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TWO-SCALE DIFFERENCE EQUATION:
LOCAL AND GLOBAL LINEAR INDEPENDENCE

QIYU SUN

Oct. 1991 (revised June 1993)

ABSTRACT Let ¢ be a distribution solution of the two-scale difference equation
(1). First the equivalence of local and global linear independence of the integer translates
of ¢ is proved and a simple characterization for global linear independence of the integer
translates of ¢ is given. Second a class of functions in V; such that their integer translates
are locally or globally linearly independent is found.

Key words: two-scale difference equation, global linear independence, local linear
independence,B-spline, B-wavelet.**

1.Preliminary and Statement of Results.

The objective of this context is to study local and global linear independence of the
integer translates of a distribution solution of the two-scale equation. To this end, we
introduce some notations and definitions.

Let {cx }_, be a sequence such that cy # 0, cy # 0 and ZkN:o ¢ = 2. Let ¢ be a unique
complex-valued compactly supported distribution to satisfy a two-scale difference equation

Ha) =3 cud(2a — )
k=0

~

¢(0) =1,

(1)

where the Fourier transform gE of ¢ is defined by

3o) = [ e o
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By taking Fourier transform in both sides of (1), we get

$(&) = H(E/2)$(£/2),

and R _
P(&) =152 H(E/27),

where we denote

N
H(E) = 33 et
g £ TET

k=0

Hereafter we will say ¢ is the solution of (1) with H ().

The two-scale difference equation (1) attracted much attention in recent years since the
equation of type (1) arise in the construction of wavelets with compact support ([3],[6]) and
in the dyadic interpolation scheme of Deslauriers and Dubuc ([8],[9]) etc. For example,the
wavelet ¢ constructed by I. Daubechies ([6]) is the solution of (1) with xH(&), where
Hy (&) satisfies

N-1
2 _ . on§ N—=1+Fk) . 9 ¢
|Hn (€)|” = cos 5 kE:()( i sin”™ 2

for N > 2, and the univariate spline function By is the solution of (1) with H({) =
e\ N
<1+—28§> for N > 1.

We say that the integer translates of a compactly supported distribution ¢ are globally
linearly independent if the condition

Z c(k)p(x —k)=0 on R

keZ

implies ¢(k) = 0 for all k € Z. We say that the integer translates of ¢ are locally linearly
independent if the conditions

Z c(k)p(x +k)=0 on A and suppEFpN A #0. (2)
keZ

imply c(k) = 0 for every open set A. Here the shift operator E* is defined by E¥¢(z) =
¢(x + k) on R and () is the empty set.

It is well known that the integer translates of By are locally linearly independent (see
[4],][9] for box spline) and the following formula plays an important role in the proof of local
linear independence

d
%BN(.’IZ) = By-1(z) — By-1(z — 1)
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for N > 2.

To study local linear independence of the integer translates of the solution of (1), we
establish a formula as the one above. Let By be the N x N dimensional matrix defined by

(Bo)ij = c2i—j
for 0 <14,7 < N —1and By be the N x N dimensional matrix defined by
(Bl)ij = C2—j+1
for 0 <4,7 < N — 1. Hereafter we assume c; = 0 for j < —1 and 5 > N + 1. Denote

¢()
d(x +1)

O(r) =
¢p(x+ N —1)
on (0,1). From the equation (1), we have the fundemental formulae

T

Bo®(z) = @ (5) .
B1®(z) = ® <”" + 1)

2
on (0,1).

The formulae above were used by I. Daubechies and J.Lagarias ([7]) to study local
and global regularity of ¢. The corresponding formulae on high dimensions were used
by A.S.Cavaretta, W.Dahmen and C.A.Micchelli ([1]) to study the relationship between
regularity of ¢ and the approximating degree of quasi-interpolants. In section 2, we will
use the formulae (3) to study relation between local and global linear independence.

Theorem 1. Let ¢ be the solution of (1). Then local and global linear independence
of the integer translates ¢ are equivalent to each other.

The main steps to prove Theorem 1 are Lemma 1 and 3.

Denote
N

P(z) = Z cpz®.

k=0
We say a polynomial P(z) has symmetric root zy if P(zp) = P(—zp) = 0.For a compactly
supported distribution ¢ we denote

N(¢)={z€Cip(z+2kr)=0 forall ke Z}.
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It is proved by A.Ron ([13]) that the integer translates of ¢ is globally linearly independent
if and only if N(¢) = §. Naturally we hope to give a characterization for global linear
independence of the integer translates of ¢ which is given in section 3.

