TWO-SCALE DIFFERENCE EQUATION: LOCAL AND GLOBAL LINEAR INDEPENDENCE

QIYU SUN

Oct. 1991 (revised June 1993)

Abstract

Let ϕ be a distribution solution of the two-scale difference equation (1). First the equivalence of local and global linear independence of the integer translates of ϕ is proved and a simple characterization for global linear independence of the integer translates of ϕ is given. Second a class of functions in V_{1} such that their integer translates are locally or globally linearly independent is found.

Key words: two-scale difference equation, global linear independence, local linear independence,B-spline,B-wavelet.**

1.Preliminary and Statement of Results.

The objective of this context is to study local and global linear independence of the integer translates of a distribution solution of the two-scale equation. To this end, we introduce some notations and definitions.

Let $\left\{c_{k}\right\}_{k=0}^{N}$ be a sequence such that $c_{0} \neq 0, c_{N} \neq 0$ and $\sum_{k=0}^{N} c_{k}=2$. Let ϕ be a unique complex-valued compactly supported distribution to satisfy a two-scale difference equation

$$
\left\{\begin{array}{l}
\phi(x)=\sum_{k=0}^{N} c_{k} \phi(2 x-k) \tag{1}\\
\hat{\phi}(0)=1
\end{array}\right.
$$

where the Fourier transform $\widehat{\phi}$ of ϕ is defined by

$$
\widehat{\phi}(x)=\int e^{-i x \xi} \phi(x) d x
$$

[^0]By taking Fourier transform in both sides of (1), we get

$$
\widehat{\phi}(\xi)=H(\xi / 2) \widehat{\phi}(\xi / 2),
$$

and

$$
\widehat{\phi}(\xi)=\Pi_{j=1}^{\infty} H\left(\xi / 2^{j}\right)
$$

where we denote

$$
H(\xi)=\frac{1}{2} \sum_{k=0}^{N} c_{k} e^{i k \xi}
$$

Hereafter we will say ϕ is the solution of (1) with $H(\xi)$.
The two-scale difference equation (1) attracted much attention in recent years since the equation of type (1) arise in the construction of wavelets with compact support ([3],[6]) and in the dyadic interpolation scheme of Deslauriers and Dubuc ([8],[9]) etc. For example,the wavelet ϕ_{N} constructed by I. Daubechies ([6]) is the solution of (1) with ${ }_{N} H(\xi)$, where $H_{N}(\xi)$ satisfies

$$
\left|H_{N}(\xi)\right|^{2}=\cos ^{2 N} \frac{\xi}{2} \sum_{k=0}^{N-1}\binom{N-1+k}{k} \sin ^{2 k} \frac{\xi}{2}
$$

for $N \geq 2$, and the univariate spline function B_{N} is the solution of (1) with $H(\xi)=$ $\left(\frac{1+e^{i \xi}}{2}\right)^{N}$ for $N \geq 1$.

We say that the integer translates of a compactly supported distribution ϕ are globally linearly independent if the condition

$$
\sum_{k \in Z} c(k) \phi(x-k)=0 \quad \text { on } \quad R
$$

implies $c(k)=0$ for all $k \in Z$. We say that the integer translates of ϕ are locally linearly independent if the conditions

$$
\begin{equation*}
\sum_{k \in Z} c(k) \phi(x+k)=0 \quad \text { on } \quad A \quad \text { and } \quad \operatorname{supp} E^{k} \phi \cap A \neq \emptyset \tag{2}
\end{equation*}
$$

imply $c(k)=0$ for every open set A. Here the shift operator E^{k} is defined by $E^{k} \phi(x)=$ $\phi(x+k)$ on R and \emptyset is the empty set.

It is well known that the integer translates of B_{N} are locally linearly independent (see [4],[9] for box spline) and the following formula plays an important role in the proof of local linear independence

$$
\frac{d}{d x} B_{N}(x)=B_{N-1}(x)-B_{N-1}(x-1)
$$

for $N \geq 2$.
To study local linear independence of the integer translates of the solution of (1), we establish a formula as the one above. Let B_{0} be the $N \times N$ dimensional matrix defined by

$$
\left(B_{0}\right)_{i j}=c_{2 i-j}
$$

for $0 \leq i, j \leq N-1$ and B_{1} be the $N \times N$ dimensional matrix defined by

$$
\left(B_{1}\right)_{i j}=c_{2 i-j+1}
$$

for $0 \leq i, j \leq N-1$. Hereafter we assume $c_{j}=0$ for $j \leq-1$ and $j \geq N+1$. Denote

$$
\Phi(x)=\left(\begin{array}{c}
\phi(x) \\
\phi(x+1) \\
\vdots \\
\phi(x+N-1)
\end{array}\right)
$$

on $(0,1)$. From the equation (1), we have the fundemental formulae

$$
\begin{align*}
B_{0} \Phi(x) & =\Phi\left(\frac{x}{2}\right) \\
B_{1} \Phi(x) & =\Phi\left(\frac{x+1}{2}\right) \tag{3}
\end{align*}
$$

on $(0,1)$.
The formulae above were used by I. Daubechies and J.Lagarias ([7]) to study local and global regularity of ϕ. The corresponding formulae on high dimensions were used by A.S.Cavaretta, W.Dahmen and C.A.Micchelli ([1]) to study the relationship between regularity of ϕ and the approximating degree of quasi-interpolants. In section 2 , we will use the formulae (3) to study relation between local and global linear independence.

Theorem 1. Let ϕ be the solution of (1). Then local and global linear independence of the integer translates ϕ are equivalent to each other.

The main steps to prove Theorem 1 are Lemma 1 and 3.
Denote

$$
P(z)=\sum_{k=0}^{N} c_{k} z^{k} .
$$

We say a polynomial $P(z)$ has symmetric root z_{0} if $P\left(z_{0}\right)=P\left(-z_{0}\right)=0$. For a compactly supported distribution ϕ we denote

$$
N(\phi)=\{z \in C ; \widehat{\phi}(z+2 k \pi)=0 \quad \text { for all } \quad k \in Z\}
$$

It is proved by A.Ron ([13]) that the integer translates of ϕ is globally linearly independent if and only if $N(\phi)=\emptyset$. Naturally we hope to give a characterization for global linear independence of the integer translates of ϕ which is given in section 3.

Theorem 2. Let ϕ be the solution of (1). Then the integer translates of ϕ are globally linearly independent if and only if the following conditions hold
(i) $P(z)$ has no symmetric roots,
(ii) $P(z)$ has not the factors of the form $\Pi_{k=1}^{N-1}\left(z+z_{0}{ }^{2 k}\right)$ with $z_{0}{ }^{2 N}=z_{0}$ and $z_{0} \neq 1$.

After the paper was completed we know Theorem 2 were also proved by Jia and Wang ([11]) but our proof is little different with them. As observed by C.K. Chui and J-Z Wang ([3]) and P-G Lemarie ([12]), the condition in Theorem 2 is closely related to minimal support of ϕ. By a characterization in [4], we know that the condition (ii) in Theorem 2 holds if and only if $N(\phi) \cap R=\emptyset$ under the assumption $P(z)$ has no symmetric roots on $\{|z|=1\}$. We also see from the proof of Theorem 1 (precisely Lemma 1) that the condition (i) in Theorem 2 holds if and only if B_{0} and B_{1} are nonsingular matrices. Therefore it suffices to use finite steps to show the conditions (i) and (ii) in Theorem 2 true.

