# Cardinal Refinable Functions on Plane 

Xianliang Shi ${ }^{1}$<br>Department of Mathematics, Hangzhou University<br>Hangzhou, Zhejiang 310028, P. R. China<br>and<br>Qiyu Sun ${ }^{2}$<br>Center for Mathematical Sciences, Zhejiang University<br>Hangzhou, Zhejiang 310027, P. R. China

Sept. 1995
ABSTRACT In this paper, the construction and regularity of cardinal refinable functions on plane are considered.

AMS Subject Classification:42C15.

[^0]
## 1. Introduction

A distribution $\phi$ on plane is said to be refinable if $\phi$ satisfies a refinement equation

$$
\begin{equation*}
\phi(x, y)=\sum_{m, n \in Z} c(m, n) \phi(2 x-m, 2 y-n) \tag{1}
\end{equation*}
$$

where the sequence $\{c(m, n)\}$ satisfies

$$
\sum_{m, n \in Z} c(m, n)=1
$$

Let

$$
\begin{equation*}
H(\xi, \eta)=\frac{1}{4} \sum_{m, n \in Z} c(m, n) e^{i(m \xi+n \eta)} \tag{2}
\end{equation*}
$$

be the symbol of (1). Then the distribution $\phi$ in (1) is completely determined by its symbol function $H(\xi, \eta)$ up to multiplying a constant. In particaular

$$
\begin{equation*}
\hat{\phi}(\xi, \eta)=\prod_{j=1}^{\infty} H\left(2^{-j} \xi, 2^{-j} \eta\right) \hat{\phi}(0,0) \tag{3}
\end{equation*}
$$

Hereafter the Fourier transform of an integrable function $f$ is defined by

$$
\hat{f}(\xi, \eta)=\int_{R} \int_{R} f(x, y) e^{-i(x \xi+y \eta)} d x d y
$$

In this paper we will deal with compactly suppported refinable distribution $\phi$ with $\hat{\phi}(0,0)=1$. In this case the symbol function $H$ is assumed to be a trigonometrical polynomial.

A continuous function $\phi$ is said to be cardinal if the restriction of $\phi$ to $Z \times Z$ satisfies

$$
\phi(m, n)=\left\{\begin{array}{lll}
1, & \text { if } \quad(m, n)=(0,0)  \tag{4}\\
0, & \text { if } \quad(m, n) \neq(0,0)
\end{array}\right.
$$

For cardinal refinable function $\phi$, the corresponding symbol $H$ satisfies

$$
\begin{equation*}
H(\xi, \eta)+H(\xi+\pi, \eta)+H(\xi, \eta+\pi)+H(\xi+\pi, \eta+\pi)=1 \tag{5}
\end{equation*}
$$

Refinable functions arised in many aspects such as construction of nondifferential functions, subdivision scheme and multiresolution analysis etc. (see [CDM], [C], [D], [M])

The $B$-splines $B_{k}, k \geq 1$, defined by

$$
\widehat{B}_{k}(\xi)=\left(\frac{1-e^{-i \xi}}{i \xi}\right)^{k}
$$

and the Daubechies' scaling functions ${ }_{N} \phi$ in [D] are two important classes of compactly supported refinable functions on one dimension. The box spline $B_{\Xi}$, which is defined by

$$
\begin{equation*}
\widehat{B}_{\Xi}(\xi, \eta)=\prod_{s=1}^{N} \frac{1-e^{-i(a(s 1) \xi+a(s 2) \eta)}}{i(a(s 1) \xi+a(s 2) \eta)} \tag{6}
\end{equation*}
$$

where

$$
\Xi=\left(\begin{array}{lll}
a(11) & \cdots & a(N 1)  \tag{7}\\
a(12) & \cdots & a(N 2)
\end{array}\right)
$$

is a $2 \times N$ matrix with integer entries and and with full rank 2 , and the scaling functions constructed by tensor product of two scaling functions in one dimension are corresponding important classes of compactly supported refinable functions on plane (see [M]). Here we say that a compactly supported distribution $\phi$ on plane is a scaling function if $\phi$ is refinable and $\phi$ is linearlly independent for its integer translates, which means that the map $\phi *^{\prime}$ defined by

$$
\phi *^{\prime}:\{d(m, n)\} \rightarrow \sum_{m, n \in Z} d(m, n) \phi(x-m, y-n)
$$

is one-to-one.
Cardinal function are very important in approximation of equidistant data and signal processing. The cardinal spline in [S] and $\frac{\sin \pi x}{\pi x}$ in Shannon sampling theorem [Sh] are two widely-used cardinal refinable functions in approximation theory and signal processing, but these functions are not compactly supported. The construction of compactly supported cardinal refinable function in onedimension is well-studied.(see $[\mathrm{L}],[\mathrm{BDS}],[\mathrm{CS}]$ )

The centered tensor product $B_{2}(x) B_{2}(y)$ of two $B$-spline, and the hat function $B_{\Xi}$ with three direction on plane

$$
\Xi=\left(\begin{array}{llll}
1 & 1, & 0, & 0 \\
0, & 0, & 1, & 1
\end{array}\right)
$$

are two known examples which are cardinal refinable functions with compact support.(see [BHR])

The cadinal refinable function can be constructed from some appropriate refinable function. Until now there are two popular methods to construct cardnial refinable function $\phi$ from a refinable function $\psi$. The one is to define $\phi$ with help of Fourier transform by

$$
\hat{\phi}(\xi, \eta)=\frac{\hat{\psi}(\xi, \eta)}{\sum_{m, n \in Z} \hat{\psi}(\xi+2 m \pi, \eta+2 n \pi)}
$$

when $\hat{\psi}$ has appropriate decay at infinity and

$$
\sum_{m, n \in Z} \hat{\psi}(\xi+2 m \pi, \eta+2 n \pi) \neq 0
$$

(see [W])
The other is to define $\phi$ by

$$
\phi(x, y)=\int_{R} \int_{R} \psi(s-x, t-y) \psi(s, t) d s d t
$$

when $\phi$ is orthonormal, which means

$$
\int_{R} \int_{R} \phi(s, t) \phi(s-m, t-n) d s d t=\begin{array}{lll}
1, & \text { if } & (m, n)=(0,0) \\
0, & \text { if } & (m, n) \neq(0,0)
\end{array}
$$

The cardinal refinable function constructed by the first method is generally not compactly supported. A problem to construct cardinal refinable function by the second method is that we know few about construction of compactly supported orthonormal refinable functions on plane.

In particaular, study on cardinal refinable function on plane is helpful to understand the construction of compactly supported orthonormal scaling functions on plane. Precisely if the corresponding symbol function $H(\xi, \eta)$ of cardinal refinable function $\phi$ can be written as

$$
\begin{equation*}
H(\xi, \eta)=R(\xi, \eta) R(-\xi,-\eta) \tag{8}
\end{equation*}
$$

for some trigonometrical polynomial $R$, then the solution of (1) corresponding to symbol function $R(\xi, \eta)$ would be orthonormal. The solvability of (8) in one dimension is shown by Riesz Lemma when $H \geq 0$ is a polynomial of $\cos \xi$.

From the construction of refinable function in one dimension, we know that a Hölder continuous refinable solution in one dimension can be written as convolution of a B-spline $B_{k}$ and a refinable distribution $\psi$. The Daubechies' scaling function was constructed through the construction of $\psi$ in some sense. But it is not known whether a Hölder continuous solution $\phi$ of (1) on plane can be written as convolution $B_{\Xi} * \psi$ of a Box spline $B_{\Xi}$ and a compactly supported refinable distribution $\psi$, i.e.,

$$
\begin{equation*}
\phi(x, y)=B_{\Xi} * \psi(x, y)=\left\langle B_{\Xi}(x-\cdot, y-\cdot), \psi(\cdot, \cdot)\right\rangle \tag{9}
\end{equation*}
$$

where $\langle f, g\rangle$ denotes the inner product of two distribution $f$ and $g$, which becomes the inner product on the space of square integrable functions when $f$ and $g$ are square integrable. (see $[\mathrm{CDM}]$ )

In this paper we will construct cardinal refinable functions $\phi$ which can be written as (9), i.e. the convolution of a class of box-splines $B_{\Xi}$ and refinable distributions $\psi$

In particaular there are some restriction on the box-spline $B_{\Xi}$ such that $\phi$ in (9) is cardinal. By the definition (4) of cardinal function we know that $\phi$ is linearly independent for its integer translates. Hence $B_{\Xi}$ is also linearly independently for its integer translates. By elementary theory on box spline,
we obtain that $\Xi$ is essentially one of the following two types:
where $a d-b c= \pm 1$ and $r, s \geq 1$ and

$$
\Xi=\left(\begin{array}{ccc}
\begin{array}{c}
a, \cdots, a, \\
\underbrace{}_{r}, \cdots, \cdots, b, c
\end{array} \underbrace{c, \cdots, \cdots}_{\text {factors }} & \begin{array}{l}
e, \cdots, e \\
d, \cdots, d \\
d, \cdots, f
\end{array} & \underbrace{f, \cdots, f}_{\text {factors }} \tag{11}
\end{array}\right)
$$

where $a d-b c= \pm 1, a f-b e= \pm 1, c f-e d= \pm 1$ and $r, s, t \geq 1$. (see [dBHR])
On the other hand when $a d-b c= \pm 1$ it is easy to check that $\phi(a x+b y, c x+$ $d y$ ) is also refinable (cardinal, othonormal) when $\phi$ is. Then we can assume without loss of generality that $a=d=1, c=b=0, e=f=1$ in (10) and (11).

