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Robust Image Watermarking Based on Multiband
Wavelets and Empirical Mode Decomposition

Ning Bi, Qiyu Sun, Daren Huang, Zhihua Yang, and Jiwu Huang

Abstract—In this paper, we propose a blind image watermarking
algorithm based on the multiband wavelet transformation and the
empirical mode decomposition. Unlike the watermark algorithms
based on the traditional two-band wavelet transform, where the
watermark bits are embedded directly on the wavelet coefficients,
in the proposed scheme, we embed the watermark bits in the
mean trend of some middle-frequency subimages in the wavelet
domain. We further select appropriate dilation factor and filters
in the multiband wavelet transform to achieve better performance
in terms of perceptually invisibility and the robustness of the
watermark. The experimental results show that the proposed
blind watermarking scheme is robust against JPEG compression,
Gaussian noise, salt and pepper noise, median filtering, and Con-
vFilter attacks. The comparison analysis demonstrate that our
scheme has better performance than the watermarking schemes
reported recently.

Index Terms—Empirical mode decomposition (EMD), image
watermarking, multiband wavelets transformation (MWT).

1. INTRODUCTION

ITH the rapid development of internet and wireless net-
Wworks, multimedia security and digital rights manage-
ment (DRM) are becoming increasingly important issues [1],
[2]. The watermarking system has been viewed as a possible
solution to control unauthorized duplication and redistribution
of those multimedia data [2]-[5]. Robustness, perceptually in-
visibility, and security are the basic requirements for a robust
watermarking system [6]. Seeking new watermark embedding
strategy to achieve performance is a very challenging problem
[6]. In this paper, we propose a new blind image watermarking
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scheme, which is based on the multiband wavelet transform [7],
[8] and the empirical mode decomposition [9].

The watermark bits can be embedded either in the spatial
domain or in the transform domain, while the latter watermark
embedding strategy has been demonstrated to be more robust
against most of attacks [3]. We take that latter watermarking
embedding strategy in our image watermark embedding
scheme, particularly we embed watermark bits indirectly in
the multiband wavelet domain with the dilation factor M > 2
(see, for instance, [8] and [10]-[21] for the theory and various
applications of multiband wavelets). For M = 2, there are lots
of watermarking schemes available. For instance, Prayoth et al.
[22] introduced a semi-blind watermarking scheme based on
the two-band multiwavelet transform, which is shown to be
robust to most of common image compressions. Hsieh et al.
[23] proposed a nonblind watermarking scheme based on
the two-band wavelet transform and the qualified significant
wavelet tree (QSWT), which is robust to JPEG compres-
sion, image cropping, median filter etc., Lahouari et al. [24]
suggested a watermarking algorithm based on the balanced
two-band multiwavelet transform and the well-established
perceptual model, which is adaptive and highly robust. Ng et al.
[25] put forward a maximum-likelihood detection scheme
that is based on modelling the distribution of the image DWT
coefficients using a Laplacian probability distribution function
(PDF). In [26], Bao et al. proposed a watermarking scheme
by using a quantization-index-modulation (QIM) process via
wavelet domain singular value decomposition (SVD). That
scheme is robust against JPEG compression but extremely
sensitive to filtering and random noising. In this paper, we
use the multiband wavelet domain, instead of the two-band
wavelet domain, to embed the watermark bits for the reason
that the multiband wavelet domain provides more capacity
for watermarking (see Section IV), and more flexible tiling of
the scale-space plane. (see Fig. 1). Particularly, applying the
MWT with the dilation factor M > 2 an image is decomposed
into M? subimages with narrower frequency bandwidth in
different scales and directions. The (M — 2)? subimages thus
generated with middle frequency are favorable blocks to embed
watermark bits in our watermark embedding strategy due to
the robustness against JPEG compression and various noise
attacks.

For the robustness of an image watermarking system, the wa-
termark bits are usually embedded in the perceptually signifi-
cant components, mostly the low or middle frequency compo-
nents of the image [3]. The EMD, first proposed in [9] and later
demonstrated to be very useful in many areas [27]-[30], pro-
vides a self-adaptive decomposition of a signal, and the mean
trend, the coarsest component, of the signal is highly robust
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Fig. 1. Eight-band discrete wavelet decomposition of the “Lena” image.

under noise attack and JPEG compression. So, we select the
mean trend of each subimage in the multiband wavelet domain,
instead of the subimage itself, to embed the watermark bits. Our
experimental results show that the watermarking based on the
MWT and EMD is robust against JPEG compression, Gaussian
noise, Salt and Pepper noise, median filtering and ConvFilter
(Gaussian filtering and sharpening) attacks.

The rest of this paper is organized as follows. We first give
an overview of MWT and EMD in Section II. The new blind
watermarking scheme based on the MWT and EMD is pro-
posed in Sections III and IV. The experimental results of our
watermarking scheme and the comparison with the other wa-
termarking schemes are given in Section V. The conclusions of
this paper are stated in Section VI.

II. MULTIBAND WAVELET TRANSFORMATION AND
EMPIRICAL MODE DECOMPOSITION

In this section, we give an overview of Mallat’s multiband
discrete wavelet transform (MWT) for images [7], [8], [31], and
the empirical mode decomposition (EMD) for 1-D signals [9].

A. Multiband Discrete Wavelet Decomposition and
Reconstruction Algorithm

Given a dilation factor M > 2, the 1-D filters Ho(¢) =

Ynez o(n)e” " and Hy(§) = ¥, czqi(n)e™"*, 1 < 1 <
M — 1, are said to be scaling filter and wavelet filters, respec-
tively, if

H(0) = 659
and
M—1 —_—
2mm 2mm
mon <£+ —) Hy <§+ SR ) = by

forall0 < I,I'’ < M—1,where by =1if0<I=1'< M -1,
and 0 otherwise ([7], [8], [31]). Clearly, a scaling filter Hy is a
low-pass filter, while wavelet filters H;,1 < [ < M — 1, are
high-pass filters.

