 t
iC1,i,k(ξ)

0 XJn,Kn,2(ξ) + tYJn,Kn,2(ξ)
∑1

i=0 t
iC2,i,k(ξ)

D1,n′,t(ξ) D2,n′,t(ξ) ĥn′,t(2(ξ + 2kπ))


and

(D1,n′,t(ξ) | D2,n′,t(ξ)) =
(
ĥn′,t(2(ξ + 2k1π)) | · · · | ĥn′,t(2(ξ + 2knπ))

)
QJn,Kn(ξ),

where t ∈ R. From the refinability of Hεq , 1 ≤ q ≤ N + 2, there exists a vector-
valued measurable function mn′,εq(ξ) for 1 ≤ q ≤ N + 2 such that for any t =
εq, 1 ≤ q ≤ N + 2,(

ĥn′,t(2(ξ + 2k1π)) | · · · | ĥn′,t(2(ξ + 2knπ))| ĥn′,t(2(ξ + 2kπ))
)

= mn′,t(ξ)
(
Ĥt,Kn(ξ) | Ĥt(ξ + 2kπ)

)
.
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This together with (A.32) implies that for almost all ξ ∈ EJn,Kn ,

(
ĥn′,t(2(ξ + 2k1π)) | · · · | ĥn′,t(2(ξ + 2knπ))| ĥn′,t(2(ξ + 2kπ))

)(QJn,Kn(ξ) 0
0 1

)
= mn′,t(ξ)

(
Ĥt,Kn(ξ) | Ĥt(ξ + 2kπ)

)(QJn,Kn(ξ) 0
0 1

)
= mn′,t(ξ)(PJn,Kn(ξ))−1(RJn,Kn,t(ξ))

−1

×
{
RJn,Kn,t(ξ)PJn,Kn(ξ)

(
Ĥt,Kn(ξ) | Ĥt(ξ + 2kπ)

)(QJn,Kn(ξ) 0
0 1

)}
= mn′,t(ξ)(PJn,Kn(ξ))−1(RJn,Kn,t(ξ))

−1

×

tIn0 +DJn,Kn(ξ) XJn,Kn,1(ξ) + tYJn,Kn,1(ξ)
∑1

i=0 t
iC1,i,k(ξ)

0 XJn,Kn,2(ξ) + tYJn,Kn,2(ξ)
∑1

i=0 t
iC2,i,k(ξ)

0 0 0


= mn′,t(ξ)(PJn,Kn(ξ))−1(RJn,Kn,t(ξ))

−1

In0 0
0 In−n0

0 0


×
(
tIn0 +DJn,Kn(ξ) XJn,Kn,1(ξ) + tYJn,Kn,1(ξ)

∑1
i=0 t

iC1,i,k(ξ)
0 XJn,Kn,2(ξ) + tYJn,Kn,2(ξ)

∑1
i=0 t

iC2,i,k(ξ)

)
=: (m1,n′,t | m2,n′,t)

(
tIn0 +DJn,Kn(ξ) XJn,Kn,1(ξ) + tYJn,Kn,1(ξ)

∑1
i=0 t

iC1,i,k(ξ)
0 XJn,Kn,2(ξ) + tYJn,Kn,2(ξ)

∑1
i=0 t

iC2,i,k(ξ)

)
,

where t = εq, 1 ≤ q ≤ N + 2. In other words, for any t = εq, 1 ≤ q ≤ N + 2, there
exist some vector-valued measurable functions m1,n′,t(ξ) and m2,n′,t(ξ) on EJn,Kn ,
which is independent of k ∈ Zd\Kn, such that
(A.35)

D1,n′,t(ξ) = m1,n′,t(ξ)(tIn0 +DJn,Kn(ξ))
D2,n′,t(ξ) = m1,n′,t(ξ)

(
XJn,Kn,1(ξ) + tYJn,Kn,1(ξ)

)
+m2,n′,t(ξ)

(
XJn,Kn,2(ξ) + tYJn,Kn,2(ξ)

)
ĥn′,t(2(ξ + 2kπ)) = m1,n′,t(ξ)

(∑1
i=0 t

iC1,i,k(ξ)
)

+m2,n′,t(ξ)
(∑1

i=0 t
iC2,i,k(ξ)

)
hold for almost all ξ ∈ EJn,Kn . Hence for t = εq, 1 ≤ q ≤ N + 2,

(A.36) detUn′,k,t(ξ) = 0 a.e. ξ ∈ EJn,Kn .

