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Abstract. In this paper, we study the minimally supported interpolating
filters with prescribed zeros and their corresponding refinable functions.

1. Introduction. In signal processing, it is usual for filters to be constructed ac-
cording to various filter design specifications, [23]. However, in the theory of or-
thonormal wavelets of compact support there has been a preference for filters of
maximal flatness to generate refinable functions and wavelets which have a pre-
scribed regularity [1, 7, 16, 21, 24]. Perhaps, this is due to the belief that maximally
flat filters will lead to maximally smooth wavelets even though there seems to be no
concrete evidence to support that hypothesis. Therefore, in this paper we are led to
explore the possibility of specifying zeros of the filter freely as a device to improve
their properties and those of the associated refinable functions. Our finding is in no
way definitive and there remains many intriguing issues that demand clarification.

For the sake of generality we focus on symmetric interpolating filters Q, that
is, those 2π-periodic functions which satisfy the equations, Q(ξ) + Q(ξ + π) =
1, Q(−ξ) = Q(ξ), ξ ∈ R and Q(0) = 1. This choice of terminology shall become
clear as we amplify on our point of view. Let us emphasize here that we are not
concerned with conjugate quadrature filters. However, both notions are related and
the latter can be constructed from the former by a Riesz factorization, if the filter
is nonnegative. The possibility of this additional condition on interpolating filters
leads to some challenging and important questions that have yet to be satisfactorily
resolved, see [11, 12, 18, 19, 20] for recent progress on the matter.

Given any positive integer N , the minimally supported interpolating filter with
the flatness order 2N at the frequency π was discovered by Hermann in [13] and
later used by Daubechies, [7]. Recall that QN is given explicitly by the formula

QN (ξ) = cos2N ξ

2
PN

(
sin2 ξ

2

)
, ξ ∈ R (1.1)
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where

PN (z) =
∑

l∈ZN−1

(
N − 1 + l

l

)
zl, z ∈ Z (1.2)

and ZN := {0, 1, . . . , N}.
The polynomial PN is the unique polynomial of degree at most N − 1 which

satisfies the Bézout equation

(1 − z)NPN (z) + zNPN (1 − z) = 1, z ∈ C (1.3)

and it is fortuitous that it is nonnegative on [0, 1]. Indeed, it does not fall below
one on that interval. Therefore, the filter QN vanishes only at ξ = π and it may
be expressed as the modulus squared of a polynomial on the unit circle, thereby
leading to orthonormal refinable functions, [7].

Let I be the ideal filter, defined for all ξ ∈ R as

I(ξ) =
∑

j∈Z

χ[−π/2,π/2](ξ + j),

where χE is the characteristic function of a set E. The filter QN tends to the ideal
filter I on [−π, π]\{π/2,−π/2} pointwise, that is, for all ξ ∈ R\(π/2 + πZ) we have
that

lim
N→∞

QN(ξ) = I(ξ). (1.4)

Moreover, the limit above holds uniformly on any compact subset of [−π, π]\{π/2,
−π/2}. As we shall see later, this fact follows from Corollary 4.3.

For a Hölder continuous filter Q with a prescribed flatness constraint at the
frequency π, so that Q(0) = 1, we may define the Fourier transform of the corre-
sponding refinable function φ by the functional equation,

φ̂(ξ) = Q(ξ/2)φ̂(ξ/2), φ̂(0) = 1, ξ ∈ R. (1.5)

Here, f̂ is the Fourier transform of an integrable function f defined by the equation

f̂(ξ) =
∫

R
f(x)e−ixξdx, ξ ∈ R and for tempered distribution it is understood in the

usual sense. The refinable function φ is uniquely determined by the function Q.
Indeed, we have that

φ̂(ξ) =
∏

l∈N

Q(2−lξ), ξ ∈ R. (1.6)

The symbol associated with this refinable function is the function A defined such
that A(eiξ) = 2Q(ξ), ξ ∈ R. The Fourier coefficients of Q will determine the
refinement equation for φ, [3].

For the interpolating filter QN , the corresponding refinable function, denoted by
ΨN , has interpolating property,

ΨN (l) = δl, l ∈ Z, (1.7)

where δ = (δl : l ∈ Z) is the delta sequence. This function was introduced in [8] and
it is the autocorrelation of the orthonormal refinable function studied in [7]. The
Fourier exponent sp(ΨN ) of the function ΨN satisfies the limit relation,

lim
N→∞

sp(ΨN )

N
= 2 −

ln 3

ln 2
, (1.8)

[7, 17, 24, 26]. Recall that the Fourier exponent sp(f), 0 < p ≤ ∞, of a function f
with measurable Fourier transform is defined by the formula

sp(f) = sup{s : (1 + | · |)sf̂ ∈ Lp},



INTERPOLATING FILTERS WITH PRESCRIBED ZEROS 791

where Lp is the usual space of all p-integrable functions on R.
One may easily verify the useful fact that

sp(f) − 1/p ≥ sp′(f) − 1/p′, if 0 < p < p′ ≤ ∞. (1.9)

There has been a great deal of interest in estimating of the Fourier exponent of a
refinable function, see for instance [4, 10, 14, 24, 25, 26] and references therein.

As we have mentioned earlier the only zero of the interpolating filter QN is at
the frequency π. In this paper, we are interested in the minimally supported in-
terpolating filter with flatness constraints at the prescribed frequencies ξ1, . . . , ξs, π
and properties of the corresponding refinable functions.

Let ξ1, . . . , ξs, π be ordered so that 0 < ξ1 < ξ2 < . . . < ξs < π, and let
k1, k2, . . . , ks, N be positive integers. We introduce the set E = {ξj : j ∈ Ns} and
s-tuple of positive integers K = (kl : l ∈ Ns) where we have set Ns := {1, . . . , s}.
First, we show in Theorem 4.1 that a necessary and sufficient condition for the
existence of an interpolating filter Q having the flatness order kj at the frequency
ξj , j ∈ Ns and the flatness order 2N at the frequency π is that E∩(π−E) = ∅ . We
denote this minimal supported interpolating filter having the above flatness con-
straints by QN,E,K. Our notation ensures that QN,E,K = QN when E is an empty
set and generally QN,E,K is a trigonometric polynomial of degree 2N + 2|K| − 1,
where we define |K| :=

∑
j∈Ns

kj . In this paper, we establish similar limit proper-

ties as (1.4) for QN,E,K, when E ⊂ (π/2, π). Specifically, we shall show in Corollary
4.3, for any ξ ∈ R\(π/2 + πZ) that

lim
N→∞

QN,E,K(ξ) = I(ξ).