Theorem 2. Let ¢ be the solution of (1). Then the integer translates of ¢ are globally
linearly independent if and only if the following conditions hold
(1) P(z) has no symmetric roots,

(ii) P(2) has not the factors of the form Ty ' (z + ZoQk) with 22" = 2o and 2o # 1.

After the paper was completed we know Theorem 2 were also proved by Jia and Wang
([11]) but our proof is little different with them. As observed by C.K. Chui and J-Z Wang
([3]) and P-G Lemarie ([12]),the condition in Theorem 2 is closely related to minimal
support of ¢. By a characterization in [4], we know that the condition (ii) in Theorem 2
holds if and only if N(¢) N R = () under the assumption P(z) has no symmetric roots on
{|z] = 1}. We also see from the proof of Theorem 1 (precisely Lemma 1) that the condition
(i) in Theorem 2 holds if and only if By and B; are nonsingular matrices. Therefore it
suffices to use finite steps to show the conditions (i) and (ii) in Theorem 2 true.

Denote

Vi = {Z cior,i(x); {cj}jez is some complex-valued sequence},
JEZ

where ¢y j(z) = ¢(2Fz — j) for k,j € Z. By equation (1), we have
ecVaacVoCcViC--

and ¢ belongs to V;. Now our interest turns to find the functions in V; such that their
integer translates are locally linearly independent. The reason to consider is at least the
scaling function and the wavelet function belong to Vi when {Vj} is a multiresolution of
some space (c.f. [2],[5]). To this aim we introduce a definition. For ¢) a compactly supported

%, %] is the supporting interval of 1) if suppty) C [%, %]

implies jVV1 < N; and ]f\\f; > N, where Ni,ﬁi € Z,(i = 1,2). In section 4 we give the
following characterization.

distribution in V7 we call [

Theorem 3. Let ¢ be the solution of (1) and ¢ € Vi be as above. Assume the
integer translates of ¢ be globally linearly independent. Then the local and global linear
independence of the integer translates of v are equivalent to each other if and only if
No—Ny <N provided supp is just the supporting interval defined above. Here we define
N = N when N 4+ Ny + Ny is even and N = N — 1 when N + N; + Ny is odd.

Also we give an simple characterization to the compactly supported distributions in V;
such that their integer translates are globally linearly independent.
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Now we give the applications of the theorems above to B-spline and B-wavelet considered
by Chui and Wang in [3]. Now we assume equation (1) has L? solution ¢. Let an nested
sequence

eCcVayaCcVyCcViCoes

be closed subspaces of L? = L?(R) that constitutes a multiresolution analysis of L? ( see
[6]). Let Wy be the orthogonal complement of Vi in Vi 1. Therefore we have the wavelet
decomposition

L? = ®rez Wi,

We call an L2-function ¢ the generator of the given multiresolution analysis provided
that {E7¢};cz is an unconditional basis of V; and ¢ satisfies the two-scale difference

equation
N

p(x) = erp(2w — k).

k=0

for some sequence {c}_, with ¢y # 0,cy # 0 and chvzo ¢r = 2. Denote by ® the family
of generator ¢. It is known that there is an unique L?-function ¢ € ® such that every
¢ € ® is a finite linear combination of E7¢. We call this function ¢ the B-spline in term
of Chui and Wang. By Theorem 3.1 in [3], the characteristic polynomial P(z) defined by

N

P(z) = Z 2t
k=0
has no symmetric roots and Y, |§(x + 2k7)|? is bounded above and below away from
zero for © € R. Therefore conditions (i) and (ii) in Theorem 2 hold true and the integer
translates of the B-spline ¢ are locally linearly independent.

Theorem 4. The integer translates of any B-spline ¢ are locally linearly independent.

An L2-function 7 is called the wavelet of the given multiresolution analysis provided
that {E’n};cz is an unconditional basis of W, and

(@)=Y diplz — k), (4)

k=N

for some sequence {dk},]cvi]\,1 with dy, # 0, dn, # 0, where ¢ is the B-spline of the given
multiresolution analysis. we call the wavelet n with minimum support by B-wavelet. In
absence of notation, we denote the B-wavelet still by 1. As we will see in section 4 that
the integer translates of ) are globally linearly independent. By the representation of u(z)
in [3], we know N + N; + N2 must be an even integer. Therefore by Theorem 3 we have
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Theroem 5. If suppn is just the supporting interval of n,then the integer translates
of the B-wavelet n are locally linearly independent if and only if No — Ny < N in (4).

Therefore the integer translates of orthonormal wavelet constructed in [6] are locally
linearly independent and the integer translates of B-wavelet of the univariate polynomial
spline in [3] must not be locally linearly independent (c.f.[2] Page 184).