Note that for every ξ ∈ EJn,Kn , detUn′,k,t(ξ) is a polynomial of degree at most
n+ 1 ≤ N + 1. This together with (A.36) leads to the crucial conclusion that for
all t ∈ R,

(A.37) detUn′,k,t(ξ) = 0 a.e. ξ ∈ EJn,Kn ,
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or equivalently that for all t ∈ R, Un′,k,t(ξ) is a singular matrix for almost all
ξ ∈ EJn,Kn . For any t ∈ T , define

mn′,t(ξ) = (D1,n′,t(ξ) | D2,n′,t(ξ))
(
tIn0 +DJn,Kn(ξ) XJn,Kn,1(ξ) + tYJn,Kn,1(ξ)

0 XJn,Kn,2(ξ) + tYJn,Kn,2(ξ)

)−1

×(In 0)PJn,Kn(ξ),

which is well defined by (A.27) and (A.29). Then

mn′,t(ξ)
(
Ĥt(ξ + 2k1π) | · · · | Ĥt(ξ + 2knπ)

)
= (D1,n′,t(ξ) | D2,n′,t(ξ))

(
tIn0 +DJn,Kn(ξ) XJn,Kn,1(ξ) + tYJn,Kn,1(ξ)

0 XJn,Kn,2(ξ) + tYJn,Kn,2(ξ)

)−1

(In 0)

×
{
PJn,Kn(ξ)

(
Ĥt(ξ + 2k1π) | · · · | Ĥt(ξ + 2knπ)

)
QJn,Kn(ξ)

}(
QJn,Kn(ξ)

)−1

= (D1,n′,t(ξ) | D2,n′,t(ξ))
(
tIn0 +DJn,Kn(ξ) XJn,Kn,1(ξ) + tYJn,Kn,1(ξ)

0 XJn,Kn,2(ξ) + tYJn,Kn,2(ξ)

)−1

(In 0)

×

tIn0 +DJn,Kn(ξ) XJn,Kn,1(ξ) + tYJn,Kn,1(ξ)
0 XJn,Kn,2(ξ) + tYJn,Kn,2(ξ)
0 XJn,Kn,3(ξ) + tYJn,Kn,3(ξ)

(QJn,Kn(ξ)
)−1

= (D1,n′,t(ξ) | D2,n′,t(ξ))
(
QJn,Kn(ξ)

)−1

=
(
ĥn′,t(2(ξ + 2k1π)) | · · · | ĥn′,t(2(ξ + 2knπ))

)
,

which implies that

(A.38) ĥn′,t(2(ξ + 2kπ)) = mn′,t(ξ)Ĥt(ξ + 2kπ) for almost all ξ ∈ EJn,Kn

where k ∈ Kn. By (A.37), for all t ∈ T ,

ĥn′,t(2(ξ + 2kπ)) = (D1,n′,t(ξ) | D2,n′,t(ξ))

×
(
tIn0 +DJn,Kn(ξ) XJn,Kn,1(ξ) + tYJn,Kn,1(ξ)

0 XJn,Kn,2(ξ) + tYJn,Kn,2(ξ)

)−1

×
(∑1

i=0 t
iC1,i,k(ξ)∑1

i=0 t
iC2,i,k(ξ)

)
where k 6∈ Kn. Therefore

(A.39) ĥn′,t(2(ξ + 2kπ)) = mn′,t(ξ)Ĥt(ξ + 2kπ) for almost all ξ ∈ EJn,Kn

where k 6∈ KN . Combining (A.38) and (A.39) proves (A.21). This completes the
proof.
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