In the case $\Xi$ in (10), the box splines $B_{\Xi}$ corresponding to $\Xi$ are tensor product of two $B$-splines in one dimension, and the construction of cardinal refinable functions which has the form (9) can be followed as the one in one dimension.

It seems much more difficult to the case that $\Xi$ has the form (11) with $a=d=e=f=1, b=c=0$. In this paper the case for which $\Xi$ has the form (11) and $r=s=t=N$ is considered.

For notational simplity, let $B_{\Xi_{N}}$ the box spline defined by (7) corresponding to

$$
\Xi_{N}=\left(\begin{array}{lll}
1, \cdots, 1, & 0, \cdots, 0 & 1, \cdots, 1 \\
\underbrace{}_{N}, \cdots, 0, & \underbrace{1, \cdots, 1}_{\text {factors }} & \underbrace{1, \cdots, 1}_{\text {factors }}
\end{array}\right) .
$$

In this case the symbol function $H(\xi, \eta)$ can be written as

$$
\begin{equation*}
H(\xi, \eta)=\left(\frac{1+e^{i \xi}}{2}\right)^{N}\left(\frac{1+e^{i \eta}}{2}\right)^{N}\left(\frac{1+e^{i(\xi+\eta)}}{2}\right)^{N} G(\xi, \eta), \tag{12}
\end{equation*}
$$

where $G$ is a trigonometrical polynomial.
In section 2, we will characterize the solution of (5) when $H$ has the form in (12). Let

$$
\begin{align*}
H_{1}(\xi, \eta) & =\frac{1+e^{i \xi}}{2} \times \frac{1+e^{i \eta}}{2} \times \frac{1+e^{i(\xi+\eta)}}{2} \times e^{-i(\xi+\eta)}  \tag{13}\\
& =\cos \frac{\xi}{2} \cos \frac{\eta}{2} \cos \frac{\xi+\eta}{2}
\end{align*}
$$

and

$$
\begin{align*}
& G_{N}(\xi, \eta)=\left(\frac{1+e^{i \xi}}{2}\right)^{-N}\left(\frac{1+e^{i \eta}}{2}\right)^{-N}\left(\frac{1+e^{i(\xi+\eta)}}{2}\right)^{-N} \times \\
& \sum_{k_{1}+k_{2}+k_{3}+k_{4}=4 N-3} \alpha_{N}\left(k_{1}, k_{2}, k_{3}, k_{4}\right) \frac{(4 N-3)!}{k_{1}!k_{2}!k_{3}!k_{4}!} \times  \tag{14}\\
& H_{1}(\xi, \eta)^{k_{1}} H_{1}(\xi+\pi, \eta)^{k_{2}} H_{1}(\xi, \eta+\pi)^{k_{3}} H_{1}(\xi, \eta)^{k_{4}}
\end{align*}
$$

where $\alpha_{N}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$ is defined by

$$
\alpha_{N}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)=\begin{array}{ll}
0, & \text { if } \quad k_{1} \leq N-1,  \tag{15}\\
\frac{1}{\#(E)}, & \text { if } k_{1} \geq N
\end{array}
$$

$E=\left\{1 \leq j \leq 4 ; k_{j} \geq N\right\}$ and $\#(E)$ denotes the cardinality of the set $E$.

Theorem 1. Let $G$ be a trigonometrical polynomial and $G_{N}$ be defined in (14). Then

$$
H(\xi, \eta)=\left(\frac{1+e^{i \xi}}{2}\right)^{N}\left(\frac{1+e^{i \eta}}{2}\right)^{N}\left(\frac{1+e^{i(\xi+\eta)}}{2}\right)^{N} G(\xi, \eta)
$$

satisfies (5) if and only if

$$
\begin{gather*}
G(\xi, \eta)=G_{N}(\xi, \eta)+\left(1-e^{i \xi}\right)^{N}\left(1-e^{i(\xi+\eta)}\right)^{N} G_{1}(\xi, \eta)+\left(1-e^{i \eta}\right)^{N} \times \\
\left(1-e^{i(\xi+\eta)}\right)^{N} G_{2}(\xi, \eta)+\left(1-e^{i \xi}\right)^{N}\left(1-e^{i \eta}\right)^{N} G_{3}(\xi, \eta)+  \tag{16}\\
\left(1-e^{i \xi}\right)^{N}\left(1-e^{i \eta}\right)^{N}\left(1-e^{i(\xi+\eta)}\right)^{N} G_{4}(\xi, \eta),
\end{gather*}
$$

where trigonometrical polynomials $G_{i}, 1 \leq i \leq 4$, satisfy

$$
\left\{\begin{array}{l}
G_{1}(\xi, \eta)+G_{1}(\xi+\pi, \eta)=0  \tag{17}\\
G_{2}(\xi, \eta)+G_{2}(\xi, \eta+\pi)=0 \\
G_{3}(\xi, \eta)+G_{3}(\xi+\pi, \eta+\pi)=0 \\
G_{4}(\xi, \eta)+G_{4}(\xi, \eta+\pi)+G_{4}(\xi+\pi, \eta)+G_{4}(\xi+\pi, \eta+\pi)=0
\end{array}\right.
$$

We do not know whether the refinable function corresponding to the symbol

$$
H(\xi, \eta)=\left(1+e^{i \xi}\right)^{N}\left(1+e^{i \eta}\right)^{N}\left(1+e^{i(\xi+\eta)}\right)^{N} G_{N}(\xi, \eta)
$$

is cardinal or not for all $N \geq 2$. Only it is known that the one when $N=1$ is cardinal since in this case $G_{1}(\xi, \eta)=e^{-i(\xi+\eta)}$ and the refinable function is the centered box function $B_{\Xi}$ with

$$
\Xi=\left(\begin{array}{lll}
1, & 0, & 1 \\
0, & 1, & 1
\end{array}\right)
$$

(see [dBHR])
To construct Hölder continuous cardinal refinable functions, we consider the case that $N=2 M$ is an even integer. Let

$$
\begin{equation*}
I_{2}(\xi, \eta)=\cos ^{2} \frac{\xi}{2} \cos ^{2} \frac{\eta}{2} \cos ^{2} \frac{\xi+\eta}{2}\left(1+\sin ^{2} \frac{\xi}{2}+\sin ^{2} \frac{\eta}{2}+\sin ^{2} \frac{\xi+\eta}{2}\right) \tag{18}
\end{equation*}
$$

and

$$
\begin{align*}
I_{2 M}(\xi, \eta)= & \sum_{k_{1}+k_{2}+k_{3}+k_{4}=4 M-3} \frac{(4 M-3)!}{k_{1}!k_{2}!k_{3}!k_{4}!} \alpha_{M}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)  \tag{19}\\
& I_{2}(\xi, \eta)^{k_{1}} I_{2}(\xi+\pi, \eta)^{k_{2}} I_{2}(\xi, \eta+\pi)^{k_{3}} I_{2}(\xi+\pi, \eta+\pi)^{k_{4}}
\end{align*}
$$

In section 3 we will prove the following
Theorem 2. Let $\phi_{2 M}$ be the solution of (1) with its coresponding symbol function $I_{2 M}(\xi, \eta)$. Then there exists a constant $\lambda>0$ independent of $M$ such that $\phi_{2 M} \in C^{\lambda M}$, where $C^{\lambda M}$ denotes the Hölder class.

