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Abstract. In this paper, we introduce and study the localization of
Calderon convolution for a finitely generated shift-invariant space in
the Fourier domain.

§1. Introduction

We say that a linear space V of functions on Rd is shift-invariant if
f ∈ V implies that f(· − k) ∈ V for all k ∈ Zd. For instance, the space of
all polynomials of degree at most N , the space of all p-integrable functions,
and the space of all band-limited functions in L2 are shift-invariant spaces.
In this paper, we mostly restrict ourselves to the shift-invariant space
Vp(f1, . . . , fn) generated by finitely many functions f1, . . . , fn,

Vp(f1, . . . , fn) :=
{
F ∗′ D : D ∈ (`p)(r)

}
,

where F = (f1, . . . , fr)T . Here `p, 1 ≤ p ≤ ∞, is the space of all p-
summable sequences on Zd, X(r) is the direct sum of r copies of a linear
space X, and ‖·‖`p denotes the usual `p-norm. Also for F = (f1, . . . , fr)T ,
the semi-convolution F∗′ on (`p)(r) is defined by

F∗′ : (`p)(r) 3 D := {D(k)} 7−→ F ∗′ D :=
∑

k∈Zd

D(k)T F (· − k).

We also denote the shift-invariant space Vp(f1, . . . , fn) by Vp(F ) when
F = (f1, . . . , fn)T . The finitely generated shift-invariant space Vp(F )
appears in wavelet analysis ([5, 6, 10, 11]), as well as in sampling theory
([1, 3, 4]). It is well known that the space of all band-limited functions in
L2 is a shift-invariant space generated by the sinc function sin πx

πx .
Let Lp, 1 ≤ p ≤ ∞, be the space of all p-integrable functions on

Rd, while ‖ · ‖p denotes the usual Lp-norm. Let f ∗ g denote the usual
convolution defined by f ∗ g(x) =

∫
Rd f(x− y)g(y)dy.
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Definition 1.1. Let V be a linear subspace of Lp, 1 ≤ p ≤ ∞. We say
that G = (g1, . . . , gs)T is a stable Calderon convolutor for V if there exist
positive constants A and B such that

A‖f‖p ≤ ‖f ∗G‖p ≤ B‖f‖p ∀ f ∈ V, (1.1)

that is, the Calderon convolution C defined by

C : V 3 f 7−→ (f ∗ g1, . . . , f ∗ gs)T ∈ (Lp)(s) (1.2)

is an isomorphism between V and its image.

The Calderon convolution for a shift-invariant space, which has prop-
erties analogous to the famous Calderon reproducing formula in L2 but
without dilation involved, was introduced in [4] for p = 2. A character-
ization for Calderon convolutions for a finitely generated shift-invariant
space is established in [4].

In this paper, we introduce and study the localization of Calderon
convolution for a finitely generated shift-invariant space in the Fourier
domain, using similar techniques as in [14], where semi-convolution and
the frame operator in finitely generated shift-invariant spaces are localized
in the Fourier domain. Define the Fourier transform f̂ of an integrable
function f by f̂(ξ) =

∫
Rd e−ixξf(x)dx, and extend the definition to that

of a tempered distribution as usual. For a shift-invariant space V and a
measurable subset E of Rd, we let

VE =
{
f ∈ V : f̂ is supported in E + 2πZd

}
.

If V = Vp(F ) for some generator F and p ∈ [1,∞], we use Vp,E(F ) to
denote VE .

Definition 1.2. We say that G is a stable Calderon convolutor for V
at the frequency ξ0 ∈ Rd if the estimate (1.1) holds for all f ∈ VB(ξ0,δ),
where δ > 0 and B(ξ0, δ) is the ball with center ξ0 and radius δ.

In this paper, stable Calderon convolutors for a finitely generated
shift-invariant space at a frequency (Theorem 2.1) are characterized. In
Calderon reconstruction formula in L2, the convolution with dilation and
shifts of some dual function is used ([6, 11]), while in Theorem 2.1, we use
different procedure in the reconstruction from the Calderon convolution for
a finitely generated shift-invariant space. Precisely, the procedure includes
the following three steps: convoluting with some dual function; sampling
on the integer set to obtain sequences; and using the semi-convolution to
recover the original function from the convolution.

