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Abstract

Target detection of potential threats at night can be deployed on a costly infrared focal plane array with high

resolution. Due to the compressibility of infrared image patches, the high resolution requirement could be reduced

with target detection capability preserved. For this reason, a compressive midwave infrared imager (MWIR) with low

resolution has been developed. As the most probable coefficients indices of the support set of the infrared image

patches could be learnt from training data, we develop stochastically trained least squares (STLS) for MWIR image

reconstruction. Using the same measurement matrix as in STLS, we construct a compressed quadratic correlation

filter (CQCF) for compressed infrared target detection. We apply CQCF to the U.S. Army Night Vision and Electronic

Sensors Directorate (NVESD) dataset. Numerical simulations show that the recognition performance of our algorithm

matches that of the standard full reconstruction methods but at a fraction of the execution time.
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I. INTRODUCTION

Capturing images of potential threats at night on many military systems requires electro-optical infrared (EO/IR)

sensors, which are typically of low resolution [1], [2]. In order to improve the target detection performance, sensors

of high resolution are desired but they are expensive [1]–[4]. An alternative is a low-resolution midwave infrared

sensor paired with a higher resolution spatial light modulator (such as a DMD). This compressive midwave infrared

imager has been used in [5]–[7] to realize a high resolution midwave infrared (MWIR) sensor, see Figure 1.

The compressive midwave infrared imager, shown in Figure 1, uses a carefully constructed sensing matrix to

generate a set of measurements that is smaller than the number of samples in the original infrared image [8]. For the
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Fig. 1. Low-cost high resolution midwave infrared (MWIR) sensor testbed adapted from [7] with permission. Its design is based on a single

pixel camera with multiple detectors.

case that the image is inherently sparse in some domain, it could be reconstructed with high probability [9]–[15].

On the other hand, in target detection applications with a MWIR sensor, perfect reconstruction of the infrared image

is not necessary. This makes possible to use less measurements for accurate target detection.

Unlike a typical MWIR sensor, a compressive MWIR imaging sensor requires nonlinear iterative methods, such as

compressive sampling matching pursuit, iterative hard thresholding, orthogonal matching pursuit and basis pursuit,

to recover an infrared image with an unknown support [16]–[19]. In this paper, we use the statistical information of

MWIR training data, and propose a linear decoder to reconstruct MWIR images with targets. We call this method

Stochastically Trained Least Squares (STLS).

Automatic Target Recognition (ATR), which discriminates targets, is the processing component in a typical

MWIR system [1], [20]. Target detection, the first step of ATR, separates potential target locations from background

clutter [1], [20], [21]. One target detection filter is the quadratic correlation filter (QCF) [22]. After finding regions

of interest, multi-class automatic target recognition algorithms would identify the specific target type. This step,

acting as a filter for the target recognition classifier, could reduce the number of false positive detections [23], [24].

When working with a compressive midwave infrared imager, the algorithm developer must decide whether to

reconstruct the image and use typical target detection techniques [6], or to modify existing target detection techniques

and use the compressed data directly. In this paper, we take the second approach and modify the QCF algorithm

by coupling it with the stochastically determined measurement matrix used in STLS.

The rest of the paper is organized as follows. In Section II, we introduce the STLS method for MWIR image

reconstruction. In Section III, we propose Compressed Quadratic Correlation Filter (CQCF) and compare it with

the QCF for infrared target detection. In Section IV, we combine STLS and CQCF for ATR applications and we

demonstrate its performance on the U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) dataset.
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II. STOCHASTICALLY TRAINED LEAST SQUARES

Infrared image patches, x, in ATR usually have compressible representation,

x = Ψα =

N∑
i=1

αiψi, (1)

in some (DCT/Wavelet/Karhunen-Loève) dictionary Ψ = (ψ1, ψ2, · · · , ψN ), where α = (α1, α2, · · · , αN )T is a

compressible vector in the sense that its components have sorted absolute values with fast decay. The measurement

y of the infrared image patch x via a DMD is

y = Φx = Φ̂α,

where Φ̂ = ΦΨ and Φ is an m×N measurement matrix of the DMD with m < N .