Given 1-D scaling filter Hy(§) and wavelet filters H;(£),1 <
| < M —1, using tensor product method one constructs a family
of 2-D scaling filter

Hoo(&,m) := Ho(&)Ho(n)
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TABLE I
IMPULSE RESPONSES OF THE FOUR-TAP TWO-BAND WAVELET TRANSFORM
n_go(n) gi(n)
0 A1 A3
1 A2 -4
2 A A2
3 A3 -A1

and wavelet filters

Hy(&,n) == Hi(§)Hi(n)

with 0 < k,l < M — 1 and (k,l) # (0,0). For the above 2-D
scaling filter Hog (&, n) and wavelet filters Hy;(€,71),0 < k,1 <
M —1 with (k,1) # (0,0), we may use Mallat’s multiband dis-
crete wavelet decomposition algorithm to decompose an image
C,C = (c(m,n)), into M? subimages Cr; = (cxi(m,n)) in
the wavelet domain

Ckl(m7n) = Z C(mla nl)gkl(m/ - Mm7n/ - Mn)
m/ n'€Z
where
Hy(&m) = > gra(m,n)e™ "t 0 < k1 < M -1,
m,nez

The subimages Cyy and Cy;,1 < k,l < M — 1 are usually
called the blurred and detailed components respectively in the
wavelet domain. In Fig. 1, we use Mallat’s multiband discrete
wavelet decomposition to decompose the image “Lena” into 64
subimages in the wavelet domain, where the 1-D scaling and
wavelet filters are chosen from Table III with dilation M = 8
and the parameter ) is given in Table IV.

Given 2-D scaling filter Hgo(¢,n) and wavelet filters
Hy(§,m),0 < k, I < M — 1, with (k, 1) # (0,0), we may use
Mallat’s multiband discrete wavelet reconstruction algorithm
associated with the above 2-D scaling filter and wavelet filters
to reconstruct the original image C = (c(m,n)) from M?>
subimages Cj; = (cgi(m, n)) in the wavelet domain

1 M-1
- Ly

k1=0m/ ,n'€Z

c(m,n

cer(m',n" g (m — Mm’,n — Mn').

The reader may refer to [7], [8], and [31] and references therein
for more information about multiband wavelet decomposition
and reconstruction of an image.

For A\ € [0,27], we set A = (1 + /2cos\)/4, Ay =
(1 — /2sin)\) /4, 3 = (1 4+ v/2sin\)/4, and Ay = (1 —
V2 cos \) /4. In this paper, we will use the following parame-
terized multiband scaling and wavelet filters, where M is the
dilation and A is the parameter.

e M = 2, and the impulse response of the scaling
filter Ho(¢) = Zi:o go(n)e~™& and wavelet filter
Hi(&) = Y2 _yg1(n)e ¢ are listed in Table I. The

above scaling and wavelet filter become the Daubechies’
scaling and wavelet filters in [32] if 57/12 is chosen as
the parameter )\, and the Haar scaling and wavelet filters if
we let A = 57 /4.
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TABLE II
IMPULSE RESPONSES OF THE EIGHT-TAP FOUR-BAND WAVELET TRANSFORM

n_go(n) ¢1(n) ga(n) gs(n)
0 A1 -2 -A2 A1
1 A2 -1 A1 -Ag
2 A3 VI A4 A3
3 A A3 -\3 -4
4 A4 -A3 -A3 A4
5 A3 -A\q A -A3
6 A2 A1 A1 A2
7 A1 A2 -2 -1

TABLE III

IMPULSE RESPONSES OF THE SIXTEEN-TAP
EIGHT-BAND WAVELET TRANSFORM

g0 g1 92 g3 94 g5 g6 a7
A2 A2 A1 A1 A A1 -2 A2
A1 -\ A2 -Ag A2 -Ag A1 A
DN S VY Ao DTS CREES A1
A2 -2 -\ A1 -\ A1 A2 -2
-A3 D VRS VIS V1 A -)3 A3

D VIV A3 -)3 A3 -3 DV V1

DV VIR v A3 A3 -3 -\ A4

A3 A3 -)\g A - A A3 -3

A3 D PR VIS VIR VI V1 A3 A3

A M A3 )3 A3 DY VI V1
10 X4 X2 A3 A3 A3 A3 A M\
11 A3 A3 Aq VIS VIS VIR - SR V-1
12 X2 A2 A1 -A1 -A1 - A2 A2
13 X\ A1 A2 -Ae A2 A2 A1 -\
14 X\ A1 A2 A2 A2 A2 A1 A1
15 X2 X2 A1 A1 A1 -A1 -A2 -Xe

VO W = O3
>
&

e M = 4, and the impulse responses of the symmetric
scaling filter Ho(¢) = 27 _, go(n)e~ "¢ and (anti)sym-
metric wavelet filters H;(€) = 337 _ gi(n)e™¢,1 <1 <
3 are shown in Table II. The scaling and wavelet filters are
introduced in [33].

e M = 8, and the impulse response of scaling and wavelet
filters are given in Table III. One may verify that the above
new one-parameter scaling and wavelet filters have min-
imal numbers of nonzero taps in the class of (anti)sym-
metric scaling and wavelet filters with dilation M = 8 ex-
cept the Haar scaling and wavelet filters, which is the spe-
cial case of A = 37 /4.