In applications where a finitely generated shift-invariant space is used
as the model space, the sensors (the convolutors) to collect data can be
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modeled as compactly supported functions. In this paper, we show that
there are only two possibilities when both the generator F and the convo-
lutor G are compactly supported: either G is an unstable Calderon con-
volutor for Vp(F ) at all frequencies, or G is a stable Calderon convolutor
for Vp(F ) at almost all frequencies (Theorem 2.4).

Under certain decay assumption on the generator F and the convolu-
tor G at infinity and also the closedness assumption of the shift-invariant
space Vp(F ), it is proved that G is a stable Calderon convolutor for Vp(F )
if and only if it is a stable Calderon convolutor for Vp(F ) at any frequency
(Theorem 3.1). So we may consider the stable Calderon convolutor at a
certain frequency as the localization of stable Calderon convolutor in the
Fourier domain. Also it indicates that the localization of Calderon con-
volution in the Fourier domain gives more information than the Calderon
convolution.

§2. Characterization

In this section, we give a characterization of stable Calderon convo-
lutors on a finitely generated shift-invariant space Vp(F ), 1 ≤ p ≤ ∞, at
some frequency.

To state our results, we recall the definitions of some function spaces,
where the generators of the shift-invariant space and the dual functions
in the reconstruction are chosen from. Let Lp, 1 ≤ p ≤ ∞, be the space
of all functions f with finite ‖f‖Lp :=

∥∥∥∑
j∈Zd |f(·+ j)|

∥∥∥
Lp([0,1)d)

. Here

Lp(K), 1 ≤ p ≤ ∞, is the space of all p-integrable functions on a mea-
surable set K, and ‖ · ‖Lp(K) is the usual Lp(K)-norm. Let W (Lp, `1) be
the space of all functions f so that ‖f‖W (Lp,`1) :=

∑
k∈Zd ‖f‖Lp(k+[0,1)d)

is finite. Clearly W (Lp, `1) ⊂ Lp for 1 ≤ p ≤ ∞. For any D ∈ (`p)(r) and
F ∈ Lp, it is shown in [9] that

‖F ∗′ D‖p ≤ ‖D‖`p‖F‖Lp . (2.1)
So in Theorem 2.1, we assume that the generator F of the shift-invariant
space belongs to Lp for 1 ≤ p < ∞ and it belongs to W (L∞, `1) for p = ∞.
In that case Vp(F ) is a linear subspace of Lp by (2.1).

We say that a function f is a C∞-function with `1-decay if the partial
derivative Dnf satisfies∑

k∈Zd

‖Dnf‖L∞(k+[0,1)d) < ∞ for any n ∈ (ZZ+)d

(see [12, 14]). A Schwartz function is a C∞-function with `1-decay, and so
are linear combinations of the integer shifts of a Schwartz function using
`1 coefficients. In Theorem 2.1, the dual functions in the reconstruction
from Calderon convolutions are C∞-functions with `1-decay.

Now we state the characterization of a stable Calderon convolutor for
a finitely generated shift-invariant space at a certain frequency.
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Theorem 2.1. Let 1 ≤ p ≤ ∞, ξ0 ∈ Rd, F = (f1, . . . , fr)T ∈ (Lp)(r) for
1 ≤ p < ∞ and F ∈ W (L∞, `1) for p = ∞, and let G = (g1, . . . , gs)T ∈
(L1)(s). Assume that the rank of the r × Zd matrix (F̂ (ξ + 2kπ))k∈Zd is
independent of ξ in a small neighborhood of ξ0. Then the following three
statements are equivalent.

(i) G is a stable Calderon convolutor for Vp(F ) at the frequency ξ0.

(ii) The rank of the r × (s× Zd) matrix(
F̂ (ξ0 + 2kπ)ĝ1(ξ0 + 2kπ), . . . , F̂ (ξ0 + 2kπ)ĝs(ξ0 + 2kπ)

)
k∈Zd

(2.2)

equals that of (F̂ (ξ0 + 2kπ))k∈Zd .

(iii) There exist δ′ ∈ (0, δ0) and C∞-functions g̃
l,i

, 1 ≤ l ≤ s, 1 ≤ i ≤ r,
with `1-decay such that

f =
r∑

i=1

s∑
l=1

∑
k∈Zd

〈f∗g
l
, g̃

l,i
(·−k)〉fi(·−k) ∀ f ∈ Vp,B(ξ0,δ′)(F ). (2.3)

We remark that the rank assumption about (F̂ (ξ+2kπ))k∈Zd in The-
orem 2.1 is closely related to the localization of p-frame property in the
Fourier domain (see [14] or Lemma 4.3).