Due to compressibility of the image x, it can be approximated by a sparse image Ψα∗ with small ‖α∗‖0. One

conventional selection of the sparse vector α∗ is a solution of the �0 minimization problem

α∗ = argmin
α

‖α‖0 subject to y = Φ̂α, (2)

which is NP-hard [8], [12], [25]–[27]. Denote the essential support of the target signal Φ̂α∗ by S, which has

cardinality s. In our ATR applications, we do not have access to the support set S. However, we can use the

training data to tell us where the most probable locations T of the large coefficients are. In our simulations, we

will use

T := {i ∈ [1, N ] : P [|αi| ≥ ρ] ≥ τ}, (3)

where the probability P is learnt from the training data, ρ is the threshold of large coefficients, and τ is the threshold

of the most probable locations for sparse approximation (see Section IV for details).

For compressed target detection applications, the measurement matrix Φ may depend on the statistical properties

of x. For instance

Φ = ΘT , (4)

where Θ is a DCT matrix and ΘT is obtained by selecting the rows of Θ in T . This measurement matrix is what

we will use to capture measurements of the infrared image patch x.

Since we have some statistical information about the support set S of the image under consideration, the

probability of the set S with cardinality s to be contained in the set T with cardinality t ≥ s is high. Therefore we

use the least squares solution αT of the linear system

y = Φ̂TαT , (5)

to approximate the compressible vector α∗. Here Φ̂T is the submatrix of Φ̂ obtained by extracting its columns

corresponding to the indices in T . The solution to (5) is

αT = Φ̂+
T y, (6)

where Φ̂+
T is the Moore-Penrose pseudoinverse of Φ̂T . We call the above approach of reconstructing infrared image

patches as stochastically trained least squares (STLS), see Figures 2 and 3 for the reconstruction of a midwave

infrared image containing a single target.
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(a) (b)

Fig. 2. (a) Original image with Main Battle Tank (T72) target. (b) Full image reconstruction using STLS from t = 100 measurements per

20× 40 block. This reconstructed image has a PSNR of 74.2702 dB and the target image patch has a reconstruction error of 0.0078.

(a) (b) (c)

(d) (e) (f)

Fig. 3. (a) Midwave infrared 20×40 image patch containing a Main Battle Tank (T72) target. (b) Image patch reconstructed using true support

S with cardinality s = 100 (PSNR = 64.7373 dB, ρ = 0.00189). (c) Image patch reconstructed using STLS with the set T having cardinality

t = 50 (PSNR = 58.1389 dB), (d) t = 100 (PSNR = 62.0743 dB), (e) t = 200 (PSNR = 65.7067 dB) and (f) t = 400 (PSNR = 70.2279

dB). The percentage of indices of the set S contained in the set T is 43% when t = 50, 70% when t = 100, 93% when t = 200, and 100%

when t = 400.
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Fig. 4. (a) This plot compares the reconstruction error of the �1-BP method to the STLS method for different values of t. We see that the

�1-BP error is as high as 3 times that of the STLS. We also see that there is more variability in the �1-BP reconstruction error due to the

random measurement process. (b) In this plot, we look at the execution times for �1-BP versus STLS for different values of t. It is observed

that the execution time of �1-BP is almost 20 times as high as that of STLS for certain values of t.

Least squares is an attractive method and it has closed-form solutions. However, least squares cannot find a

sparse solution without some other additional information about the infrared image patches. Compared with iterative

methods, such as basis pursuit (BP), orthogonal matching pursuit (OMP) and initialized iterative reweighted least

squares (IIRLS), to solve the �0 minimization problem (2) or its �1 relaxation [18], [19], [28], our STLS has better

performance in terms of reconstruction error and computational time (see Figure 4).