Denote

$$
V_{k}=\left\{\sum_{j \in Z} c_{j} \phi_{k, j}(x) ; \quad\left\{c_{j}\right\}_{j \in Z} \quad \text { is some complex-valued sequence }\right\},
$$

where $\phi_{k, j}(x)=\phi\left(2^{k} x-j\right) \quad$ for $\quad k, j \in Z$. By equation (1), we have

$$
\cdots \subset V_{-1} \subset V_{0} \subset V_{1} \subset \cdots
$$

and ϕ belongs to V_{1}. Now our interest turns to find the functions in V_{1} such that their integer translates are locally linearly independent. The reason to consider is at least the scaling function and the wavelet function belong to V_{1} when $\left\{V_{k}\right\}$ is a multiresolution of some space (c.f. [2],[5]). To this aim we introduce a definition. For ψ a compactly supported distribution in V_{1} we call $\left[\frac{N_{1}}{2}, \frac{N+N_{2}}{2}\right]$ is the supporting interval of ψ if $\operatorname{supp} \psi \subset\left[\frac{\widetilde{N_{1}}}{2}, \frac{N+\widetilde{N_{2}}}{2}\right]$ implies $\widetilde{N_{1}} \leq N_{1}$ and $\widetilde{N_{2}} \geq N_{2}$, where $N_{i}, \widetilde{N_{i}} \in Z,(i=1,2)$. In section 4 we give the following characterization.

Theorem 3. Let ϕ be the solution of (1) and $\psi \in V_{1}$ be as above. Assume the integer translates of ϕ be globally linearly independent. Then the local and global linear independence of the integer translates of ψ are equivalent to each other if and only if $N_{2}-N_{1} \leq \widetilde{N}$ provided $\operatorname{supp} \psi$ is just the supporting interval defined above. Here we define $\widetilde{N}=N$ when $N+N_{1}+N_{2}$ is even and $\widetilde{N}=N-1$ when $N+N_{1}+N_{2}$ is odd.

Also we give an simple characterization to the compactly supported distributions in V_{1} such that their integer translates are globally linearly independent.

Now we give the applications of the theorems above to B-spline and B-wavelet considered by Chui and Wang in [3]. Now we assume equation (1) has L^{2} solution ϕ. Let an nested sequence

$$
\cdots \subset V_{-1} \subset V_{0} \subset V_{1} \subset \cdots
$$

be closed subspaces of $L^{2}=L^{2}(R)$ that constitutes a multiresolution analysis of L^{2} (see [6]). Let W_{k} be the orthogonal complement of V_{k} in V_{k+1}. Therefore we have the wavelet decomposition

$$
L^{2}=\oplus_{k \in Z} W_{k}
$$

We call an L^{2}-function ϕ the generator of the given multiresolution analysis provided that $\left\{E^{j} \phi\right\}_{j \in Z}$ is an unconditional basis of V_{0} and ϕ satisfies the two-scale difference equation

$$
\phi(x)=\sum_{k=0}^{N} c_{k} \phi(2 x-k) .
$$

for some sequence $\left\{c_{k}\right\}_{k=0}^{N}$ with $c_{0} \neq 0, c_{N} \neq 0$ and $\sum_{k=0}^{N} c_{k}=2$. Denote by Φ the family of generator ϕ. It is known that there is an unique L^{2}-function $\varphi \in \Phi$ such that every $\phi \in \Phi$ is a finite linear combination of $E^{j} \varphi$. We call this function φ the B-spline in term of Chui and Wang. By Theorem 3.1 in [3], the characteristic polynomial $P(z)$ defined by

$$
P(z)=\sum_{k=0}^{N} c_{k} z^{k}
$$

has no symmetric roots and $\sum_{k \in Z}|\widehat{\varphi}(x+2 k \pi)|^{2}$ is bounded above and below away from zero for $x \in R$. Therefore conditions (i) and (ii) in Theorem 2 hold true and the integer translates of the B-spline φ are locally linearly independent.

Theorem 4. The integer translates of any B-spline φ are locally linearly independent.
An L^{2}-function η is called the wavelet of the given multiresolution analysis provided that $\left\{E^{j} \eta\right\}_{j \in Z}$ is an unconditional basis of W_{0} and

$$
\begin{equation*}
\eta(x)=\sum_{k=N_{1}}^{N_{2}} d_{k} \varphi(x-k) \tag{4}
\end{equation*}
$$

for some sequence $\left\{d_{k}\right\}_{k=N_{1}}^{N_{2}}$ with $d_{N_{1}} \neq 0, d_{N_{2}} \neq 0$, where φ is the B-spline of the given multiresolution analysis. we call the wavelet η with minimum support by B-wavelet. In absence of notation, we denote the B-wavelet still by η. As we will see in section 4 that the integer translates of η are globally linearly independent. By the representation of $\mu(z)$ in [3], we know $N+N_{1}+N_{2}$ must be an even integer. Therefore by Theorem 3 we have

Theroem 5. If supp η is just the supporting interval of η, then the integer translates of the B-wavelet η are locally linearly independent if and only if $N_{2}-N_{1} \leq N$ in (4).

Therefore the integer translates of orthonormal wavelet constructed in [6] are locally linearly independent and the integer translates of B-wavelet of the univariate polynomial spline in [3] must not be locally linearly independent (c.f.[2] Page 184).

From now on, we always assume ϕ satisfies the two-scale difference equation (1) for $N \geq 1$ except in the last section. The reason to assume $N \geq 1$ is the unique compactly supported distrution solution of (1) is the delta distribution for which the local and global linear independence is easy to study and the results to ϕ below (except in last section) is also true for the delta distribution.

2. Local Linear Independence

It is known that local linear independence of the integer of ϕ implies its global linear independence. Therefore it suffices to prove the following slightly strong conclusion.

Theorem 6. Let $\left\{c_{k}\right\}_{k=0}^{N}$ and ϕ be as in Theorem 1. If the integer translates of ϕ are globally linearly independent, then the conditions

$$
\sum_{k \in Z} c(k) \phi(x-k)=0 \quad \text { on } \quad A \quad \text { and } \quad[k, k+N] \cap A \neq \emptyset
$$

imply $c(k)=0$ for every open set A.
Corollary 1. Assume ϕ be the solution of (1) and the integer translates of ϕ are globally linearly independent. Then $\operatorname{supp} \phi=[0, N]$.

The procedure to prove Theorem 6 is as follows. By the definition of $B_{i}(i=0,1)$, we know the components of $\left(1, z, \cdots, z^{N-1}\right) B_{i}(i=0,1)$ are $z^{j} H_{o}(z)$ or $z^{j} H_{e}(z)$ (c.f. (6)(9)), where $H_{o}(z)$ and $H_{e}(z)$ are the odd and even part of the characteristic polynomial $H(z)=\sum_{j=0}^{N} c_{j} z^{j}$, i.e.,

$$
H(z)=H_{e}\left(z^{2}\right)+z H_{o}\left(z^{2}\right) .
$$

The first claim (Lemma 5 which was also proved implicitly in [11]) is that the global linear independence of the integer translates of ϕ implies $H_{o}(z)$ and $H_{e}(z)$ have no common zero points. Using this claim we show that $B_{i}(i=0,1)$ are nonsingular matrices (see Lemma 1), and that $W_{(0,1)}=\{0\}$ if $W_{A} \neq\{0\}$ for some open set $A \subset(0,1)$, where

$$
W_{A}=\left\{\sum_{k=0}^{N-1} c(k) \phi(x+k)=0 \quad \text { on } \quad A\right\}
$$

(see Lemma 2). Hence the matter reduces to proving $W_{(0,1)} \neq\{0\}$. Conversely if $W_{(0,1)} \neq$ $\{0\}$, we want to find a sequence $\left(c_{0}, \cdots, c_{N-1}\right) \in W_{(0,1)}$ such that it can extends to $\left\{c_{k}^{*}\right\}_{k \in Z}$ such that $\sum_{k \in Z} c_{k}^{*} \phi(x+k)=0$ on R and $c_{k}^{*}=c_{k}$ for $0 \leq k \leq N-1$, then Theorem 6 is proved since the integer translates of ϕ are globally linearly independent. When $c_{k}=z_{0}^{k}$ for $k=0, \cdots, N-1$ and some $z_{0} \neq 0$ an easy extension of $\left\{c_{k}\right\}_{k=0}^{N-1}$ to $\left\{c_{k}^{*}\right\}_{k \in Z}$ is $c_{k}^{*}=z_{0}^{k}$ for $k \in Z$. Until now we need to do the following works, the existence of z_{0} such that $\left(1, z_{0}, \cdots, z_{0}^{N-1}\right) \in W_{(0,1)}$ when $W_{(0,1)} \neq\{0\}$ and $\sum_{k \in Z} z_{0}^{\prime k} \phi(x+k)=0$. The second equation is proved by Lemma 4 which was inspired by [14]. the existence of z_{0} such that $\left(1, z_{0}, \cdots, z_{0}^{N-1}\right) \in W_{(0,1)}$ when $W_{(0,1)} \neq\{0\}$ is completed in Lemma 3. We outline the proof here. Denote V be the dual of $W_{(0,1)}$ which is just linear span space of $\{\Phi(x) ; x \in(0,1)\}$ when $\phi(x)$ is continuous. Denotes the basis of V by e_{i} and $E_{i}(z)=\left(z, z^{2}, \cdots, z^{N}\right) e_{i}$ for $1 \leq i \leq m \leq N-1$ since $\operatorname{dim} V \leq N-1$. Hence the matter reduces to proving $\left\{E_{i}(z)\right\}_{i=1}^{m}$ have a nonzero common zero point. Denote $E(z)$ be the vector with its component $E_{i}(z)$, and $E_{o}(z)$ and $E_{e}(z)$ denote the odd and even part of $E(z)$, i.e., $E(z)=E_{e}\left(z^{2}\right)+z^{-1} E_{o}(z)$. Recall that $B_{i} V=V(i=0,1)$. Therefore $E_{o}(z)$ and $E_{e}(z)$ satisfies the equation