However, this limit property no longer holds true when ξ1 ∈ (0, π/2). In fact, we
shall show in Corollary 4.5 whenever ξ ∈ (−ξ1, ξ1) + πZ that

lim
N→∞

QN,E,K(ξ) = I(ξ)

while for ξ1 ∈ (0, π/2) and ξ 6∈ ([−ξ1, ξ1] ∪ E ∪ (−E) ∪ {π/2}) + πZ, it follows that

lim
N→∞

QN,E,K(ξ) = ∞.

We denote the refinable function with filter QN,E,K by ΦN,E,K. For the case that
ξ1 ∈ (π/2, π), Theorem 5.1 provides a lower bound estimate of Fourier exponent of
the refinable function ΦN,E,K similar to those for ΨN .

As mentioned early the upper bound of the filter QN,E,K tends to infinity when
ξ1 ∈ (0, π/2). Due to the decay property of the refinable function ΨN , the study
of smoothness of the refinable functions ΦN,E,K when ξ1 ∈ (0, π/2) is possible.
In particular, Theorem 5.1 ensures for ξ1 ∈ (π/3, π/2), that the Fourier exponent
sp(ΦN,E,K) is still proportional to cN for some positive constant c and hence ΦN,E,K

is certainly continuous in that case for sufficiently large N . However, Theorem 5.1
also shows that the situation deteriorates when ξ1 ∈ (0, π/3). Although, the Fourier
exponent sp(ΦN,E,K) is still proportional to cN the constant c in this case is negative

and hence ΦN,E,K is discontinuous for sufficiently large N .
In section two we begin our presentation with some facts pertaining to iterative

interpolation as studied by Deslauries and Dubuc in [8] and in section three we
treat the case of a single zero. This allows us to explain the method of analysis we
employ with clarity and precision before the general case is treated in sections four
and five.
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We leave for another time the challenging problem of the type studied here when
the number of zeros of QN,E,K , different from π, also depend upon N .

2. Laurent polynomials and iterative interpolation. We begin this section
by recalling the method of Deslauriers and Dubuc [8] of using local Lagrange inter-
polation to iteratively construct a continuous function f ∈ C(R) which interpolates
given data {yj : j ∈ Z} at all integers, that is, f(j) = yj , j ∈ Z. To this end, for
a given nonnegative integer N , we denote by Lj, j ∈ JN := −N + 1 + Z2N−1, the
Lagrange polynomials of degree 2N − 1 defined by the requirement that

Lj(l) = δjl, j, l ∈ JN . (2.1)

The first step of their method is to set

f(
1

2
) :=

∑

j∈JN

Lj(
1

2
)f(j), (2.2)

that is, to define f(1
2 ) as the value of the polynomial which interpolates the finite

set of data {yj : j ∈ JN} at 1
2 . Generally, the values of f on the grid 1

2 + Z are
given by the formula

f
(
j +

1

2

)
:=
∑

l∈JN

Ll(
1

2
)f(l + j), j ∈ Z. (2.3)

By this procedure we have specified f on the fine grid Z/2 from it values on
the coarse grid Z. The process is repeated iteratively to obtain f on Z/2r, r ∈
Z+ := N ∪ {0}. It is proved in [8] that this iterative process converges as r → ∞
to a continuous function f which interpolates the original data set {yj : j ∈ Z}
and has the form f =

∑
j∈Z

f(j)ΨN (· − j) where the function ΨN has the property

that ΨN(j) = δj , j ∈ Z. Equation (1.8) mentioned earlier provides the Fourier
exponent of the function ΨN . The case N = 2 was first considered by Dubuc in [9].

The function ΨN is refinable and satisfies the refinement equation

ΨN =
∑

j∈Z

djΨN(2 · −j), (2.4)

where the mask sequence {dj : j ∈ Z} is defined by the equation

dl−2j =





Lj

(
l

2

)
, j ∈ JN ,

0, otherwise,
l ∈ {0, 1}. (2.5)

The symbol of the mask given by the Laurent polynomial

DN (z) :=
∑

j∈Z

djz
j , z ∈ C\{0} (2.6)

is nonnegative for z ∈ ∆ := unit circle, as can be seen from the formula

DN (eiξ) = 2

∫ ξ

π
(sin t)2N−1 dt

∫ 2π

π (sin t)2N−1 dt
, ξ ∈ [−π, π] (2.7)

and vanishes only at z = −1. In particular, we have that D1(z) = 1+z. In general,
we have from (2.7) that

DN (eiξ) =
(2N − 1)!

22N−2[(N − 1)!]2

∫ π

ξ

(sin t)2N−1 dt, ξ ∈ [−π, π]. (2.8)
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Moreover, it is known that

DN (eiξ) = 2QN(ξ), ξ ∈ R, (2.9)

a result which follows because each side of the equation is uniquely defined by its
properties, see below. The prevailing terminology is that a symbol is connected to
an associated filter by such a relation.

The key to the convergence of the iterative scheme described above is the fact
that the filter QN is nonnegative on ∆ and vanishes only at ξ = π. In fact, any

subdivision scheme with a symbol whose corresponding filter has this property con-
verges to a continuous function (actually, only positivity on the interval (π/2, π) is
needed for the validity of this conclusion). All the properties mentioned above and
extensions can be found in [20].

To construct other filters with properties similar to QN we shall isolate four

essential conditions which determine this Laurent polynomial uniquely. First, it is
symmetric. Recall that a Laurent polynomial A given as

A(z) :=
∑

j∈Z

ajz
j, z ∈ C\{0} (2.10)

is symmetric provided that

A(z) = A(z−1), z ∈ C\{0}. (2.11)

Second, it is of degree at most M := 2N−1, that is, its coefficient sequence {aj : j ∈
Z} vanishes for j 6∈ KM := −M + Z2M . We denote this class by LM . Next, since
the iterative scheme described above always leaves the data on the coarse grid Z

unaltered, that is, it is an interpolatory subdivision scheme the Laurent polynomial
must satisfy the equation

A(z) + A(−z) = 2, z ∈ C\{0}. (2.12)

Finally, the scheme preserves all polynomials of degree 2N −1, in the sense that for
every p ∈ π2N−1 and l ∈ Z we have that

p(
l

2
) =

∑

j∈Z

dl−2jp(j). (2.13)

This is equivalent to the fact that the Laurent polynomial A has a zero of order at
least 2N at −1, that is

A(j)(−1) = 0, j ∈ Z2N−1, (2.14)

[20]. This observation motivates the following definition.

