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Abstract. In this paper, we introduce and study the localization of
Calderon convolution for a finitely generated shift-invariant space in
the Fourier domain.

§1. Introduction

We say that a linear space V of functions on R is shift-invariant if
f € V implies that f(- — k) € V for all k € Z%. For instance, the space of
all polynomials of degree at most N, the space of all p-integrable functions,
and the space of all band-limited functions in L? are shift-invariant spaces.
In this paper, we mostly restrict ourselves to the shift-invariant space
Vp(fi,..., fn) generated by finitely many functions f1,..., fn,

Vo(fiseoos fn) = {F « D: D¢ (gp)(r)},

where F' = (f1,...,f)T. Here fP,1 < p < oo, is the space of all p-
summable sequences on Z?, X (") is the direct sum of r copies of a linear
space X, and ||-||¢» denotes the usual /P-norm. Also for F' = (f1,..., fr)T,
the semi-convolution Fx' on (¢7)() is defined by

Fs': ()" 5 D:={D(k)} — F+' D:= Y D(k)TF(-—k).
kezd

We also denote the shift-invariant space V,(fi,..., fn) by V,(F) when
F = (fi,...,fn)T. The finitely generated shift-invariant space V,(F)
appears in wavelet analysis ([5, 6, 10, 11]), as well as in sampling theory
([1, 3, 4]). It is well known that the space of all band-limited functions in
L? is a shift-invariant space generated by the sinc function %

Let LP,1 < p < oo, be the space of all p-integrable functions on
R?, while | - ||, denotes the usual LP-norm. Let f x g denote the usual
convolution defined by f * g(x) = [za f(z —y)g(y)dy.
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Definition 1.1. Let V be a linear subspace of LP,1 < p < co. We say
that G = (g1,...,9s)T is a stable Calderon convolutor for V if there exist
positive constants A and B such that

Allflly <IIf *Gllp < Bl fll, ¥V feV, (1.1)
that is, the Calderon convolution C defined by
C:Vafr (fxg,...,f+gs)" e (@P)® (1.2)

is an isomorphism between V and its image.

The Calderon convolution for a shift-invariant space, which has prop-
erties analogous to the famous Calderon reproducing formula in L? but
without dilation involved, was introduced in [4] for p = 2. A character-
ization for Calderon convolutions for a finitely generated shift-invariant
space is established in [4].

In this paper, we introduce and study the localization of Calderon
convolution for a finitely generated shift-invariant space in the Fourier
domain, using similar techniques as in [14], where semi-convolution and
the frame operator in finitely generated shift-invariant spaces are localized
in the Fourier domain. Define the Fourier transform f of an integrable
function f by f(&) = Jra e~ f(z)dz, and extend the definition to that
of a tempered distribution as usual. For a shift-invariant space V and a
measurable subset E of R?, we let

Vi = {f eV: f is supported in E + QWZd}_

If V= V,(F) for some generator F' and p € [1,00], we use V,, g(F) to
denote Vg.

Definition 1.2. We say that G is a stable Calderon convolutor for V
at the frequency &, € RY if the estimate (1.1) holds for all f € VB(£o,6)s
where 6 > 0 and B(&, d) is the ball with center &, and radius §.

In this paper, stable Calderon convolutors for a finitely generated
shift-invariant space at a frequency (Theorem 2.1) are characterized. In
Calderon reconstruction formula in L2, the convolution with dilation and
shifts of some dual function is used ([6, 11]), while in Theorem 2.1, we use
different procedure in the reconstruction from the Calderon convolution for
a finitely generated shift-invariant space. Precisely, the procedure includes
the following three steps: convoluting with some dual function; sampling
on the integer set to obtain sequences; and using the semi-convolution to
recover the original function from the convolution.

In applications where a finitely generated shift-invariant space is used
as the model space, the sensors (the convolutors) to collect data can be
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modeled as compactly supported functions. In this paper, we show that
there are only two possibilities when both the generator F' and the convo-
lutor G are compactly supported: either G is an unstable Calderon con-
volutor for V,(F) at all frequencies, or G is a stable Calderon convolutor
for V,,(F') at almost all frequencies (Theorem 2.4).