B. Empirical Mode Decomposition

An intrinsic mode function (IMF) is a function that satisfies
two conditions: 1) in the whole data set, the number of extrema
and the number of zero crossing must either equal or differ at
most by one; and 2) at any point, the mean value of envelope
defined by the local maxima and the envelope defined by the
local minima is zero [9]. An algorithm, known as the EMD to
decompose a signal into finitely many IMFs and a mean trend,
is proposed in [9] (see [27]-[30] for various applications of the
EMD to gearbox fault diagnosis, image analysis, neural data
analysis, and the fault diagnosis of roller bearings).

The EMD, which extracts all IMFs from a signal r((t), can
be described as follows [9].

Step 1) The first component c; (¢) for the signal ro(t).

a) Identify all the local extrema of the signal

To (t)
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TABLE IV
THE OPTIMAL PARAMETER A, FOR WHICH Py 5 ()
TAKES THE MINIMAL VALUE

Dilation Lena Baboon Peppers Goldhill
M=8 2.58 2.61 2,51 2.58
M=4 2.70 2.76 2.70 2.73
M=2 2.89 2.86 2.95 2.92

* R A ]
° r / / / Y\ /
OWW
* *
; ‘ ; T , .
A ] A XA AA Pz
/ Y /

0 40
— Original signal
*— Attacked by gaussian noise
—— Attacked by JPEG )

Fig. 2. Original and the attacked signals 7o, and its IMFs ¢4, ¢2, ¢3, ¢4 and
mean trend 14 obtained via the EMD.

b) Connect all the local maxima by a cubic spline
line as the upper envelope; and all the local
minima by a cubic spline line as the lower enve-
lope (Remark: The upper and lower envelopes
should cover all the data between them).

¢) The mean of upper and low envelope value is
designated as m1o(¢), and the difference be-
tween the signal 7((¢) and m1o(¢) is denoted
by hlo(t) =170 (t) — mlo(t).

d) If hyo(t) is not an IMF, we replace the signal
ro(t) by h1o(t) and repeat the above procedure
[Steps 1a)-1c)] for h1g(t).

e) The sifting process stops until the resulting dif-
ference between the mean of upper and low en-
velope value in Step 1c) and the initial signal
in Step 1a) is an IMF. Then we let the resulting
IMF be the first component ¢y () of the original
signal ro(t) [the first IMF component c¢; (t) is
obtained from the original data, and contains
the finest scale (or the shortest period compo-
nent) of the signal r(¢), as shown in Fig. 2].

Step 2) Letrq(t) = ro(t) — c1(¢). If 71 (¢) becomes a mono-

tonic function from which no more IMFs can be
extracted, then we stop the decomposition process.
Otherwise, replace ro(t) by 71 (t) and repeat Step 1)
to find the first component for ry(¢).

Given a signal 7((t), applying the above algorithm we ob-
tain a family of signals ¢ (t) and r(¢),1 < k < n, such that
ck(t) is the first component of the signal r;_1 (), and 74(t) =
re—1(t) — cx(t) for 1 < k < n, and r,, does not have any IMFs
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to be extracted from. This leads to the following empirical mode
decomposition of the original signal 7¢(¢)

n

ro(t) =Y ¢j(t) + ra(t). 0

=1

In brief, the EMD extracts the finest scale or the shortest period
component from the signal step by step, and the remainder of the
sifting process, to be named as the mean trend, is the coarsest
component of the signal (see Fig. 2). Clearly, no IMF can be ex-
tracted from the mean trend of a signal. Moreover, our simula-
tion shows that the mean trend is extremely stable for Gaussian
noise and JPEG compression attack (see Fig. 2). This new ob-
servation is the motivation that we select the EMD, and embed
the watermark bits into the mean trend of the subimages in the
multiband wavelet domain, instead of the subimages directly as
in most of the literature.

III. WATERMARK EMBEDDING AND DETECTING

In this section, we propose a novel watermark embedding and
detecting algorithm based on the MWT and EMD.

A. Watermark Embedding

For an image I of size N; x Ns, we use the following steps
to embed the watermark in the image.

Multiband Discrete Wavelet Decomposition: Select a di-
lation factor M > 2, and 1-D scaling and wavelet filters
Hi(£),0 < I < M — 1. Via tensor product, we generate
2-D scaling filter Hoo(§,n) := Ho(§)Ho(n) and wavelet
filters Hy/ (§,m) = Hi(§)Hy(n), where 0 < [,I" < M —1
but (I,I') # (0,0). Applying the 2-D Mallat’s discrete
wavelet decomposition algorithm with the above scaling and
wavelet filters, we decompose the image I into M? subim-
ages Ij;,0 < I,I/’ < M — 1. In particular, the subimages
I, 0 < Il < M — 1, of sizes Ny /M x Ny/M are obtained
by M -subsampling the convolution between the original image
I and the scaling (wavelet) filters Hj;-. In our simulation, the
dilation M is chosen from {2,4,8}, and the coefficients of
filters are taken from Tables I-III.