The STLS is a linear decoder and it could be implemented in hardware. The support set T in the STLS contains

the most probable coefficients indices of the support set S of the image. Comparing with the linear decoder in [29],

our support set T is based on the probabilities that are defined using the statistical properties of the training data,

while the support set in [29] is learnt from solving some optimization problem.

III. QUADRATIC CORRELATION FILTER

The quadratic correlation filter utilizes the Fukunaga-Koontz transform (FKT) to separate target image areas from

background clutter [30]. Mahalanobis et al. introduced the quadratic correlation filter (QCF) for target detection

in [22]. In Section III-A, we recall the QCF algorithm. Then in Section III-B, we integrate the STLS method into

the QCF algorithm to generate a compressed quadratic correlation filter (CQCF). Finally, we compare CQCF to

QCF paired with iterative non-linear reconstruction methods in Section III-C.

A. Quadratic Correlation Filter For Target Detection

Denote the correlation matrices of a target image patch xtgt and a background image patch xbkg by

Rtgt = E[xtgtx
T
tgt] and Rbkg = E[xbkgx

T
bkg],
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respectively. These correlation matrices are positive semidefinite. The sum of the target and the background

correlation matrices can be decomposed into the form,

Rtgt +Rbkg = MΔMT , (7)

where columns of the orthogonal matrix M are the eigenvectors of Rtgt+Rbkg and the diagonal matrix Δ contains

the corresponding eigenvalues. We then define a transform matrix

P = MΔ−1/2, (8)

and rewrite (7) as

PT (Rtgt +Rbkg)P = I, (9)

where I is the identity matrix.

Define the target and background image patch correlation matrices

R̂tgt = PTRtgtP and R̂bkg = PTRbkgP

in the new domain, which reduces the equation (9) to

R̂tgt + R̂bkg = I. (10)

Performing an eigendecomposition on R̂tgt gives

R̂tgt = VΛΛΛVT , (11)

where columns of the orthogonal matrix V are the eigenvectors of R̂tgt and the diagonal matrix ΛΛΛ contains the

corresponding eigenvalues. Using (10) and (11), we obtain

R̂bkg = V(I−ΛΛΛ)VT , (12)

where the eigenvalues of R̂tgt and R̂bkg lie between zero and one, see Figure 5a.

Given a threshold ε ∈ (0, 1), we choose the largest |Ωtgt| eigenvalues λi in ΛΛΛ for the target class, where

Ωtgt := {i ∈ [1, N ] : λi ≥ 1− ε}.

Similarly, we choose the smallest |Ωbkg| eigenvalues λi in ΛΛΛ to represent the background class, where

Ωbkg := {i ∈ [1, N ] : λi ≤ ε}.

Selecting the columns of V corresponding to the indices of the set Ωtgt, we create the target projection submatrix

VΩtgt
. Similarly we can form the background projection submatrix VΩbkg

using the indices of the set Ωbkg .

In order to classify a test image patch, x, as target or background, we project x into

vtgt = VT
Ωtgt

PTx

and

vbkg = VT
Ωbkg

PTx.

Define a statistic

ϕ = vT
tgtvtgt − vT

bkgvbkg, (13)
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Fig. 5. Eigenvalue plots: (a) uncompressed QCF for a 20× 40 image patch and (b) compressed QCF where t = 100. As mentioned in [22],

for the QCF and CQCF to be effective in target detection, we need to choose a proper threshold ε so that the eigenvalues associated with the

targets and background are separated. We observe that, due to the compression, CQCF has less eigenvalues and the resulting discrimination

statistic will be smaller in magnitude, and hence it could be more efficient than the QCF.

which is

ϕ = xTP(VΩtgt
VT

Ωtgt
−VΩbkg

VT
Ωbkg

)PTx

= xT (FFT −GGT )x, (14)

where F = PVΩtgt and G = PVΩbkg
. We observe that the statistic will be large and positive for target image

patches and small or negative for background image patches. We will use the statistic ϕ to determine whether the

image patch is a target or not, see Figure 6b.