From now on, we always assume ¢ satisfies the two-scale difference equation (1) for
N > 1 except in the last section. The reason to assume N > 1 is the unique compactly
supported distrution solution of (1) is the delta distribution for which the local and global
linear independence is easy to study and the results to ¢ below (except in last section) is
also true for the delta distribution.

2. Local Linear Independence

It is known that local linear independence of the integer of ¢ implies its global linear
independence. Therefore it suffices to prove the following slightly strong conclusion.

Theorem 6. Let {c}I_, and ¢ be as in Theorem 1. If the integer translates of ¢ are
globally linearly independent, then the conditions

Y e(k)p(z—k)=0 on A and [kk+NJNA#(
keZ

imply c¢(k) = 0 for every open set A.

Corollary 1. Assume ¢ be the solution of (1) and the integer translates of ¢ are globally
linearly independent. Then supp¢ = [0, N].

The procedure to prove Theorem 6 is as follows. By the definition of B;(i = 0,1), we
know the components of (1,z,---,2N"1)B;(i = 0,1)arez’H,(z) or 2/H.(z) (c.f. (6)-
(9)),where H,(z) and H.(z) are the odd and even part of the characteristic polynomial
H(z) = Y1 e, i,

H(z) = Ho(2%) + zH,(2%).

The first claim (Lemma 5 which was also proved implicitly in [11]) is that the global linear
independence of the integer translates of ¢ implies H,(z) and H,(z) have no common zero
points. Using this claim we show that B;(i = 0,1) are nonsingular matrices (see Lemma
1), and that W 1y = {0} if W4 # {0} for some open set A C (0, 1),where
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(see Lemma 2). Hence the matter reduces to proving Wy 1y # {0}. Conversely if W 1) #
{0}, we want to find a sequence (co, - -+ ,cn—1) € W(g,1) such that it can extends to {c }rez
such that >, cid(x +k) = 0 on R and ¢ = ¢ for 0 < k < N — 1, then Theorem
6 is proved since the integer translates of ¢ are globally linearly independent. When
cr, = 2§ for k= 0,--- , N — 1 and some 2z # 0 an easy extension of {cx}5 ' to {c}}rez
is cf = 2§ for k € Z. Until now we need to do the following works , the existence of
zo such that (1,20, ,20 ") € Wo,1) when W) # {0} and > kez ez +k) =0
. The second equation is proved by Lemma 4 which was inspired by [14]. the existence
of zyp such that (1,zg,--- ,zév_l) € Wi,y when W1y # {0} is completed in Lemma
3. We outline the proof here. Denote V' be the dual of W ;) which is just linear span
space of {®(z);z € (0,1)} when ¢(z) is continuous. Denotes the basis of V' by e; and
Ei(z) = (2,2%,-++ ,2N)e; for 1 <i <m < N — 1 since dimV < N — 1. Hence the matter
reduces to proving {F;(z)}", have a nonzero common zero point. Denote E(z) be the
vector with its component F;(z), and E,(z) and E.(z) denote the odd and even part of
E(2),i.e., E(z) = Eo(2%) + 271 E,(2). Recall that B;V = V(i = 0,1). Therefore F,(z) and
E.(z) satisfies the equation

2 H (2)CEy(2) + Hy(2)CE,(2) = Ho(2)Eo(2) + Ho(2)E.(2)

for some nonsingular m x m matrix C. Recall that H.(z) and H,(z) have no common zero
points. We get the equation (12). Comparing the degree of the polynomials in both sides
of (12), we get P in (12) is a constant vector. Then the last important equation

(C? —2I)B2 E(2) = Ca(—H?(z) + zH*(2))

can easy obtained where BY, and C are nonsingular matrices and « is a constant vector.
Observe that (C? — 2I) has at most m eigenvalues and the degree of —H?(z) + zH?2(z) is
exactly N. Hence FE(zp) = 0 for some zy # 0,which implies (1, zq, - - - ,zév_l) € W, if
dimV < N -1 or Wy # {0}. To prove Theorem 6, we will use the following lemmas
with their proofs postponed

Lemma 1. If the integer translates of ¢ are globally linearly independent, then By and
B are nonsingular matrices.

Lemma 2. Assume that A be an open subset in (0,1) and that By and B; are nonsin-
gular matrices. If there is a non-zero vector d € CN such that d®(z) = 0 on A, then there
is a no-zero vector d’ € C' such that d'®(z) = 0 on (0,1).

Denote
W={acCV;, a®(z)=0 on (0,1)},

which is just Wy for A = (0,1).