To prove Theorem 2.1, we need to recall some results about the
localization of stable shifts in the Fourier domain. For any sequence
D = {D(k)} with polynomial growth, that is, |D(k)| ≤ p(k), k ∈ Zd, for
some polynomial p, its Fourier series F(D), to be defined by F(D)(ξ) :=∑

k∈Zd D(k)e−ikξ, is a periodic tempered distribution. For any measur-
able subset E of Rd, we let `p

E , 1 ≤ p ≤ ∞, be the set of all `p sequences
whose Fourier series are supported in E + 2πZd.

Definition 2.2. We say that F has `p stable shifts at the frequency ξ0 ∈
Rd if there exist positive constants C and δ such that

C−1‖D‖`p ≤ ‖F ∗′ D‖p ≤ C‖D‖`p ∀ D ∈ (`p
B(ξ0,δ))

(r), (2.4)

and that F has `p stable shifts if (2.4) holds for all D ∈ (`p)(r).

(See for instance [7, 8, 13, 15]) and the references therein for applications
of `p stable shifts in the approximation by shift-invariant spaces, the reg-
ularity of scaling functions, and the convergence of cascade algorithms).
The property of `p stable shifts at a certain frequency is the localization
of the usual `p stable shifts in the Fourier domain. In [14], we establish
the following characterization.
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Lemma 2.3. Let ξ0 ∈ Rd, and let F = (f1, . . . , fr)T ∈ (Lp)(r) for 1 ≤
p < ∞ and F ∈ (W (L∞, `1))(r) for p = ∞. Then the following three
statements are equivalent to each other.

(i) F has `p stable shifts at the frequency ξ0.

(ii) The r × Zd matrix (F̂ (ξ0 + 2kπ))k∈Zd is of full rank.

(iii) There exist C∞-functions h1, . . . , hr with `1-decay and a positive
constant δ such that

di(k) = 〈F ∗′ D,hi(· − k)〉, 1 ≤ i ≤ r, k ∈ Zd,

for any `p sequences D := {(d1(k), . . . , dr(k))T }, whose Fourier series
F(D) are supported in B(ξ0, δ) + 2πZd.

Now we start to prove Theorem 2.1.

Proof of Theorem 2.1 We divide the proof into the following steps: (i)
=⇒ (ii) =⇒ (iii) =⇒ (i). First we prove (i) =⇒ (ii). Suppose on the
contrary that the assertion (ii) does not hold. Then there exists a nonzero
(complex-valued) vector v so that

vT F̂ (ξ0 + 2k0π) 6= 0 for some k0 ∈ Zd, (2.5)

and

vT F̂ (ξ0 + 2kπ)ĝl(ξ0 + 2kπ) = 0 ∀ k ∈ Zd and 1 ≤ l ≤ s. (2.6)

Define f0 by f̂0 = vT F̂ . For any D ∈ `p, whose Fourier series F(D) is
supported in B(ξ0, δ) + 2πZd for some sufficiently small δ > 0, it follows
from (1.1), (2.5), and Lemma 2.3 that

‖D‖`p ≤ C1‖f0 ∗′ D‖p ≤ C2

s∑
l=1

‖(f0 ∗ gl) ∗′ D‖p, (2.7)

where C1, C2 are two positive constants independent of D. Similarly, for
any ε > 0 and any δ0 > 0, it follows from (1.1), (2.6) and Lemma 2.3 that
there exists a nonzero sequence Dε,δ0 ∈ `p whose Fourier series F(D) is
supported in B(ξ0, δ0) + 2πZd such that

s∑
l=1

‖(f0 ∗ gl) ∗′ Dε,δ0‖p ≤ ε‖Dε,δ0‖`p . (2.8)

Combining (2.7) and (2.8) leads to a contradiction since ε > 0 can be
chosen arbitrarily.
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Next we prove (ii) =⇒ (iii). By our assumption, the rank of the r×Zd

matrix (F̂ (ξ + 2kπ))k∈Zd is r0 ≤ r for all ξ in a small neighborhood of ξ0.
So we may assume that F has stable shifts at the frequency ξ0 by Lemma
2.3, otherwise we replace F by the function F̃ defined by ̂̃F (ξ) = A(ξ)F̂ (ξ),
where the r0×r matrix A(ξ) with entries in Wiener class is so chosen that( ̂̃F (ξ + 2kπ)