B. Compressed Quadratic Correlation Filter

In our target detection application, compressed images y = ΘTx are captured using the sensing matrix ΘT in (4).

The correlation matrices for the compressed target images ytgt = ΘTxtgt and the compressed background images

ybkg = ΘTxbkg are

R∗
tgt = E

[
ytgty

T
tgt

]
= ΘTRtgt(ΘT )

T

and

R∗
bkg = E

[
ybkgy

T
bkg

]
= ΘTRbkg(ΘT )

T

respectively. Their sum can be decomposed into the form

R∗
tgt +R∗

bkg = M̂Δ̂M̂T , (15)

where columns of the orthogonal matrix M̂ contain the eigenvectors of R∗
tgt + R∗

bkg and the diagonal matrix

Δ̂ contains corresponding eigenvalues, see Figure 5b. Similar to the QCF in Section III-A, we define the new
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(a) (b)

(c) (d)

Fig. 6. (a) Original midwave infrared image containing a single Main Battle Tank (T72) target. (b) Target detection statistic ϕ from QCF

applied to the uncompressed original image. (c) QCF applied to a 20×40 blockwise reconstruction of the image using �1-BP where m = 100.

(d) Compressed quadratic correlation filter (CQCF) where t = 100. There are 542 eigenvalues for the target and 26 for the background for the

discriminator in (b), 99 for the target and 1 for the background in (c), and 81 for the target and 6 for the background in (d). If we create half

the range of the statistic as the threshold, we will have 1 detection in (b), and 3 detections in (c), and 2 detections in (d). We can see that ϕ for

(b) and (c) is greater than 1, 100. However, the maximum value of ϕ̂ for CQCF (d) is around 20, which is due to the lower number of total

eigenvalues and the disparate ratio of target to background discriminators.

compressed target correlation matrix R̂∗
tgt = P̂TR∗

tgtP̂ and the background correlation matrix R̂∗
bkg = P̂TR∗

bkgP̂,

where P̂ = M̂Δ̂−1/2 is the transform matrix. Write

R̂∗
tgt = V̂Λ̂ΛΛV̂T ,

where V̂ is an orthogonal matrix containing the eigenvectors of R̂∗
tgt and Λ̂ΛΛ is the diagonal matrix containing the

corresponding eigenvalues.

Given a compressed measurement y, we define

v̂tgt = V̂T
tgtP̂

Ty and v̂bkg = V̂T
bkgP̂

Ty,

March 16, 2016 DRAFT



9

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
false positive rate

0.4

0.5

0.6

0.7

0.8

0.9

1

tr
u
e
p
os
it
iv
e
ra
te

Receiver Operating Characteristic (ROC) Curve for �1-BP with QCF

m=25

m=50

m=100

m=200

m=400

m=800

uncomp

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
false positive rate

0.4

0.5

0.6

0.7

0.8

0.9

1

tr
u
e
p
os
it
iv
e
ra
te

Receiver Operating Characteristic (ROC) Curve for CQCF

t = 25

t = 50

t = 100

t = 200

t = 400

t = 800

uncomp

(b)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
false positive rate

0.4

0.5

0.6

0.7

0.8

0.9

1

tr
u
e
p
os
it
iv
e
ra
te

Receiver Operating Characteristic (ROC) Curve for 50 samples

CQCF

�1-BP

OMP

IIRLS

uncomp

(c)

Fig. 7. (a) The ROC curves for QCF with blockwise �1-BP reconstruction for different measurements sizes m. (b) This chart shows CQCF applied

to the NVESD test image dataset with similar results to (a). (c) Comparison of methods to �1-BP, OMP, and IIRLS blockwise reconstruction

methods with CQCF with t = 50. We can see from these curves that if the compression ratio is 1
16

, these methods have similar target detection

capability. However, CQCF requires much less execution time since it operates in the compressed domain.

and a statistic

ϕ̂ = v̂T
tgtv̂tgt − v̂T

bkgv̂bkg (16)

which can also be written as

ϕ̂ = yT (F̂F̂T − ĜĜT )y (17)

where F̂ = P̂V̂tgt and Ĝ = P̂V̂bkg .

