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Abstract—In this paper, we introduce two symmetric directed
graphs depending on supports of signals and windows, and
we show that the connectivity of those graphs provides either
necessary or sufficient conditions to phase retrieval of a signal
from magnitude measurements of its multiple-window short-time
Fourier transform. Also we propose an algebraic reconstruction
algorithm, and provide an error estimate to our algorithm when
magnitude measurements are corrupted by deterministic/random
noises.
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I. Introduction
Phase retrieval considers recovering a signal of interest

from magnitudes of its (non)linear measurements. It arises
in various fields of science and engineering, such as X-ray
crystallography, coherent diffractive imaging, optics and more.
The underlying recovery is an ill-posed problem inherently.
The signal could be reconstructed, in an efficient and robust
manner, only if we have additional information about the
signal ([1]–[9]). In this paper, we discuss the phase retrieval
problem for N -dimensional complex signals

x = (x(0), x(1), . . . , x(N − 1))> ∈ CN (I.1)

with some constraints on their supports,

V (x) =
{
n : x(n) 6= 0

}
. (I.2)

Given a nonzero window w = (w(0), w(1), . . . , w(N −
1))> with period N extension and a separation parameter L
between adjacent short-time sections, the short-time Fourier
transform (STFT) of a signal x is given by

Xw(Lm, k) =
1

N

N−1∑
n=0

x(n)w(Lm− n)e−i2πkn/N , (I.3)

where 0 ≤ m ≤ N/L − 1 and 0 ≤ k ≤ N − 1. The
STFT has been widely used in signal/imaging processing ([10],
[11]). In this paper, inspired by applications in microscopy and
optical imaging, we consider reconstructing the signal x from
magnitude measurements of its multiple-window STFT,

|Xwr
(Lm, k)|, 1 ≤ r ≤ R, 0 ≤ m ≤ N/L−1, 0 ≤ k ≤ N−1,

(I.4)
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where W = {wr}Rr=1 is a family of windows with period
N extension. The above reconstruction problem has been
explored with various approaches ([12]–[19]). The special case
with L = N is also known as phase retrieval with structured
illuminations and masks ([20]–[23]).

Define the supporting length of a nonzero window w with
period N extension by

l(w) = min
0≤l≤N−1

{
l + 1 : there exists n′ so that

w(n) = 0 for all n 6∈ [n′, n′ + l] +NZ
}
. (I.5)

It is observed in [17, Theorem 2] that not all N -dimensional
signals can be recovered, up to a global phase, from mag-
nitude measurements (I.4) of their multiple-window STFT if
all windows wr, 1 ≤ r ≤ R, have supporting length less
than N/2, cf. [24] for similar phenomenon observed when
recovering signals in a shift-invariant space from magnitudes
of their sampling data. In Section II of this paper, we introduce
a symmetric directed graph G(x,W, L) with V (x) in (I.2) as
its vertex set, and we show in Theorem II.1 that connectivity of
the above graph is a necessary condition to phase retrievability
of the signal x from magnitude measurements (I.4) of its
multiple-window STFT.

A fundamental question in phase retrieval is whether a
signal is uniquely determined, up to a global phase, by its
noiseless measurements (I.4). For L = R = 1, a sufficient
condition was proposed in [17, Theorem 1] to recover a
signal x with all components being nonzero from magnitude
measurements (I.4) of its STFT, cf. [18, Theorem 2.4]. In
Section III of this paper, we introduce a symmetric directed
subgraph G̃(x,W, L) in (III.1), and we prove in Theorem
III.1 that, under mild conditions on the window family W,
connectivity of the graph G̃(x,W, L) is a sufficient condition
to reconstruct the signal x, up to a global phase, from
magnitude measurements (I.4) of its multiple-window STFT.
Applying Theorem III.1 with V (x) = {0, 1, . . . , N − 1} and
L = R = 1 leads to the result in [17, Theorem 1], see
Corollary III.2.