Under certain decay assumption on the generator F' and the convolu-
tor G at infinity and also the closedness assumption of the shift-invariant
space V,(F), it is proved that G is a stable Calderon convolutor for V,(F)
if and only if it is a stable Calderon convolutor for V,(F) at any frequency
(Theorem 3.1). So we may consider the stable Calderon convolutor at a
certain frequency as the localization of stable Calderon convolutor in the
Fourier domain. Also it indicates that the localization of Calderon con-
volution in the Fourier domain gives more information than the Calderon
convolution.

§2. Characterization

In this section, we give a characterization of stable Calderon convo-
lutors on a finitely generated shift-invariant space V,(F'),1 < p < oo, at
some frequency.

To state our results, we recall the definitions of some function spaces,
where the generators of the shift-invariant space and the dual functions
in the reconstruction are chosen from. Let £P,1 < p < oo, be the space

of all functions f with finite ||f||zr = szezd (- +j)|‘ . Here

L?([0,1)4
LP(K),1 < p < o0, is the space of all p-integrable functiorg oil )a mea-
surable set K, and || - || » (k) is the usual LP(K)-norm. Let W (L?,¢') be
the space of all functions f so that || f|lw(zr.er) == D peza 1 FlLek+10,1)9)
is finite. Clearly W (LP,¢') C LP for 1 < p < oo. For any D € (¢7)(") and
F € LP, it is shown in [9] that

|7 %" Dllp < [IDlen | F'll - (2.1)

So in Theorem 2.1, we assume that the generator F' of the shift-invariant
space belongs to LP for 1 < p < oo and it belongs to W (L, £1) for p = oo,
In that case V,,(F) is a linear subspace of L? by (2.1).

We say that a function f is a C*°-function with ¢'-decay if the partial
derivative D" f satisfies

> D™ fll ook o,1)1) < 00 for any n € (Zy)"

kezd
(see [12, 14]). A Schwartz function is a C°°-function with ¢!-decay, and so
are linear combinations of the integer shifts of a Schwartz function using
¢! coefficients. In Theorem 2.1, the dual functions in the reconstruction
from Calderon convolutions are C>°-functions with ¢'-decay.

Now we state the characterization of a stable Calderon convolutor for

a finitely generated shift-invariant space at a certain frequency.
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Theorem 2.1. Let 1 <p<oo, & €RY, F=(f1,..., )T € (LP)™) for
1<p<ooand F € W(L>®,{') for p = oo, and let G = (g1,...,9,)T €
(LY)(®). Assume that the rank of the r x Z* matrix (ﬁ(f + 2k7))pega Is
independent of ¢ in a small neighborhood of . Then the following three
statements are equivalent.

(i) G is a stable Calderon convolutor for V,(F') at the frequency &.

(ii) The rank of the r x (s x Z%) matrix

(F(go+ 2km)3u (& + 27), .., F(6o + 2km)3u(Co + 2km)) . (22)

equals that of (F(&y + 2k7)) pega-

(iii) There exist ' € (0,d0) and C*°-functions g, ,,1 <1 < s,1 <i <,
with ¢'-decay such that

F=Y 3" (0.5, (k) fi-—k) Y f €V p.en(F). (2.3)

i=1 I=1 keZd

We remark that the rank assumption about (F/(¢ 4 2k7))jcza in The-
orem 2.1 is closely related to the localization of p-frame property in the
Fourier domain (see [14] or Lemma 4.3).

To prove Theorem 2.1, we need to recall some results about the
localization of stable shifts in the Fourier domain. For any sequence
D = {D(k)} with polynomial growth, that is, |[D(k)| < p(k), k € Z%, for
some polynomial p, its Fourier series F(D), to be defined by F(D)(§) :=
> peza D(k)e™™¢ is a periodic tempered distribution. For any measur-
able subset F of R?, we let (5,1 < p < oo, be the set of all £P sequences
whose Fourier series are supported in E + 27Z<.

Definition 2.2. We say that F' has (P stable shifts at the frequency &y €
R if there exist positive constants C' and § such that

C YDl < |F Dl < CIDles ¥ D€ Uy 1)V, (24)

and that I has (P stable shifts if (2.4) holds for all D € (¢P)(").