Lemma 3. Assume the integer translates of ¢ are globally linearly independent. If
W # {0}, then there is non-zero zy € C such that (1,2, -+, 2" 1) € W.
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Lemma 4. If} . , 2o ¢p(x — j) = 0 on R\Z for some non-zero zo € C, then there is
non-zero zo' € C such that

Zz{)jqb(a:—j):() on R.

jez

For a moment, we assume the lemmas above hold true. We start to prove Theorem 6.
By Lemma 1, By and By are nonsingular matrices. By Lemma 2 and some elementary
reduction, the matter reduces to A = (0, 1). Observe that fo:_ol 20’ ¢p(z + k) = 0 on (0,1)
implies Y, ., 20" ®(z + k) = 0 on R\Z. By Lemma 3 and Lemma 4, the integer translates
of ¢ are not globally linearly independent if W # {0}. Therefore W = {0} and Theorem 6
holds true.

Before we start to prove the lemmas used in the proof of Theorem 6, we prove Corollary
1 first. Conversely if Corollary 1 is not true, then there exists an open set A C [0, N] such
that ¢(z) = 0on A, ie., >, ., 0(k)p(x — k) =0 on A. Here we define 6(k) = 1 for k =0
and 0 elsewhere. Recall that AN [0,N] = A # (. By Theorem 6 §(0) = 0, which is a
contradiction. Corollary 1 is proved.

To prove Lemma 1 to Lemma 4, we will use an elementary lemma which is also proved

by Jia and Wang ([11]).

Lemma 5. If there exits zp € C such that H(z9) = H(—zp) = 0, then the integer
translates of ¢ are globally linearly independent. Hereafter we define the characteristic

polynomial H(z) by
N

H(z)= Z c; 2

J=0

instead of H({) defined in the beginning of section 1.

Proof of Lemma 5. Recall that H(1) = 2. Therefore zy # 1,—1. Since H(zy) =
H(—zy) =0, then we can write

H(z) = %m(z),

where Hq(z) is a trigonometric polynomial with H;(1) = 2.

Let ¢ be the solution of (1) with §H; (e )e;‘f_—;g Therefore we get
0
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and )
z
= -1)- =0 .
$0) = T o =) = T ()
Hence
> P p(w —j)
jeZ
2 - A _
_;1—23¢1($_j - )_JEZ; I—Zg ¢($_J)
:0,

and Lemma 5 holds true.
Now we start to prove Lemma 1 to Lemma 4.
Proof of Lemma 1. We prove Lemma 1 in two cases.
Case 1. N is an odd integer.
Let B be a (N — 1) x (N — 1) dimensional matrix defined by
B;; = coi—;

for 1 < 4,7 < N — 1. Observe that the first row of By is (¢g,0,---,0) and the last row of
B;is (0,---,0,cn). Therefore the matters reduce to the non-singularity of the matrix B.

Write

HO(Z) == Z 021;+1Z1;
Qe(z) =3 ag2’
Qo(z) = Z a2i-|—lzi

for a = (ay, - ,an_1) € CN~1, where we assume a; = 0 for 4 < 0 and i > N.

Observe that if det B = 0 or B is a singular matrix then there is a non-zero vector
a € CN=1 such that (1,z,---,2Y¥"1)Ba is a zero polynomial about z. Also we know

(17 Byt ,zN_l)Ba = QO(Z)HO(Z) + Z_lQe(Z)He(Z).
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Recall from Lemma 5 and H(z) = H.(2%)+ 2H,(2%) that H,(2) and H.(z) has no common
roots. Therefore there is a polynomial Q(z) such that
{ Qo(2) = —H.(2)Q(2)

Q=) = Ho(2)Q(2) )

Recall that the degree of H, is % and the degree of Q.(z)z~! does no exceed %
Therefore Q(z) = 0 and Q,(2) = Q.(z) = 0, which contradicts to a # 0. Hence By and By
are not singular matrices in Case 1.

Case 2. N is an even integer.

By the same procendure as used in Case 1, the matter reduces to Q,(z)H,(2)+a ' Q.(z)He(2)}
being a zero polynomial only for zero vector & € CN¥~!. Also we know (5) hold true. Re-
call that the degree of H, is % and the degree of Q,(z) does not exceed # Therefore
Q(z) =0 and Q,(z) = Q(z) = 0, which implies & = 0. Hence By and B; are not singular
matrices in Case 2. Lemma 1 is proved.

Proof of Lemma 2. Without loss of generality we assume A is an open interval
(a,b) C (0,1). Recall that

1
By®(2z) = ®(x) for 0<z< 3

1
B1®(2x — 1) = ®(z) for 5 <#< 1.
For d € CV, we denote d. = dB, for ¢ = 0 and 1. Therefore we observe that
do®(z) =0 on (2a,min(1, 2b))

when b <

ora-+b<1and
d1®(z) =0 (max(2a — 1,0),2b — 1)

when a > = ora+ b > 1.