Consider the scenario that magnitude measurements (I.4)
of the multiple-window STFT are corrupted by determinis-
tic/random noises εεε = (εεε(r,m, k)) with level |εεε|,

Y (r,m, k) := |Xwr
(Lm, k)|2 + εεε(r,m, k), (I.6)

where |εεε| = max{|εεε(r,m, k)| : 1 ≤ r ≤ R, 0 ≤ m ≤ N/L−
1, 0 ≤ k ≤ N − 1}. Another fundamental issue in phase
retrieval is to design efficient and robust algorithms so that
a good approximation xεεε to the original signal x, up to a
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global phase, could be found when only noisy measurements
(I.6) are available. Designing such reconstruction algorithms
is a great challenge in general, and several algorithms have
been proposed in the literature, see [3], [19], [25], [26] and
references therein. In Section IV of this paper, we propose an
algebraic reconstruction algorithm from noisy measurements
(I.6), and we establish an error estimate in Theorem IV.1 when
the graph G̃(x,W, L) in (III.1) is connected.

Notation: AH is Hermitian of a matrix A; a ◦ b is the
componentwise (Hadamard) product of vectors a and b; btc
is the largest integer less than or equal to t, and k mod N is
the remainder of the Euclidean division of an integer k by N .

II. NECESSARY CONDITIONS ON PHASE RETRIEVAL

Given an N -dimensional complex signal x, a family W =
{wr}Rr=1 of window functions with period N extension, and
a separation parameter L with N/L ∈ Z, we define a graph

G(x,W, L) :=
(
V (x), E(W, L)

)
(II.1)

with

E(W, L) :=
{
(n, n′) ∈ V (x)× V (x) : n 6= n′ and

R∑
r=1

N/L−1∑
m=0

|wr(Lm− n′)wr(Lm− n)|2 6= 0
}
, (II.2)

where V (x) is given in (I.2) and wr = ((wr(0), . . . , wr(N −
1))>, 1 ≤ r ≤ R. The symmetric directed graph G(x,W, L)
has indices of nonzero components of the signal x as its
vertices, and it has edges between two distinct vertices n and
n′ only if wr(Lm−n′)wr(Lm−n) 6= 0 for some 1 ≤ r ≤ R
and 0 ≤ m ≤ N/L− 1.

Theorem II.1. Let W = {wr}Rr=1 be a family of window
functions with period N extension, and L ≥ 1 be a separation
parameter with N/L ∈ Z. If x ∈ CN can be determined, up
to a global phase, from magnitude measurements (I.4) of its
multiple-window STFT, then the graph G(x,W, L) in (II.1) is
connected.

Proof: Suppose, on the contrary, that G(x,W, L) in (II.1)
is disconnected. Then there exists a subset V1 ⊂ V (x) such
that V1 6= ∅, V (x)\V1 6= ∅, and there are no edges between
vertices in V1 and V (x)\V1. Let xV1

∈ CN be the signal
which coincides with x on the indices in V1 and is extended
to zeros in {0, 1, . . . , N − 1}\V1. Observe from (II.1) that for
any 1 ≤ r ≤ R and 0 ≤ m ≤ N/L − 1, there is an edge
between two indices of nonzero components of xθ ◦ wr,Lm,
where

wr,Lm = (wr(Lm), . . . , wr(Lm−N + 1))>.

Therefore either xθ ◦ wr,Lm = e−2πiθxV1
◦ wr,Lm or xθ ◦

wr,Lm = (x−xV1
) ◦wr,Lm by the construction of V1, where

xθ = e−2πiθxV1
+ (x− xV1

), θ ∈ R.