Watermark Embedding Domain: Applying Mallat’s dis-
crete multiband wavelet decomposition algorithm once in our
watermarking process when the dilation M = 4,8, or twice
or more for the wavelet decomposition with dilation M = 2
[22]-[24], we obtain a wavelet decomposition of the original
image with enough resolution and enough subimages. To
find suitable subimages to embed watermark bits, we divide
subimages in the multiband wavelet domain into three classes:
LF = {H]chkl = 0},MF = {Hkl,l S ]{}l S M — 2} and
Hr = {Hp,(k— M +1)(I = M + 1) = 0,kl # 0}. The
subimages in the subband Lp include an approximation of
the original image, and then embedding watermarks in those
subimages may easily result in visual block effects. On the
other hand, the subimages in the subband H g is considered
as components with highest frequency, and then the water-
mark may not be detected if the watermark is embedded into
those subimages and the watermarked subimages are attacked
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by postprocessing such as JPEG compression. So, in our
watermarking scheme, we select subimages in the subband
M as our favorable blocks to embed watermark bits in our
watermarking scheme. Consequently, it is demonstrated that
this watermark embedding strategy results in better robustness
against JPEG compression and visual perception. Moreover,
applying the MWT with dilation M decomposes an image
into M? subimages with (M — 2)? subimages having subband
Mp, and, hence, selecting a higher dilation factor M and
appropriate filters may help us to improve the performance of
our watermark process (see Section V for the experimental
confirmation of that observation).

Empirical Mode Decomposition: For the subimages I, 1 <
1,1 < M—2, we divide each of them into K x K nonoverlapped
subblocks Ijr.xkr, 1 < k, k' < K, then convert each subblock
into a 1-D signal, which is still denoted by Ij;+,x,’ . Now we apply
the EMD to each of these time signals Iy,

Rk

Lyrgrr = Z ci(Lurskrt) + Trgyr o (Dirsierr) (2)

J=1

and store the mean trend 7, ., (lurerr ), 1 < L1 < M —
2,1 <kk <K.

Our simulation shows that our watermarking scheme based
on MWT and EMD has better performance in efficiency, accu-
racy, and robustness if the size of each subblock is around 8 x 8.
So in the simulation, we may select the constant K so that each
subblock is of size 8 x 8. Forinstance, we let K = 8 if the image
is of size 512 x and the dilation M of the multiband wavelet
transform is 8.

Watermark Embedding: Given a watermark W = {b; =
+1: 1 < ¢ < m,}, let A be a one-to-one mapping from
{1,...,m} o {1,...,M — 2}* x {1,..., K}?* [see the for-
mula (5) in our simulation] and embed the watermark bit b;, 1 <
i < m, into the subblock [ 4(;) by changing its mean trend
Tn e, (LA(i)) with another mean trend A (Lags)) [see the for-
mula (6) in our simulation]. The new subblocks I;j,.;./, 1 <
LI <M—2,1<kk <K, after embedding watermark bit
stream {b1,. .., b, }, are given by the following equations:

* *
Ill’;kk’ = Ill';kk’ ~ Tna (IA(i)) + Tnag (IA(i))
"l ek’

= Z ci(Durwwr) + 70 Qursier) 3)

=1
if (1,1, k, k) € A{1,...,m} and
Ly g = T 4)

if (LI, kK & A{1,...,m}.
In our simulation, we use the following one-to-one mapping

A
AL ....om} 31— A®G) := (I,I',k, k') €
{1, .M =2 x {1,--- K}* (5

where [,1’, k, k' are determined by the unique decomposition
i-1=(K-kK)+(K-kK+(M-2-1)K?>+ (M —
2—1)(M —2)K?2,1 < i < m. From the definition of the above
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map, we see that the capacity of our watermarking process and
the length m of the watermark bit should satisfy the inequality

m < (M —2)2K>.

In our simulation, we write the watermarked subblock I ;(i),
which is obtained by embedding the watermark bits b; into the
subblock I A(i)» 88 follows:

Ly = Lagy = mae) +

where 7 4(;) is the mean tread of the subblock [ A(i)ﬂ";t(i) is
defined by

g (t)

p(7.agi)(t) — ming (ra(£)))
+max(S, ming(ra(;)(€))),  if b
p(7.a3i) (1) — maxe(raei)(£)))
+min(—S, maxe (raey(€))), if b =-1

1

(6)

p and S > 0 are watermark strengths to be determined in the
next section.

Watermarked Image: Forany 1 < ;I < M — 1, we com-
bine the watermarked blocks [}, 1 < kK" < K, into a
subimage I};, in a reverse way to split a subimage into sub-
blocks with the formula (3) or (4). Defining I};, = I for those
I,I' € {0,1,..., M — 1} satisfying ll' = 0, we then obtain M?>
subimages I};,,0 < [,I' < M — 1, of size Ny/M x Ny/M.
Applying Mallat’s multiband discrete wavelet reconstruction to
those M? images [};,,0 < [,I' < M — 1, leads to the water-
marked image I* of size N7 x Ns.

B. Watermark Detection

Given a test image [*, we extract the watermark as follows.
i) Apply multiband discrete wavelet decomposition with

the same scaling and wavelet filters as in the embedding
process to the image I*. We then obtain M? subimages
I,,0 < I < M — 1, in the wavelet domain.

i) Split each subimage I}, into K> subblocks I};,. ., 1 <
kK < K,wherel <[1,I'! < M — 2.

iii) Take the same one-to-one map .A as the one in the water-
mark embedding process.

iv) For any 1 < ¢ < m, consider Ij\(i) as a 1-D signal and
apply the EMD to it

TA(4)

I;\(i) = Z cj + Tnae) (I:l(i))

=1

where ¢j, 1 < j < m 4, are IMFs and 7y, , (Ij‘(i)) is
the mean trend of I% ;.

v) Use the mean trend ry, , (I ;) to determine embedded
bit b; in 1 ; (i) In particular, we retrieve the watermark bit
b; from the watermarked block Ij‘(i) as follows:

b=1, if ¥, 15 >0
b=—1, if X,y (1) <0 @
where 77, is the mean trend of the subblock 17 ;).
vi) Obtain the watermark bits W = {by,...,b,,}.
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Fig. 3.
8 bits.