Definition 2.1. For any N ∈ N and M ∈ Z+, we denote by AN,M the class of all
Laurent polynomial A ∈ L2(N+M)−1 which satisfies (2.12) and (2.14).

Let us note the following representation for the class AN,M .

Theorem 2.2. A ∈ AN,M if and only if there exist real constants tj , j ∈ ZM with∑

j∈ZM

tj = 1 such that

A =
∑

j∈ZM

tj DN+j . (2.15)
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Proof. By (2.11) and (2.12), we may uniquely associate with each element A ∈
AN,M the coefficient vector (a1, a3, . . . , a2(N+M)−1) formed from some of its coeffi-
cients and the polynomial reproduction property (2.13) is equivalent to the following
conditions on this vector

∑

r∈ZN+M−1

a2r+1(r +
1

2
)2l =

{
0, l ∈ ZN−1\{0},
1

2
, l = 0.

(2.16)

These linear relations are independent and so the first N − 1 equations imply that
every A ∈ AN,M is in unique correspondence with an element in a linear space S of
dimension k+1. The coefficient sequences associated with the Laurent polynomials
DN+j, j ∈ ZM are in S and are linearly independent which is a consequence of the
fact that they are of exact degree 2N + j. Consequently, for any A ∈ AN,M there
exist unique real numbers tj , j ∈ ZM so that

A =
∑

j∈ZM

tj DN+j ,

and the last equation in (2.15) implies that
∑

j∈ZM
tj = 1.

Note that as a special case of the above fact when M = 0 implies that the class
AN,0 consists only of the polynomial DN .

The zero at −1 is known to affect the regularity of the refinable function as-
sociated with A, see, for example, [3] and, as already mentioned, its positivity on
the interval (π/2, π) leads to convergence of the subdivision scheme. Thus, finding
nonnegative members of the class AN,M is especially pleasant and desirable as they
will also lead to orthonormal wavelets and the associated subdivision scheme will
converge, [20, 22].

The class AN,M has M degrees of freedom which can be used by specifying zeros
of A. We shall do this in the next section. But as preparation for this we look at
the class AN,1 in some detail. To this end, for N ∈ N and t ∈ R we define the
polynomial AN (·|t) at z ∈ C as

AN (z|t) = (1 − t)DN (z) + tDN+1(z),

and recall that
AN (−1|t) = 0 and AN (1|t) = 2, t ∈ R.

We use QN (·|t) for the associated filter, that is, AN (eiξ|t) = 2QN(ξ|t), ξ ∈ R.
Clearly, QN(·|t) is nonnegative on ∆ for t ∈ [0, 1]. More information of this type is
provided next.

Proposition 2.3. For any positive integer N , the filter QN(·|t) is strictly positive

in (0, π) for t ∈ [−2N, 1], while it has a unique zero in (π/2, π) for t ∈ (1,∞).

Proof. A direct computation using formula (2.8) yields the formula for the derivative
of the filter QN(ξ|t). Specifically, we have that

Q′
N(ξ|t) =

1

22N−1

(
2N − 1

N

)
(sin ξ)2N+1

(
t(2N + 1) cos2 ξ − (t + 2N)

)
.

Recall, by definition that 2QN(ξ|0) = DN(eiξ) and 2QN(ξ|1) = DN+1(e
iξ). And

so, they are both positive for ξ ∈ (−π, π). So, the filter QN (·|t) is strictly positive
in (0, π) for t ∈ [0, 1].

For t ∈ [−2N, 0] it follows from our formula for the derivative of the filter that
Q′

N(ξ|t) < 0 for ξ ∈ (0, π). Moreover, since QN (·|t) is an interpolatory filter it
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necessarily follows for all t ∈ R that QN(π/2|t) = 1/2. Hence, since it vanishes at
ξ = π we conclude that QN (ξ|t) > 0 for all ξ ∈ (0, π), otherwise, by Rolle’s theorem,
its derivative would have a sign change in (0, π).

For t > 1, Q′
N(·|t) has exactly two zeros in (0, π). One is given by cos ξ1 =√

t+2N
2t(N+1) which is in the interval (0, π/2), while the other is cos ξ2 = −

√
t+2N

2t(N+1)

which is in the interval (π/2, π). From our formula for the derivative of QN (·|t) we
have for all t ∈ R that sgn Q′

N(0+|t) = sgn (t − 1) and sgn Q′
N(π−|t) = sgn(t − 1).

Therefore, we conclude that sgn Q′
N(π−|t) < 0. Thus, since QN (π|t) = 0 and

QN(π/2|t) = 1/2, QN (·|t) must have at least one zero in (π/2, π). However, since
Q′

N(·|t) has exactly one zero in that interval we conclude that QN(·|t) has exactly
one zero in (π/2, π).

3. The case of one zero. In this section we shall explicitly construct an inter-
polatory filter of minimal degree with one prescribed zero and develop some of its
properties. Thus, the problem we consider is to find a polynomial PN,ξ1

of least
degree which satisfies the equation (1 − z)NPN,ξ1

(z) + zNPN,ξ1
(1 − z) = 1, z ∈ C

with the property that PN,ξ1
(1 − t1) = 0 where t1 := cos2 ξ1

2 and ξ1 ∈ (0, π).
Therefore, the associated filter QN,ξ1

defined for ξ ∈ R by the equation QN,ξ1
(ξ) =

cos2N ξ
2PN,ξ1

(sin2 ξ
2 ) vanishes at ξ1.

When ξ1 = π/2 there is clearly no solution. So, we assume that ξ1 ∈ (0, π)\{π/2}
and then recall that the least degree solution of the equation which we wish to solve
without the demand that it vanish at 1 − t1 is the polynomial

PN (z) =
∑

l∈ZN−1

(
N − 1 + l

l

)
zl, z ∈ C. (3.1)

Since this polynomial is positive on [0, 1] the polynomial PN,ξ1
which we seek is of

at least of degree N and is obtained by appropriately modifying PN . Indeed, it can
be verified directly that PN,ξ1

is given uniquely at z ∈ C by the formula

PN,ξ1
(z) = PN (z) + zN(1 − 2z)PN (1 − t1)(1 − t1)

−N (1 − 2t1)
−1. (3.2)

Let us now provide estimates for this polynomial which will lead us to properties
of the refinable function corresponding to the filter QN,ξ1

. We begin with the
following estimates for the polynomial PN .

Proposition 3.1.