Hence magnitude measurements of the multiple-window STFT
of the signal xθ are independent on θ ∈ R. This, together with
x0 = x and the phase retrievability assumption, implies that
x1/2 = e−2πiβx for some β ∈ R. Thus

(1 + e−2πiβ)xV1
= (1− e−2πiβ)(x− xV1

). (II.3)

For the case that e−4πiβ = 1, either xV1 or x− xV1 is a zero
signal, which is a contradiction. For the remaining case that
e−4πiβ 6= 1, it follows from (II.3) that xV1

and x− xV1
have

the same support, which contradicts to the construction of xV1
.

Given a window family W, the graph G(x,W, L) in (II.1)
could be disconnected for some signals x. As an application
of Theorem II.1, we have the following result on phase
retrievability, cf. [17, Theorem 2], [18, Proposition 2.3] and
[13].

Corollary II.2. Let W = {wr}Rr=1 be a family of window
functions with period N extension such that l(wr) ≤ N/2
for all 1 ≤ r ≤ R. Then not all N -dimensional signals
can be determined, up to a global phase, from magnitude
measurements (I.4) of their multiple-window STFT.

Proof: Let x0 be the signal having 0-th and bN/2c-
th components as one and other components zero. Then the
corresponding graph G(x0,W, L) in (II.1) has two vertices
0 and bN/2c. From the supporting length assumption for
wr, 1 ≤ r ≤ R, it follows that wr(n)wr(n − bN/2c) = 0
for all 0 ≤ n ≤ N − 1. Hence G(x0,W, L) is disconnected.
This together with Theorem II.1 completes the proof.

III. SUFFICIENT CONDITIONS FOR PHASE RETRIEVAL

Given an N -dimensional complex signal x, a family W =
{wr}Rr=1 of window functions with period N extension, and
a separation parameter L with N/L ∈ Z, we define a graph

G̃(x,W, L) :=
(
V (x), Ẽ(W, L)

)
(III.1)

with

Ẽ(W, L) :=
{
(n, n′) ∈ V (x)× V (x) : n 6= n′ and

n, n′ ∈ Lm− a(wr)− {0, l(wr)− 1}+NZ for

some 0 ≤ m ≤ N/L− 1 and 1 ≤ r ≤ R
}
, (III.2)

where V (x) is given in (I.2) and supporting intervals
[a(wr), a(wr)+ l(wr)−1]+NZ of windows wr, 1 ≤ r ≤ R,
are so chosen that 0 ≤ a(wr) ≤ N − 1,

wr(a(wr))wr(a(wr) + l(wr)− 1) 6= 0, (III.3)
and
wr(n) = 0 for all n 6∈ [a(wr), a(wr) + l(wr)− 1] +NZ.

(III.4)
The existence and uniqueness of a(wr) follow from (I.5).
By (II.2) and (III.3), we see that G̃(x,W, L) is a symmetric
directed subgraph of the graph G(x,W, L) in (II.1).
Theorem III.1. Let x ∈ CN , L be a separation parameter
with N/L ∈ Z, and let W = {wr}Rr=1 be a family of window
functions with period N extension such that

l(wr) ≤ N/2 (III.5)

for all 1 ≤ r ≤ R, and

Am =
(
βr
(
m+ jN/L

))
1≤r≤R,0≤j≤L−1

(III.6)

have rank L for all 0 ≤ m ≤ N/L− 1, where

βr(k) =
1

N

N−1∑
n=0

|wr(n)|2e−2πikn/N , 0 ≤ k ≤ N−1. (III.7)
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If the graph G̃(x,W, L) in (III.1) is connected, then x can be
recovered, up to a global phase, from magnitude measurements
(I.4) of its multiple-window STFT.

For L = 1, the full rank requirement (III.6) becomes

R∑
r=1

|βr(m)|2 6= 0 for all 0 ≤ m ≤ N − 1, (III.8)

and the set Ẽ(W, L) of edges can be rewritten as

Ẽ(W, 1) :=
{
(n, n′) : n− n′ = ±(l(wr)− 1) +NZ

for some 1 ≤ r ≤ R
}
. (III.9)

If we further assume that the signal x has its all components
being nonzero (i.e., V (x) = {0, . . . , N − 1}), one may verify
from (III.9) that G̃(x,W, 1) is connected if and only if

l(w1)− 1, . . . , l(wR)− 1 and N are coprime. (III.10)

Therefore applying Theorem III.1 with L = 1, we obtain the
following result, which is given in [17, Theorem 1] for R = 1,
cf. [18, Theorems 2.4].