Original images Lena, Baboon, Peppers, and Goldhill of 512 x 512 x

If the watermarking strength parameters p and S satisfy p = 1
and S > 0, one may verify from the procedure of the EMD that
the mean trend of a watermarked subblock I} . is same as the
function 7% ;) (t) given in (6). Theoretically the watermark bits
b = 1lorb = —1 can always be extracted by the algorithm
(7) in this case. If the watermarking strength parameter p #
land S = S(p,I) in the (9), our simulation shows that for
the test images “Lena,” “Baboon,” “Peppers,” and “Goldhill” of
512 x 512 x 8 bits, no wrong watermark bit is detected by using
(7). However, if p # 1 and S < S(p, I) in the (9) (for instance,
S is sufficiently small), wrong watermarks bit may be detected
for the test images.

IV. OPTIMIZATION OF THE PARAMETERS

In the previous section, we have presented our watermark em-
bedding and detecting algorithms. The purpose of this section is
then to consider the following problems: 1) how to determine the
parameter X in the scaling and wavelet filters; 2) how to adjust
the watermark strength S and p in the watermark embedding
process. In the following simulation, we will use the character
string watermark “SYS Univ,” and the test images “Lena,” “Ba-
boon,” “Peppers,” and “Goldhill” of 512 x 512 X 8 bits, as shown
in Fig. 3.

A. Scaling and Wavelet Filters in MWT

In the simulation, we use the parameterized impulse response
in Tables I-III as the scaling and wavelet filters H;(£),0 < <
M — 1, in our MWT. We define the percentage of energy with
middle and high frequency by

PI,M(/\) =

where E(I) = ( 1{\/:11 Z;Vil |I(i,7)|?)*/? is the total energy
of the image I, E}(I) = (10— |E(Iu)|?)'/? is the total
energy of subimages with middle and high frequency in the
wavelet domain, and [ is the subimage associated with the

wavelet filter H;({)Hy (n),1 <1,/ < M — 1. The behavior of
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0.4

O Lena

0.3 - - Baboon

* Peppers
Goldhill

Percentage PI M(L)

The parameter A runs from 0 to 21t

Fig. 4. Pr a(X): The percentage of energy with middle and high frequencies
in the wavelet domain for the Lena, Baboon, Peppers, and Goldhill images,
where we use dilation factor 8 and wavelet filters in Table III.

30 T T T T T T T T T T T T T T

25 —— A _=2.58
20,
15
10

BER(%)

TP

&
7 8 9 10 11 2 13 14 15 16 17 18 19 20
JPEG Quality Factor

Fig. 5. BER of the extracted watermark from the watermarked “Lena”
image under the attack of JPEG compression with JPEG factor from 5
to 20. In this simulation, we use 8 as the dilation factor, the filters in
Table III as the filters in the MWT, and Lena image as the test image.
The parameters Aopt, Amax and Amia are so chosen that Pr ar(Aopt) =
ming<x<ax Pr,ar(A), Prar(Amax) = maxo<x<2r Prov(A)  and
Pr oy (Amia) = 1/2(Pr, e (Xopt) + Provi (Amax))-

TABLE V
BER PERCENTAGE OF EXTRACTED WATERMARK BY APPLYING OUR MWT
AND EMD ALGORITHM TO THE LENA IMAGE UNDER THE ATTACK OF JPEG
COMPRESSION WITH JPEG COMPRESSION QUALITY FACTOR () RUNNING
FROM 2 TO 20, THE STRENGTH PARAMETER p = 0,0.4,1,2, AND THE
W ATERMARKING STRENGTH S := S(p. I') Is DEFINED AS IN (9)

Q 2 4 6 8 10 [ 14 [ 18 | 20
p=0,8§=65 21.88 | 1406 | 1.56 | 1.56 | O 0 0 0
p=04,5=63 | 2344 | 1406 | 313 | 1.56 | O 0 0 0
p=1,5=258 2500 | 1563 [ 3.13 | 1.56 | O 0 0 0
p=2,8=51 25.00 | 21.88 | 469 | 3.13 | O 0 0 0

the energy percentage for the Lena, Baboon, Peppers, and Gold-
hill images is shown in Fig. 4.

As our watermark is embedded in the multiband wavelets do-
main My and Hp, the lesser energy of those subimages the
lesser influence of the watermark process to the image. This
also implies that larger watermark strength .S’ can be added, and
the corresponding watermarking algorithm could be more ro-
bust against various attacks. Based on the above ideas, we se-
lect the parameter A so that Pr /() takes the minimal value. In
other words, the optimal parameter Ap¢ for our watermarking
scheme based on the MWT and EMD is the one that satisfies

Prar(Aopt) = inf  Pras(0) ()

5€[0,27]

(refer to Table IV for the optimal parameter Aoy of the test im-
ages). Our experimental results indicate that our watermark em-
bedding and detecting algorithms with optimal parameter Aop¢

1961

Fig. 6. Watermarked “Lena,” “Baboon,” “Peppers,” and “Goldhill” images
with the watermarking strength parameters p(I) and S(T) in (10).

TABLE VI
FOR THE LENA IMAGE I, THE MAXIMAL WATERMARKING STRENGTH S(p, I)
DECREASES FROM 65 TO 51 WHEN THE PARAMETER p RUNS FROM 0 TO 2

p [00]02]04]06[08]10[12]14] 16| 18] 20
S| 65| 64 | 63 | 61 60 | 58 | 57 | 55 | 54 | 52 | 51

70 T T T T T T T

SKW

s50F Bl

£
T -~ BMW & PM 256
430 —%~ MWT & EMD 256 E

L L L L * L

40 45 50 55 60 65 70 75 80

JPEG Quality Factor

Fig. 7. BERs to extract watermarks using our watermark embedding and
detecting method (MWT and EMD) and the balanced two-band multiwavelet
transform and the well-established perceptual model (BMW and PM) in the
presence of JPEG compression with JPEG quality factor from 40 to 80.