PN (t) ≤

{
(1 − t)−N , t ∈ [0, 1/2],

22(N−1)tN−1, t ∈ [1/2, 1],
(3.3)

and

PN (t) ≥

{
(1 − t)−N/2, t ∈ [0, 1/2],

N−122(N−1)tN−1, t ∈ [1/2, 1].
(3.4)

Proof. Since PN satisfies (1 − t)NPN (t) + tNPN (1 − t) = 1 and PN (t) ≥ 0 for all
t ∈ [0, 1], we have for any t ∈ [0, 1] that

PN (t) ≤ (1 − t)−N . (3.5)
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Substituting t = 1/2 into the Bézout identity for PN , we obtain that PN (1/2) =
2N−1. Therefore, for t ∈ [1/2, 1], we conclude that

PN (t) =
∑

l∈ZN−1

(
N − 1 + l

l

)
(2t)l2−l

≤ (2t)N−1PN (1/2) = 22(N−1)tN−1. (3.6)

Combining (3.5) and (3.6) leads to the estimate (3.3).
For t ∈ [0, 1/2], we have that

(1 − t)NPN (t) = 1 − tNPN (1 − t) ≥ 1 − tN22(N−1)(1 − t)N−1.

Since for N ∈ N, the expression tN (1 − t)N−1 is an increasing function of t on
[0, 1/2], we conclude that

PN (t) ≥ (1 − t)−N/2.

Therefore, the first estimate in (3.4) follows.
To prove the second claim we use the inequality

(
2l
l

)
≥

22l

l + 1

valid for all l ∈ N which may be proved by induction on l. This together with the
lower bound

PN (t) =
∑

l∈ZN−1

(
N − 1 + l

l

)
tl ≥

(
2N − 2
N − 1

)
tN−1

leads to the second conclusion of (3.4).

Using the above estimate for PN we have the following estimate for PN,ξ1
. Below,

we always have that t1 = cos2 ξ1

2 .

Proposition 3.2. If t1 ∈ [0, 1/2), then

|PN,ξ1
(t)| ≤ (1 + (4(1 − t1)(1 − 2t1))

−1)

{
(1 − t)−N , t ∈ [0, 1/2],
22N tN , t ∈ [1/2, 1],

(3.7)

while for t1 ∈ [1/2, 1)

|PN,ξ1
(t)| ≤ (1 + (4t1(1 − t1))

−N |1 − 2t1|
−1)

{
(1 − t)−N , t ∈ [0, 1/2],
22N tN , t ∈ [1/2, 1].

(3.8)

Proof. For t1 ∈ (0, 1/2) and t ∈ [0, 1/2], we have that

|PN,ξ1
(t)| ≤ (1 − t)−N + tN22(N−1)(1 − t1)

N−1(1 − t1)
−N (1 − 2t1)

−1

≤ (1 + (4(1 − t1)(1 − 2t1))
−1)(1 − t)−N . (3.9)

For t1 ∈ (0, 1/2) and t ∈ [1/2, 1], we obtain that

|PN,ξ1
(t)| ≤ 22(N−1)tN−1 + tN22(N−1)(1 − t1)

N−1(1 − t1)
−N (1 − 2t1)

−1

≤ (1 + (4(1 − t1)(1 − 2t1))
−1)22N tN . (3.10)

Combining inequalities (3.9) and (3.10) proves (3.7).
For t1 ∈ [1/2, 1) and t ∈ [0, 1/2],

|PN,ξ1
(t)| ≤ (1 − t)−N + tN t−N

1 (1 − t1)
−N |1 − 2t1|

−1

≤ (1 − t)−N (1 + (4t1(1 − t1))
−N |1 − 2t1|

−1), (3.11)
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while for t1 ∈ [1/2, 1) and t ∈ [1/2, 1],

|PN,ξ1
(t)| ≤ 22(N−1)tN−1 + tN t−N

1 (1 − t1)
−N |1 − 2t1|

−1

≤ (1 + (4t1(1 − t1))
−N |1 − 2t1|

−1)22N tN . (3.12)

Combining inequalities (3.11) and (3.12) leads to (3.8).

To study the smoothness of the refinable function associated with the interpo-
lating filter QN,ξ1

, we shall also require the estimates which we present next.

Proposition 3.3. Let PN,ξ1
be defined as above. Then

|PN,ξ1
(3/4)| ≥






(1 − 4t1)(5 − 4t1)

24N(1 − 2t1)(1 − t1)
3N , if t1 ∈ (0, 1/4),

4t1 − 1

8N(1 − t1)(1 − 2t1)
3N , if t1 ∈ (1/4, 1/2),

1

4(2t1 − 1)

(
3

4t1(1 − t1)

)N

, if t1 ∈ (1/2, 1).

(3.13)

Proof. For t1 ∈ (0, 1/4), we get that
∣∣∣PN,ξ1

(3

4

)∣∣∣

=
∑

l∈ZN−1

(
N − 1 + l

l

)((
3

4

)l

−
1

2(1 − 2t1)

(
3

4

)N

(1 − t1)
l−N

)

=
∑

l∈ZN−1

(
N − 1 + l

l

)(
3

4

)l
(

1 −
1

2(1 − 2t1)

(
3

4(1 − t1)

)N−l
)

≥
∑

l∈ZN−1

(
N − 1 + l

l

)(
3

4

)l(
1 −

3

8(1 − 2t1)(1 − t1)

)

≥ N−13N−1

(
1 −

3

8(1 − 2t1)(1 − t1)

)
,

where we have used the facts that 2(1− 2t1) > 1 and 3 < 4(1− t1) for t1 ∈ (0, 1/4).
Consequently, the first inequality follows and likewise invoking Proposition 3.1 so
too does the last inequality, thereby establishing the first estimate in (3.13).

For t1 ∈ (1/4, 1/2), we have that 2(1− 2t1) < 1 and 3 > 4(1− t1). Therefore, we
obtain that

∣∣∣PN,ξ1

(3

4

)∣∣∣

=

∣∣∣∣∣∣

∑

l∈ZN−1

(
N − l + l

l

)((
3

4

)l

−
1

2(1 − 2t1)

(
3

4

)N

(1 − t1)
l−N

)∣∣∣∣∣∣

=
∑

l∈ZN−1

(
N − 1 + l

l

)(
3

4

)l
(

1

2(1 − 2t1)

(
3

4(1 − t1)

)N−l

− 1

)

≥
∑

l∈ZN−1

(
N − 1 + l

l

)
(1 − t1)

l

(
3

4(1 − t1)

)N (
1

2(1 − 2t1)
− 1

)

≥
4t1 − 1

8N(1 − t1)(1 − 2t1)
3N ,
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where we have used the inequality st − 1 ≥ (s − 1)t, valid for any t ≥ 1, to obtain
the first inequality and the estimate of PN (1 − t1) in Proposition 3.1 to obtain the
last inequality. This proves the second estimate in (3.13).