(See for instance [7, 8, 13, 15]) and the references therein for applications
of /P stable shifts in the approximation by shift-invariant spaces, the reg-
ularity of scaling functions, and the convergence of cascade algorithms).
The property of /P stable shifts at a certain frequency is the localization
of the usual ¢ stable shifts in the Fourier domain. In [14], we establish
the following characterization.
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Lemma 2.3. Let & € RY, and let F = (fy,..., )T € (£P)™) for 1 <
p < oo and F € (W(L>®,¢"))") for p = co. Then the following three
statements are equivalent to each other.

(i) F has (P stable shifts at the frequency &.
(ii) The r x Z¢ matrix (F(€y + 2k))gega is of full rank.

(iii) There exist C*°-functions hi,...,h, with {'-decay and a positive
constant § such that

dz(k):<F*/D7h’L(_k)>7 ]-SZST, kezd7

for any P sequences D = {(dy(k),...,d,(k))T}, whose Fourier series
F(D) are supported in B(&y,8) + 2wZ<.

Now we start to prove Theorem 2.1.

Proof of Theorem 2.1 We divide the proof into the following steps: (i)
— (ii) = (iii) = (i). First we prove (i) = (ii). Suppose on the
contrary that the assertion (ii) does not hold. Then there exists a nonzero
(complex-valued) vector v so that

vTF (& + 2kom) #0  for some ko € Z%, (2.5)
and
v F (& + 2km)gi (&0 +2km) =0 VkeZPand1<1<s. (2.6)

Define fy by ]?0 = vTF. For any D € (P, whose Fourier series F(D) is
supported in B(&,d) + 2nZ¢ for some sufficiently small § > 0, it follows
from (1.1), (2.5), and Lemma 2.3 that

IDller < Cillfo ' Dllp < C2 Y [I(fo * 91) ¥ Dl (2.7)
=1

where (1, Cy are two positive constants independent of D. Similarly, for
any € > 0 and any &g > 0, it follows from (1.1), (2.6) and Lemma 2.3 that
there exists a nonzero sequence D 5, € (P whose Fourier series F(D) is
supported in B(&, o) + 27Z< such that

D (o *90) # Degollp < ell Desyller- (2.8)
=1

Combining (2.7) and (2.8) leads to a contradiction since € > 0 can be
chosen arbitrarily.
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Next we prove (ii) = (iii). By our assumption, the rank of the r x Z¢

matrix (ﬁ(ﬁ + 2km))peza is 7o < 7 for all £ in a small neighborhood of &y.
So we may assume that F' has stable shifts at the frequency &, by Lemma

2.3, otherwise we replace F' by the function F defined by F(&) = A(£)F(€),
where the ¢ x r matrix A(§) with entries in Wiener class is so chosen that

(F(§ + ka))kezd is of rank 7y in a small neighborhood of &,. For any

f=F« D for some D = (Dy,...,D,)T € (¢*)(") with F(D) supported in
B(&,6) + 27Z%, taking Fourier transform on both sides of (2.3) leads to

d_FD)EFi©) = 3 D FDi)(E)

i,i'=1 =1

x> fil€ + 2km)Gu(E + 2km) Gy 0 (€ + 2k) fir(€).

keZd

By the arbitrariness of sequences D; € (/P )(’“), 1 <4 < r, and stable shifts
of F' at the frequency &, it suffices to find C'*°-functions ¢;;, 1 <1 <
5,1 < i < r, with ¢*-decay so that

SN RilE+ 2km)GuE + 2km) gy (6 + 2km) = G, 1< 7 <7, (2.9)
=1 kecZd
for all £ € B(&y,6)+2nZ%. By the assumption (ii), there exists k1, . .., kr €fj
Z? so that (ﬁ(fo +2ksm)g1(§0 + 2K¢)) (1,4)eq1,....s} x {1,...,7} has rank 7. Let
the Schwartz functions h;,1 < [ < s, be so chosen that /f;l is supported
in UL, B(& + 2k, 6), and hy(&o + 2kem) = Gi(€o + 2kw). Therefore we

see that Y7, Gi(& + thﬂ')/ﬁl(&) +2km) > 0 for any 1 < t < T, and
the inequality becomes an equality if and only if g;(§o + 2k:7) = 0 for
all 1 <[ < s. Therefore the r x T" matrix (F(&) + 2kem) o Gi(éo +