N

Recall that By and B; are nonsingular matrices. Hence from above observation we get
that when (a,b) C (0,3) or (3,1) there are an open interval (a’,b') with length 2(b — a)
and a non-zero d’ € CV such that d'®(z) = 0 on (a/,b’), and when (a,b) > 5 there are
an open interval (0,b') and a non-zero d” € C¥ such that d’®(x) = 0 on (0,’). By the
observation above we can find a non-zero d’” € C such that d”’®(z) = 0 on (0,1). Lemma
2 is proved.

Proof of Lemma 3. Write

H.(z) = Z co; 2’

J
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and

HO(Z) = Z 62j+12j.
J

Therefore we have

(1,2, 2N"YBy =(Hu(2), zHo(2), 2Ho(2), -+ , 27 Ho(2),2" = Ho(2)) (6)
(1,2, 2N"YBy =(Hy(2), Ho(2), -, 2 = Ho(z),2 = Ho(2),z = H,(2)) (7)

when N is odd and

(1,2, 2N"YBy =(H,(2), zHo(2), 2Ho(2), -+ , 2"

(1,2, , 2N Y)By =(Hy(2), He(2), -, 2~ 2 Hy(2),2"2 Hy(2)) (9)
when N is even.
Denote by V' the dual space of W, i.e
V={e, we=0, YweW}

Let

1<j<N
Eic(z) = Z Ci(ar) 2"
1<2k<N
Eio(2) = Z €i(2r+1)2"
1<2k+1<N
Hence the matter reduces to (Ei(z),- -, En(z)) = 0 for some non-zero zy € C' when

1<m<n-—1.

Recall that W By = W and W By = W. Therefore BoV =V and BV = V. In other
words, there exist nonsingular matrices By, = (Af;)1<i j<m such that

Beei: Z )\fjej

1<j<m
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for ¢ = 0 and 1. Hence from (6)-(9) we get

H.(2)Eio(2) + Hy,( = > A
1<5<m (10)
Ho(2)Eio(2) + 27 ' He(2) Bie(2) = Z AzlyEJ(z)
for 1 <4 < m. Write (10) in matrix form
{ HL()Eo(2) + Hol2)B.(2) = BLE(:) .
2 'H,(2)E.(z) + Ho(2)Eo(z) = Bl E(2),
where we denote
E,(z) = ( -
Eno(z)
E.(2) = ( "
Ene(z)
and
i
E(Z) : ( Q:Z )
E..(z)
Therefore we have
YH.(2)CE.(2) + Hy(2)CEy(2) = Ho(2)Eo(2) + Hy(2)Ee(2),
where we define C = BY (B} )~1
Recall from Lemma 5 that H.(z) and Hp(z) has no symmetric roots. So we have
I OB(2) ~ Bi(2) = POH )

CEo(2) — Ee(2) = —P(2)He(2),

where
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and P;(z)(1 < i < m) are Laurent polynomials. For a Laurent polynomial Q(z) =
D ky<k<k apz® with a, # 0 and ag, # 0, we define d=(Q) = ko and d¥(Q) = k. For
the vector P(z), we define d~(P) = minj<i<m d™(P;) and DT (P) = maxi<i<m d¥ (FP;).
Observe that d*(Ep) < [852],d=(Ep) > 0 and d*(E.) < [¥],d"(E.) > 0, where we
denote [z] the integer part of x.

On other hand by ¢y # 0 and ¢y # 0, we have

N -1
d+(HO) = —5 and d~(H.) =0
when N is odd and N
dt(H,) = 5 and d (H.) =0

when N is even. Therefore we have d*(P) < 0 and d~ (P) > 0. This implies P is a constant
vector, i.e., P;(z) are constant polynomials.

In other words, we can write (12) as

27 'CE.(2) — Eo(z) = aHy(2)

13
CE,(z) — Eo(z) = —aH.(z) (13)
for some o € C™. Therefore we have
2 'C?* - 1E. = CaH,(z) — aH.(z
( ) (2) ~ o, (2) "

(z7'C?* —~1)E, = —Caz 'H.(2) + aH,(z),

where I is the m x m dimensional identity matrix. Taking the identity (14) into (11), we
get
(z7'C* —I)BY E(z)

=H,(2)(—Caz ' H.(2) + aHy(2)) + Ho(2)(CaHy(z) — aH.(z))
=Ca(—z""H(2) + H;(2)),

and
(C* — 2INBY E(2) = Ca(—HZ2(2) + zH2(2)).