$$
z^{-1} H_{e}(z) C E_{e}(z)+H_{o}(z) C E_{o}(z)=H_{e}(z) E_{o}(z)+H_{o}(z) E_{e}(z)
$$

for some nonsingular $m \times m$ matrix C. Recall that $H_{e}(z)$ and $H_{o}(z)$ have no common zero points. We get the equation (12). Comparing the degree of the polynomials in both sides of (12), we get \bar{P} in (12) is a constant vector. Then the last important equation

$$
\left(C^{2}-z I\right) B_{m}^{0} E(z)=C \alpha\left(-H_{e}^{2}(z)+z H_{o}^{2}(z)\right)
$$

can easy obtained where B_{m}^{0} and C are nonsingular matrices and α is a constant vector. Observe that $\left(C^{2}-z I\right)$ has at most m eigenvalues and the degree of $-H_{e}^{2}(z)+z H_{o}^{2}(z)$ is exactly N. Hence $E\left(z_{0}\right)=0$ for some $z_{0} \neq 0$, which implies $\left(1, z_{0}, \cdots, z_{0}^{N-1}\right) \in W_{(0,1)}$ if $\operatorname{dim} V \leq N-1 \quad$ or $\quad W_{(0,1)} \neq\{0\}$. To prove Theorem 6 , we will use the following lemmas with their proofs postponed

Lemma 1. If the integer translates of ϕ are globally linearly independent, then B_{0} and B_{1} are nonsingular matrices.

Lemma 2. Assume that A be an open subset in $(0,1)$ and that B_{0} and B_{1} are nonsingular matrices. If there is a non-zero vector $d \in C^{N}$ such that $d \Phi(x)=0$ on A, then there is a no-zero vector $d^{\prime} \in C$ such that $d^{\prime} \Phi(x)=0$ on $(0,1)$.

Denote

$$
W=\left\{\alpha \in C^{N} ; \quad \alpha \Phi(x)=0 \quad \text { on } \quad(0,1)\right\}
$$

which is just W_{A} for $A=(0,1)$.
Lemma 3. Assume the integer translates of ϕ are globally linearly independent. If $W \neq\{0\}$, then there is non-zero $z_{0} \in C$ such that $\left(1, z_{0}, \cdots, z_{0}{ }^{N-1}\right) \in W$.

Lemma 4. If $\sum_{j \in Z} z_{0}{ }^{j} \phi(x-j)=0$ on $R \backslash Z$ for some non-zero $z_{0} \in C$, then there is non-zero $z_{0}{ }^{\prime} \in C$ such that

$$
\sum_{j \in Z} z_{0}^{\prime j} \phi(x-j)=0 \quad \text { on } \quad R .
$$

For a moment, we assume the lemmas above hold true. We start to prove Theorem 6. By Lemma 1, B_{0} and B_{1} are nonsingular matrices. By Lemma 2 and some elementary reduction, the matter reduces to $A=(0,1)$. Observe that $\sum_{k=0}^{N-1} z_{0}{ }^{j} \phi(x+k)=0$ on $(0,1)$ implies $\sum_{k \in Z} z_{0}{ }^{k} \phi(x+k)=0$ on $R \backslash Z$. By Lemma 3 and Lemma 4, the integer translates of ϕ are not globally linearly independent if $W \neq\{0\}$. Therefore $W=\{0\}$ and Theorem 6 holds true.

Before we start to prove the lemmas used in the proof of Theorem 6, we prove Corollary 1 first. Conversely if Corollary 1 is not true, then there exists an open set $A \subset[0, N]$ such that $\phi(x)=0$ on A, i.e., $\sum_{k \in Z} \delta(k) \phi(x-k)=0$ on A. Here we define $\delta(k)=1$ for $k=0$ and 0 elsewhere. Recall that $A \cap[0, N]=A \neq \emptyset$. By Theorem $6 \delta(0)=0$, which is a contradiction. Corollary 1 is proved.

To prove Lemma 1 to Lemma 4, we will use an elementary lemma which is also proved by Jia and Wang ([11]).

Lemma 5. If there exits $z_{0} \in C$ such that $H\left(z_{0}\right)=H\left(-z_{0}\right)=0$, then the integer translates of ϕ are globally linearly independent. Hereafter we define the characteristic polynomial $H(z)$ by

$$
H(z)=\sum_{j=0}^{N} c_{j} z^{j}
$$

instead of $H(\xi)$ defined in the beginning of section 1.
Proof of Lemma 5. Recall that $H(1)=2$. Therefore $z_{0} \neq 1,-1$. Since $H\left(z_{0}\right)=$ $H\left(-z_{0}\right)=0$, then we can write

$$
H(z)=\frac{\left(z^{2}-z_{0}^{2}\right)}{1-z_{0}^{2}} H_{1}(z),
$$

where $H_{1}(z)$ is a trigonometric polynomial with $H_{1}(1)=2$.
Let ϕ_{1} be the solution of (1) with $\frac{1}{2} H_{1}\left(e^{i \xi}\right) \frac{e^{i \xi}-z_{0}^{2}}{1-z_{0}^{2}}$. Therefore we get

$$
\widehat{\phi}(\xi)=\frac{e^{i \xi}-z_{0}^{2}}{1-z_{0}^{2}} \widehat{\phi}_{1}(\xi)
$$

and

$$
\phi(x)=\frac{1}{1-z_{0}^{2}} \phi_{1}(x-1)-\frac{z_{0}^{2}}{1-z_{0}^{2}} \phi_{1}(x) .
$$

Hence

$$
\begin{aligned}
& \sum_{j \in Z} z_{0}^{-2 j} \phi(x-j) \\
= & \sum_{j \in Z} \frac{z_{0}^{-2 j}}{1-z_{0}^{2}} \phi_{1}(x-j-1)-\sum_{j \in Z} \frac{z_{0}^{-2 j+2}}{1-z_{0}^{2}} \phi(x-j) \\
= & 0,
\end{aligned}
$$

and Lemma 5 holds true.
Now we start to prove Lemma 1 to Lemma 4.
Proof of Lemma 1. We prove Lemma 1 in two cases.
Case 1. N is an odd integer.
Let B be a $(N-1) \times(N-1)$ dimensional matrix defined by

$$
B_{i j}=c_{2 i-j}
$$

for $1 \leq i, j \leq N-1$. Observe that the first row of B_{0} is $\left(c_{0}, 0, \cdots, 0\right)$ and the last row of B_{1} is $\left(0, \cdots, 0, c_{N}\right)$. Therefore the matters reduce to the non-singularity of the matrix B.