For t1 ∈ (1/2, 1), we compute

PN,ξ1
(3/4) = PN (3/4) + (3/4)N (−1/2)PN(1 − t1)(1 − t1)

−N (1 − 2t1)
−1

≥ (3/4)N(−1/2)PN(1 − t1)(1 − t1)
−N (1 − 2t1)

−1

≥
1

4|1 − 2t1|

(
3

4

)N

t−N
1 (1 − t1)

−N

=
1

4|1 − 2t1|

(
3

4t1(1 − t1)

)N

, (3.14)

which proves the third estimate in (3.13).

We are now ready to estimate the regularity of the refinable function φN,ξ1
as-

sociated with the filter QN,ξ1
. To this end, we recall from [7] the estimate for the

Fourier transform of refinable functions.

Lemma 3.4. If φ is a refinable function associated with a trigonometric polynomial

Q, that is,

φ̂(2ξ) = Q(ξ)φ̂(ξ), ξ ∈ R,

and Q has the form

Q(ξ) =

(
1 + e−iξ

2

)N

V (ξ), ξ ∈ R

for some integer N and trigonometric polynomial V such that for some positive

constant q, {
|V (ξ)| ≤ q, |ξ| ≤ 2π/3,
|V (ξ)V (2ξ)| ≤ q2, 2π/3 ≤ |ξ| ≤ π,

then there exists a positive constant c such that for all ξ ∈ R

|φ̂(ξ)| ≤ c(1 + |ξ|)−N+ln q/ ln 2.

To use the above estimate to study the regularity of the refinable function with
filter QN,ξ1

we need the following result.

Lemma 3.5. If a is the 2π periodic function defined by

a(ξ) =

{
(cos ξ/2)−2, |ξ| ≤ π/2,
4(sin ξ/2)2, π/2 ≤ |ξ| ≤ π,

then {
|a(ξ)| ≤ 3, |ξ| ≤ 2π/3,
|a(ξ)a(2ξ)| ≤ 9, 2π/3 ≤ |ξ| ≤ π.

Proof. The first inequality is obvious. For 2π/3 ≤ ξ ≤ 3π/4, we verify that

a(ξ)a(2ξ) = 64 sin4 ξ

2

(
1 − sin2 ξ

2

)
.

Note that t2 − t3 is a decreasing function of t on (2/3, 1), and so we conclude that

a(ξ)a(2ξ) ≤ a(2π/3)a(4π/3) = 9.
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For 3π/4 ≤ ξ ≤ π, we use the formula

a(ξ)a(2ξ) = 4 sin2 ξ

2

(
1 − 2 sin2 ξ

2

)−2

.

Since t/(1 − 2t)2 is also decreasing function of t on (1/2, 1), we conclude that

a(ξ)a(2ξ) ≤ a(3π/4)a(3π/2) ≤ a(2π/3)a(4π/3) = 9.

This completes the proof.

Theorem 3.6. If φN,ξ1
is the refinable function with the filter QN,ξ1

then there is

a positive constant c such that for all t ∈ (0, 1/2)\{1/2}, we have the estimate

|φ̂N,ξ1
(ξ)| ≤ c(1 + |ξ|)(−N ln(4/3)+ln αN (cos2 ξ1/2))/ ln 2,

where

αN (t) :=

{
1 + (4t(1 − 2t))−1, t ∈ (0, 1/2),
1 + (4t(1 − t))−N |1 − 2t|−1, t ∈ [1/2, 1).

Proof. The above result is a direct consequence of Lemmas 3.4 and 3.5, and the
estimates in Proposition 3.2. Specifically, we use the Lemma 3.4 with q replaced by
αN (t1)3

N , N by 2N , and V by the function satisfying |V (ξ)| = |PN,ξ1
(cos2(ξ/2))|

for all ξ ∈ R.

Note that

1 + (4t1(1 − t1))
−N |1 − 2t1|

−1 ≤ 2(4t1(1 − t1))
−N |1 − 2t1|

−1

for t1 ∈ (1/2, 3/4). Therefore, as a consequence of Theorem 3.6, for ξ1 ∈ (π
3 , π)\{π

2 }
and sufficiently large N , the Fourier transform of φN,ξ1

is integrable. In particular,
we have the following estimate for N which guarantees the continuity of φN,ξ1

.

Corollary 3.7. If either

ξ1 ∈ (π/2, π) and N ≥
ln(2 + 2 sin−2 ξ1)

ln(4/3)
,

or

ξ1 ∈ (π/3, π/2) and N ≥
ln(4| cos ξ1|−1)

ln(4/3 sin2 ξ1)
,

then φN,ξ1
is continuous.

We shall now provide estimates of the Sobolev exponent of the refinable function
corresponding to the filter QN,ξ1

. To this end, we recall the following two results,
see [7, 24].

Lemma 3.8. If φ is a refinable function with φ̂ continuous and continuous filter Q

such that Q(ξ) =
(

1+e−iξ

2

)N

V (ξ), ξ ∈ R for some continuous 2π-periodic function

V where for some positive constant q there holds
{

|V (ξ)| ≤ q, |ξ| ≤ 2π/3,
|V (ξ)V (2ξ)| ≤ q2, 2π/3 ≤ |ξ| ≤ π,

then for 0 < p ≤ ∞ we have that

sp(φ) ≥ N −
ln q

ln 2
−

1

p
. (3.15)
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Lemma 3.9. If φ be a refinable function with φ̂ continuous and continuous filter Q

such that Q(ξ) =
(

1+e−iξ

2

)N

V (ξ), ξ ∈ R for some continuous 2π-periodic function

V and that φ̂(2π/3 + 2lπ) 6= 0 for some integer l then for 0 < p ≤ ∞, we have that

sp(φ) ≤ N −
ln |V (2π/3)|

ln 2
. (3.16)

Using Lemma 3.8, Lemma 3.9 and the estimate in Proposition 3.3, we have the
following result for the Sobolev exponent of φN,ξ1

.