Remark 1. Since each nonzero term in the summation of (19) can divide the term

$$
\left(\cos ^{2} \frac{\xi}{2} \cos ^{2} \frac{\eta}{2} \cos ^{2} \frac{\xi+\eta}{2}\right)^{M}
$$

we obtain that $I_{2 M}$ has the form (12) with $N=2 M$ by (13). Furthermore we have

$$
\begin{aligned}
& I_{2 M}(\xi, \eta)+I_{2 M}(\xi, \eta+\pi)+I_{2 M}(\xi+\pi, \eta)+I_{2 M}(\xi+\pi, \eta+\pi) \\
= & \sum_{k_{1}+k_{2}+k_{3}+k_{4}=4 M-3}\left(\alpha_{M}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)+\alpha_{M}\left(k_{2}, k_{3}, k_{4}, k_{1}\right)+\right. \\
& \left.\alpha_{M}\left(k_{3}, k_{4}, k_{1}, k_{2}\right)+\alpha_{M}\left(k_{4}, k_{1}, k_{2}, k_{3}\right)\right) \times \frac{(4 M-3)!}{k_{1}!k_{2}!k_{3}!k_{4}!} \times \\
& I_{2}(\xi, \eta)^{k_{1}} I_{2}(\xi+\pi, \eta)^{k_{2}} I_{2}(\xi, \eta+\pi)^{k_{3}} I_{2}(\xi+\pi, \eta+\pi)^{k_{4}} \\
= & \left(I_{2}(\xi, \eta)+I_{2}(\xi, \eta+\pi)+I_{2}(\xi+\pi, \eta)+I_{2}(\xi+\pi, \eta+\pi)\right)^{4 M-3} \\
= & 1 .
\end{aligned}
$$

Hence $I_{2 M}(\xi, \eta)$ satisfies (5).

Remark 2. Let $\psi_{M}$ be the solution of (1) with its corresponding symbol function

$$
e^{i 2 M(\xi+\eta)} I_{2 M}(\xi, \eta)\left(\cos ^{2} \frac{\xi}{2} \cos ^{2} \frac{\eta}{2} \cos ^{2} \frac{\xi+\eta}{2}\right)^{-M}
$$

Then $\phi_{2 M}$ is the convolution of $B_{\Xi_{2 M}}$ and $\psi_{M}$, i.e.,

$$
\phi=B_{\Xi_{2 M}} * \psi_{M}
$$

By the definition of $I_{2 M}(\xi, \eta)$, we obtain that $\hat{\psi}_{M}(\xi, \eta)>0$. Then by criterion in [CS], we know that $\phi_{2 M}$ is linearly independent for its integer translates. By standard argument, Remark 1 and Theorem 2, we obtain that $\phi_{2 M}$ is cardinal when $M$ is chosen large enough such that $\lambda M>2$. (see [D], [BDS], [L])

Remark 3. A multiresolution of $L^{2}\left(R^{2}\right)$, the space of square integrable functions on plane, is a family of closed subspace of $L^{2}\left(R^{2}\right)$, which satisfies
i) $\quad \underline{V_{j} \subset V_{j+1}}, \quad \forall j \in Z$,
ii) $\cup_{j \in Z} V_{j}=L^{2}\left(R^{2}\right)$,
iii) $\cap_{j \in Z} V_{j}=\emptyset$,
iv) $f \in V_{j} \Longleftrightarrow f\left(2^{-j}\right) \in V_{0}$,
v) there exists a function $\phi$ in $V_{0}$ such that $\{\phi(\cdot-m, \cdot-n)\}_{m, n \in Z}$ is a Riesz basis of $V_{0}$, which means that $V_{0}$ is spanned by $\{\phi(\cdot-m, \cdot-n)\}_{m, n \in Z}$ and there exist two positive constant $A$ and $B$ such that

$$
A\left(\sum_{m, n \in Z}|d(m, n)|^{2}\right)^{1 / 2} \leq\left\|\sum_{m, n \in Z} d(m, n) \phi(\cdot-m, \cdot-n)\right\|_{2} \leq B\left(\sum_{m, n \in Z}|d(m, n)|^{2}\right)^{1 / 2}
$$

holds for all square summable sequences $\{d(m, n)\}_{m, n \in Z}$, where $\|\cdot\|_{2}$ denotes the norm on $L^{2}\left(R^{2}\right)$. (see [C], [D], [M])

Let $V_{j} \quad(j \in Z)$ be the closed space of $L^{2}\left(R^{2}\right)$ spanned by $\left\{\phi_{2 M}\left(2^{j} \cdot-m, 2^{j}\right.\right.$. $-n)\}_{m, n \in Z}$. Then $\left\{V_{j}\right\}_{j \in Z}$ is a multiresolution when $M$ is chosen large enough such that $\lambda M>2$. This is because $\{\phi(\cdot-m, \cdot-n)\}_{m, n \in Z}$ is a Riesz basis of $V_{0}$ when $\phi$ is cardinal.

Remark 4. Define the filter support width $W(\phi)$ of a refinable function $\phi$ of (1) by the cardinality of integer knots in the least convex set which contains all subindices $(m, n)$ with $c(m, n) \neq 0$. Define the regularity set $R(\phi)$ of a function $\phi$ by the dimension of polynomials $P(x, y)$ for which $P\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) \phi$ is continuous. By elementary argument we know that

$$
W(\phi) \geq R(\phi)
$$

(see [CDM], [DL], [S]). For $\phi_{2 M}$ we know that $W\left(\phi_{2 M}\right) \leq C_{1} M^{2}$ and $R\left(\phi_{2 M}\right) \geq$ $C_{2} M^{2}$ for some constants $C_{1}$ and $C_{2}$ independent of $M$ by the definition (19) of $I_{2 M}(\xi, \eta)$ and Theorem 2. Therefore there exists a constant $C$ independent of $M$ such that

$$
W\left(\phi_{2 M}\right) \leq C R\left(\phi_{2 M}\right) .
$$

This shows that the regularity $W\left(\phi_{2 M}\right)$ of the cardinal scaling functions $\phi_{2 M}$ grows propositionally to filter support width $R\left(\phi_{2 M}\right)$.

## 2. Proof of Theorem 1

To prove Theorem 1, we need some lemmas.
Lemma 1. Let $N \geq 1,0 \leq K \leq N-1$. If Laurent polynomials $g_{s}(z), 0 \leq$ $s \leq K$, satisfies

$$
\begin{equation*}
\sum_{s=0}^{l}\binom{N}{l-s}(-1)^{l-s}\left((1+z)^{N-l+s} g_{s}(z)+(1-z)^{N-l+s} g_{s}(-z)\right)=0, \quad \forall 0 \leq l \leq K, \tag{20}
\end{equation*}
$$

then there exist Laurent polynomials $g_{s}^{*}(z), 0 \leq s \leq K$, such that

$$
\begin{equation*}
\sum_{s=0}^{l}\binom{N}{l-s}(-1)^{l-s}(1-z)^{N-l+s} g_{s}^{*}(z)=g_{l}(z), \quad \forall \quad 0 \leq l \leq K . \tag{21}
\end{equation*}
$$

Proof. The above lemma will be proved by induction on $K \leq N-1$. First we prove it when $K=0$. Therefore we get

$$
(1+z)^{N} g_{0}(z)+(1-z)^{N} g_{0}(-z)=0
$$

by (20) and furthermore

$$
g_{0}(z)=(1-z)^{N} z R\left(z^{2}\right)
$$

for some Laurent polynomial $R$. Let $g_{0}^{*}(z)=z R\left(z^{2}\right)$. Then (21) holds for $l=0$ and Lemma 1 holds when $K=0$.