Corollary III.2. Let x ∈ CN have its all components being
nonzero, and W be a family of window functions having
period N extension and satisfying (III.5), (III.8) and (III.10).
Then x can be recovered, up to a global phase, from magnitude
measurements (I.4) of its multiple-window STFT.

For L = N , the full rank requirement (III.6) can be rewritten
as

the matrix
(
|wr(n)|2

)
1≤r≤R,0≤n≤N−1 has rank N.

(III.11)
Then applying Theorem III.1 with L = N yields the following
result on phase retrievability with structured illuminations and
masks, cf. [20]–[23].

Corollary III.3. Let W be a family of window functions
having period N extension and satisfying (III.5) and (III.11).
Then any signal x ∈ CN with G̃(x,W, N) being connected
can be recovered, up to a global phase, from magnitude
measurements (I.4) of its multiple-window STFT.

To prove Theorem III.1, we need a technical lemma.

Lemma III.4. Let L be a separation parameter with N/L ∈ Z
and W = {wr}Rr=1 be a family of window functions having
period N extension and satisfying (III.6). Then magnitudes
of any signal x = (x(0), x(1), x(2), . . . , x(N − 1))> ∈ CN
can be recovered from magnitude measurements (I.4) of its
multiple-window STFT. Moreover,

|x(n)|2 =
L

N

N/L−1∑
m,m′=0

L−1∑
j,j′=0

e−2πi(m(m′L−n)/N−jn/L)

×am(j, j′)
( R∑
r=1

βr(m+ j′N/L)Z(wr,m
′)
)

(III.12)

for all 0 ≤ n ≤ N − 1, where

(AH
mAm)−1 = (am(j, j′))0≤j,j′≤L−1

and

Z(wr,m) =

N−1∑
k=0

|Xwr
(Lm, k)|2, 0 ≤ m ≤ N/L− 1.

We postpone the proof of Lemma III.4 to the end of this
section and start the proof of Theorem III.1.

Proof of Theorem III.1: By Lemma III.4, |x(n)|2, 0 ≤
n ≤ N − 1, are determined from |Xwr (Lm, k)|2, 1 ≤ r ≤
R, 0 ≤ m ≤ L/N − 1, 0 ≤ k ≤ N − 1. Therefore it remains
to find x(n)/|x(n)|, n ∈ V (x), up to a global phase. From
connectivity of the graph G̃(x,W, L), it suffices to show
that for endpoints n1, n2 of any edge, the phase difference
between x(n1)/|x(n1)| and x(n2)/|x(n2)| is determined from
magnitude measurements (I.4) of the multiple-window STFT.

By the assumption on vertices n1 and n2, there exist 1 ≤
r ≤ R and 0 ≤ m ≤ N/L− 1 such that l(wr) ≥ 2 and

n1, n2 ∈ Lm− a(wr)− {0, l(wr)− 1}+NZ. (III.13)

Without loss of generality, we assume that

n1 ∈ Lm−a(wr)+NZ and n2 ∈ Lm−a(wr)−l(wr)+1+NZ.
(III.14)

By (III.3), (III.4) and (III.5), we have

wr(n)wr(n+ l(wr)− 1) 6= 0 if and only if n ∈ a(wr)+NZ.
(III.15)

From (III.15) we obtain

N

N−1∑
k=0

|Xwr
(Lm, k)|2ei2πk(l(wr)−1)/N

=

N−1∑
n=0

x(n+ l(wr)− 1 mod N)x(n)

×wr(Lm− n− l(wr) + 1)wr(Lm− n)
= x(n1)x(n2)wr(a(wr))wr(a(wr) + l(wr)− 1).