thﬂ)ﬁl (o + 2kt7r)> 1<t<T

defined by F(¢&) = F(¢) Y€ )hi(€) has stable shifts at the frequency
&. By Lemma 2.3, there exist C°°-functions §;,1 < i < r, with ¢!-decay
so that

has rank 7, which implies that the function F

S Fil€ +2km)G (€ + 2km) = G, 1< 4, <
keZd

for all £ € B(&, ) + 2nZ4 for some & > 0, where F' = (f1,..., f)T. This
proves (2.9) and hence the assertion (iii) when we let g;; be defined by

91,4(6) = M (€)3,;(6).

Finally we prove (iii) = (i). Recall that

DS =Rl < D W fillw s enll 1l (2.10)
=1 =1
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for any F = (f1,...,f)" € W(LP/®=D 1)) and f € LP ([14]). This
together with (2.1) and (2.3) imply

£ <0l Y [{ 300« - - )}
=1

i=1

T S
<[Fllze DY I * gillpll e

=1 [=1

¢p

W (Lp/(p=1) g1) Vfe ‘/;?73(5075)(F)'

This proves (i). O

Applying Theorem 2.1, we obtain the following result for the case that
both the generator of the shift-invariant space and the Calderon convolutor
are compactly supported.

Theorem 2.4. Let F = (f1,...,f)T and G = (g1,...,95)T be vector-
valued compactly supported LP and L' functions respectively. Then either
G is an unstable Calderon convolutor for V,,(F') at all frequencies, or G is
a stable Calderon convolutor for V,,(F') at almost all frequencies.

Proof: Let k; and k2 be the maximum of the rank of the r x Z% ma-
trix Ay(&) = (F(€ + 2km))peza, & € R, and the r x (s x Z%) matrix
Az(8) = (F(§+2km) g1 (§+2km), -+, F(§+2km)Gs(§+2kT))peza, € € R
respectively. Recall that f1,..., f. and g1,...,9,s are analytic functions.
Then there exists an open set O whose complement has zero Lebesgue
measure so that the ranks of A;(¢) and As(£),€ € O, are k; and ks re-
spectively. Therefore the conclusion follows directly from Theorem 2.1.
O

§3. Calderon convolution and its localization

In this section, we consider the connection between Calderon convo-
lution and its localization in the Fourier domain. In particular, we have

Theorem 3.1. Let 1 < p <oo, F=(f1,....f)" € (LP)") for1 <p <
oo and F € W(L>®, (") for p = oo, and let G = (g1,...,9s)" € (L')).
Assume that the rank of the r x Z¢ matrix (F\<§+2kfﬂ'))kezd is independent
of £&. Then G is a stable Calderon convolutor for V,,(F') if and only if G is
a stable Calderon convolutor for V,,(F') at every frequency.

For the function F' in Theorem 3.1, it is shown in [2, 14] that the rank
(ﬁ(ﬁ +2k7))eza is independent of € if and only if the shift-invariant space
Vp(F') is closed in LP. So applying Theorem 3.1, we see that under certain
closedness assumption on the finitely generated shift-invariant system, the
verification whether a Calderon convolutor is stable or not can be done
pointwise in the Fourier domain. We do not know whether the above
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criterion can be established without the closedness assumption on that
shift-invariant system.

Proof of Theorem 3.1 Clearly a stable Calderon convolutor for a shift-
invariant space is a stable Calderon convolutor for that space at every
frequency. Conversely suppose that G € (L)) is a stable Calderon
convolutor for the shift-invariant space V,(F') at every frequency. Thus
for any &y € [, 7] there exist a positive number §(£y) and C*°-functions
Ji,i,¢o With ¢'-decay and by Theorem 2.1 so that

F=S"5" S (e e (=R fi(—k) Y f € Vypieossieon (F). (3.1)

i=1 1=1 keZd

By the compactness of [—, 7]%, there is a finite covering {B(£1,6(£1)/2) +
21z, ..., B(&,6(£)/2) + 27Z%} of R Let hy,...,h; be C* periodic
functions that form a partition of unity associated with the above cov-
ering, that is, Zﬁnzl hm(€) = 1 for all ¢ € R and h,, is supported in
B(&:,6(&)/2) + 27Z® for all 1 < m < t. Then it follows from (3.1) that