Inductively we assume that Lemma 1 holds whenl $K=n$. If $n=N-1$, Lemma 1 is proved completely. So we assume that $n \leq N-2$. Now we prove Lemma 1 holds when $K=n+1 \leq N-1$. By the proof of Lemma 1 when $K=0$, we obtain that

$$
g_{0}(z)=(1-z)^{N} z R\left(z^{2}\right)
$$

for some Laurent polynomial $R$ and $g^{*}(z)$ defined by

$$
g_{0}^{*}(z)=z R\left(z^{2}\right)
$$

satisfies (21) when $l=0$. Define

$$
g_{l}^{1}(z)=g_{l}(z)-\binom{N}{l}(-1)^{l} g_{0}^{*}(z)(1-z)^{N-l}, \quad \forall \quad 0 \leq l \leq n+1 .
$$

Then we get

$$
g_{0}^{1}(z)=0
$$

and

$$
\begin{aligned}
& \sum_{s=0}^{l-1}\binom{N}{l-s-1}(-1)^{l-1-s}\left((1+z)^{N-l+1+s} g_{s+1}^{1}(z)+(1-z)^{N-l+1+s} g_{s+1}^{1}(-z)\right) \\
= & \sum_{s=0}^{l}\binom{N}{l-s}(-1)^{l-s}\left((1+z)^{N-l+s} g_{s}^{1}(z)+(1-z)^{N-l+s} g_{s}^{1}(-z)\right) \\
= & -R\left(z^{2}\right) \sum_{s=0}^{l}\binom{N}{l-s}\binom{N}{s}(-1)^{l}\left(z(1+z)^{N-l+s}(1-z)^{N-s}-z(1-z)^{N-l+s}(1+z)^{N-s}\right) \\
= & 0, \forall 1 \leq l \leq n+1 .
\end{aligned}
$$

Therefore $\left\{g_{s+1}^{1}, 0 \leq s \leq n\right\}$ satisfies (20). By induction there exist Laurent polynomials $g_{s}^{1 *}(z), 0 \leq s \leq n$, such that

$$
\sum_{s=0}^{l}(N l-s)(-1)^{l-s}(1-z)^{N-l+s} g_{s}^{1 *}(z)=g_{l+1}^{1}(z), \quad \forall 0 \leq l \leq n .
$$

Hence we get

$$
\begin{aligned}
& \sum_{s=1}^{l} \begin{array}{c}
l-s \\
l-1)^{l-s}(1-z)^{N-l+s} g_{s-1}^{1 *}(z)+\binom{N}{l}(-1)^{l}(1-z)^{N-l} g_{0}^{*}(z) \\
= \\
\sum_{s=0}^{l-1}\binom{N}{l-s-1}(-1)^{l-1-s}(1-z)^{N-l+1+s} g_{s}^{1 *}(z)+\binom{N}{l}(-1)^{l}(1-z)^{N-l} g_{0}^{*}(z) \\
= \\
g_{l}^{1}(z)+\binom{N}{l}(-1)^{l}(1-z)^{N-l} g_{0}^{*}(z)=g_{l}(z) \quad \forall \quad 1 \leq l \leq n+1,
\end{array}, l
\end{aligned}
$$

and $\left\{g_{0}^{*}(z), g_{s}^{1 *}(z), 0 \leq s \leq n\right\}$ satisfies (21). Hence Lemma 1 holds when $K=n+1$. This completes the proof of Lemma 1.

Lemma 2. If $g_{l}(z), 0 \leq l \leq N-1$, satisfies
$\sum_{s=0}^{l}\binom{N}{l-s}(-1)^{l-s}\left((1+z)^{N-l+s} g_{s}(z)+(1-z)^{N-l+s} g_{s}(-z)\right)=0, \quad \forall 0 \leq l \leq N-1$,
then there exist Laurent polynomials $R_{1}$ and $R_{2}$ such that

$$
\sum_{s=0}^{N-1}\left(1-z_{1}\right)^{s} g_{s}\left(z_{2}\right)=\left(z_{1}-z_{2}\right)^{N} R_{1}\left(z_{1}, z_{2}\right)+\left(1-z_{1}\right)^{N} R_{2}\left(z_{1}, z_{2}\right)
$$

Proof. By Lemma 1, there exist Laurent polynomials $g_{l}^{*}\left(z_{2}\right), 0 \leq l \leq N-1$, such that

$$
\sum_{s=0}^{l}\binom{N}{l-s}(-1)^{l-s}\left(1-z_{2}\right)^{N-l+s} g_{s}^{*}\left(z_{2}\right)=g_{l}(z), \quad \forall \quad 0 \leq l \leq N-1
$$

Therefore we get

$$
\begin{aligned}
& \sum_{s=0}^{N-1}\left(1-z_{1}\right)^{s} g_{s}\left(z_{2}\right) \\
= & \sum_{l=0}^{N-1} g_{l}^{*}\left(z_{2}\right) \sum_{s=0}^{N-1-l}\left(1-z_{1}\right)^{l+s}\binom{N}{s}(-1)^{s}\left(1-z_{2}\right)^{N-s} \\
= & \sum_{l=0}^{N-1} g_{l}^{*}\left(z_{2}\right)\left(1-z_{1}\right)^{l}\left(\left(1-z_{2}\right)-\left(1-z_{1}\right)\right)^{N} \bmod \left(1-z_{1}\right)^{N} \\
= & \left(z_{1}-z_{2}\right)^{N} \sum_{l=0}^{N-1} G_{l}^{*}\left(z_{2}\right)\left(1-z_{1}\right)^{l} \bmod \left(1-z_{1}\right)^{N} .
\end{aligned}
$$

Hereafter we say that

$$
A=B \quad \bmod \quad C
$$

for Laurent polynomials $A, B$ and $C$ if $(A-B) / C$ is still a Laurent polynomial. This completes the proof of Lemma 2.

Lemma 3. Let $N \geq 1$ and let $H\left(z_{1}, z_{2}\right)=\left(1+z_{1}\right)^{N}\left(1+z_{2}\right)^{N}\left(z_{1}+\right.$ $\left.z_{2}\right)^{N} G\left(z_{1}, z_{2}\right)$, where $G$ is a Laurent polynomial. If $H$ satisfies

$$
\begin{equation*}
H\left(z_{1}, z_{2}\right)+H\left(z_{1},-z_{2}\right)+H\left(-z_{1}, z_{2}\right)+H\left(-z_{1},-z_{2}\right)=0 \tag{22}
\end{equation*}
$$

then there exist Laurent polynomials $R$ and $G_{2}$ such that

$$
\begin{equation*}
G\left(z_{1}, z_{2}\right)=\left(1-z_{1}\right)^{N} R\left(z_{1}, z_{2}\right)+\left(1-z_{2}\right)^{N}\left(z_{1}-z_{2}\right)^{N} G_{2}\left(z_{1}, z_{2}\right) \tag{23}
\end{equation*}
$$

and

$$
G_{2}\left(z_{1}, z_{2}\right)+G_{2}\left(z_{1},-z_{2}\right)=0
$$

## Proof. Write

$$
G\left(z_{1}, z_{2}\right)=\left(1-z_{1}\right)^{N} h_{N}\left(z_{1}, z_{2}\right)+\sum_{l=0}^{N-1}\left(1-z_{1}\right)^{l} h_{l}\left(z_{2}\right)
$$

Observe that

$$
\left(z_{1}+z_{2}\right)^{N}=\sum_{l=0}^{n-1}\binom{N}{l}\left(1+z_{2}\right)^{N-l}(-1)^{l}\left(1-z_{1}\right)^{l}
$$

Therefore we get

$$
\left(z_{1}+z_{2}\right)^{N} G\left(z_{1}, z_{2}\right)=\sum_{l=0}^{N-1}\left(1-z_{1}\right)^{l} \tilde{h}_{l}\left(z_{2}\right) \quad \bmod \quad\left(1-z_{1}\right)^{N}
$$

where

$$
\begin{equation*}
\tilde{h}_{l}\left(z_{2}\right)=\sum_{s=0}^{l}\binom{N}{l-s}(-1)^{l-s}\left(1+z_{2}\right)^{N-l+s} h_{s}\left(z_{2}\right) \tag{24}
\end{equation*}
$$

By (22) we get

$$
\begin{gathered}
\left(1+z_{1}\right)^{N} \sum_{l=0}^{N-1}\left(1-z_{1}\right)^{l}\left(\left(1+z_{2}\right)^{N} \tilde{h}_{l}\left(z_{2}\right)+\left(1-z_{2}\right)^{N} \tilde{h}_{l}\left(-z_{2}\right)\right)+\left(1-z_{1}\right)^{N} \times \\
\sum_{l=0}^{N-1}\left(1+z_{1}\right)^{l}\left(\left(1+z_{2}\right)^{N} \tilde{h}_{l}\left(z_{2}\right)+\left(1-z_{2}\right)^{N} \tilde{h}_{l}\left(-z_{2}\right)\right)=0 \quad \bmod \left(1-z_{1}^{2}\right)^{N}
\end{gathered}
$$

and

$$
\begin{equation*}
\left(1+z_{2}\right)^{N} \tilde{h}_{l}\left(z_{2}\right)+\left(1-z_{2}\right)^{N} \tilde{h}_{l}\left(-z_{2}\right)=0, \quad \forall \quad 0 \leq l \leq N-1 \tag{25}
\end{equation*}
$$