Write

$$
\begin{aligned}
H_{e}(z) & =\sum_{i} c_{2 i} z^{i} \\
H_{o}(z) & =\sum_{i} c_{2 i+1} z^{i} \\
Q_{e}(z) & =\sum_{i} \alpha_{2 i} z^{i} \\
Q_{o}(z) & =\sum_{i} \alpha_{2 i+1} z^{i}
\end{aligned}
$$

for $\alpha=\left(\alpha_{1}, \cdots, \alpha_{N-1}\right) \in C^{N-1}$, where we assume $\alpha_{i}=0$ for $i \leq 0$ and $i \geq N$.
Observe that if det $B=0$ or B is a singular matrix then there is a non-zero vector $\alpha \in C^{N-1}$ such that $\left(1, z, \cdots, z^{N-1}\right) B \alpha$ is a zero polynomial about z. Also we know

$$
\left(1, z, \cdots, z^{N-1}\right) B \alpha=Q_{o}(z) H_{o}(z)+z^{-1} Q_{e}(z) H_{e}(z)
$$

Recall from Lemma 5 and $H(z)=H_{e}\left(z^{2}\right)+z H_{o}\left(z^{2}\right)$ that $H_{o}(z)$ and $H_{e}(z)$ has no common roots. Therefore there is a polynomial $Q(z)$ such that

$$
\left\{\begin{array}{r}
Q_{o}(z)=-H_{e}(z) Q(z) \tag{5}\\
z^{-1} Q_{e}(z)=H_{o}(z) Q(z)
\end{array}\right.
$$

Recall that the degree of H_{o} is $\frac{N-1}{2}$ and the degree of $Q_{e}(z) z^{-1}$ does no exceed $\frac{N-3}{2}$. Therefore $Q(z)=0$ and $Q_{o}(z)=Q_{e}(z)=0$, which contradicts to $\alpha \neq 0$. Hence B_{0} and B_{1} are not singular matrices in Case 1 .

Case 2. N is an even integer.
By the same procendure as used in Case 1, the matter reduces to $Q_{o}(z) H_{o}(z)+a^{-1} Q_{e}(z) H_{e}(z)$ being a zero polynomial only for zero vector $\alpha \in C^{N-1}$. Also we know (5) hold true. Recall that the degree of H_{e} is $\frac{N}{2}$ and the degree of $Q_{o}(z)$ does not exceed $\frac{N-2}{2}$. Therefore $Q(z)=0$ and $Q_{o}(z)=Q_{e}(z)=0$, which implies $\alpha=0$. Hence B_{0} and B_{1} are not singular matrices in Case 2. Lemma 1 is proved.

Proof of Lemma 2. Without loss of generality we assume A is an open interval $(a, b) \subset(0,1)$. Recall that

$$
\begin{aligned}
& B_{0} \Phi(2 x)=\Phi(x) \quad \text { for } \quad 0<x<\frac{1}{2} \\
& B_{1} \Phi(2 x-1)=\Phi(x) \quad \text { for } \quad \frac{1}{2}<x<1
\end{aligned}
$$

For $d \in C^{N}$, we denote $d_{\epsilon}=d B_{\epsilon}$ for $\epsilon=0$ and 1 . Therefore we observe that

$$
d_{0} \Phi(x)=0 \quad \text { on }(2 a, \min (1,2 b))
$$

when $b \leq \frac{1}{2}$ or $a+b \leq 1$ and

$$
d_{1} \Phi(x)=0 \quad(\max (2 a-1,0), 2 b-1)
$$

when $a \geq \frac{1}{2}$ or $a+b>1$.
Recall that B_{0} and B_{1} are nonsingular matrices. Hence from above observation we get that when $(a, b) \subset\left(0, \frac{1}{2}\right)$ or $\left(\frac{1}{2}, 1\right)$ there are an open interval $\left(a^{\prime}, b^{\prime}\right)$ with length $2(b-a)$ and a non-zero $d^{\prime} \in C^{N}$ such that $d^{\prime} \Phi(x)=0$ on $\left(a^{\prime}, b^{\prime}\right)$, and when $(a, b) \ni \frac{1}{2}$ there are an open interval $\left(0, b^{\prime}\right)$ and a non-zero $d^{\prime \prime} \in C^{N}$ such that $d^{\prime \prime} \Phi(x)=0$ on $\left(0, b^{\prime}\right)$. By the observation above we can find a non-zero $d^{\prime \prime \prime} \in C^{N}$ such that $d^{\prime \prime \prime} \Phi(x)=0$ on $(0,1)$. Lemma 2 is proved.

Proof of Lemma 3. Write

$$
H_{e}(z)=\sum_{j} c_{2 j} z^{j}
$$

and

$$
H_{o}(z)=\sum_{j} c_{2 j+1} z^{j}
$$

Therefore we have

$$
\begin{align*}
& \left(1, z, \cdots, z^{N-1}\right) B_{0}=\left(H_{e}(z), z H_{o}(z), z H_{e}(z), \cdots, z^{\frac{N-1}{2}} H_{o}(z), z^{\frac{N-1}{2}} H_{e}(z)\right) \tag{6}\\
& \left(1, z, \cdots, z^{N-1}\right) B_{1}=\left(H_{o}(z), H_{e}(z), \cdots, z^{\frac{N-3}{2}} H_{o}(z), z^{\frac{N-3}{2}} H_{e}(z), z^{\frac{N-1}{2}} H_{o}(z)\right) \tag{7}
\end{align*}
$$

when N is odd and

$$
\begin{align*}
& \left(1, z, \cdots, z^{N-1}\right) B_{0}=\left(H_{e}(z), z H_{o}(z), z H_{e}(z), \cdots, z^{\frac{N-2}{2}} H_{o}(z), z^{\frac{N-2}{2}} H_{e}(z), z^{\frac{N}{2}} H_{o}(z)\right) \tag{8}\\
& \left(1, z, \cdots, z^{N-1}\right) B_{1}=\left(H_{o}(z), H_{e}(z), \cdots, z^{\frac{N-2}{2}} H_{o}(z), z^{\frac{N-2}{2}} H_{e}(z)\right) \tag{9}
\end{align*}
$$

when N is even.
Denote by V the dual space of W, i.e

$$
V=\{e, \quad w e=0, \quad \forall w \in W\}
$$

Let

$$
e_{i}=\left(\begin{array}{c}
e_{i 1} \\
e_{i 2} \\
\vdots \\
e_{i N}
\end{array}\right)
$$

($1 \leq i \leq m$) be a basis of V. Denote

$$
\begin{aligned}
E_{i}(z) & =\sum_{1 \leq j \leq N} e_{i j} z^{j} \\
E_{i e}(z) & =\sum_{1 \leq 2 k \leq N} e_{i(2 k)} z^{k} \\
E_{i o}(z) & =\sum_{1 \leq 2 k+1 \leq N} e_{i(2 k+1)} z^{k} .
\end{aligned}
$$

Hence the matter reduces to $\left(E_{1}(z), \cdots, E_{m}(z)\right)=0$ for some non-zero $z_{0} \in C$ when $1 \leq m \leq n-1$.

Recall that $W B_{0}=W$ and $W B_{1}=W$. Therefore $B_{0} V=V$ and $B_{1} V=V$. In other words, there exist nonsingular matrices $B_{m}^{\epsilon}=\left(\lambda_{i j}^{\epsilon}\right)_{1 \leq i, j \leq m}$ such that

$$
B_{\epsilon} e_{i}=\sum_{1 \leq j \leq m} \lambda_{i j}^{\epsilon} e_{j}
$$

for $\epsilon=0$ and 1. Hence from (6)-(9) we get

$$
\left\{\begin{align*}
H_{e}(z) E_{i o}(z)+H_{o}(z) E_{i e}(z) & =\sum_{1 \leq j \leq m} \lambda_{i j}^{0} E_{j}(z) \tag{10}\\
H_{o}(z) E_{i o}(z)+z^{-1} H_{e}(z) E_{i e}(z) & =\sum_{1 \leq j \leq m} \lambda_{i j}^{1} E_{j}(z)
\end{align*}\right.
$$

for $1 \leq i \leq m$. Write (10) in matrix form

$$
\left\{\begin{array}{r}
H_{e}(z) E_{0}(z)+H_{0}(z) E_{e}(z)=B_{m}^{0} E(z) \tag{11}\\
z^{-1} H_{e}(z) E_{e}(z)+H_{0}(z) E_{0}(z)=B_{m}^{1} E(z)
\end{array}\right.
$$

where we denote

$$
\begin{gathered}
E_{o}(z)=\left(\begin{array}{c}
E_{1 o}(z) \\
E_{2 o}(z) \\
\vdots \\
E_{m o}(z)
\end{array}\right), \\
E_{e}(z)=\left(\begin{array}{c}
E_{1 e}(z) \\
E_{2 e}(z) \\
\vdots \\
E_{m e}(z)
\end{array}\right)
\end{gathered}
$$

and

$$
E(z)=\left(\begin{array}{c}
E_{1}(z) \\
E_{2}(z) \\
\vdots \\
E_{m}(z)
\end{array}\right)
$$