Theorem 3.10. If ξ1 ∈ (0, π)\{π/2, 2π/3} and for some integer l ∈ Z φ̂N,ξ1
(2π/3+

2lπ) 6= 0 then there exists a positive constant c such that for all positive integers N
and ξ1 ∈ (π/2, π) there holds the bound

∣∣∣∣sp(φN,ξ1
) − N

ln 4/3

ln 2

∣∣∣∣ ≤ c lnN,

while for ξ1 ∈ (0, π/2)
∣∣∣∣sp(φN,ξ1

) − N
ln((4 sin2 ξ1)/3)

ln 2

∣∣∣∣ ≤ c.

As a consequence of Theorem 3.10, we have the following result.

Corollary 3.11. If ξ1 ∈ (0, π/3) and for some l ∈ Z that φ̂N,ξ1
(2π/3 + 2lπ) 6= 0,

then φN,ξ1
is discontinuous for all

N ≥
ln(4| cos ξ1|)

ln(3/4 sin2 ξ1)
.

4. Minimally supported filters with prescribed zeros. In this section, we
consider the existence and uniqueness of minimally supported interpolating filters
with prescribed zeros and their asymptotic behavior as the order of zero only at the
frequency π tends to infinity. First, we present the following existence result.

Theorem 4.1. Let N be a positive integer, K = (kj : j ∈ Ns) be a s-tuple of positive

integers, and E = {ξj : j ∈ Ns} be a subset of (0, π) such that 0 < ξ1 < ξ2 < · · · <
ξs < π. A necessary and sufficient condition for the existence of a trigonometric

polynomial Q which has a zero of order 2N at π and zeros at ξ1, . . . , ξs of orders

k1, . . . , ks, respectively, and satisfies the equations

Q(ξ) + Q(ξ + π) = 1, ξ ∈ R (4.1)

Q(ξ) = Q(−ξ), ξ ∈ R and Q(0) = 1, (4.2)

is that for all j, l ∈ Ns we have that

ξj + ξl 6= π. (4.3)

This result even holds when E contains complex numbers (in that case we do not
order the elements of E), although we do not take advantage of this generality here.
Nonetheless, when E ⊆ C\[0, 1] the interesting question arises as to whether or not

the polynomial P defined so that cos2N ξ
2P (sin2 ξ

2 ) = Q(ξ), ξ ∈ R is nonnegative
on [0, 1] at least for some choice of Q, if not for the minimal degree choice. Of
course, if E is the empty set it is indeed true for the minimal degree solution. For
progress on understanding this question see [11, 12, 18, 19, 20]. In fact, if Q is the
least degree solution for a P required to vanish at some prescribed zeros in the set
(1,∞) then Q is nonnegative on [0, 1]. This filter has two applications. Given a
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Sobolov subspace of L2 the zeros of P can be chosen to obtain orthonormal wavelets
of compact support and arbitrary regularity in that subspace, [21]. Alternatively,
this filter can be generated by local interpolation with exponential functions.This
lead to orthonormal wavelets on L2 of compact support whose Fourier transform
has prescribed zeros on the imaginary axis, [20].

Generally, the method of local interpolation will lead to interpolating filters and
when exponentials are used zeros of the filter will emerge. Alternatively, spline
functions maybe be used and this has been investigated to a limited degree in [6].

Returning to Theorem 4.1 we denote the trigonometric polynomial of minimal
degree described in it by QN,E,K . Whenever we talk about this filter we always
assume that the conditions of Theorem 4.1 hold. By (4.8), the degree of QN,E,K

is 2N + 2|K| and it is low pass filter, since QN,E,K(0) = 1 and QN,E,K(π) = 0.
Moreover, we have the following upper bound estimates.

Theorem 4.2. Given K and E as above there exist a positive constant c such that

for all positive integers N we have for ξ1 ∈ (π/2, π) that

|QN,E,K(ξ)| ≤

{
c, ξ ∈ [0, π/2],

c sin2N ξ, ξ ∈ [π/2, π],
(4.4)

while for ξ1 ∈ (0, π/2) there holds the inequality

|QN,E,K(ξ)| ≤






cNk1−1, ξ ∈ [0, ξ1],

cNk1−1

(
sin ξ

sin ξ1

)2N

, ξ ∈ [ξ1, π].
(4.5)

For ξ1 ∈ (π/2, π), a consequence of Theorem 4.2 is that the filter QN,E,K con-
verges to the ideal filter exponentially fast outside the transition band as N tends
to infinity, see [2] for an quantitative measurement for the approximation to the
ideal filter. We state this fact next.

Corollary 4.3. Given K and E as above with E ⊂ (π/2, π) and for any δ ∈ (0, π/2)
there exist a positive constant c and an r ∈ (0, 1) such that all positive integers N
and ξ ∈ [0, π/2 − δ] ∪ [π/2 + δ, π] there holds the inequality

|QN,E,K(ξ) − I(ξ)| ≤ crN . (4.6)

For ξ1 ∈ (0, π/2), Theorem 4.2 says that the filter QN,E,K converges to the
ideal filter when ξ ∈ (0, ξ1) ∪ (π − ξ1, π) as N tends to infinity. However, for
ξ ∈ (ξ1, π − ξ1)\(E ∪ (π − E)), QN,E,K diverges as N tends to infinity. This is a
consequence of the next theorem which also provides a lower bound estimate.

Theorem 4.4. Let K and E be as above with ξ1 ∈ (0, π/2). If J is a compact

subset of (π/2, π)\(E ∪ (π − E) ∪ {π/2}) then there exist a positive constant c and

a positive integer M such that for all ξ ∈ J and N ≥ M there holds the estimate

|QN,E,K(ξ)| ≥ cNk1−1

(
sin ξ

sin ξ1

)2N

. (4.7)

Theorems 4.2 and 4.4 lead to the following asymptotic property for the filter
QN,E,K as N tends to infinity.
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Corollary 4.5. Let E and K be as above with ξ1 ∈ (0, π/2). For any compact

subsets J1 of (−ξ1, ξ1) + πZ and J2 of ([−π, π]\([−ξ1, ξ1] ∪ E ∪ (−E))) + πZ, there

exist two positive constants c and r ∈ (0, 1), such that for ξ ∈ J1 we have that

|QN,E,K(ξ) − I(ξ)| ≤ crN

while for ξ ∈ J2 it follows that

|QN,E,K(ξ) − I(ξ)| ≥ c−1r−N .