30 T T T T T T T T

—¥— Lena (Gaussian)

—&—- Baboon (Gaussian)
~&- Peppers (Gaussian)
—— Goldhill (Gaussian)

PSNR

Fig. 8. Mean value of BER of the extracted watermark under Gaussian noise
attack for 10 000 tests.

has minimal bit error rate (BER) under the attack of JPEG com-
pression, as shown in Fig. 5.

We may use other optimization to select the parameter A
in the MWT. For instance, we may replace the percentage
Pr (X)) of energy with high frequency by the distance
dy = ( f:/s |Ho(€)|d€)/? between the ideal low-pass filter
and the low-pass filter Hy(&), which is independent of images.
In this case, the quantity dy achieves its minimal value when
A takes Af, o = 2.5876 for M = 8, A = 2.7646 for M = 4

O

and A, = 2.8903 for M = 2, which are almost the same
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TABLE VII
BER OF EXTRACTED WATERMARK BY OUR MWT AND EMD ALGORITHM
JPEG Compression, BER(%)
Image Dilation Parameter PSNR

Aopt 5 10 15 20 25 30 | 40
8 2.58 420dB | 6.25 0 0 0 0 0 0
Lena 4 2.70 42.0dB | 40.63 | 29.69 | 20.31 | 1094 | 3.13 | O 0
2 2.89 42.0dB | 42.19 | 17.19 | 6.25 4.69 156 | 0 0
2 (Haar) 5m/4 420dB | 25.00 | 9.38 0 0 0 0 0
8 2.61 420dB | 4.69 0 0 0 0 0 0
Baboon 4 2.76 42.0dB | 51.56 | 20.31 | 6.25 1.56 1.56 [ 0 0
2 2.86 42.0dB | 29.69 | 4.69 3.13 1.56 156 | 0 0
2 (Haar) 57 /4 42.0dB | 10.94 0 0 0 0 0 0
8 2.51 420dB | 6.25 0 0 0 0 0 0
Peppers 4 2.70 42.0dB | 42.19 | 28.13 | 14.06 | 6.25 0 0 0
2 2.95 42.0dB | 39.06 | 14.06 | 7.81 1.56 1.56 [ 0 0
2 (Haar) 5 /4 42.0dB | 23.44 0 0 0 0 0 0
8 2.58 42.0dB | 10.94 0 0 0 0 0 0
Goldhill 4 2.73 42.0dB | 3750 | 29.69 | 20.31 | 7.81 313 | 0 0
2 2.92 42.0dB | 3438 | 1250 | 6.25 4.69 0 0 0
2 (Haar) 5m/4 42.0 dB | 29.69 1.56 0 0 0 0 0

Fig. 9. Watermarked image under Gaussian noise attack with PSNR=20 dB.

TABLE VIII
COMPARISON BETWEEN OUR WATERMARKING METHOD (MWT AND EMD)
AND THE MAXIMUM LIKELIHOOD DETECTION METHOD ON THE WAVELET
DoOMAIN (MLDM) IN [25]: PERCENTAGE OF SUCCESSFUL WATERMARK
DETECTIONS (PSWD) UNDER JPEG COMPRESSION ATTACKS

JPEG Compression, BER(%)
Method Image PSNR
10 20 30 [ 40 50
MLDM [25] Lena 45 dB - - - - | 859
MWT & EMD Lena 45dB [ 1950 | 232 | 077 | O 0
MLDM |[25] Peppers | 45 dB - - - - 373
MWT & EMD | Peppers | 45dB | 9.35 | 3.89 0 0 0

as those listed in Table IV. So in some situations we may use
the optimal parameter ), for the quantity dy, a parameter
independent of images, as an almost-optimal substitution to the
optimal parameter Aop¢ in (8) for our watermark embedding

and detecting scheme.

B. Watermark Strength

In the watermark embedding formula (6), there are two pa-
rameters p and S in our watermarking process. An immediate

0 5 10 15 20 25 30 35 40

Additive Noise Variance

Fig. 10. BERs to extract watermarks using our watermark embedding and
detecting method (MWT and EMD) and the balanced two-band multiwavelet
transform and the well-established perceptual model (BMW and PM) in the
presence of Gaussian noise attacks with additive noise variance from 1 to 40.

Fig. 11. Watermarked image with 30% Salt and Pepper noise attack.

question is how to adjust those watermark strengths p and S
such that our watermarking scheme have better performance?
For the original image I, we denote by I*(p,S) the water-
marked image obtained by 1) applying the wavelet decompo-
sition algorithm with the filters in Tables I, II, or III, and the
optimal parameter )., determined by (8) to the original image
1, 2) embedding the watermarking bits by (6), and 3) applying
the wavelet reconstruction algorithm with the same filters and
parameter as in the wavelet decomposition algorithm.
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TABLE IX
MEAN VALUE OF BER OF EXTRACTED WATERMARK UNDER THE SALT AND PEPPER NOISE ATTACK FOR
10 000 TESTS, WHERE THE PERCENTAGE P OF THE SALT AND PEPPER NOISE ATTACK RUNS FROM 5 TO 30