Therefore we have

$$
z^{-1} H_{e}(z) C E_{e}(z)+H_{o}(z) C E_{o}(z)=H_{e}(z) E_{o}(z)+H_{o}(z) E_{e}(z)
$$

where we define $C=B_{m}^{0}\left(B_{m}^{1}\right)^{-1}$.
Recall from Lemma 5 that $H_{e}(z)$ and $H_{0}(z)$ has no symmetric roots. So we have

$$
\begin{align*}
& z^{-1} C E_{e}(z)-E_{o}(z)=\bar{P}(z) H_{o}(z) \\
& C E_{o}(z)-E_{e}(z)=-\bar{P}(z) H_{e}(z) \tag{12}
\end{align*}
$$

where

$$
\bar{P}(z)=\left(\begin{array}{c}
P_{1}(z) \\
P_{2}(z) \\
\vdots \\
P_{m}(z)
\end{array}\right)
$$

and $P_{i}(z)(1 \leq i \leq m)$ are Laurent polynomials. For a Laurent polynomial $Q(z)=$ $\sum_{k_{2} \leq k \leq k_{1}} a_{k} z^{k}$ with $a_{k} \neq 0$ and $a_{k_{2}} \neq 0$, we define $d^{-}(Q)=k_{2}$ and $d^{+}(Q)=k_{1}$. For the vector $\bar{P}(z)$, we define $d^{-}(\bar{P})=\min _{1 \leq i \leq m} d^{-}\left(P_{i}\right)$ and $D^{+}(\bar{P})=\max _{1 \leq i \leq m} d^{+}\left(P_{i}\right)$. Observe that $d^{+}\left(E_{0}\right) \leq\left[\frac{N-1}{2}\right], d^{-}\left(E_{0}\right) \geq 0$ and $d^{+}\left(E_{e}\right) \leq\left[\frac{N}{2}\right], d^{-}\left(E_{e}\right) \geq 0$, where we denote $[x]$ the integer part of x.

On other hand by $c_{0} \neq 0$ and $c_{N} \neq 0$, we have

$$
d^{+}\left(H_{o}\right)=\frac{N-1}{2} \quad \text { and } \quad d^{-}\left(H_{e}\right)=0
$$

when N is odd and

$$
d^{+}\left(H_{e}\right)=\frac{N}{2} \quad \text { and } \quad d^{-}\left(H_{e}\right)=0
$$

when N is even. Therefore we have $d^{+}(\bar{P}) \leq 0$ and $d^{-}(\bar{P}) \geq 0$. This implies P is a constant vector, i.e., $P_{i}(z)$ are constant polynomials.

In other words, we can write (12) as

$$
\begin{array}{r}
z^{-1} C E_{e}(z)-E_{0}(z)=\alpha H_{o}(z) \\
C E_{o}(z)-E_{0}(z)=-\alpha H_{e}(z) \tag{13}
\end{array}
$$

for some $\alpha \in C^{m}$. Therefore we have

$$
\begin{array}{r}
\left(z^{-1} C^{2}-I\right) E_{e}=C \alpha H_{o}(z)-\alpha H_{e}(z) \\
\left(z^{-1} C^{2}-I\right) E_{o}=-C \alpha z^{-1} H_{e}(z)+\alpha H_{o}(z) \tag{14}
\end{array}
$$

where I is the $m \times m$ dimensional identity matrix. Taking the identity (14) into (11), we get

$$
\begin{aligned}
& \left(z^{-1} C^{2}-I\right) B_{m}^{0} E(z) \\
= & H_{e}(z)\left(-C \alpha z^{-1} H_{e}(z)+\alpha H_{o}(z)\right)+H_{o}(z)\left(C \alpha H_{0}(z)-\alpha H_{e}(z)\right) \\
= & C \alpha\left(-z^{-1} H_{e}^{2}(z)+H_{o}^{2}(z)\right),
\end{aligned}
$$

and

$$
\left(C^{2}-z I\right) B_{m}^{0} E(z)=C \alpha\left(-H_{e}^{2}(z)+z H_{o}^{2}(z)\right)
$$

From $c_{0} \neq 0$ and $c_{N} \neq 0$, we have $d^{+}\left(z H_{o}^{2}(z)-H_{e}(z)^{2}\right)=N$ and $d^{-}\left(z H_{o}^{2}(z)-H_{e}(z)^{2}=\right.$ 0 . Therefore $z H_{o}^{2}(z)-H_{e}^{2}(z)$ has exactly N roots (with multiplicity). On other hand $\left(C^{2}-z I\right)$ has exactly m eigenvalues (with multiplicity). Recall that $m \leq N-1$. Therefore there exists $z_{0} \in C$ such that $E\left(z_{0}\right)=0$. We finish the proof of Lemma 3 .

Proof of Lemma 4. Let z_{0} be a non-zero complex number such that

$$
\sum_{j \in Z} z_{0}^{j} \phi(x+j)=0 \quad \text { on } R \backslash Z
$$

Let δ_{k}^{s} be the delta ditribution defined by

$$
\left\langle\delta_{k}^{s}, f\right\rangle=\left(\frac{\partial}{\partial x}\right)^{s} f(k)
$$

Therefore there exists an integer k and some $a_{s} \in C(0 \leq s \leq k)$ such that

$$
\begin{equation*}
\sum_{j \in Z} z_{0}^{j} \phi(x+j)=\sum_{j \in Z} z_{0}^{j}\left(\sum_{0 \leq s \leq k} a_{s} \delta_{j}^{s}\right) . \tag{15}
\end{equation*}
$$

Obviously if $a_{s}=0$ for all $0 \leq s \leq k$ then Lemma 4 holds for $z_{0}^{\prime}=z_{0}$. Now we assume $a_{s}(0 \leq s \leq k)$ are not complete zero.

Taking Fourier transform in both side of (15), we get

$$
\begin{equation*}
\widehat{\phi}(\theta+2 \pi k)=R(\theta+2 \pi k) \tag{16}
\end{equation*}
$$

for $k \in Z$, where $\exp (\theta)=z_{0}$ and a polynomial $R(x)=\sum_{0 \leq s \leq k} a_{s} x^{s}$. Recall that $\widehat{\phi}(2 x)=$ $H(x) \widehat{\phi}(x)$ and

$$
\widehat{\phi}\left(\theta+2^{m} k \pi\right)=\Pi_{1 \leq j \leq m-1} H\left(2^{-j} \theta\right) \widehat{\phi}\left(2^{-m+1} \theta+2 k \pi\right) .
$$