From ¢y # 0 and cy # 0, we have d¥(zH2(z) — H.(2)?) = N and d™ (zHZ2(2) — H.(2)? =
0. Therefore zH?2(z) — H?(z) has exactly N roots (with multiplicity). On other hand
(C? — 2I) has exactly m eigenvalues (with multiplicity). Recall that m < N — 1. Therefore
there exists zp € C such that E(zp) = 0. We finish the proof of Lemma 3.

Proof of Lemma 4. Let zy be a non-zero complex number such that

Zzéqﬁ(aj +37)=0 onR\Z

i€z
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Let 0}, be the delta ditribution defined by

6.0 = (52) 100

Therefore there exists an integer k and some as; € C (0 < s < k) such that

S Zdb@+i) =D 2D ab). (15)

A j€Z  0<s<k

Obviously if a; = 0 for all 0 < s < k then Lemma 4 holds for 2z, = z9. Now we assume
as(0 < s < k) are not complete zero.

Taking Fourier transform in both side of (15), we get

-~

3(0 + 21k) = R(0 + 27k) (16)

for k € Z, where exp(f) = 20 and a polynomial R(z) = >, as2°. Recall that &5\(237) =
H(z)$(z) and

B0+ 27km) = Ty <jcm1 H(2770)$(27™ 110 + 2k).
Therefore by the continuity of g/b\ we have

lim G(0 + 2™kr) = (0)p(2k) (17)

m—0o0

for all k € Z. On other hand if the degree of R is not zero then R(6 + 2™k7) tends to
infinite as m tends to infinite. Hence the degree of R must be zero. By (16) and (17), we
have

$(0)$(2km) = ag # 0.

and

-~ ~

¢(2km) = (2k'T)

for all k,k" € Z Recall that H is a periodic function with period 2w. Therefore we can
inductively prove that

when ";_—ff’ is an integer. By the continuity of q/g, we have

~ ~

d(y) = ¢(y + 2m)

for all y € R, i.e., q}S\ is a periodic function with period 27. Hence we have

SuppqSC{O,l,---,N},
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and we can write
N

$(x) =Y _d(k)sp.

k=0

Recall that c¢g # 0 and ¢y # 0. Therefore there exists k1 and ko such that k; # ko,
d(k1) # 0 and d(ky) # 0. By the algebraic fundemental theorem, there exists non-zero

complex number z{, such that Z,]CV:O d(k)z,F = 0. Hence

N
Sl p(a+ ) = 27y d(k)sy_;
k=0

JjEZ JjEZ
al k
=Y oz " Qo dk)z)
Jj€Z k=0
=0.

and Lemma 4 holds true.
3. Global Linear Independence

In this section we use a method in [4] to prove Theorem 2 which is also proved by Jia
and Wang ([11]).

First the necessity. By Lemma 5, we have P(z) has no symmetric roots on C\{0}.
Recall that P(0) = ¢y # 0. Therefore (i) holds. Conversely we assume (ii) do not hold.
Therefore there is # € R such that ¢(z + 27k) = 0 for all k € Z by Theorem 1 in [4].
Therefore z € N(¢), which contradicts to N(¢) = () by Theorem 1.1 in [13]. Hence (i) and
(i) hold.

Second the sufficiency. By the assumption (ii) and (i) for |z| = 1, we have N(¢) N R =
. Conversely we assume there exists zo € C with non-zero imaginary part such that

-~

(20 + 2km) = 0 for all k € Z. Observe that
279 (2 + 2km) £ 277 (20 + 2k'm)  (mod 2m)
for j # j' and k, k' € Z. Here we say x # y (mod 2) if ¥ is not an integer. Denote

D; = {k; H(277 (20 + 2km)) = 0}.

Therefore k£ € D; if and only if k£ + 2 ¢ Dj. Recall that H is a trigonometric polynomial.
Therefore there exist M € Z such that D; = 0 for all j > M + 1 and Uj<j<pD; = Z. On
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other hand (i) implies |H(&)|> + |H(§ + m)|? # 0 for £ € C\R. Therefore k € D, implies
k+2/=1 ¢ D, for 1 <j < M. Denote

Bj = Z\Ui<s<;Ds

for 1 < j < M. Obviously Bj is not empty set. Inductively we assume Bs_; is not empty
set where s < M. Therefore there exists k € Bs_;. Recall that £ and k+ 2°~! € B,_; and
that at most one of k and k + 2°~! is contained in D,. Therefore B, is not empty set and
By is also not empty set by induction, which contradicts By, = (). Hence N(¢) = ) and
the sufficiency of Theorem 2 is proved by Theorem 1.1 in [13].

4. Compactly Supported Distributions In V;

Before we start to prove Theorem 3, we give a charaterization to global linear indepen-
dence. Recall that ¢ € V;. We write

P(z) = dpp(22 — k).

kez

To prove {di}rcz is a finite sequence, i.e., there exists N such that dj, = 0 for |k| > N, we
will use the following lemma.