By the definition (24) of $\tilde{h}_{l}$, we obtain that

$$
h_{s}\left(z_{2}\right)=0 \quad \bmod \quad\left(1-z_{2}\right)^{N}
$$

and

$$
h_{s}\left(z_{2}\right)=\left(1-z_{2}\right)^{N} g_{s}\left(z_{2}\right)
$$

for some Laurent polynomial $g_{s}, 0 \leq s \leq N-1$. Then we have

$$
\begin{aligned}
& \sum_{s=0}^{l}\binom{N}{l-s}(-1)^{l-s}\left(\left(1+z_{2}\right)^{N-l+s} g_{s}\left(z_{2}\right)+\right. \\
& \left.\quad\left(1-z_{2}\right)^{N-l+s} g_{s}\left(-z_{2}\right)\right)=0 \quad \forall \quad 0 \leq l \leq N-1
\end{aligned}
$$

and

$$
G\left(z_{1}, z_{2}\right)=\left(1-z_{1}\right)^{N} \tilde{R}_{1}\left(z_{1}, z_{2}\right)+\left(1-z_{2}\right)^{N}\left(z_{1}-z_{2}\right)^{N} R_{2}\left(z_{1}, z_{2}\right)
$$

for Laurent polynomials $R_{1}$ and $R_{2}$ by Lemma 2. To use the formula in (25), we get

$$
\begin{aligned}
& \left(1-z_{2}^{2}\right)^{N}\left(z_{1}^{2}-z_{2}^{2}\right)^{N}\left\{\left(1+z_{1}\right)^{N}\left(R_{2}\left(z_{1}, z_{2}\right)+R_{2}\left(z_{1},-z_{2}\right)\right)\right. \\
& \left.\quad+\left(1-z_{1}\right)^{N}\left(R_{2}\left(-z_{1}, z_{2}\right)+R_{2}\left(-z_{1},-z_{2}\right)\right)\right\}=0 \quad \bmod \left(1-z_{1}^{2}\right)^{N}
\end{aligned}
$$

and

$$
R_{2}\left(z_{1}, z_{2}\right)+R_{2}\left(z_{1},-z_{2}\right)=0 \quad \bmod \quad\left(1-z_{1}\right)^{N}
$$

Let $G_{2}\left(z_{1}, z_{2}\right)=\left(R_{2}\left(z_{1}, z_{2}\right)-R_{2}\left(z_{1},-z_{2}\right)\right) / 2$ and $R\left(z_{1}, z_{2}\right)=R_{1}\left(z_{1}, z_{2}\right)+$ $1 / 2\left(1-z_{2}\right)^{N}\left(z_{1}-z_{2}\right)^{N}\left(1-z_{1}\right)^{-N}\left(R_{2}\left(z_{1}, z_{2}\right)+R_{2}\left(z_{1},-z_{2}\right)\right)$. Then we get

$$
G_{2}\left(z_{1}, z_{2}\right)+G_{2}\left(z_{1},-z_{2}\right)=0
$$

and

$$
G\left(z_{1}, z_{2}\right)=\left(1-z_{1}\right)^{N} R\left(z_{1}, z_{2}\right)+\left(1-z_{2}\right)^{N}\left(z_{1}-z_{2}\right)^{N} G_{2}\left(z_{1}, z_{2}\right)
$$

Lemma 3 is proved.
Lemma 4. Let $G$ be a Laurent polynomial and $H\left(z_{1}, z_{2}\right)=\left(1+z_{1}\right)^{N}(1+$ $\left.z_{2}\right)^{N}\left(z_{1}+z_{2}\right)^{N} G\left(z_{1}, z_{2}\right)$. If $H$ satisfies (22), then $G$ can be written as

$$
\begin{aligned}
& G\left(z_{1}, z_{2}\right)=\left(1-z_{1}\right)^{N}\left(z_{1}-z_{2}\right)^{N} G_{1}\left(z_{1}, z_{2}\right)+\left(1-z_{2}\right)^{N}\left(z_{1}-z_{2}\right)^{N} G_{2}\left(z_{1}, z_{2}\right) \\
& \quad\left(1-z_{1}\right)^{N}\left(1-z_{2}\right)^{N} G_{3}\left(z_{1}, z_{2}\right)+\left(1-z_{1}\right)^{N}\left(1-z_{2}\right)^{N}\left(z_{1}-z_{2}\right)^{N} G_{4}\left(z_{1}, z_{2}\right),
\end{aligned}
$$

where Laurent polynomials $G_{j}, 1 \leq j \leq 4$, satisfies

$$
\left\{\begin{array}{l}
G_{1}\left(z_{1}, z_{2}\right)+G_{1}\left(-z_{1}, z_{2}\right)=0  \tag{26}\\
G_{2}\left(z_{1}, z_{2}\right)+G_{2}\left(z_{1},-z_{2}\right)=0 \\
G_{3}\left(z_{1}, z_{2}\right)+(-1)^{N} G_{3}\left(-z_{1},-z_{2}\right)=0 \\
G_{4}\left(Z-1, z_{2}\right)+G_{4}\left(-z_{1}, z_{2}\right)+G_{4}\left(z_{1}, z_{2}\right)+G_{4}\left(-z_{1},-z_{2}\right)=0
\end{array}\right.
$$

Proof. By Lemma 3, there exists Laurent polynomial $R$ and $G_{2}$ such that

$$
G_{2}\left(z_{1}, z_{2}\right)+G_{2}\left(z_{1},-z_{2}\right)=0
$$

and

$$
G\left(z_{1}, z_{2}\right)=\left(1-z_{1}\right)^{N} R\left(z_{1}, z_{2}\right)+\left(1-z_{2}\right)^{N}\left(z_{1}-z_{2}\right)^{N} G_{2}\left(z_{1}, z_{2}\right)
$$

Therefore it suffices to prove
$R\left(z_{1}, z_{2}\right)=\left(z_{1}-z_{2}\right)^{N} G_{1}\left(z_{1}, z_{2}\right)+\left(1-z_{2}\right)^{N} G_{3}\left(z_{1}, z_{2}\right)+\left(1-z_{2}\right)^{N}\left(z_{1}-z_{2}\right)^{N} G_{4}\left(z_{1}, z_{2}\right)$
where $G_{1}, G_{3}, G_{4}$ satsifies (26).

By (22), we get

$$
\begin{align*}
& \left(1+z_{2}\right)^{N}\left(\left(z_{1}+z_{2}\right)^{N} R\left(z_{1}, z_{2}\right)+\left(-z_{1}+z_{2}\right)^{N} R\left(-z_{1}, z_{2}\right)\right)+ \\
& \quad\left(1-z_{2}\right)^{N}\left(\left(z_{1}-z_{2}\right)^{N} R\left(z_{1},-z_{2}\right)+\left(-z_{1}-z_{2}\right)^{N} R\left(-z_{1},-z_{2}\right)\right)=0 \tag{28}
\end{align*}
$$

and

$$
\left(z_{1}+z_{2}\right)^{N} R\left(z_{1}, z_{2}\right)+\left(-z_{1}+z_{2}\right)^{N} R\left(-z_{1}, z_{2}\right)=0 q u a d \bmod \quad\left(1-z_{2}\right)^{N}
$$

Therefore we can written $R$ as

$$
R\left(z_{1}, z_{2}\right)=\left(1-z_{2}\right)^{N} R_{1}\left(z_{1}, z_{2}\right)+\left(z_{1}-z_{2}\right)^{N} R_{2}\left(z_{1}, z_{2}\right)
$$

for some Laurent polynomials $R_{1}$ and $R_{2}$. To use the above formula in (28), we get

$$
\begin{aligned}
& \left(1-z_{2}^{2}\right)^{N}\left\{\left(z_{1}+z_{2}\right)^{N}\left(R_{1}\left(z_{1}, z_{2}\right)+(-1)^{N} R_{1}\left(-z_{1},-z_{2}\right)\right)+\right. \\
& \left.\quad\left(z_{1}-z_{2}\right)^{N}\left(R\left(z_{1},-z_{2}\right)+(-1)^{N} R_{1}\left(-z_{1}, z_{2}\right)\right)\right\}=0 \quad \bmod \quad\left(z_{1}^{2}-z_{2}^{2}\right)^{N}
\end{aligned}
$$

and

$$
R_{1}\left(z_{1}, z_{2}\right)+(-1)^{N} R_{1}\left(-z_{1},-z_{2}\right)=0 \quad \bmod \quad\left(z_{1}^{2}-z_{2}^{2}\right)^{N}
$$