We observe that the statistic has larger values over the target class and smaller values over the background.

Therefore for compressed infrared image patch, we can use the statistic ϕ̂ to classify the target and the background,

see Figure 6d.

C. Comparison of CQCF to QCF

The standard QCF is intended to work on an image in the entire pixel domain. For this reason, we need

reconstruction techniques, such as basis pursuit, orthogonal matching pursuit and initialized iterative reweighted

least squares, for target detection [18], [19], [28]. However, CQCF introduced in Section III-B operates in the

compressed domain. We observe that the value of the decision statistic for CQCF is effected by the compression.

Comparing with QCF, the number of distinguishing eigenvalues for target and background is significantly less, see

Figure 5. This causes a decrease in the magnitude of the statistic ϕ̂ for CQCF versus the statistic ϕ for QCF.

In Figure 6, we show an application of QCF and CQCF to distinguish the target main battle tank (T72) from

background in a midwave infrared image.

The performance of those two methods could be measured using receiver operating characteristic (ROC) curves

[31]–[33], see Figure 7. From the simulations we see that the CQCF performs similarly to the iterative recovery

methods with QCF, but at a fraction of the execution time due to its closed-form linear nature.
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IV. NUMERICAL EXPERIMENTS

We conducted our simulations using the SENSIAC database for ATR algorithm development [34]. This database

is a mid-wave infrared (MWIR) dataset from the U.S. Army Night Vision and Electronic Sensors Directorate

(NVESD). It contains 207GB of MWIR data which includes 10 vehicle target types and 2 scenarios of humans.

For our experiments, we considered all 10 vehicle target types. These include a Pickup Truck (PICKUP), Sport

Utility Vehicle (SUV), Armored Personnel Carriers (BTR70 and BMP2), an Infantry Scout Vehicle (BRDM2),

a Main Battle Tank (T72), an Anti-Aircraft Weapon (ZSU23-4), a Self-Propelled Howitzer (2S3), an Armoured

Reconnaissance Vehicle (MTLB) and a Towed Howitzer (D20). A 20 × 40 bounding box is formed around each

target using the ground truth data to generate a target image patch, x, for training.

A. Simulation Setting

For our simulations, coefficients αi could be assumed to be independent with a Laplace distribution, cf. [35].

Presented in Figure 9 is the histograms of different coefficients for all ten of the vehicle target types in the NVESD

dataset. Each coefficient has a corresponding population mean and variance,

αi ∼ Laplace(μi, bi) for i = 1, · · · , N. (18)

We can approximate the population mean and variance with the sample mean and variance. The i-th sample

mean (ᾱi) and sample variance (2b̃2i ) are evaluated by

ᾱi =
1

NS

NS∑
j=1

αj
i (19)

and

2b̃2i =
1

NS − 1

NS∑
j=1

(αj
i − ᾱi)

2, 1 ≤ i ≤ N, (20)

where NS is the total number of training target images. For our experiments,

NS = 68, 000 = 1700× 10× 4,

which consists of four different scenarios containing 1, 700 images each for all ten targets. Under the above

assumptions, we can calculate the probability of having a large coefficient at i-th position as

P [|αi| ≥ ρ] = 1− 1

2b̃i

∫ ρ

−ρ

e
−|αi−ᾱi|

b̃i dαi, (21)

and define the measurement matrix Φ ∈ R
t×N as in (4) for STLS.