Lena Baboon Peppers Goldhill
P PSNR | BER(%) PSNR BER(%) PSNR BER(%) PSNR BER(%)
5 24.58 0.00 24.69 0.00 24.16 0.00 24.35 0.00
10 21.62 0.00 21.72 0.01 21.19 0.00 21.38 0.04
15 19.87 0.06 19.97 0.07 19.44 0.09 19.64 0.11
20 18.62 0.30 18.73 0.47 18.20 0.39 18.39 0.58
25 17.66 0.73 17.76 1.27 17.24 1.02 17.43 1.23
30 16.87 1.95 16.98 2.62 16.45 2.20 16.64 2.05
¢ ' : : TABLE X

—%— Lena (Salt & Pepper)

—&- Baboon (Salt & Pepper)

- Peppers (Salt & Pepper)
Goldhill (Salt & Pepper)

BER (%)
b

Percentage of Salt & Pepper noise

Fig. 12. Mean value curve of BER of the extracted watermark under Salt and
Pepper noise attack for 10 000 tests.

60 T

g =3
o 40 > 1
o R -6~ BMW & PM 256
- *~ MWT & EMD 256
30 g §
2
-
201 .
3 5 7

Median Filtering Window Size

Fig. 13. BERs to extract watermarks using our watermark embedding and
detecting method (MWT and EMD) and the balanced two-band multiwavelet
transform and the well-established perceptual model (BMW and PM) in the
presence of the median filtering attack with filter length 3, 5, and 7.

The PSNR is popularly used to measure the similarity be-
tween the original image and the watermarked image, while
higher PSNR usually implies higher fidelity of the watermarked
image. In most of our simulation, we select 42 dB as the bal-
ancing point of PSNR for enough visual imperceptibility and
high robustness against various attacks. In the comparison with
results [24] and [25] where watermark bits with different length
are embedded in an image, we will use 38 and 45 dB as the bal-
ancing point of PSNR, respectively.

From the demonstration, we observe that 1) if we fix the
watermarking parameter p, then bigger watermarking strength
S results in higher robustness of our watermark process, while
on the other hand the unreasonably big watermarking strength
S may result in the watermark perceptually visible in the
watermarked image; and 2) if we require the same PSNR for
the watermarked image, then the strength parameter p has less
significant influence than the watermarking strength S to the
robustness of our watermark process; see Table V. So, for the
perceptually invisibility of the watermark and the maximal
robustness of our watermarking procedure, the watermarking
strength parameter S*(I) and p*(I) for an image I can be
chosen as follows:

{p*([) = argmax,S(p, I)
S*(I) = S(p*(I), I)

BER OF EXTRACTED WATERMARK UNDER MEDIAN FILTER ATTACKS

Median Filter Image PSNR (dB) BER (%)

Lena 30.46 0
3x3 Baboon 26.97 0
Peppers 29.67 0
Goldhill 29.74 0

Lena 30.79 9.38

5x5 Baboon 26.75 12.50

Peppers 30.02 7.81

Goldhill 29.90 9.38

Lena 30.66 12.50

TXT7 Baboon 26.52 12.50

Peppers 29.98 9.36

Goldhill 29.62 9.38

Lena 30.41 51.56

9x9 Baboon 26.35 78.13

Peppers 29.73 51.56

Goldhill 29.24 79.69

where

S(p,I) := max{S : PSNR(I, p, S) > 42}. )
We observe that the watermarking strength S(p, I') decreases
when the parameter p increases, see Table VI for the experi-
mental results. So in the simulation, the watermarking strength
parameter S(I) and p(I) for an image I is chosen as follows:

{ p(I)=0
S(I) = S(p(1), 1),

In Fig. 6, we list the watermarked “Lena,” “Baboon,” “Peppers,”
and “Goldhill” images with optimal watermarking strength pa-
rameters p(/) and S(I) in (10).

(10)

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we discuss the robustness of our watermark
scheme against JPEG compression, Gaussian noise, salt and
pepper noise, median filtering, ConvFilter (Gaussian filtering
and Sharpening), and RotationScale attacks. Some compar-
isons with the watermarking schemes in [24] and [25] are also
presented.

A. Robustness Against JPEG Lossy Compression

A watermarking system should be robust against JPEG
compression. In Table VII, we present the experimental results
for our watermarking system, MWT & EMD for short, against
JPEG compression, where 2, 4, 8 are chosen as the dilation M,
and the optimal parameters Aop¢ in Table IV or the parameter
57 /4 associated with the Haar’s filter are chosen as the param-
eters in the scaling and wavelet filters H;,0 < [ < M — 1. This
confirms that the selection of the dilation M and the parameter
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A may improve the performance of watermarking scheme based
on the MWT and EMD.

To compare our watermarking algorithm (MWT and EMD)
with the watermarking scheme based on the balanced two-band
multiwavelet transform and the well-established perceptual
model (BMW and PM) in [24], we perform the simulation
to embed same watermark with 256 bits (instead of “SYS
Univ” with 64 bits in our demonstration simulation) and PSNR
(38 dB) for the watermarked image (instead of 42 dB in our
demonstration simulation) as in [24] into the “Lena” image
[for that the watermarking strength p(I) and S(I) is given by
p(I) = 0and S(I) = max{S : PSNR(I, p,S) > 38} instead
of by (10) in our demonstration simulation], see Fig. 7 for
the simulation results. Similarly to compare our watermarking
algorithm (MWT and EMD) with the maximum-likelihood
detection method on the wavelet domain (MLDM) in [25], we
do the experiment to embed same watermark with 100 bits
and PSNR (45 dB) for the watermarked image as in [25] into
the “Lena” and “Peppers” images (for that the watermarking
strength p(I) and S(I) is adjusted accordingly); see Table VIII
for the experimental results. The above comparisons clearly
demonstrated that our watermarking method has better perfor-
mance than the ones in [24] and [25] against JPEG compression.