Let

$$
G_{3}\left(z_{1}, z_{2}\right)=\left(R_{1}\left(z_{1}, z_{2}\right)-(-1)^{N} R_{1}\left(-z_{1},-z_{2}\right)\right) / 2
$$

and
$R_{3}\left(z_{1}, z_{2}\right)=R_{2}\left(z_{1}, z-2\right)+\left(1-z_{2}\right)^{N}\left(z_{1}-z_{2}\right)^{-N}\left(\left(R_{1}\left(z_{1}, z_{2}\right)+(-1)^{N} R_{1}\left(-z_{1},-z_{2}\right)\right) / 2\right.$.
Then we obtain that

$$
G_{3}\left(z_{1}, z_{2}\right)+G_{3}\left(-z_{1},-z_{2}\right)=0
$$

and

$$
R\left(z_{1}, z_{2}\right)=\left(z_{1}-z_{2}\right)^{N} R_{3}\left(z_{1}, z_{2}\right)+\left(1-z_{2}\right)^{N} G_{3}\left(z_{1}, z_{2}\right) .
$$

To use the formula in (28), we get
$\left(1+z_{2}\right)^{N}\left(R_{3}\left(z_{1}, z_{2}\right)+R_{3}\left(-z_{1}, z_{2}\right)\right)+\left(1-z_{2}\right)^{N}\left(R_{3}\left(z_{1},-z_{2}\right)+R_{3}\left(-z_{1},-z_{2}\right)\right)=0$.
Hence there exist Laurent polynomials $G_{1}$ and $G_{4}$ such that

$$
\left\{\begin{array}{l}
R_{3}\left(z_{1}, z_{2}\right)=G_{1}\left(z_{1}, z_{2}\right)+\left(1-z_{2}\right)^{N} G_{4}\left(z_{1}, z_{2}\right) \\
G_{1}\left(z_{1}, z_{2}\right)+G_{1}\left(-z_{1}, z_{2}\right)=0 \\
G_{4}\left(z_{1}, z_{2}\right)+G_{4}\left(z_{1},-z_{2}\right)+G_{4}\left(-z_{1}, z_{2}\right)+G_{4}\left(-z_{1},-z_{2}\right)=0
\end{array}\right.
$$

This completes the proof of Lemma 4.

Now we start to prove Theorem 1.

Proof of Theorem 1. To prove the necessity, we only need to prove that $H_{N}(\xi, \eta)$ satisfies (5).

By the definition (15) of $\alpha_{N}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$ we get
$\alpha_{N}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)+\alpha_{N}\left(k_{2}, k_{3}, k_{4}, k_{1}\right)+\alpha_{N}\left(k_{3}, k_{4}, k_{1}, k_{2}\right)+\alpha_{N}\left(k_{4}, k_{1}, k_{2}, k_{3}\right)=1$.
Hence

$$
\begin{aligned}
& H_{N}(\xi, \eta)+H_{N}(\xi+\pi, \eta)+H_{N}(\xi, \eta+\pi)+H_{N}(\xi+\pi, \eta+\pi) \\
&= \sum_{k_{1}+k_{2}+k_{3}+k_{4}=4 N-3} \frac{(4 N-3)!}{k_{1}!k_{2}!k_{3}!k_{4}!} \times\left(\alpha_{N}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)+\alpha_{N}\left(k_{2}, k_{3}, k_{4}, k_{1}\right)+\right. \\
&\left.\alpha_{N}\left(k_{3}, k_{4}, k_{1}, k_{2}\right)+\alpha_{N}\left(k_{4}, k_{1}, k_{2}, k_{3}\right)\right) \times H_{1}(\xi, \eta)^{k_{1}} \\
& H_{1}(\xi+\pi, \eta)^{k_{2}} H_{1}(\xi, \eta+\pi)^{k_{3}} H_{1}(\xi+\pi, \eta+\pi)^{k_{4}} \\
&=\left(G_{0}(\xi, \eta)+G_{0}(\xi+\pi, \eta)+G_{0}(\xi, \eta+\pi)+G_{0}(\xi+\pi, \eta+\pi)\right)^{4 N-3}=1 .
\end{aligned}
$$

The necessity is proved.
To prove the sufficiency, we need to prove all trigonometric polynomial $G(\xi, \eta)$ such that $H(\xi, \eta)=\left(1+e^{i \xi}\right)^{N}\left(1+e^{i \eta}\right)^{N}\left(1+e^{i(\xi+\eta)}\right)^{N} G(\xi, \eta)$ satisfies

$$
\begin{equation*}
H(\xi, \eta)+H(\xi+\pi, \eta)+H(\xi, \eta+\pi)+H(\xi+\pi, \eta+\pi)=0 \tag{29}
\end{equation*}
$$

can be written as

$$
\begin{aligned}
& G(\xi, \eta)=G_{N}(\xi, \eta)+\left(1-e^{i \xi}\right)^{N}\left(1-e^{i(\xi+\eta)}\right)^{N} G_{1}(\xi, \eta)+\left(1-e^{i \eta}\right)^{N}\left(1-e^{i(\xi+\eta)}\right)^{N} G_{2}(\xi, \eta) \\
& \quad+\left(1-e^{i \xi}\right)^{N}\left(1-e^{i \eta}\right)^{N} G_{3}(\xi, \eta)+\left(1-e^{i \xi}\right)^{N}\left(1-e^{i \eta}\right)^{N}\left(1-e^{i(\xi+\eta)} G_{4}(\xi, \eta)\right.
\end{aligned}
$$

where trigonometrical polynomials $G_{j}, 1 \leq j \leq 4$, satisfies (16).
Let $z_{1}=e^{-i \xi}, z_{2}=e^{i \eta}$. Define

$$
\tilde{G}\left(z_{1}, z_{2}\right)=e^{2 N i \xi} G(\xi, \eta)
$$

and

$$
\tilde{H}\left(z_{1}, z_{2}\right)=\left(1+z_{1}\right)^{N}\left(1+z_{2}\right)^{N}\left(z_{1}+z_{2}\right)^{N} \tilde{G}\left(z_{1}, z_{2}\right) .
$$

Then we can write (29) as

$$
\tilde{H}\left(z_{1}, z_{2}\right)+\tilde{H}\left(-z_{1}, z_{2}\right)+\tilde{H}\left(z_{1},-z_{2}\right)+\tilde{H}\left(-z_{1},-z_{2}\right)=0
$$

Hence there exists $G_{j}, 1 \leq j \leq 4$, such that $G_{j}$ satisfy (16) and

$$
\begin{aligned}
& \tilde{G}\left(z_{1}, z_{2}\right)=\left(1-z_{1}\right)^{N}\left(z_{1}-z_{2}\right)^{N} G_{1}\left(z_{1}, z_{2}\right)+\left(1-z_{2}\right)^{N}\left(z_{1}-z_{2}\right)^{N} G_{2}\left(z_{1}, z_{2}\right) \\
& \quad\left(1-z_{1}\right)^{N}\left(1-z_{2}\right)^{N} G_{3}\left(z_{1}, z_{2}\right)+\left(1-z_{1}\right)^{N}\left(1-z_{2}\right)^{N}\left(z_{1}-z_{2}\right)^{N} G_{4}\left(z_{1}, z_{2}\right) .
\end{aligned}
$$

Therefore Theorem 1 follows when $z_{1}=e^{-i \xi}$ and $z_{2}=e^{i \eta}$.