Lemma 6 ([14]) Assume that the integer translates of a compactly supported distri-
bution ¢ are globally linearly independent. Then there exists a bounded set A such that
the conditions

Z c(k)p(x+k)=0 on A and suppEF¢pNA#£D
keZ

imply ¢(k) = 0.

Recall that ¢ is compactly supported distribution and the integer translates of ¢ are
globally linearly independent. Therefore there exists NV such that di = 0 for |k| > N. Now
we can write

pa) = 3 dip(2e — k), (18)
k=N,

where dy, # 0 and dy, # 0. Recall from Corollary 1 that supp¢ = [0, N]. Therefore the
supporting interval of ¢ is just [%, %]

Theorem 7. The integer translates of 1 are globally linearly independent if and only
if 1(2) has no symmetric roots, where the “symbol” polynomial is defined by

p(z) = Z dp2".

k:Nl



1 WOU-cALK DIFFRERENCOE RQUALTION: LOUAL AND GLUBAL LINBEAKR INDEFRNDRENCOE LY

Proof of Theorem 7. The necessity. Assume u(z9) = p(—29) = 0 for some non-zero
zg € C. Therefore

Z Z()_Qki/)(l' — k)

keZz
N;
= 27 Y dig(2w — 2k — j)
keZ 7=N1
= Z¢(2$—k)( Z Zojdj) 'Zo_k
kez N1 <j<N>

k—j even
:% > 20 Fp(2w — k) - (1(20) + p(—20)(—1)¥)
=0.

and the integer translates of ¢/ are not globally linearly independent, which is a contradic-
tion. The necessity is proved.

The sufficiency. Conversely if the sufficiency is not true, then by Theorem 1.1 in [13]
there is # € C such that

Z e? %z —k)=0 on R.

keZ
On other hand by (18) we have

Z eQinl/)(l, _ k)

keZz
= Z ¢(2x — h) Z dje™® on R.
keZ N1 <j<N»

h—j even

By Theorem 1 and 2 we have

E dje_”g =0
N1 <j<N:
j even

Z dje_ija = 0.

N1<j<N>
j odd

and

Hence p(e™%) = p(—e=*) = 0 and p(z) has a symmetric root e~*, which is a contradic-

tion. Hence the sufficiency is proved and Theorem 7 is proved.

Proof of Theorem 3 Without loss of generality we assume Ny = 0 or 1, otherwise
N
we replaced 1 be shifted distribution F _[Tllw. We divide two cases to prove Theorem 3.



QLIYU dJSUN

Case 1. N + N3 + Nj is even integer.
Case 1.1. N;=0

Denote m = . By (4), suppy C [0,m]. By some simple reduction, the matter
reduces to A C (0,1). Let {4 }9__,, .1 be a sequence such that

N+N>
2

> ap(zr—k)=0 on A, (19)

—m+1<k<0

i.e.,

> aw Y dig(2w — 2k — j)

—-m+1<k<0 jEZ
== Z ¢(2£U - h,) Z dh_zkak
heZz —m—+1<k<0
=0. on A.

Hereafter we assume d; = 0 for j < Ny — 1 and for j > N, + 1. Recall by Theorem 1 and
2 that the integer translates of ¢ are locally linearly independent. Therefore we have

Z dh_gkak =0 (20)

—m+1<k<0

for —-N +1 < h <0 when AN(0,3) #0 and for —N < h < —1 when AN(0,1) =0. In
matrix notation we write (20) as

D4F =0. (21)

Here we define the vector

a—m+1

and the N x m matrix D4 by
(Da)ij = di—2;

for —-N+1<i<0and —m + 0 when AN (0,3) # 0 and for —N +2 <i <1 and

lé
—m+1<j<0when AN(0,3) =

J<
0.

First the necessity. Denote by r(Dy4) the rank of the matrix D 4. Obviously it suffices
to show there exists a no-zero sequence {a;}%,, ., such that (19) holds on (0, 3) for every
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Ny > N + 1. Observe that r(D4) < N and m > N + 1. Therefore there exists a non-zero
vector F' or non-zero sequence {ag}p__,. , such that D4F = 0. Therefore

Z aptp(z — k)

—m+1<k<0
= Z ¢(2£U — h,) Z dh_zkak
heZ —m+1<k<0
1
=0 on (0,=),

2

which contradicts local linear independence of the integer translates of 1 since suppy =
(2, NN} and suppep(- — k) N (0,4) # 0 for —m +1 < k < 0.
The necessity in Case 1.1 is proved.