)
k∈Zd is of rank r0 in a small neighborhood of ξ0. For any

f = F ∗′D for some D = (D1, . . . , Dr)T ∈ (`p)(r) with F(D) supported in
B(ξ0, δ) + 2πZd, taking Fourier transform on both sides of (2.3) leads to

r∑
i=1

F(Di)(ξ)f̂i(ξ) =
r∑

i,i′=1

s∑
l=1

F(Di)(ξ)

×
∑

k∈Zd

f̂i(ξ + 2kπ)ĝl(ξ + 2kπ)̂̃gl,i′(ξ + 2kπ)f̂i′(ξ).

By the arbitrariness of sequences Di ∈ (`p)(r), 1 ≤ i ≤ r, and stable shifts
of F at the frequency ξ0, it suffices to find C∞-functions g̃l,i, 1 ≤ l ≤
s, 1 ≤ i ≤ r, with `1-decay so that

s∑
l=1

∑
k∈Zd

f̂i(ξ + 2kπ)ĝl(ξ + 2kπ)̂̃gl,i′(ξ + 2kπ) = δii′ , 1 ≤ i, i′ ≤ r, (2.9)

for all ξ ∈ B(ξ0, δ)+2πZd. By the assumption (ii), there exists k1, . . . , kT ∈
Zd so that (F̂ (ξ0 +2ktπ)ĝl(ξ0 +2ktπ))(l,t)∈{1,...,s}×{1,...,T} has rank r. Let
the Schwartz functions hl, 1 ≤ l ≤ s, be so chosen that ĥl is supported
in ∪T

t=1B(ξ0 + 2ktπ, δ), and ĥl(ξ0 + 2ktπ) = ĝl(ξ0 + 2ktπ). Therefore we

see that
∑s

l=1 ĝl(ξ0 + 2ktπ)ĥl(ξ0 + 2ktπ) ≥ 0 for any 1 ≤ t ≤ T , and
the inequality becomes an equality if and only if ĝl(ξ0 + 2ktπ) = 0 for
all 1 ≤ l ≤ s. Therefore the r × T matrix

(
F̂ (ξ0 + 2ktπ)

∑s
l=1 ĝl(ξ0 +

2ktπ)ĥl(ξ0 + 2ktπ)
)
1≤t≤T

has rank r, which implies that the function F̃

defined by ̂̃F (ξ) = F̂ (ξ)
∑s

l=1 ĝl(ξ)ĥl(ξ) has stable shifts at the frequency
ξ0. By Lemma 2.3, there exist C∞-functions g̃i, 1 ≤ i ≤ r, with `1-decay
so that ∑

k∈Zd

̂̃
f i(ξ + 2kπ)̂̃gi′(ξ + 2kπ) = δii′ , 1 ≤ i, i′ ≤ r,

for all ξ ∈ B(ξ0, δ) + 2πZd for some δ > 0, where F̃ = (f̃1, . . . , f̃r)T . This
proves (2.9) and hence the assertion (iii) when we let gl,i be defined by
ĝl,i(ξ) = ĥl(ξ)̂̃gi(ξ).

Finally we prove (iii) =⇒ (i). Recall that
r∑

i=1

‖{〈f, fi(· − k)〉}‖`p ≤
r∑

i=1

‖fi‖W (Lp/(p−1),`1)‖f‖p, (2.10)
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for any F = (f1, . . . , fr)T ∈ (W (Lp/(p−1), `1))(r) and f ∈ Lp ([14]). This
together with (2.1) and (2.3) imply

‖f‖p ≤‖F‖Lp

r∑
i=1

∥∥∥{ s∑
l=1

〈f ∗ gl, g̃l,i(· − k)〉
}∥∥∥

`p

≤‖F‖Lp

r∑
i=1

s∑
l=1

‖f ∗ gl‖p‖g̃l,i‖W (Lp/(p−1),`1) ∀ f ∈ Vp,B(ξ0,δ)(F ).

This proves (i).

Applying Theorem 2.1, we obtain the following result for the case that
both the generator of the shift-invariant space and the Calderon convolutor
are compactly supported.