(III.16)

Therefore

x(n1)

|x(n1)|
· x(n2)
|x(n2)|

=
wr(a(wr) + l(wr)− 1)wr(a(wr))

|wr(a(wr) + l(wr)− 1)wr(a(wr))|

×
∑N−1
k=0 |Xwr

(Lm, k)|2ei2πk(l(wr)−1)/N∣∣∣∑N−1
k=0 |Xwr (Lm, k)|2ei2πk(l(wr)−1)/N

∣∣∣ . (III.17)

Combining (III.14), (III.15) and (III.17) shows that the phase
difference between x(n1)/|x(n1)| and x(n2)/|x(n2)| is de-
termined from magnitude measurements (I.4) of the multiple-
window STFT. This completes the proof.

We finish this section with the proof of Lemma III.4.
Proof of Lemma III.4: For 0 ≤ m′ ≤ N/L − 1 and

1 ≤ r ≤ R, we have

Z(wr,m
′) =

1

N

N−1∑
n=0

|x(n)|2|wr(Lm′ − n)|2

=

N−1∑
k=0

α(k)βr(k)e
2πim′kL/N ,
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where

α(k) =
1

N

N−1∑
n=0

|x(n)|2e−2πikn/N , 0 ≤ k ≤ N − 1.

Hence for 0 ≤ m ≤ N/L− 1 and 1 ≤ r ≤ R, we obtain

L

N

N/L−1∑
m′=0

Z(wr,m
′)e−2πimm

′L/N

=

L−1∑
j′=0

α(m+ j′N/L)βr(m+ j′N/L). (III.18)

Then we get

α
(
m+ jN/L

)
=

L

N

L−1∑
j′=0

N/L−1∑
m′=0

am(j, j′)e−2πimm
′L/N

×
( R∑
r=1

βr(m+ j′N/L)Z(wr,m
′)
)
,

where 0 ≤ m ≤ N/L − 1 and 0 ≤ j ≤ L − 1. This together
with

|x(n)|2 =

N−1∑
k=0

α(k)e2πikn/N , 0 ≤ n ≤ N − 1, (III.19)

proves (III.12).

IV. RECONSTRUCTION ALGORITHM AND ERROR
ESTIMATES

Consider the family W = {wr}Rr=1 of window func-
tions having period N extension and satisfying (III.5) and
(III.6). From Theorem III.1, it follows that any signal x =
(x(0), . . . , x(N − 1))> with a connected graph G̃(x,W, L)
can be reconstructed, up to a global phase, from magnitude
measurements |Xwr (Lm, k)|, 1 ≤ r ≤ R, 0 ≤ m ≤ N/L −
1, 0 ≤ k ≤ N − 1, of its multiple-window STFT. From the
constructive proof of Theorem III.1, we propose the following
reconstruction algorithm:

1. Apply (III.12) to find magnitudes |x(n)|, 0 ≤ n ≤ N−1.
2. Create the graph G̃(x,W, L) in (III.1) and verify its

connectivity.
3. Apply (III.17) to find phase difference between x(n1)

|x(n1)|
and x(n2)

|x(n2)| , where n1, n2 are endpoints of an edge
of the graph G̃(x,W, L), provided that G̃(x,W, L) is
connected.

