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1. Introduction

A distribution ¢ on plane is said to be refinable if ¢ satisfies a refinement
equation

¢(m,y) = Z c(m,n)d)(?m —m, 2y - ’Il), (1)

m,ncZ

where the sequence {c¢(m,n)} satisfies

Z e¢(m,n) = 1.

m,n€Z

Let
1

HEm) =7 Y clmm)eimerm) @

m,n€Z

be the symbol of (1). Then the distribution ¢ in (1) is completely determined
by its symbol function H(&,n) up to multiplying a constant. In particaular

o0

d(&,m) = [[ H(277¢,2770)$(0,0). (3)

Jj=1

Hereafter the Fourier transform of an integrable function f is defined by

f(em) = /R /R f(@,y)e @ dady,

In this paper we will deal with compactly suppported refinable distribution
¢ with J)(0,0) = 1. In this case the symbol function H is assumed to be a
trigonometrical polynomial.

A continuous function ¢ is said to be cardinal if the restriction of ¢ to Z x Z

satisfies Lo o )= (0.0)
¢(m’"):{ 0, if (mn)# (0,0). @

For cardinal refinable function ¢, the corresponding symbol H satisfies
HEn+HE+mn)+HEn+m)+HE+mn+m)=1 (5)

Refinable functions arised in many aspects such as construction of nondif-
ferential functions, subdivision scheme and multiresolution analysis etc. (see
[cDM], [C], [D], [M])

The B-splines By, k > 1, defined by

~ 1—e i 4

Bi(&) = (



and the Daubechies’ scaling functions n¢ in [D] are two important classes of

compactly supported refinable functions on one dimension. The box spline Bz,

which is defined by

1 — e—ila(s1)E+a(s2)n)
i{a(sD)E + a(s2)m)

R N
BE(gan) = H

s=1

- < a(ll) --- a(N1) ) (1)
7\ a(l2) -+ a(N2)

is a 2 x N matrix with integer entries and and with full rank 2, and the scaling
functions constructed by tensor product of two scaling functions in one dimen-
sion are corresponding important classes of compactly supported refinable func-
tions on plane (see [M]). Here we say that a compactly supported distribution
¢ on plane is a scaling function if ¢ is refinable and ¢ is linearlly independent
for its integer translates, which means that the map ¢*' defined by

o' : {d(m,n)} - 3 d(m,n)¢(x — m,y - n)

m,n€Z

(6)

where

is one-to-one.

Cardinal function are very important in approximation of equidistant data
and signal processing. The cardinal spline in [S] and S22 in Shannon sampling
theorem [Sh] are two widely-used cardinal refinable functions in approximation
theory and signal processing, but these functions are not compactly supported.
The construction of compactly supported cardinal refinable function in one-
dimension is well-studied.(see [L], [BDS], [CS])

The centered tensor product By (x)Ba(y) of two B-spline, and the hat func-
tion Bz with three direction on plane

(1 1, 0, O
o ( 0, 0, 1, 1 )
are two known examples which are cardinal refinable functions with compact
support.(see [BHR])

The cadinal refinable function can be constructed from some appropriate re-
finable function. Until now there are two popular methods to construct cardnial

refinable function ¢ from a refinable function ¥. The one is to define ¢ with
help of Fourier transform by

[1]

" _ 1/J(£>77)
Ao = e + 2mm n + 2n)

when 1/3 has appropriate decay at infinity and
Z 1/3(5 +2mm,n + 2nm) # 0.

m,n€Z



(see [W])
The other is to define ¢ by

d(z,y) = /17{/1%¢(8 —x,t —y)Y(s,t)dsdt

when ¢ is orthonormal, which means

_ L if (m,n)=(0,0)
/R/Rgzﬁ(s,t)¢(s m,t —n)dsdt = 0. if (m.n)+#(0.0).

The cardinal refinable function constructed by the first method is generally
not compactly supported. A problem to construct cardinal refinable function
by the second method is that we know few about construction of compactly
supported orthonormal refinable functions on plane.

In particaular, study on cardinal refinable function on plane is helpful to un-
derstand the construction of compactly supported orthonormal scaling functions

on plane. Precisely if the corresponding symbol function H(§,n) of cardinal re-
finable function ¢ can be written as

for some trigonometrical polynomial R, then the solution of (1) corresponding
to symbol function R(§,n) would be orthonormal. The solvability of (8) in one
dimension is shown by Riesz Lemma when H > 0 is a polynomial of cos&.