Theorem 2.4. Let F = (f1, . . . , fr)T and G = (g1, . . . , gs)T be vector-
valued compactly supported Lp and L1 functions respectively. Then either
G is an unstable Calderon convolutor for Vp(F ) at all frequencies, or G is
a stable Calderon convolutor for Vp(F ) at almost all frequencies.

Proof: Let k1 and k2 be the maximum of the rank of the r × Zd ma-
trix A1(ξ) := (F̂ (ξ + 2kπ))k∈Zd , ξ ∈ Rd, and the r × (s × Zd) matrix
A2(ξ) := (F̂ (ξ+2kπ)ĝ1(ξ+2kπ), · · · , F̂ (ξ+2kπ)ĝs(ξ+2kπ))k∈Zd , ξ ∈ Rd

respectively. Recall that f̂1, . . . , f̂r and ĝ1, . . . , ĝs are analytic functions.
Then there exists an open set O whose complement has zero Lebesgue
measure so that the ranks of A1(ξ) and A2(ξ), ξ ∈ O, are k1 and k2 re-
spectively. Therefore the conclusion follows directly from Theorem 2.1.

§3. Calderon convolution and its localization

In this section, we consider the connection between Calderon convo-
lution and its localization in the Fourier domain. In particular, we have

Theorem 3.1. Let 1 ≤ p ≤ ∞, F = (f1, . . . , fr)T ∈ (Lp)(r) for 1 ≤ p <
∞ and F ∈ W (L∞, `1) for p = ∞, and let G = (g1, . . . , gs)T ∈ (L1)(s).
Assume that the rank of the r×Zd matrix (F̂ (ξ+2kπ))k∈Zd is independent
of ξ. Then G is a stable Calderon convolutor for Vp(F ) if and only if G is
a stable Calderon convolutor for Vp(F ) at every frequency.

For the function F in Theorem 3.1, it is shown in [2, 14] that the rank
(F̂ (ξ+2kπ))k∈Zd is independent of ξ if and only if the shift-invariant space
Vp(F ) is closed in Lp. So applying Theorem 3.1, we see that under certain
closedness assumption on the finitely generated shift-invariant system, the
verification whether a Calderon convolutor is stable or not can be done
pointwise in the Fourier domain. We do not know whether the above
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criterion can be established without the closedness assumption on that
shift-invariant system.

Proof of Theorem 3.1 Clearly a stable Calderon convolutor for a shift-
invariant space is a stable Calderon convolutor for that space at every
frequency. Conversely suppose that G ∈ (L1)(s) is a stable Calderon
convolutor for the shift-invariant space Vp(F ) at every frequency. Thus
for any ξ0 ∈ [−π, π]d there exist a positive number δ(ξ0) and C∞-functions
g̃l,i,ξ0 with `1-decay and by Theorem 2.1 so that

f =
r∑

i=1

s∑
l=1

∑
k∈Zd

〈f∗gl, g̃l,i,ξ0(·−k)〉fi(·−k) ∀ f ∈ Vp,B(ξ0,δ(ξ0))(F ). (3.1)

By the compactness of [−π, π]d, there is a finite covering {B(ξ1, δ(ξ1)/2)+
2πZd, . . . , B(ξt, δ(ξt)/2) + 2πZd} of Rd. Let h1, . . . , ht be C∞ periodic
functions that form a partition of unity associated with the above cov-
ering, that is,

∑t
m=1 hm(ξ) = 1 for all ξ ∈ Rd and hm is supported in

B(ξt, δ(ξt)/2) + 2πZd for all 1 ≤ m ≤ t. Then it follows from (3.1) that

f =
t∑

m=1

fm =
t∑

m=1

r∑
i=1

s∑
l=1

∑
k∈Zd

〈fm ∗ gl, g̃l,i,ξm
(· − k)〉fi(· − k)

=
r∑

i=1

s∑
l=1

∑
k∈Zd

〈f ∗ gl, g̃l,i(· − k)〉fi(· − k) ∀ f ∈ Vp(F ), (3.2)

where f̂m = f̂hm and ̂̃gl,i =
∑t

m=1 hm
̂̃gl,i,ξt

. This gives a reconstruction
formula of any function in Vp(F ) from its convolution f ∗ gl, 1 ≤ l ≤ s.
Combining (2.1), (2.10) and (3.2) leads to

‖f‖p ≤ C
s∑

l=1

‖f ∗ gl‖p

for some positive constant C. Hence F is a stable Calderon convolutor for
Vp(F ).