## 3. Proof of Theorem 2

To prove Theorem 2, we need some lemmas.
Lemma 5. Define $D=\cup_{j=0}^{8} D_{j}$, where

$$
\begin{aligned}
& D_{0}=\{(\xi, \eta) ; 2 \pi / 3 \leq \xi \leq 4 \pi / 3,2 \pi / 3 \leq \eta \leq 4 \pi / 3\} \\
& D_{1}=\{(\xi, \eta) ; 2 \pi / 3 \leq \xi \leq 6 \pi / 5,0 \leq \eta \leq 2 \pi / 3\} \\
& D_{2}=\left\{(\xi, \eta) ;(\eta, \xi) \in D_{1}\right\} \\
& D_{3}=\{(\xi, \eta) ; 6 \pi / 5 \leq \xi \leq 23 \pi / 18,0 \leq \eta \leq 2 \pi / 3\} \\
& D_{4}=\left\{(\xi, \eta) ;(\eta, \xi) \in D_{3}\right\} \\
& D_{5}=\{(\xi, \eta) ; 23 \pi / 18 \xi \leq 4 \pi / 3,23 \pi / 36 \leq \eta \leq 2 \pi / 3\} \\
& D_{6}=\left\{(\xi, \eta) ;(\eta, \xi) \in D_{5}\right\} \\
& D_{7}=\{(\xi, \eta) ; 23 \pi / 36 \xi \leq 2 \pi / 3,0 \leq \eta \leq \pi / 3\} \\
& D_{8}=\left\{(\xi, \eta) ;(\eta, \xi) \in D_{7}\right\}
\end{aligned}
$$

Then there exists a constant $\delta_{1}<1$ such that

$$
0 \leq I_{2}(\xi, \eta) \leq \frac{1}{4} \delta_{1}, \quad \forall \quad(\xi, \eta) \in D
$$

Proof. By the symmetry and continuity of $I_{2}$, it suffices to prove

$$
0 \leq I_{2}(\xi, \eta)<1 / 4 \quad \forall \quad(\xi, \eta) \in D_{0} \cup D_{1} \cup D_{3} \cup D_{5} \cup D_{7}
$$

We divide five cases to prove it.
Case 1. $(\xi, \eta) \in D_{0}$.
In this case $\cos ^{2} \xi / 2 \leq 1 / 4$ and $\cos ^{2} \eta / 2 \leq 1 / 4$. Then we obtain

$$
\begin{equation*}
I_{2}(\xi, \eta) \leq 1 / 16 \cos ^{2}(\xi+\eta) / 2\left(1+\sin ^{2} \xi / 2+\sin ^{2} \eta / 2+\sin ^{2}(\xi+\eta) / 2\right)<1 / 4 \tag{30}
\end{equation*}
$$

Case 2. $(\xi, \eta) \in D_{1}$.
In this case, we have

$$
\cos ^{2} \eta / 2 \cos ^{2}(\xi+\eta) / 2 \leq \max \left(\cos ^{2} \xi / 2,1 / 4 \cos ^{2}(\xi / 2+2 \pi / 3), \sin ^{4} \xi / 4\right)
$$

Then we have

$$
\begin{equation*}
I_{2}(\xi, \eta)<4 \max \left(\cos ^{4} \xi / 2,1 / 4 \cos ^{2} \xi / 2 \cos ^{2}(\xi / 2+2 \pi / 3), \cos ^{2}(\xi / 2) \sin ^{4} \xi / 4\right) \leq 1 / 4 \tag{31}
\end{equation*}
$$

Case 3.a. $(\xi, \eta) \in D_{3}$ and $0 \leq \eta \leq \pi / 3$.
In this case, $\sin ^{2} \eta / 2+\sin ^{2}(\bar{\xi}+\eta) / 2 \leq \sin ^{2} \xi / 2$ and $\cos ^{2} \eta / 2 \cos ^{2}(\xi+\eta) / 2 \leq$ $\cos ^{2} \pi / 6 \cos ^{2}(\xi / 2+\pi / 6)$. Then we have

$$
\begin{align*}
I_{2}(\xi, \eta) & \leq \cos ^{2} \xi / 2 \cos ^{2} \pi / 6 \cos ^{2}(\xi / 2+\pi / 6)\left(1+2 \sin ^{2} \xi / 2\right)  \tag{32}\\
& \leq \cos ^{2} 23 \pi / 36 \cos ^{2} \pi / 6 \cos ^{2} 29 \pi / 36\left(1+2 \sin ^{2} 23 \pi / 36\right)<1 / 4
\end{align*}
$$

Case 3.b. $(\xi, \eta) \in D_{3}$ and $\pi / 3 \leq \eta \leq 2 \pi / 3$.

In this case, $\sin ^{2} \eta / 2+\sin ^{2}(\xi+\eta) / 2 \leq \sin ^{2} \pi / 3+\sin ^{2}(\xi / 2+\pi / 3)$ and $\cos ^{2} \eta / 2 \cos ^{2}(\xi+\eta) / 2 \leq \sin ^{4} \xi / 4$. Then we have

$$
\begin{align*}
I_{2}(\xi, \eta) & \leq \cos ^{2} \xi / 2 \sin ^{4} \xi / 4\left(7 / 4+\sin ^{2} 3 \pi / 5+\sin ^{2} 14 \pi / 15\right) \\
& \leq \cos ^{2} 23 \pi / 36 \sin ^{4} 23 \pi / 72\left(7 / 4+\sin ^{2} 3 \pi / 5+\sin ^{2} 14 \pi / 15\right)<1 / 4 \tag{33}
\end{align*}
$$

Case 4. $(\xi, \eta) \in D_{5}$.
In this case, $1+\sin ^{2} \xi / 2+\sin ^{2} \eta / 2+\sin ^{2}(\xi+\eta) / 2 \leq 3$ and $\cos ^{2} \eta / 2 \cos ^{2}(\xi+$ $\eta) / 2 \leq \cos ^{2} 23 \pi / 72 \cos ^{2}(\xi / 2+23 \pi / 72) \leq \cos ^{2} 23 \pi / 72$. Then we have

$$
\begin{equation*}
I_{2}(\xi, \eta) \leq 3 \cos ^{2} \pi / 3 \cos ^{2} 23 \pi / 72<1 / 4 \tag{34}
\end{equation*}
$$

Case 5. $(\xi, \eta) \in D_{7}$.
In this case $\sin ^{2} \eta / 2+\sin ^{2}(\xi+\eta) / 2 \leq \sin ^{2} \pi / 6+\sin ^{2}(\xi / 2+\pi / 6) \leq 5 / 4$ and $\cos ^{2} \eta / 2 \cos ^{2}(\xi+\eta) / 2 \leq \cos ^{2} \xi / 2$. Then we have

$$
\begin{equation*}
I_{2}(\xi, \eta) \leq \cos ^{4} \xi / 2\left(9 / 4+\sin ^{2} \xi / 2\right) \leq \cos ^{2} 23 \pi / 72\left(9 / 4+\sin ^{2} 23 \pi / 72\right)<1 / 4 \tag{35}
\end{equation*}
$$

Combining (31)-(36), we get (30) and Lemma 5 is proved.

Lemma 6. Let $\delta<1$ and $C$ be two constants. If nonnegative function $f$ satisfies
i) $\quad f(\xi+2 m \pi, \eta+2 n \pi)=f(\xi, \eta)$ holds for all $m, n \in Z$;
ii) $0 \leq f(\xi, \eta) \leq 1$;
iii) $|f(\xi, \eta)| \leq C \min (|\xi-\pi|,|\eta-\pi|)$ when $0 \leq \xi, \eta \leq 2 \pi$;
iv) $0 \leq f(\xi, \eta) \leq \delta<1$ when $(\xi, \eta) \in[2 \pi / 3,4 \pi / 3] \times[0,2 \pi] \cup[0,2 \pi] \times$ [ $2 \pi / 3,4 \pi / 3]$.
then there exists $\lambda>0$ independent of $k$ such that

$$
\prod_{j=1}^{k} f\left(2^{j} \xi, 2^{j} \eta\right) \leq 2^{-\lambda k}
$$

holds for all $k \geq 2$ when $(\xi, \eta) \in[\pi / 2,3 \pi / 2] \times[0,2 \pi] \cup[0,2 \pi] \times[\pi / 2,3 \pi / 2]$. $\pi / 2 \leq \xi \leq 3 \pi / 2$ or $\pi / 4 \leq \eta \leq 3 \pi / 4$.

Lemma 6 can be proved by the argument similar to the one of Lemma 10 of Chapter 3 in $[\mathrm{M}]$. We omit the details here.

Lemma 7. Let $I_{2 M}$ be defined in (19). Then there exists a constant $\lambda>0$ such that

$$
\prod_{j=1}^{k} I_{2 M}\left(2^{j} \xi, 2^{j} \eta\right) \leq 2^{-\lambda k M}
$$

holds for all $k \geq 4$ when $\pi / 2 \leq \xi \leq 3 \pi / 2$ or $\pi / 2 \leq \eta \leq 3 \pi / 2$.