The reconstruction algorithm proposed above indicates that
x can be recovered, up to a global phase, from its 2NR/L
measurements

∑N−1
k=0 |Xwr

(Lm, k)|2ei2πk(l(wr)−1)/N and∑N−1
k=0 |Xwr (Lm, k)|2, where 1 ≤ r ≤ R, 0 ≤ m ≤ N/L−1.
For a window family W = {wr}Rr=1 with period N

extension, we set ‖W‖2 =
(∑R

r=1

∑N−1
n=0 |wr(n)|2

)1/2
,

‖W‖∗ = min1≤r≤R |wr(a(wr))wr(a(wr)+ l(wr)− 1)|, and
‖A‖1 =

∑N/L−1
m=0

∑L−1
j,j′=0 |am(j, j′)|. For the scenario that

magnitude measurements (I.4) of the multiple-window STFT
are corrupted, we have the following error estimate between
the original signal x and the approximation xεεε obtained

from the proposed reconstructed algorithm with the corrupted
magnitude measurements (I.6).

Theorem IV.1. Let L,W and x = (x(0), . . . , x(N −1))> be
as in Theorem III.1, and xεεε = (xεεε(0), . . . , xεεε(N − 1))> be
the approximation obtained from the proposed reconstructed
algorithm with the corrupted magnitude data (I.6). If

|εεε| ≤
minn∈V (x) |x(n)|2

4‖A‖1‖W‖22
, (IV.1)

then there exists β ∈ R such that∣∣|xεεε(n)|2 − |x(n)|2∣∣ ≤ ‖A‖1‖W‖22|εεε| (IV.2)

for all 0 ≤ n ≤ N − 1, and∣∣∣ xεεε(n)|xεεε(n)|
− e2πiβ x(n)

|x(n)|

∣∣∣ ≤ 2N3|εεε|
‖W‖∗minn∈V (x) |x(n)|2

(IV.3)

for all n ∈ V (x).

Proof: The estimate (IV.2) follows from (III.12) and
R∑
r=1

|βr(k)| ≤
‖W‖22
N

, 0 ≤ k ≤ N − 1.

Take endpoints n1, n2 of an edge of the graph G̃(x,W, L),
and select 1 ≤ r ≤ R and 0 ≤ m ≤ N/L− 1 so that (III.13)
holds. Set c :=

∑N−1
k=0 |Xwr

(Lm, k)|2ei2πk(l(wr)−1)/N and
cεεε :=

∑N−1
k=0 (|Xwr

(Lm, k)|2 + εεε(r,m, k))ei2πk(l(wr)−1)/N .
Then

|c| ≥ ‖W‖∗
N

min
n∈V (x)

|x(n)|2 (IV.4)

by (III.16), and
|cεεε − c| ≤ N |εεε|. (IV.5)

Combining (III.17), (IV.4) and (IV.5), we obtain∣∣∣ xεεε(n1)|xεεε(n1)|
xεεε(n2)

|xεεε(n2)|
− x(n1)

|x(n1)|
x(n2)

|x(n2)|

∣∣∣
=
∣∣∣ cεεε|cεεε| − c

|c|

∣∣∣ ≤ |cεεε − c|+ ||cεεε| − |c|||c|

≤ 2N2|εεε|
‖W‖∗minn∈V (x) |(x(n)|2

.

This, together with the fact that the diameter of the graph
G̃(x,W, L) is at most N , proves (IV.3).

Remark IV.2. Let x̃εεε = (x̃εεε(0), . . . , x̃εεε(N − 1))>, where

|x̃εεε(n)| =
{

0, if |xεεε(n)| ≤ 1
2 minn∈V (x) |x(n)|

|xεεε(n)|, otherwise

for 0 ≤ n ≤ N − 1. Then it follows from (IV.1) and
(IV.2) that V (x) = V (x̃εεε) and G̃(x,W, L) = G̃(x̃εεε,W, L).
This indicates that the graph G̃(x,W, L) associated with the
original signal x could be found in the noisy environment.

V. CONCLUSIONS

For multiple windows with small supporting lengths, certain
constraints on the support of a signal could be crucial for
its phase retrievability from magnitude measurements of its
multiple-window STFT. The proposed reconstruction algorith-
m from corrupted magnitude measurements yields a good
approximation to the original signal if we have some priori
knowledge on the noise level and the minimal magnitude of
nonzero components of the original signal.
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