§4. Calderon convolution and p-frame

Definition 4.1. We say that F generates a p-frame at the frequency
ξ0 ∈ Rd if there exist positive constants δ,A and B such that

A‖f‖p ≤
r∑

i=1

‖{〈f, fi(· − k)〉}‖`p ≤ B‖f‖p (4.1)
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holds for all f ∈ Vp,B(ξ0,δ)(F ), and that F generates a p-frame if (4.1)
holds for all f ∈ Vp(F ).

The concept of p-frame at a certain frequency was introduced in [14]
as the localization of the p-frame in the Fourier domain, while the p-frame
property was introduced and characterized in [2]. As shown in [14], a
vector-function F with certain decay at infinity, generates a p-frame if
and only if it generates a p-frame at every frequency.

The p-frame property is related to Calderon convolution in the situa-
tion that the convolutor is the same as the generator of the shift-invariant
space. In particular, we have

Theorem 4.2. Let ξ0 ∈ Rd, and let F = (f1, . . . , fr)T ∈ (Lp)(r) ∩
(W (Lp/(p−1), `1))(r) for 1 ≤ p < ∞ and F ∈ (W (L∞, `1))(r) for p = ∞.
If F generates a p-frame at the frequency ξ0, then F is a stable Calderon
convolutor of the shift-invariant space Vp(F ) at the frequency ξ0.

To prove Theorem 4.2, we recall the characterization in [14] of p-frame
at a frequency ξ0:

Lemma 4.3. Let F = (f1, . . . , fr)T ∈ (Lp)(r) ∩ (W (Lp/(p−1), `1))(r) for
1 ≤ p < ∞ and F ∈ (W (L∞, `1))(r) for p = ∞. Then for any ξ0 ∈ Rd the
following statements are equivalent to each other.

(i) F generates a p-frame at the frequency ξ0.

(ii) The space Vp,B(ξ0,δ)(F ) is a closed subspace of Lp for sufficiently small
δ > 0.

(iii) The rank of the r × Zd matrix (F̂ (ξ + 2kπ))k∈Zd is independent of ξ
in a small neighborhood of ξ0.

Proof of Theorem 4.2. Note that for F = (f1, . . . , fr)T ∈ (L1)(r), the
rank of the r × (r × Zd) matrix(

F̂ (ξ + 2kπ)f̂1(ξ + 2kπ), . . . , F̂ (ξ + 2kπ)f̂r(ξ + 2kπ)
)

k∈Zd

equals that of (F̂ (ξ +2kπ))k∈Zd for all ξ ∈ Rd. Then the assertion follows
from Theorem 2.1 and Lemma 4.3.

The converse of Theorem 4.2 is not true, as demonstrated in the
following example.

Example 4.4. Let h be a C∞-function so chosen that h(x) = 1 for all
x ∈ [−3/8, 3/8], and h(x) = 0 for all x ∈ IR\[−1/2, 1/2]. Define f1 and f2

by

f̂1(ξ) = h
(ξ − π

4π

)
and f̂2(ξ) = (1− e−iξ)h

( ξ

π

)
.
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By direct computation, the rank of (F̂ (ξ + 2kπ)) is equal to 1 for ξ = 0,
and it equals 2 for ξ ∈ [−3π/8, 3π/8]\{0}. Thus F = (f1, f2)T does not
generate a p-frame at the frequency 0 by Lemma 4.3. Note that any
f ∈ Vp,B(0,δ)(F ) with 0 < δ < π/8 can be written as f = F ∗′ D for some
D = (D1, D2)T with D1, D2 ∈ `p

B(0,2δ). Then

̂f ∗ f1(ξ) =F(D1)(ξ)
(
h((ξ − π)/4π)

)2

+ (1− e−iξ)F(D2)(ξ)h(ξ/π)h
(
(ξ − π)/4π

)
=F(D1)(ξ)h

(
(ξ − π)/4π

)
+ F(D2)(ξ)h

(
ξ/π

)
= f̂(ξ).

Therefore ‖f ∗ f1‖p = ‖f‖p for any f ∈ Vp,B(0,δ)(F ) with 0 < δ < π/8,
and hence F is a stable Calderon convolutor for the shift-invariant space
Vp(F ) at the frequency 0.
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