Proof. By (15), (19) we get $0 \leq \alpha_{M}\left(k_{1}, k_{2}, k_{3}, k_{4}\right) \leq 1, \alpha_{M}\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$ is not zero only if $k_{1} \geq M$ and $I_{2} \geq 0$. Therefore we get

$$
\begin{aligned}
I_{2 M}(\xi, \eta) & \leq \sum_{k_{1}=M}^{4 M-3} \frac{(4 M-3)!}{k_{1}!\left(4 M-3-k_{1}\right)!} I_{2}(\xi, \eta)^{k_{1}}\left(1-I_{2}(\xi, \eta)^{4 M-3-k_{1}}\right. \\
& \leq\left(I_{2}(\xi, \eta)+1-I_{2}(\xi, \eta)\right)^{4 M-3}=1
\end{aligned}
$$

when $I_{2}(\xi, \eta) \geq 1 / 4$ and

$$
\begin{aligned}
I_{2 M}(\xi, \eta) \leq & I_{2}(\xi, \eta)^{M}\left(1-I_{2}(\xi, \eta)\right)^{4 M-3} \sum_{k_{1}=M}^{4 M-3} \frac{(4 M-3)!}{k_{1}!\left(4 M-3-k_{1}\right)!}(1 / 3)^{k_{1}} \\
& \left(\text { bythemonotonyof } \frac{t}{1-t} \text { when } 0 \leq t \leq 1 / 4\right) \\
\leq & I_{2}(\xi, \eta)^{M}\left(1-I_{2}(\xi, \eta)\right)^{4 M-3} 3^{M}(4 / 3)^{4 M-3} \times \\
& \quad \sum_{k_{1}=M \frac{(4-3}{4 M} \frac{(4 M-3)!}{k_{1}!\left(4 M-3-k_{1}\right)!}\left(\frac{1}{4}\right)^{k_{1}}\left(\frac{3}{4}\right)^{4 M-3-k_{1}}}^{\leq}\left(\frac{256}{27} I_{2}(\xi, \eta)\left(1-I_{2}(\xi, \eta)\right)^{3}\right)^{M},
\end{aligned}
$$

when $I_{2}(\xi, \eta) \leq 1 / 4$. By the monotony of $t(1-t)^{3}$ when $0 \leq t \leq 1 / 4$ and Lemma 5, there exists a constant $0<\delta<1$ independent of $M$ such that

$$
I_{2 M}(\xi, \eta) \leq \delta^{M}
$$

when $(\xi, \eta) \in D$, where $D$ is defined in Lemma 5. Observe that $(\xi, \eta) \in D_{7} \cup D_{8}$ or $(2 \xi, 2 \eta) \in D$ when $(\xi, \eta) \in[\pi / 3,2 \pi / 3] \times[0,2 \pi / 3] \cup[0,2 \pi / 3] \times[\pi / 3,2 \pi / 3]$. Therefore we get

$$
I_{2 M}(\xi, \eta) I_{2 M}(2 \xi, 2 \eta) \leq \delta^{M}
$$

holds for all $(\xi, \eta) \in D \cup[\pi / 3,2 \pi / 3] \times[0,2 \pi / 3] \cup[0,2 \pi / 3] \times[\pi / 3,2 \pi / 3]$. Observe that $(2 \xi-2 \pi, 2 \eta) \in[\pi / 3,2 \pi / 3] \times[0,23 \pi / 18]$ when $(\xi, \eta) \in[23 \pi / 18,4 \pi / 3] \times$ $[0,23 \pi / 36]$ and $(2 \xi, 2 \eta-2 \pi) \in[0,23 \pi / 18] \times[\pi / 3,2 \pi / 3]$ when $(\xi, \eta) \in[0,23 \pi / 36] \times$ $[23 \pi / 18,4 \pi / 3]$. Therefore we get

$$
I_{2 M}(\xi, \eta)\left(I_{2 M}(2 \xi, 2 \eta)\right)^{2} I_{2 M}(4 \xi, 4 \eta) \leq \delta^{M}
$$

holds when

$$
(\xi, \eta) \in[0,4 \pi / 3] \times[2 \pi / 3,4 \pi / 3] \cup[2 \pi / 3,4 \pi / 3] \times[0,4 \pi / 3]
$$

By the definition of $I_{2 M}$ we have

$$
I_{2 M}(\xi, \eta)=I_{2 M}(-\xi,-\eta)
$$

Therefore we get

$$
I_{2 M}(\xi, \eta)\left(I_{2 M}(2 \xi, 2 \eta)\right)^{2} I_{2 M}(4 \xi, 4 \eta) \leq \delta^{M}
$$

when

$$
(\xi, \eta) \in[0,2 \pi] \times[2 \pi / 3,4 \pi / 3] \cup[2 \pi / 3,4 \pi / 3] \times[0,2 \pi]
$$

Then Lemma 7 follows from Lemma 6.

Now
we start to prove Theorem 2.
Proof of Theorem 2. By (3) and the definition of $\phi_{2 M}$, we have

$$
\hat{\phi}_{2 M}(\xi, \eta)=I_{2 M}(\xi / 2, \eta / 2) \hat{\phi}_{2 M}(\xi / 2, \eta / 2)
$$

Let $k_{0}$ be the unique integer such that $\pi \geq \max \left(\left|2^{-k_{0}} \xi\right|,\left|2^{-k_{0}} \eta\right|\right)>\pi / 2$ when $\max (|\xi|,|\eta|) \geq 8 \pi$, Let $\left(\xi_{k_{0}}, \eta_{k_{0}}\right) \in[0,2 \pi] \times[\pi / 2,3 \pi / 2] \cup[\pi / 2,3 \pi / 2] \times[0,2 \pi]$ be the unique point such that $\left(\xi_{k_{0}}, \eta_{k_{0}}\right)-\left(2^{-k_{0}} \xi, 2^{-k_{0}} \eta\right) \in 2 \pi Z \times 2 \pi Z$. Observe that

$$
\left|\hat{\phi}_{2 M}(\xi, \eta)\right| \leq 1
$$

since $0 \leq I_{2 M}(\xi, \eta) \leq 1$. Then by Lemma 7 we get

$$
\begin{aligned}
\left|\hat{\phi}_{2 M}(\xi, \eta)\right| & =\prod_{j=1}^{k} I_{2 M}\left(2^{-j} \xi, 2^{-j} \eta\right) \hat{\phi}_{2 M}\left(2^{-k} \xi, 2^{-k} \eta\right) \\
& \leq \prod_{j=0}^{k_{0}-1} I_{N}\left(2^{j} \xi_{k_{0}}, 2^{j} \eta_{k_{0}}\right) \\
& \leq \delta^{\left(k_{0}-1\right) N} \leq \delta^{-M}(\max (|\xi| / \pi,|\eta| / \pi))^{-M \ln \delta / \ln 2}
\end{aligned}
$$

when $\max (|\xi|,|\eta|) \geq 8 \pi$. Theorem 2 is proved since

$$
|\hat{\phi}(\xi, \eta)| \leq C(1+|\xi|+|\eta|)^{-\beta}
$$

implies $\phi \in C^{\beta-2}$ when $\beta>2$.

## References

[BDS] N. Bi, X. Dai and Q. Sun, Construction of compatly supported Mband wavelets, Research Report 9518, Center for Mathematics, Zhejiang University, 1995.
[dBHR] C. de Boor, K. Höllig and S. Riemenschneider, Box Splines, Applied Methematical Sciences 98, Springer-Verlag, 1993.
[CDM] A. Cavaretta, W. Dahmen and C. A. Micchelli, Stationary subdivision, Memoir Amer. Math. Soc., 93(1991), 1-186.
[C] C. K. Chui, Introduction to Wavelets, Academic Press, 1992.
[CS] C. K. Chui and X. Shi, ????? Approx. Th. Appl.,???
[D] I. Daubechies, Ten Lectures on Wavelets,CBMS-NSF Regional Conference Series in Applied Mathematics 61, Philadephia, 1992.
[DL] I. Daubechies and J. Lagarais, Two-scale difference equation I: Existence and global regularity of solution, SIAM J. Math. Anal., 22(1991), 13881410.
[L] R. M. Lewis, Cardinal interpolation multiresolution, J. Approx. Theory, 26(1994), 177-202.
[M] Y. Meyer, Ondelettes et Opérateur I: Ondelettes, Hermann, Paris, 1990.
[Sc] I. J. Scheoenberg, Cardinal Interpolation Spline, CBMS, Philadephia, 1973.
[Sh] C. E. Shannon, Communication in the presence of noise, Proc. IRE, 37(1949), 10-21.
[S] Q. Sun, Refinable functions with compact support, J. Approx. Theory, 1996. also, Research Report 9418, Center for Mathematical Sciences, Zhejiang University.
[W] G. G. Walter, A sampling theorem for wavelet subspace, IEEE Trans. Inform. Theory, 38(1992), 881-884.


[^0]:    ${ }^{1}$ Current address: Department of Mathematics, Texas A\&M University, College Station, TX 77843-3368, USA
    ${ }^{2}$ The author is partially supported by National Sciences Foundation of China and Zhejiang Provincial Sciences Foundation of China