Therefore by the continuity of $\widehat{\phi}$ we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \widehat{\phi}\left(\theta+2^{m} k \pi\right)=\widehat{\phi}(\theta) \widehat{\phi}(2 k \pi) \tag{17}
\end{equation*}
$$

for all $k \in Z$. On other hand if the degree of R is not zero then $R\left(\theta+2^{m} k \pi\right)$ tends to infinite as m tends to infinite. Hence the degree of R must be zero. By (16) and (17), we have

$$
\widehat{\phi}(\theta) \widehat{\phi}(2 k \pi)=a_{0} \neq 0
$$

and

$$
\widehat{\phi}(2 k \pi)=\widehat{\phi}\left(2 k^{\prime} \pi\right)
$$

for all $k, k^{\prime} \in Z$ Recall that H is a periodic function with period 2π. Therefore we can inductively prove that

$$
\widehat{\phi}\left(\frac{m}{2^{s}} \pi\right)=\widehat{\phi}\left(\frac{m^{\prime}}{2^{s}} \pi\right)
$$

when $\frac{m-m^{\prime}}{2^{s+1}}$ is an integer. By the continuity of $\widehat{\phi}$, we have

$$
\widehat{\phi}(y)=\widehat{\phi}(y+2 \pi)
$$

for all $y \in R$, i.e., $\widehat{\phi}$ is a periodic function with period 2π. Hence we have

$$
\operatorname{supp} \phi \subset\{0,1, \cdots, N\}
$$

and we can write

$$
\phi(x)=\sum_{k=0}^{N} d(k) \delta_{k}^{0} .
$$

Recall that $c_{0} \neq 0$ and $c_{N} \neq 0$. Therefore there exists k_{1} and k_{2} such that $k_{1} \neq k_{2}$, $d\left(k_{1}\right) \neq 0$ and $d\left(k_{2}\right) \neq 0$. By the algebraic fundemental theorem, there exists non-zero complex number z_{0}^{\prime} such that $\sum_{k=0}^{N} d(k) z_{0}^{k}=0$. Hence

$$
\begin{aligned}
& \sum_{j \in Z} z_{0}^{\prime j} \phi(x+j)=\sum_{j \in Z} z_{0}^{\prime j} \sum_{k=0}^{N} d(k) \delta_{k-j}^{0} \\
& \quad=\sum_{j \in Z} \delta_{m}^{0} z_{0}^{\prime-m} \quad\left(\sum_{k=0}^{N} d(k) z_{0}^{k}\right) \\
& \quad=0 .
\end{aligned}
$$

and Lemma 4 holds true.

3. Global Linear Independence

In this section we use a method in [4] to prove Theorem 2 which is also proved by Jia and Wang ([11]).

First the necessity. By Lemma 5, we have $P(z)$ has no symmetric roots on $C \backslash\{0\}$. Recall that $P(0)=c_{0} \neq 0$. Therefore (i) holds. Conversely we assume (ii) do not hold. Therefore there is $x \in R$ such that $\widehat{\phi}(x+2 \pi k)=0$ for all $k \in Z$ by Theorem 1 in [4]. Therefore $x \in N(\phi)$, which contradicts to $N(\phi)=\emptyset$ by Theorem 1.1 in [13]. Hence (i) and (ii) hold.

Second the sufficiency. By the assumption (ii) and (i) for $|z|=1$, we have $N(\phi) \cap R=$ \emptyset. Conversely we assume there exists $z_{0} \in C$ with non-zero imaginary part such that $\widehat{\phi}\left(z_{0}+2 k \pi\right)=0$ for all $k \in Z$. Observe that

$$
2^{-j}\left(z_{0}+2 k \pi\right) \neq 2^{-j^{\prime}}\left(z_{0}+2 k^{\prime} \pi\right) \quad(\bmod \quad 2 \pi)
$$

for $j \neq j^{\prime}$ and $k, k^{\prime} \in Z$. Here we say $x \neq y(\bmod 2 \pi)$ if $\frac{x-y}{2 \pi}$ is not an integer. Denote

$$
D_{j}=\left\{k ; H\left(2^{-j}\left(z_{0}+2 k \pi\right)\right)=0\right\}
$$

Therefore $k \in D_{j}$ if and only if $k+2^{j} \in D_{j}$. Recall that H is a trigonometric polynomial. Therefore there exist $M \in Z$ such that $D_{j}=\emptyset$ for all $j \geq M+1$ and $\cup_{1 \leq j \leq M} D_{j}=Z$. On
other hand (i) implies $|H(\xi)|^{2}+|H(\xi+\pi)|^{2} \neq 0$ for $\xi \in C \backslash R$. Therefore $k \in D_{j}$ implies $k+2^{j-1} \notin D_{j}$ for $1 \leq j \leq M$. Denote

$$
B_{j}=Z \backslash U_{1 \leq s \leq j} D_{s}
$$

for $1 \leq j \leq M$. Obviously B_{1} is not empty set. Inductively we assume B_{s-1} is not empty set where $s \leq M$. Therefore there exists $k \in B_{s-1}$. Recall that k and $k+2^{s-1} \in B_{s-1}$ and that at most one of k and $k+2^{s-1}$ is contained in D_{s}. Therefore B_{s} is not empty set and B_{M} is also not empty set by induction, which contradicts $B_{M}=\emptyset$. Hence $N(\phi)=\emptyset$ and the sufficiency of Theorem 2 is proved by Theorem 1.1 in [13].

4. Compactly Supported Distributions In V_{1}

Before we start to prove Theorem 3, we give a charaterization to global linear independence. Recall that $\psi \in V_{1}$. We write

$$
\psi(x)=\sum_{k \in Z} d_{k} \phi(2 x-k) .
$$

To prove $\left\{d_{k}\right\}_{k \in Z}$ is a finite sequence, i.e., there exists \tilde{N} such that $d_{k}=0$ for $|k|>\tilde{N}$, we will use the following lemma.

Lemma 6 ([14]) Assume that the integer translates of a compactly supported distribution ϕ are globally linearly independent. Then there exists a bounded set A such that the conditions

$$
\sum_{k \in Z} c(k) \phi(x+k)=0 \quad \text { on } \quad A \quad \text { and } \quad \operatorname{supp} E^{k} \phi \cap A \neq \emptyset
$$

imply $c(k)=0$.
Recall that ψ is compactly supported distribution and the integer translates of ϕ are globally linearly independent. Therefore there exists \bar{N} such that $d_{k}=0$ for $|k| \geq \bar{N}$. Now we can write

$$
\begin{equation*}
\psi(x)=\sum_{k=N_{1}}^{N_{2}} d_{k} \phi(2 x-k) \tag{18}
\end{equation*}
$$

where $d_{N_{1}} \neq 0$ and $d_{N_{2}} \neq 0$. Recall from Corollary 1 that $\operatorname{supp} \phi=[0, N]$. Therefore the supporting interval of ψ is just $\left[\frac{N_{1}}{2}, \frac{N+N_{2}}{2}\right]$.

Theorem 7. The integer translates of ψ are globally linearly independent if and only if $\mu(z)$ has no symmetric roots, where the "symbol" polynomial is defined by

$$
\mu(z)=\sum_{k=N_{1}}^{N_{2}} d_{k} z^{k}
$$

Proof of Theorem 7. The necessity. Assume $\mu\left(z_{0}\right)=\mu\left(-z_{0}\right)=0$ for some non-zero $z_{0} \in C$. Therefore

$$
\begin{aligned}
& \sum_{k \in Z} z_{0}^{-2 k} \psi(x-k) \\
= & \sum_{k \in Z} z_{0}^{-2 k} \sum_{j=N_{1}}^{N_{2}} d_{j} \phi(2 x-2 k-j) \\
= & \sum_{k \in Z} \phi(2 x-k)\left(\sum_{\substack{N_{1} \leq j \leq N_{2} \\
k-j}} z_{0}^{j} d_{j}\right) \cdot z_{0}{ }^{-k} \\
= & \frac{1}{2} \sum_{k \in Z} z_{0}^{-k} \phi(2 x-k) \cdot\left(\mu\left(z_{0}\right)+\mu\left(-z_{0}\right)(-1)^{k}\right) \\
= & 0 .
\end{aligned}
$$

and the integer translates of ψ are not globally linearly independent, which is a contradiction. The necessity is proved.

The sufficiency. Conversely if the sufficiency is not true, then by Theorem 1.1 in [13] there is $\theta \in C$ such that

$$
\sum_{k \in Z} e^{2 i \theta k} \psi(x-k)=0 \quad \text { on } \quad R
$$

On other hand by (18) we have

$$
\begin{aligned}
& \sum_{k \in Z} e^{2 i \theta k} \psi(x-k) \\
= & \sum_{k \in Z} \phi(2 x-h) \sum_{\substack{N_{1} \leq j \leq N_{2} \\
h-j}} d_{j} e^{-i j \theta} \quad \text { on } \quad R .
\end{aligned}
$$

By Theorem 1 and 2 we have

$$
\sum_{\substack{N_{1} \leq j \leq N_{2} \\ j \\ j \text { even }}} d_{j} e^{-i j \theta}=0
$$

and

$$
\sum_{\substack{N_{1} \leq j \leq N_{2} \\ j \leq d d}} d_{j} e^{-i j \theta}=0
$$

Hence $\mu\left(e^{-i \theta}\right)=\mu\left(-e^{-i \theta}\right)=0$ and $\mu(z)$ has a symmetric root $e^{-i \theta}$, which is a contradiction. Hence the sufficiency is proved and Theorem 7 is proved.