Shown in Figure 8 is a comparison of the large coefficient probability, τ , to the cardinality of the set T . Therefore

as expected, the probabilities τ increase as the threshold ρ for a large coefficients decrease. If ρ is chosen to be

too small, the probabilities will approach all 1 and will not contain any useful information about the locations of

most probable coefficients. If the coefficient ρ is too large, then the probabilities will approach all 0 and again will

not provide information about most probable coefficient locations. So from now on, we choose ρ = 0.005. The

threshold τ is then chosen based on the desired set size, T . This number can be determined experimentally from

the training dataset. We used set sizes of 25, 50, 100, 200, 400 and 800 for our experiments.
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ρ. If ρ is set too small or too large, the coefficient probabilities τ will not contain any useful information as they will be saturated.

The correlation matrix Rtgt for QCF can be estimated from NS training target images. Similarly, the correlation

matrix Rbkg can be also obtained using NS random background samples from the training images.

In all simulations, we use the two-dimensional inverse DCT basis Ψ of size N × N to generate vectors α of

training images extracted from the NVESD database. In CQCF, we also use a two-dimensional forward DCT basis

Θ of size |T | ×N for Φ.

In our experiments, the measurement matrix Φ ∈ R
m×N is a Gaussian random matrix with

φi,j ∼ N (0, 1/m)

where m is the number of measurements. The above measurement matrix has been widely used to recover a sparse

vector with an unknown support [8], [12], [18], [36].

B. Results

For recovery of infrared target image patches, the performance of STLS is compared against IIRLS, BP, and

OMP [18], [19], [28] on the NVESD dataset, see Figure 10. Our simulation output is shown in Figure 11. These

methods were compared using the normalized reconstruction metric

e =
‖x̂− x‖p
‖x‖p

(22)

with p = 1, 2,∞, where x represents the original image patch and x̂ represents the reconstructed image patch. We

can see from Figure 11 that STLS has significantly less reconstruction error than the iterative methods, including

BP, OMP, IIRLS. This is due to the fact that the measurement contains an exact copy of the most probable dominant

coefficients. As long as the actual large coefficients falls into one of these “most probable” supporting bins, we

will get a very good reconstruction.
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Fig. 9. Presented from left to right are the coefficient histograms for (a) α2 (ᾱ2 = −0.0103, b̃2 = 0.0262), (b) α100 (ᾱ100 =

−2.3696e−5, b̃100 = 0.0032), and (c) α400 (ᾱ400 = 1.5503e−6, b̃400 = 7.9860e−4) for all ten target types.

(a) (b) (c) (d)

Fig. 10. (a) Original image (b) �1-BP reconstructed image using a Gaussian random measurement matrix (PSNR = 51.2933 dB, m = 100).

(c) IIRLS (PSNR = 54.7964, m = 100) reconstructed image using a Gaussian random measurement matrix with over a 3 1
2

dB improvement in

PSNR over �1-BP. (d) Stochastically trained least squares (PSNR = 62.0743) reconstructed image using t = 100 with over a 7 dB improvement

in PSNR over IIRLS.
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Fig. 11. Presented from left to right are �1, �2 and �∞ reconstruction error vs. measurements for six targets in the NVESD database using

stochastic �2. The iterative methods, with the exception of OMP, were limited to M iterations where M = 40 for our simulations. OMP was

limited to s iterations where s is the sparsity of the signal. The package �1 −MAGIC was used to implement �1 basis pursuit [37]
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V. CONCLUSION AND FUTURE RESEARCH

Our stochastically trained least squares approach allow reconstruction of the images with a high PSNR so that

subsequent processing (like target recognition) can occur without resampling. Our experimental results show that

CQCF method has similar performance to more traditional approaches on accuracy, but it has minimal execution

costs. We believe this algorithm could be implemented on a low-cost high resolution midwave infrared detector

with negligible effects from the compression. This provides more options to design an autonomous weapon or fire

control system that might employ a high resolution MWIR focal plane array.

The shift-invariance of the dictionary is an important feature for the ATR. An interesting area for future research

is to find a shift-invariant dictionary that provides a better recognition accuracy.

Target detection is just the first step in an automatic target recognition system. In a typical ATR system, targets

should be uniquely identified. Another interesting research area is how the compressed measurements for CQCF

can be used in a target identification algorithm.
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