4.1. Proof of Theorem 4.1. As usual we use (4.2) to introduce the polynomial
P defined by the requirement for all ξ ∈ R that P (sin2(ξ/2)) = Q(ξ) and transform
equations (4.1) and (4.2) to

P (z) + P (1 − z) = 1, z ∈ C (4.8)

where

P (0) = 1. (4.9)

From this version of the problem the result follows from the solvability of the Bézout
identity (4.8). �

4.2. Proof of Theorem 4.2. We prepare for the proof of Theorem 4.2 with two
lemmas. The first concerns estimates for QN in (1.1) which follows from Proposition
3.1.

Lemma 4.6.

|QN(ξ)| ≤

{
1, ξ ∈ [0, π/2],

cos2
ξ

2
sin2N−2 ξ, ξ ∈ [π/2, π],

(4.10)

and

|QN (ξ)| ≥






1

2
, ξ ∈ [0, π/2],

1

N
cos2

ξ

2
sin2N−2 ξ, ξ ∈ [π/2, π].

(4.11)

In the next lemma we estimate the derivative of the function RN defined for
t ∈ R by the equation RN (t) := t−NPN (t).

Lemma 4.7. If δ ∈ (0, 1/4) and n is a nonnegative integer then there exists a

positive constant c such that for any N ∈ N and t ∈ (1/2 + δ, 1] there holds the

estimate

c−1N−1/222N ≤ |R
(n)
N (t)| ≤ cN−1/222N , (4.12)

while for t ∈ (δ, 1/2− δ) we have that

c−1Nn(t(1 − t))−N ≤ |R
(n)
N (t)| ≤ cNn(t(1 − t))−N . (4.13)

Proof. By the definition of the polynomial PN , we have that

R
(n)
N (t) =

∑

l∈ZN−1

(
N − 1 + l

l

) ∏

r∈Zn−1

(l − N − r)tl−N−n

=: t−N−n
∑

l∈ZN−1

al(t)
∏

r∈Zn−1

(l − N − r). (4.14)

For t ∈ (1/2 + δ, 1], we observe that al(t), l ∈ ZN−1, is an increasing sequence.
Moreover, there exists λ ∈ (0, 1) such that for all l ∈ ZN−2 and t ∈ (1/2 + δ, 1)
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there holds the inequality al(t)/al+1(t) ≤ λ. Therefore, by (4.14) and the Stirling
formula there is a positive constant c such that for all N ∈ N we get that

|R
(n)
N (t)| ≤ t−N−naN−1(t)

∑

l∈ZN−1

∏

r∈Zn−1

(N + r − l)λN−l

≤ c

(
2N − 2
N − 1

)
≤ cN−1/222N , (4.15)

and

|R
(n)
N (t)| ≥

(
2N − 2
N − 1

) ∏

r∈Zn−1

(1 + r)t−1−n ≥ c−1N−1/222N . (4.16)

Hence, we conclude that (4.12) follows from (4.15) and (4.16).
Similarly, for t ∈ (δ, 1/2 − δ), we have by (4.14) that

|R
(n)
N (t)| ≤ cNnRN (t),

which, together with the estimate in Lemma 4.6, lead to the inequality

|R
(n)
N (t)| ≤ cNn(t(1 − t))−N . (4.17)

On the other hand, applying (4.14) again gives the estimate,

|R
(n)
N (t)| ≥ cNnt−N

∑

Nδ/(2−2δ)≤l≤N/(1+2δ)

(
N − 1 + l

l

)
tl. (4.18)

Since, for l ∈ ZN−2,
al+1(t)
al(t)

= t(N − l)/(l + 1) we see that al(t), l ∈ ZN−1 is an

increasing sequence when l ≤ b and a decreasing sequence when l ≥ b + 1, where b
is the integral part of tN/(1 − t). Therefore, there exists a λ ∈ (0, 1) such that for
t ∈ (δ, 1/2 − δ), N sufficiently large and either l ≤ Nδ/(2 − 2δ) or l ≥ N/(1 + 2δ),
we have that

al(t) ≤ rN (ab(t) + ab+1(t)).

This observation, together with Lemma 4.6, implies that

∑

Nδ/(2−2δ)≤l≤N/(1+2δ)

(
N − 1 + l

l

)
tl

≥ c
N−1∑

l=0

(
N − 1 + l

l

)
tl ≥ c(1 − t)−N . (4.19)

Combining the estimates in (4.17), (4.18) and (4.19) proves (4.13).

Proof of Theorem 4.2. We define a polynomial PN,E,K so that

PN,E,K(sin2 ξ/2) = QN,E,K(ξ), ξ ∈ R,

from which it follows that PN,E,K(0) = 1, and for z ∈ C

PN,E,K(z) + PN,E,K(1 − z) = 1. (4.20)

We set

PN,E,K(z) = (1 − z)N
∏

j∈Ns

(z − tj)
kj UN,E,K(z), (4.21)
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where UN,E,K is a polynomial of degree |K| − 1 and tj := sin2 ξj/2, j ∈ Ns. By
(4.20) and (4.21), we get that

∏

j∈Ns

(z − tj)
kj UN,E,K(z) = PN (z) + zN(1 − 2z)W (z) (4.22)

for some polynomial W of degree 2|K| − 2 which satisfies the symmetry relation
W = W (1 − ·). For each l ∈ Z|K|−1, we introduce the polynomial pl defined for all

z ∈ C as pl(z) = (z − 1/2)2l, write

W =
∑

l∈Z|K|−1

clpl

for some constants cl, l ∈ Z|K|−1, introduce the function hN defined for z ∈ C by

hN(z) = (1 − 2z)−1z−NPN (z), and for i ∈ Ns, j ∈ Zki−1 and l ∈ Z|K|−1 denote the
values of the j-th derivative of functions pl and hN at ti by bij and aij,l respectively.
Therefore, the coefficients cl, l ∈ Z|K|−1, are the solution of the following linear
system ∑

l∈Z|K|−1

aij,lcl = bij , i ∈ Ns, j ∈ Zki−1. (4.23)

Note that the matrix with entries aij,l is a nonsingular matrix, as it is similar in
form to Vandermonde matrix. Therefore, the linear system in (4.23) has a unique
solution.