Proof of Theorem 3 Without loss of generality we assume $N_{2}=0$ or 1 , otherwise we replaced ψ be shifted distribution $E^{-\left[\frac{\left.N_{1}\right]}{2}\right]} \psi$. We divide two cases to prove Theorem 3 .

Case 1. $N+N_{2}+N_{1}$ is even integer.

Case 1.1. $\quad N_{1}=0$

Denote $m=\frac{N+N_{2}}{2}$. By (4), $\operatorname{supp} \psi \subset[0, m]$. By some simple reduction, the matter reduces to $A \subset(0,1)$. Let $\left\{\psi_{k}\right\}_{k=-m+1}^{0}$ be a sequence such that

$$
\begin{equation*}
\sum_{-m+1 \leq k \leq 0} a_{k} \psi(x-k)=0 \quad \text { on } \quad A, \tag{19}
\end{equation*}
$$

i.e.,

$$
\begin{aligned}
\sum_{-m+1 \leq k \leq 0} & a_{k} \sum_{j \in Z} d_{j} \phi(2 x-2 k-j) \\
= & \sum_{h \in Z} \phi(2 x-h) \sum_{-m+1 \leq k \leq 0} d_{h-2 k} a_{k} \\
=0 . & \text { on } \quad A .
\end{aligned}
$$

Hereafter we assume $d_{j}=0$ for $j \leq N_{1}-1$ and for $j \geq N_{2}+1$. Recall by Theorem 1 and 2 that the integer translates of ϕ are locally linearly independent. Therefore we have

$$
\begin{equation*}
\sum_{-m+1 \leq k \leq 0} d_{h-2 k} a_{k}=0 \tag{20}
\end{equation*}
$$

for $-N+1 \leq h \leq 0$ when $A \cap\left(0, \frac{1}{2}\right) \neq \emptyset$ and for $-N \leq h \leq-1$ when $A \cap\left(0, \frac{1}{2}\right)=\emptyset$. In matrix notation we write (20) as

$$
\begin{equation*}
D_{A} F=0 . \tag{21}
\end{equation*}
$$

Here we define the vector

$$
F=\left(\begin{array}{c}
a_{0} \\
a_{-1} \\
\vdots \\
a_{-m+1}
\end{array}\right)
$$

and the $N \times m$ matrix D_{A} by

$$
\left(D_{A}\right)_{i j}=d_{i-2 j}
$$

for $-N+1 \leq i \leq 0$ and $-m+1 \leq j \leq 0$ when $A \cap\left(0, \frac{1}{2}\right) \neq \emptyset$ and for $-N+2 \leq i \leq 1$ and $-m+1 \leq j \leq 0$ when $A \cap\left(0, \frac{1}{2}\right)=\emptyset$.

First the necessity. Denote by $r\left(D_{A}\right)$ the rank of the matrix D_{A}. Obviously it suffices to show there exists a no-zero sequence $\left\{a_{k}\right\}_{-m+1}^{0}$ such that (19) holds on ($0, \frac{1}{2}$) for every
$N_{2} \geq N+1$. Observe that $r\left(D_{A}\right) \leq N$ and $m \geq N+1$. Therefore there exists a non-zero vector F or non-zero sequence $\left\{a_{k}\right\}_{k=-m+1}^{0}$ such that $D_{A} F=0$. Therefore

$$
\begin{aligned}
\sum_{-m+1 \leq k \leq 0} & a_{k} \psi(x-k) \\
= & \sum_{h \in Z} \phi(2 x-h) \sum_{-m+1 \leq k \leq 0} d_{h-2 k} a_{k} \\
=0 & \text { on } \quad\left(0, \frac{1}{2}\right)
\end{aligned}
$$

which contradicts local linear independence of the integer translates of ψ since supp $\psi=$ $\left[\frac{N_{1}}{2}, \frac{N+N_{2}}{2}\right]$ and $\operatorname{supp} \psi(\cdot-k) \cap\left(0, \frac{1}{2}\right) \neq \emptyset$ for $-m+1 \leq k \leq 0$.

The necessity in Case 1.1 is proved.
Second the sufficiency. Obviously it suffices to prove $D_{A} F=0$ holds only for $F=0$, or to prove $r\left(D_{A}\right)=m \leq N$ when $N_{2} \leq N$. Let $\widetilde{D_{A}}$ be a $N \times m$ matrix defined by

$$
\left(\widetilde{D_{A}}\right)_{i j}=\widetilde{d}_{2 j-i}
$$

when $A \cap\left(0, \frac{1}{2}\right) \neq \emptyset$ and

$$
\left(\widetilde{D_{A}}\right)_{i j}=\widetilde{d}_{2 j-i-1}
$$

when $A \cap\left(0, \frac{1}{2}\right)=\emptyset$, where $1 \leq i \leq N$ and $1 \leq j \leq m$. Hereafter we denote $\widetilde{d}_{j}=d_{N_{2}-j}$ for $j \in Z$. Obviously $r\left(\widetilde{D_{A}}\right)=r\left(D_{A}\right)$. Denote the transpose of \widetilde{D}_{A} by D_{A}^{*}. Hence the matter reduces to the construction of nonsingular m dimensional submatrix E of D_{A}^{*}. We divide two cases to construct E explicitly. The construction E when $A \cap\left(0, \frac{1}{2}\right)=\emptyset$ is similar to the one when $A \cap\left(0, \frac{1}{2}\right) \neq \emptyset$. We only construct E explicitly when $A \cap\left(0, \frac{1}{2}\right) \neq \emptyset$ here.

Case 1.1.a. $\quad N_{2}$ is an even integer
Write

$$
D_{A}^{*}=\left(\begin{array}{cc}
E_{1} & E_{2} \\
0 & E_{3}
\end{array}\right)
$$

where $N_{2} \times N_{2}$ matrix E_{1} is defined by

$$
\left(E_{1}\right)_{i j}=\widetilde{d}_{2 i-j}
$$

for $1 \leq i, j \leq N_{2}$ and 0 is the zero matrix.
We construct E in Case 1.1.a as follows. Let the k-row of E be the k-row of D_{A}^{*} for $1 \leq k \leq N_{2}$ and be the $\left(2 k-N_{2}\right)$-row of D_{A}^{*} for $N_{2}+1 \leq k \leq m$. Recall that $2 m-N_{2}=N$. So our construction of E is convenient. Furthermore we can write

$$
E=\left(\begin{array}{cc}
E_{1} & E_{2}^{\prime} \\
0 & E_{3}^{\prime}
\end{array}\right)
$$

where E_{3}^{\prime} is a $\left(m-N_{2}\right)$ dimensional upper triangular matrix with diagonal elements $\widetilde{d}_{N} \neq 0$ identically. By the proof of Lemma 1 and Theorem $7, E_{1}$ is nonsingular matrix or $r\left(E_{1}\right)=$ N_{2}. Therefore $r(E)=m$ and the construction of E in Case 1.1.a is finished.

Case 1.1.b. $\quad N_{2}$ is an odd integer.
Write

$$
D_{A}^{*}=\left(\begin{array}{cc}
E_{4} & 0 \\
E_{5} & E_{6}
\end{array}\right)
$$

where E_{6} is a N_{2} dimensional matrix defined by

$$
\left(E_{6}\right)_{i j}=\widetilde{d}_{2 i-j}
$$

for $1 \leq i, j \leq N_{2}$.
We construct E as follows. Let the k-row of E be the $(2 k)$-row of D_{A}^{*} for $1 \leq k \leq \frac{N-N_{2}}{2}$ and the $\left(k+\frac{N-N_{2}}{2}\right)$ row of D_{A}^{*} for $\frac{N-N_{2}}{2}+1 \leq k \leq m$. Therefore we can write

$$
E=\left(\begin{array}{cc}
E_{4}^{\prime} & 0 \\
E_{5}^{\prime} & E_{6}
\end{array}\right)
$$

where E_{4}^{\prime} is a $\left(m-N_{2}\right)$ dimensional lower triangular matrix with diagonal element $\widetilde{d}_{0} \neq 0$ identically. By the proof of Lemma 1 and Theorem $7, E_{6}$ is a nonsingular matrix. Therefore $r(E)=m$ and the construction of E Case 1.1.b is finished.