From the construction of refinable function in one dimension, we know that
a Holder continuous refinable solution in one dimension can be written as convo-
lution of a B-spline By, and a refinable distribution ¢. The Daubechies’ scaling
function was constructed through the construction of v in some sense. But it
is not known whether a Holder continuous solution ¢ of (1) on plane can be
written as convolution Bz * ¢ of a Box spline Bz and a compactly supported
refinable distribution v, i.e.,

¢(m7y) :BE*¢(m7y) = (BE(I'—,y—),’l/J(,)), (9)

where (f, g) denotes the inner product of two distribution f and g, which be-
comes the inner product on the space of square integrable functions when f and
g are square integrable. (see [CDM)])

In this paper we will construct cardinal refinable functions ¢ which can be
written as (9), i.e. the convolution of a class of box-splines Bz and refinable
distributions %

In particaular there are some restriction on the box-spline Bz such that
¢ in (9) is cardinal. By the definition (4) of cardinal function we know that
¢ is linearly independent for its integer translates. Hence Bz is also linearly
independently for its integer translates. By elementary theory on box spline,



we obtain that = is essentially one of the following two types:

a’...,a’ C,"',C

E:( b’...,b’ d,...,d (10)
—— ——

r  factors s factors
where ad — bc = £1 and r,s > 1 and

a,...,a’ C,"‘,C e’...,e

E:( b,"',b; d;"'yd f)”‘)f >7 (11)
—— —— —_—

r factors s factors t factors

where ad — be = £1,af —be = £1,¢f —ed = £1 and r,s,t > 1. (see [IBHR])

On the other hand when ad —bc = %1 it is easy to check that ¢(ax + by, cx +
dy) is also refinable (cardinal, othonormal) when ¢ is. Then we can assume
without loss of generality that a =d=1,c=b=0,e = f =1 in (10) and (11).

In the case = in (10), the box splines Bz corresponding to = are tensor
product of two B-splines in one dimension, and the construction of cardinal
refinable functions which has the form (9) can be followed as the one in one
dimension.

It seems much more difficult to the case that = has the form (11) with
a=d=e=f=1,b=c=0. In this paper the case for which = has the form
(11) and r = s =t = N is considered.

For notational simplity, let Bz, the box spline defined by (7) corresponding
to

1,---,1, 0,---,0 1,---,1
EN:< 0,---,0, 1,---,1 1,---,1
—— —— ——

N  factors N  factors N  factors

In this case the symbol function H(£,n) can be written as

1 i€ 1 in 1 i(§+m)
aEn = ()N (E) ) e, a2

where G is a trigonometrical polynomial.
In section 2, we will characterize the solution of (5) when H has the form in
(12). Let

Hy(€,m) = M= x L« LEelTin o omiletn) 13
= cos £ cos L cos £21 "
2 2 2
and
— (14 VTN 14\ =N 14 6\ =N
Grlem) = (B5)  (B5)  (B—) x (AN—3)!
Ek1+kz+k3+k4:4N73 an (ki k2, k3, k4)m x (14)

Hl(é:”)kl H1(§ + F:n)szl(gan + 7T) 13H1(£vn)k47



where an(k1, k2, k3, k4) is defined by

0, ) k S N_ ]-7
an(ky,kz, ks, k) = 1 z; ki >N

E={1<j<4;k; > N} and #(F) denotes the cardinality of the set E.

Theorem 1. Let G be a trigonometrical polynomial and G be defined
in (14). Then

1+eif)N 14e N, 1+t

H(&n) = (—5 5 5

satisfies (5) if and only if

(&,m)

G(&m) = Gn(Em) + (1 =N (1 = EFMNG,(€,n) + (1 — )N x
(1—eEEMNG, (&) + (1 — )N (1 — N G3(¢, )+ (16)
(1—e®)N (1 —emN (1 — e EMNG,(E, ),

where trigonometrical polynomials G;,1 < i < 4, satisfy

Y+ Gi(E+m,n) =0,

)+ G2(§,m+7m) =0,

)+G3(f+ﬂ',7’]+’ﬂ'):0,

)+ Gu(&n+ )+ Go(E+7,m) +Gu(E+7,n+7) =0.

Gl (55 n
G2(£a n
G3(£7 n
Ga(&m

)

(17)

We do not know whether the refinable function corresponding to the symbol
H(Em) = (1+ )V (L +eMN (L + NGy (€,n)

is cardinal or not for all N > 2. Only it is known that the one when N =1 is
cardinal since in this case G1(€,7) = e~ ¢+ and the refinable function is the

centered box function Bz with
(1, 0, 1
—\o0 1,1
(see [IBHR])

To construct Holder continuous cardinal refinable functions, we consider the
case that N = 2M is an even integer. Let

[1]

o0& am &+ S IS RS
I,(&,m) = cos 5 CO8” 5 cos” = (1+sin 5 T sin” o +sin” = ) (18)
and
4AM—3)!
Dvr(§m) = 3yt ky ks +hamadl—3 k(!kz!ks&,‘dOéM(klak27k3;k4) (19)

L&, (€ + m,n)E2 Ly (€, 1 + m)k= Ly (€ + 7, + )k



In section 3 we will prove the following

Theorem 2. Let ¢aps be the solution of (1) with its coresponding symbol
function Iopr(€,m). Then there exists a constant X\ > 0 independent of M such
that ¢onr € CM | where CM denotes the Holder class.