F=DFm =3 o *00Gien (- — ) fil- — k)
m=1 m=11i=1 =1 kecZd
= S frgngui-— k) fi(-—k) VFEVUF),  (32)
i=1 1=1 kcZd

where fm = fhy, and El,i = an:l hm/g\l’,b-vgt. This gives a reconstruction
formula of any function in V,(F') from its convolution f * g;,1 <1 <'s.
Combining (2.1), (2.10) and (3.2) leads to

Il <C Y 1 *ally
=1

for some positive constant C. Hence F' is a stable Calderon convolutor for
Vp(F). O
§4. Calderon convolution and p-frame

Definition 4.1. We say that F' generates a p-frame at the frequency
& € R? if there exist positive constants §, A and B such that

Allfllp < Y I fil =R Yler < Bl (4.1)

=1
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holds for all f € V), g, (F), and that F generates a p-frame if (4.1)
holds for all f € V,(F).

The concept of p-frame at a certain frequency was introduced in [14]
as the localization of the p-frame in the Fourier domain, while the p-frame
property was introduced and characterized in [2]. As shown in [14], a
vector-function F' with certain decay at infinity, generates a p-frame if
and only if it generates a p-frame at every frequency.

The p-frame property is related to Calderon convolution in the situa-
tion that the convolutor is the same as the generator of the shift-invariant
space. In particular, we have

Theorem 4.2. Let & € R?, and let F = (f1,...,f)" € (L)) n
(W(LP/ =1 )" for 1 < p < oo and F € (W(L>®, )" for p = oo
If F' generates a p-frame at the frequency &y, then F' is a stable Calderon
convolutor of the shift-invariant space V,(F') at the frequency &.

To prove Theorem 4.2, we recall the characterization in [14] of p-frame
at a frequency &p:
Lemma 4.3. Let F = (f1,...,f)T € (£»)") n (W(LP/ =D 1)) for
1<p<ooand Fe& (W(L*, )" for p=oco. Then for any & € R? the
following statements are equivalent to each other.

(i) F generates a p-frame at the frequency &.

(ii) The space V,, p(¢,.5)(F') is a closed subspace of LP for sufficiently small
§ > 0.

(iii) The rank of the r x Z¢ matrix (F\(f + 2k7))eza is independent of £
in a small neighborhood of &.

Proof of Theorem 4.2. Note that for F = (f1,...,f.)T € (L)), the
rank of the r x (r x Z%) matrix

(ﬁ(f 2k (€ + 2k7), .., F(E + 2km) o (€ + 2k:7r))

kecZd

equals that of (F(& 4 2km))peza for all € € R%. Then the assertion follows
from Theorem 2.1 and Lemma 4.3. O

The converse of Theorem 4.2 is not true, as demonstrated in the
following example.

Example 4.4. Let h be a C*-function so chosen that h(z) = 1 for all
€ [-3/8,3/8], and h(x) =0 for all x € R\[—1/2,1/2]. Define f1 and fo
by

@ =h(52T) md R =0-cn(2)

4 T
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By direct computation, the rank of (ﬁ({ + 2km)) is equal to 1 for £ = 0,
and it equals 2 for ¢ € [—3m/8,37/8]\{0}. Thus F = (fi1, f2)T does not
generate a p-frame at the frequency 0 by Lemma 4.3. Note that any
f € V. B0,5)(F) with 0 < 0 < 7/8 can be written as f = F ' D for some

D= (Dl,Dg)T with D1, Dy € E%(O’%). Then

F¥ [1(€) =F(D1)(€) (h((€ — 7) /4m))?
+ (1= e F(Dy) (©)h(&/m)h((€ — 7) /4r)
=F(D1)(€)h((& — 7)/4m) + F(D2)(E)h(E/7) = f(£).
Therefore ||f + fill, = || fll, for any f € Vi, po.5)(F) with 0 < § < /8,

and hence F is a stable Calderon convolutor for the shift-invariant space
Vp(F) at the frequency 0.
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