We finish the proof of the sufficiency in Case 1.1.
Case $1.2 \quad N_{1}=1$.
Obviously $\operatorname{supp} \psi \subset\left[\frac{1}{2}, \frac{N+N_{2}}{2}\right]$. Denote $m^{\prime}=\frac{N+N_{2}-1}{2}$. Observe that the set $\left\{j,\left[\frac{1}{2}+\right.\right.$ $\left.\left.j ; \frac{N+N_{2}}{2}+j\right] \cap A \neq \emptyset\right\}$ is $\left\{j,-m^{\prime} \leq j \leq-1\right\}$ for $A \subset\left(0, \frac{1}{2}\right),\left\{j,-m^{\prime}+1 \leq j \leq 0\right\}$ for $A \subset\left(\frac{1}{2}, 1\right)$ and $\left\{j ;-m^{\prime} \leq j \leq 0\right\}$ for $\frac{1}{2} \in A$. It is easy to see that the conclusion for $\frac{1}{2} \in A$ would follow from the conclusions for $A \subset\left(0, \frac{1}{2}\right)$ and $A \subset\left(\frac{1}{2}, 1\right)$ because $A=\left(A \cap\left(0, \frac{1}{2}\right)\right) \cup\left(A \cap\left(\frac{1}{2}, 1\right)\right) \cup\left\{\frac{1}{2}\right\}$. Hence the matter reduces to the two cases $A \subset\left(0, \frac{1}{2}\right)$ and $A \subset\left(\frac{1}{2}, 1\right)$. Define $N \times m^{\prime}$ matrix by

$$
\left(D_{A}\right)_{i j}=d_{i-2 j}
$$

for $-N+1 \leq i \leq 0$ and $-m^{\prime} \leq j \leq-1$ when $A \subset\left(0, \frac{1}{2}\right)$ and for $-N \leq i \leq-1$ and $-m^{\prime}+1 \leq j \leq 0$ when $A \subset\left(\frac{1}{2}, 1\right)$. Denote

$$
F_{A}=\left(\begin{array}{c}
a_{\varepsilon} \\
a_{\varepsilon-1} \\
\vdots \\
a_{\varepsilon-m^{\prime}+1}
\end{array}\right)
$$

where $\varepsilon=0$ for $A \subset\left(\frac{1}{2}, 1\right)$ and $\varepsilon=-1$ for $A \subset\left(0, \frac{1}{2}\right)$. Therefore we establish the equation corresponding to (21)

$$
\begin{equation*}
D_{A} F_{A}=0 \tag{22}
\end{equation*}
$$

By the procedure used in Case 1.1 and (22), we prove Theorem 3 in Case 1.2. We finish the proof of Theorem 3 in Case 1.

Case 2. $N+N_{2}+N_{1}$ is an odd integer
Case $2.1 \quad N_{1}=0$
First we have $\operatorname{supp} \psi \subset\left[0, \frac{N+N_{2}}{2}\right]$. As in Case 1.2 , it suffices to consider the two case $A \subset\left(0, \frac{1}{2}\right)$ and $A \subset\left(\frac{1}{2}, 1\right)$. Denote $m^{\prime \prime}=\frac{N+N_{2}-1}{2}$. Observe that $\left\{j,\left[j, j+\frac{N+N_{2}}{2}\right] \cap A \neq \emptyset\right\}$ is $\left\{j ;-m^{\prime \prime} \leq j \leq 0\right\}$ for $A \subset\left(0, \frac{1}{2}\right)$ and $\left\{j ;-m^{\prime \prime}+1 \leq j \leq 0\right\}$ for $A \subset\left(\frac{1}{2}, 1\right)$. Define the matrix D_{A} by

$$
\left(D_{A}\right)_{i j}=d_{i-2 j}
$$

for $-N+1 \leq i \leq 0$ and $-m^{\prime \prime} \leq j \leq 0$ for $A \subset\left(0, \frac{1}{2}\right)$ and for $-N \leq i \leq-1$ and $-m^{\prime \prime}+1 \leq j \leq 0$ for $A \subset\left(\frac{1}{2}, 1\right)$. Here we should point out D_{A} is $N \times\left(m^{\prime \prime}+1\right)$ matrix for $A \subset\left(0, \frac{1}{2}\right)$. Similarly we define

$$
F_{A}=\left(\begin{array}{c}
a_{0} \\
a_{-1} \\
\vdots \\
a_{-m^{\prime}}
\end{array}\right)
$$

when $A \subset\left(0, \frac{1}{2}\right)$ and

$$
F_{A}=\left(\begin{array}{c}
a_{-1} \\
\vdots \\
a_{-m^{\prime}}
\end{array}\right)
$$

when $A \subset\left(\frac{1}{2}, 1\right)$. Then we establish the equation corresponding to (21)

$$
\begin{equation*}
D_{A} F_{A}=0 \tag{23}
\end{equation*}
$$

By the procedure used in Case 1.1 we can prove Theorem 3 in Case 2.1.
Case $2.2 \quad N_{1}=1$.
We can also establish an equation corresponding to (22). By the procedure used in Case 1.2 we can prove Theorem 3 in Case 2.2. We omit the details here. The proof of Theorem 3 is fininshed.

References

[1]
A.S.Cavaretta, W.Dahmen and C.A.Micchelli, Stationary subdivision, Memoirs of AMS 93(1991),1-186.
[2] C.K. Chui, An introduction to wavelets, Academic Press, 1992.
[3] C.K. Chui and J-Z Wang, A general framework of compactly supported splines and wavelets, J. Approx. theory, 71(1992), 263-304.
[4] A. Cohen and Q. Sun, An arithmetric characterization of the conjugate quadrature filters associated to orthonormal wavelet bases, SIAM J. Math. Anal., 1993.
[5] W.Dahmen and C.A.Micchelli, On the local linear independence of translates of a box spline, Studia Math., 82(1985), 243-263.
[6] I.Daubechies, Orthonormal bases of compactly supported wavelet, Comm. Pure and Appl. Math., 41(1988), 909-996.
[7] I.Daubechies and J.Lagarias, Two-scale difference equation I;II,AT \& T Bell Laboratories preprint, 1988 , SIAM J. Math Anal. 22(1991),1388-1441; 23(1992), 1031-1079.
[8] S. Dubuc, Interpolation through an iterative scheme, J. Math. Anal. Appl., 114(1986), 185-204.
[9] G.Deslauries and S.Dubuc, Interpolation dyadique, in "Fractals, dimensions non entieres at application", ed. G.Cherbit, Masson(Paris), 1987.
[10] R-Q Jia, Local linear independence of the translates of a box spline, Constr. Approx. 1(1985), 175-182.
[11] R-Q Jia and J-Z Wang, Stability and linear independence associated with wavelet decompositions, Proc. Amer. Math. Soc.
[12] P-G Lemaire, La propriété de support minmal dans les analyses multi-résolution, C.R.Acad.Sci. Paris. Serie I, 312(1991), 773-776.
[13] A.Ron, A necessary and sufficient condition for the linear independence of the integer translates of a compactly supportecd distribution, Constr. Approx., 5(1989), 297-308.
[14] Q.Sun, A note on the integer translates of a compactly supported distribution, Archiv Math. 60(1993), 359-363.

[^0]: ${ }^{1}$ This project is partially supported by Zhejiang Provincial Natural Science Foundation of China and Postdoctral Fellowship Foundation of China
 ${ }^{2}$ Center of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, P.R. of China
 **AMS(MOS) subject classification(1991), 41A15, 42C05