By Lemma 4.7, we conclude that there exists a positive constant c such that for all
i ∈ Ns, j ∈ Zki−1 and ti ∈ (0, 1/2) the quantity bij is dominated by cN j(ti(1−ti))

−N

and by cN−1/222N when ti ∈ (1/2, 1). Hence, there is a positive constant c such
that the quantities bij , i ∈ Ns, j ∈ Zki−1, are dominated by cNk1−1(t1(1 − t1))

−N

when ξ1 ∈ (0, π/2) and by cN−1/222N when ξ1 ∈ (π/2, π). These facts, together
with (4.23), yield for all l ∈ Z|K|−1 the inequality

|cl| ≤

{
cNk1−1(t1(1 − t1))

−N , ξ1 ∈ (0, π/2),

cN−1/222N , ξ1 ∈ (π/2, π).
(4.24)

Therefore, from the inequality,

|QN,E,K(ξ)| ≤ (1 − t)N
(
PN (t) + ctN max{|cl| : l ∈ Z|K|−1}

)
. (4.25)

where t = sin2 ξ/2, the estimates (4.4) and (4.5) follow from (4.24) and (4.25) and
the estimates in Lemma 4.6.

Embodied in the proof above is the following fact.

Proposition 4.8. The family of functions {pl : l ∈ Zn} form a Chebyshev system

on any interval which does not contain 1/2 in it interior.

Proof. The proof is by induction on n and the induction is advanced by differenti-
ating and using Rolle’s theorem.

4.3. Proof of Theorem 4.4. Let bij , i ∈ Ns, j ∈ Zki−1, be defined as in the proof
of Theorem 4.2. By Lemma 4.7, there exists a positive constant c so that

|bij | ≤ cNk1−2(t1(1 − t1))
−N (4.26)

for either i ≥ 2 or i = 1 and j ≤ k1 − 2, and

|b1(k1−1)| ≥ c−1Nk1−1(t1(1 − t1))
−N . (4.27)



INTERPOLATING FILTERS WITH PRESCRIBED ZEROS 805

Combining (4.23) and (4.26) yields
∣∣∣
∑

l∈Z|K|−1

cl(t − 1/2)2l − b1(k1−1)
detA(t)

detA

∣∣∣ ≤ cNk1−2(t1(1 − t1))
−N ,

where A is the matrix with entries aij,l and A(t) is the matrix A with a1(k1−1),l

replaced by (t − 1/2)l. Note that both A and A(t) are matrices of Vandermonde
type, which implies that detA(t) 6= 0 for all ξ ∈ J , where t = sin2 ξ/2. This,
together with (4.27), show that

|R(t)| ≥ cNk1−1(t1(1 − t1))
−N , ξ ∈ J (4.28)

for sufficiently large N , where t = sin2 ξ/2. So for sufficiently large N and ξ ∈
(π/2, π − ξ1) ∩ K we conclude that

|QN,E,K(ξ)| ≥ c((1 − t)t)N |1 − 2t|Nk1−1(t1(1 − t1))
−N − 1

≥ cNk1−1(sin ξ/ sin ξ1)
2N , (4.29)

and for sufficiently large N and ξ ∈ (π − ξ1, π) ∩ K,

|QN,E,K(ξ)| ≥ c((1 − t)t)N |1 − 2t|Nk1−1(t1(1 − t1))
−N − (4t(1 − t))N

≥ cNk1−1(sin ξ/ sin ξ1)
2N . (4.30)

Therefore, (4.7) follows from (4.29) and (4.30). �

5. Regularity of refinable functions. Let ΦN,E,K be the refinable function with

the filter QN,E,K, that is, Φ̂N,E,K(0) = 1 and

Φ̂N,E,K(ξ) = QN,E,K(ξ/2)Φ̂N,E,K(ξ/2), ξ ∈ R. (5.1)

In this section, we study the Fourier exponent of the function ΦN,E,K .

Theorem 5.1. If ΦN,E,K is the refinable function with filter QN,E,K, then for any

0 < p ≤ ∞, there is a positive constant c such that for all N we have that

sp(ΦN,E,K) ≥






ln 4 − ln(3 sin2 ξ1)

ln 2
N −

(k1 − 1) lnN

ln 2
− c, if ξ1 ∈ (0, π/2),

(
2 −

ln 3

ln 2

)
N − c, if ξ1 ∈ (π/2, π).

(5.2)
Conversely, if ξ1 ∈ (0, π/2) and π/3, 2π/3 6∈ E then there is a positive constant

d such that for all N we have the following upper bound estimate of the Fourier

exponent of ΦN,E,K,

sp(ΦN,E,K) ≤
(
2 −

ln 3

ln 2
+

ln sin2 ξ1

ln 2

)
N −

(k1 − 1) lnN

ln 2
+ d. (5.3)

Proof. By Theorem 4.2, we have for ξ ∈ R that

QN,E,K(ξ) = cos2N ξ

2
V (ξ) (5.4)

for some trigonometric polynomial V which has the property that

|V (ξ)| ≤

{
ca(ξ)N , if ξ1 ∈ (π/2, π),
cNk1−1(sin ξ1)

−2Na(ξ)N , if ξ1 ∈ (0, π/2),
(5.5)

where a is the function defined as in Lemma 3.5 and c is a positive constant inde-
pendent of N . Applying (5.4) and (5.5) and using Lemmas 3.8 and 3.5 yield the
lower bound estimate of sp(ΦN,E,K) in (5.2).
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By Theorem 4.4 and our assumption on E, it follows that, for sufficiently large
N ,

|V (2π/3)| ≥ cNk1−1(sin ξ1)
−2N3N , (5.6)

and
|QN,E,K(π/3)| 6= 0 and |QN,E,K(2π/3)| 6= 0.

Since for all ξ ∈ R we have that |QN,E,K(ξ)| + |QN,E,K(ξ + π)| 6= 0 the techniques
used in [5, 15] leads to conclusion that for some integer k

Φ̂N,E,K(2π/3 + 2kπ) 6= 0. (5.7)

Therefore, the upper bound estimate (5.3) follows from (3.8), (5.7) and Lemma
3.9.

As an easy consequence of Theorem 5.1, we have the following corollary.

Corollary 5.2. If ξ1 ∈ (π/3, π) and N is sufficiently large then ΦN,E,K is contin-

uous while if ξ ∈ (0, π/3) it is discontinuous for N sufficiently large.

In summary, the interpolating filter QN,E,K of minimal degree with prescribed
zeros in E ∪ {π} and the associated refinable functions ΦN,E,K do not behave well,
as ξ1 moves from the origin to π/3, in terms of approximation to the ideal filter and
the regularity. When the zero ξ1 lies in the interval (π/3, π/2), the filter QN,E,K

still does not improve its performance but the refinable function ΦN,E,K is quite
acceptable. However, when ξ1 lies in the interval (π/2, π), both the filter and the
associated refinable function have satisfactory behavior. The above observation is
confirmed by the Figure 1 of the interpolating filters QN,E,K and the associated
refinable functions ΦN,E,K .
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