Second the sufficiency. Obviously it suffices to prove D4 F = 0 holds only for F' = 0, or
to prove r(Dy) = m < N when Ny < N. Let D4 be a N x m matrix defined by

(Da)sij = daji
when AN (0,3) # 0 and
(Da)ij = daj—i—1

when AN (0, %) = (), where 1 <7 < N and 1 < j < m. Hereafter we denote JJ = dn,_; for

j € Z. Obviously 1"(/5;) = r(D,4). Denote the transpose of D4 by D%. Hence the matter
reduces to the construction of nonsingular m dimensional submatrix E of D%. We divide
two cases to construct E explicitly. The construction E when AN (0,4) = @ is similar to
the one when AN (0,4) # 0. We only construct E explicitly when AN (0, 3) # 0 here.

Case 1.1.a. N, is an even integer

« (B Eo
DA_(O E3>’

where Ny X Ny matrix F; is defined by

Write

(E1)ij = dai—;
for 1 <14,7 < N5 and 0 is the zero matrix.

We construct E in Case 1.1.a as follows. Let the k-row of E be the k-row of D% for
1 < k < N, and be the (2k — Ny )-row of D% for Ny+1 < k < m. Recall that 2m— N, = N.
So our construction of F is convenient. Furthermore we can write

_(E1 Ej
E‘(o E)
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where EY is a (m— N>) dimensional upper triangular matrix with diagonal elements d, NF#0
identically. By the proof of Lemma 1 and Theorem 7, E; is nonsingular matrix or r(E;) =

Ns. Therefore r(E) = m and the construction of E in Case 1.1.a is finished.

Case 1.1.b. N, is an odd integer.

* «E4 0
IDA'_ (E% -E6>7

where Eg is a Ny dimensional matrix defined by

Write

(Eg)ij = 6721'—3'
for 1 <1,7 < Ns.

We construct E as follows. Let the k-row of E be the (2k)-row of D% for 1 < k < K=

and the (k + Y582) row of D for Z=M2 41 < | < m. Therefore we can write

_(E, O
E_(Eé E6>’

where F) is a (m — Ny) dimensional lower triangular matrix with diagonal element dy #0
identically. By the proof of Lemma 1 and Theorem 7, Fg is a nonsingular matrix. Therefore
r(F) = m and the construction of E Case 1.1.b is finished.

We finish the proof of the sufficiency in Case 1.1.
Case 1.2 N;=1.

Obviously suppy C [3, ¥£82]. Denote m/ = ¥+82=1 Observe that the set {7, [3 +
AR 4N A # Oy is {j,—m' < j < —1} for A C (0,3),{j,—m'+1 < j <0}
for A C (3,1) and {j;—m’ < j < 0} for 1 € A. It is easy to see that the conclusion
for 2 € A would follow from the conclusions for A C (0,4) and A C (3,1) because
A= (AN(0,1))U(AN(3,1))U{3}. Hence the matter reduces to the two cases A C (0, )

and A C (3,1). Define N x m' matrix by
(Da)ij = di—2;

for —N+1<i<0and —m' <j < —lwhenAC(O,%) and for —N < ¢ < —1 and
—m’ +1<j <0 when A C (3,1). Denote

Qe

Ae—1
Fy = . ,

Qe—m'+1
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where ¢ = 0 for A C (3,1) and e = —1 for A C (0, 1). Therefore we establish the equation
corresponding to (21)
DAFy = 0. (22)

By the procedure used in Case 1.1 and (22), we prove Theorem 3 in Case 1.2. We finish
the proof of Theorem 3 in Case 1.

Case 2. N + Ny + Nj is an odd integer
Case 2.1 N; =0

First we have suppy C [0, %] As in Case 1.2, it suffices to consider the two case
AcC(0,3)and A C (4,1). Denote m” = W Observe that {7, [j,j + %] NA#0}
is {j;—m” < j <0} for A C (0,%) and {j;—m”" +1 <35 <0} for A C (%,1). Define the
matrix D4 by

(Da)ij = di—2;

for —N+1<i<0and —m" < j <0for AC (0,%)andfor—N§i§—land
—m/"+1<j <0for AC (3,1). Here we should point out D4 is N x (m” 4 1) matrix for

A C (0,%). Similarly we define

ao
a_1
Fy =
A _m!
when A C (0, ) and
a_1
Fy = .
A _m!

when A C (3,1). Then we establish the equation corresponding to (21)
DaFs = 0. (23)
By the procedure used in Case 1.1 we can prove Theorem 3 in Case 2.1.

Case 2.2 N;=1.

We can also establish an equation corresponding to (22). By the procedure used in Case
1.2 we can prove Theorem 3 in Case 2.2. We omit the details here. The proof of Theorem
3 is fininshed.
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