B. Robustness Against Gaussian Noise

The EMD extracts components with finest scale (or shortest
period) from the signal one by one, and, hence, the remainder
of the decomposition, the mean trend, is the coarsest component
of the signal. Thus, the mean trend of a signal is robust against
Gaussian noise with mean zero since it is sifted into the first few
IMFs, and has little influence to the mean trend (see Fig. 2). This
indicates that our watermarking algorithm based on the MWT
and EMD is robust against Gaussian noise, which is confirmed
by our experiments, as shown in Fig. 8. After Gaussian noise
attack and the PSNR drop to 20 dB, the BER of extracted wa-
termark are still zero, as shown in Fig. 9.

Compared with [24] (see Fig. 10), our watermark scheme is
more robust against Gaussian noise attack.

Salt and pepper noise can be roughly thought as a signal with
plenty of high frequency. Hence, our watermark embedding and
detecting scheme should be robust against the salt and pepper
noise because the mean trend obtained by the empirical mode
decomposition is extremely stable under noise attack with high
frequency. Our experimental results show that the proposed wa-
termarking scheme has approximately zero BER of extracted
watermark under 5% salt and pepper noise attack, and the BER
of extracted watermark are still less than 3% after 30% salt
and pepper noise, see Fig. 11 for the watermarked “Lena,” “Ba-
boon,” “Peppers,” and “Goldhill” images corrupted by 30% salt
and pepper noise. The reader may refer to Fig. 12 and Table IX
for detailed performance of our watermarking scheme against
the salt and pepper noise attack.

C. Robustness Against Median Filtering

The median filtering technique, a widely-used image pro-
cessing technique, provides some smoothing of the finer details
with the major edges preserved [24]. Our experimental results

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 8, AUGUST 2007

TABLE XI
BER OF EXTRACTED WATERMARK UNDER THE CONVFILTER ATTACK

Test image Lena | Baboon | Peppers | Goldhill
Gaussian filtering 3.13 0 1.56 6.25
Sharpening 0 0 0 0

Fig. 14. Watermarked images with the Gaussian filtering attack.

Fig. 15. Watermarked images with the Sharpening filtering attack.

show that the watermark embedding and detecting algorithm
developed in this paper has zero BER to extract watermarks
for 3 x 3 median filter attack (see Table X for details). Com-
pared with the watermarking scheme in [24], our watermarking
scheme has better performance against the median filtering at-
tack (see Fig. 13).

D. Robustness Against ConvFilter Attack

Using StirMark Benchmark 4, we test our watermarking
scheme against the ConvFilter attack with Gaussian filtering
and Sharpening. The experimental results using our MWT
and EMD algorithm are listed in the Table XI, and the corre-
sponding attacked images are shown in Figs. 14 and 15.
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TABLE XII
BER OF EXTRACTED WATERMARK UNDER ROTATIONSCALE ATTACK
Angles of rotation -2° -1° -0.75° ] -0.5° [ -0.25° [ 0.25° 0.5° 0.75° 1° 2
Lena 43.75 | 57.81 59.38 45.31 6.25 7.81 43.75 54.69 53.13 | 60.94
Baboon 56.25 | 54.69 57.81 43.75 7.81 7.81 45.31 56.25 53.13 | 43.75
Peppers 62.50 | 54.69 57.81 43.75 6.25 6.25 40.63 60.94 62.50 | 48.44
Goldhill 53.13 | 60.94 4.69 43.75 7.81 7.81 50.00 59.38 50.00 | 57.81

E. Feebleness Against Geometric Distortion Attack

It is challenging to design a robust blind watermarking and
detecting scheme against various geometric distortion attacks.
Due to the geometrical structure of our multiband wavelet de-
composition, the watermarking scheme proposed in this paper
has high BER percentage (and, hence, are feeble) under the geo-
metric distortion attack such as rotating, bending, cropping and
resizing; see Table XII for the experimental results under the
Rotation Scale attack. We notice that there are plenty of wa-
termarking algorithms such as in [34] and [35], which are ro-
bust against geometric distortion attacks. We are working on
the problem how to improve the multiband wavelet decomposi-
tion of images, and then developing a new watermarking scheme
based on wavelets and EMD that is robust also against most of
geometric distortion attack.

VI. CONCLUSION

The multiband wavelet transform has long been successfully
applied in many engineering areas, such as edge detection, tex-
ture segmentation, classification, and remote sensing [16]-[21].
The MWT with dilation M decomposes an image into M?
subimages with narrow frequency bandwidth in different scales
and directions, and generates about (M — 2)? subimages with
middle frequency. Those properties of MWT inspire us to
use the subimages in the multiband wavelet domain to embed
watermark bits. The empirical mode decomposition extracts
the finest scale component from a signal step by step, and the
mean trend is extremely stable under high frequency noise
attack. Therefore, we embed the watermark into the mean
trend of each subimage in the multiwavelet domain to achieve
better performance. Taking the advantages of the multiband
wavelet transform and the empirical mode decomposition, in
this paper we develop a novel blind watermark embedding and
detecting scheme based on the MWT and EMD. Our experi-
ments show that the proposed scheme is robust against JPEG
compression, Gaussian noise, salt and pepper noise, median
filtering, and ConvFilter (Gaussian filtering and Sharpening),
but the proposed scheme has high BER percentage under some
geometric distortion attacks such as rotating, bending, cropping
and resizing due to the geometric structure of the multiband
wavelet decomposition of an image.
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