Remark 1. Since each nonzero term in the summation of (19) can divide
the term

Y

(cos? gcos2 g cos’ HTW)M

we obtain that Iyps has the form (12) with N = 2M by (13). Furthermore we
have

L) + Lam(En+m) + Lu(E+m,n0) + Lm(§+m,m + )
= Ek1+k2+k3+k4:4M—3 (QM(kl,k2,k3,k4) + aM(k2,k3,k4,k1)+
OéM(k3,k4,k1,k2) +OéM(k4,k1,k2,k3)) X %X
L(&mM (€ +m )2 L(&n + m)* I(§ + m,m + )k
= (L(&n) + L(&n+ 1) + L(E+m,n) + L(E+m,n+m)HM?
=1.

Hence Ip(€,m) satisfies (5).

Remark 2. Let ¢y be the solution of (1) with its corresponding symbol
function

e2METM I 01 (€,m)(cos” g cos? 2 cos? 54_—n)_M-

2 2
Then ¢25s is the convolution of Bz,,, and ¥y, i.e.,
6 = Bz, *Vu.

By the definition of Ioas(€,7), we obtain that 1, (€,7) > 0. Then by criterion
in [CS], we know that ¢y is linearly independent for its integer translates. By

standard argument, Remark 1 and Theorem 2, we obtain that ¢-p, is cardinal
when M is chosen large enough such that AM > 2. (see [D], [BDS], [L])

Remark 3. A multiresolution of L?(R?), the space of square integrable
functions on plane, is a family of closed subspace of L?(R?), which satisfies

1) ‘/] - ‘/j+1) v .7 € Z)

ii) UjezVj = L2(R2)>

i) sV = 0,

iv) fevV, < f(277) e,

v) there exists a function ¢ in Vj such that {¢(- —m,-—n)}m nez is a Riesz
basis of Vp, which means that Vj is spanned by {¢(- —m, - —n)}m nez and there
exist two positive constant A and B such that

ACSS dmn)P) < Y dimn)g(—m,—n)lls <B( Y |d(m,n)?)"?

m,n€Z m,n€Z m,n€Z




holds for all square summable sequences {d(m,n)}m nez, where || - |2 denotes
the norm on L2(R?). (see [C], [D], [M])

Let V; (j € Z) be the closed space of L?(R?) spanned by {¢2ar(27 - —m, 27 -
—n)}mnez. Then {V;};cz is a multiresolution when M is chosen large enough
such that AM > 2. This is because {¢(- —m, - —n)}m nez is a Riesz basis of Vj
when ¢ is cardinal.

Remark 4. Define the filter support width W (¢) of a refinable function ¢
of (1) by the cardinality of integer knots in the least convex set which contains all
subindices (m,n) with ¢(m,n) # 0. Define the regularity set R(¢) of a function
¢ by the dimension of polynomials P(z,y) for which P(B%, 8%)425 is continuous.
By elementary argument we know that

W(¢) = R(¢)

(see [CDM], [DL], [S]). For ¢2ar we know that W (danr) < C1 M? and R(¢panr) >
CyM? for some constants C; and C5 independent of M by the definition (19)
of Iop(€,m) and Theorem 2. Therefore there exists a constant C' independent
of M such that

W(g2m) < CR(d2m).

This shows that the regularity W (¢aar) of the cardinal scaling functions ¢ops
grows propositionally to filter support width R(¢ans).

2. Proof of Theorem 1

To prove Theorem 1, we need some lemmas.

Lemma 1. Let N > 1,0 < K < N — 1. If Laurent polynomials gs(z),0 <
s < K, satisfies

l
Z ( l]—vs ) (—l)l_s((1+z)N_l+sgs(z)+(1—z)N_l+sgs(—z)) =0, VO<ILK,
s=0

(20)
then there exist Laurent polynomials g%(z),0 < s < K, such that

l
Z( ljjs >(—1)l_s(1—Z)N"+sg;‘(Z) =qz), V 0<I<K.  (21)

s=0

Proof. The above lemma will be proved by induction on K < N — 1.
First we prove it when K = 0. Therefore we get

(14 2)Vgo(2) + (1 — 2)Ngo(=2) =0



by (20) and furthermore
go(2) = (1 = 2)N2R(2%)

for some Laurent polynomial R. Let g§(2) = 2R(2%). Then (21) holds for [ =0
and Lemma 1 holds when K = 0.

Inductively we assume that Lemma 1 holds whenl K =n. If n = N — 1,
Lemma 1 is proved completely. So we assume that n < N — 2. Now we prove
Lemma 1 holds when K = n+1 < N — 1. By the proof of Lemma 1 when
K =0, we obtain that

go(2) = (1 = 2)N2R(2%)

for some Laurent polynomial R and ¢g*(z) defined by

90(2) = zR(2%)

satisfies (21) when [ = 0. Define

D =a - () ) 0= ¥ osi<nrL

Then we get
95(2) =0
and
_ N L1 _ s - s
Yool g )(—1)’ (L )Nl (2) # (L= )N gL (—2)
N
= Yool ;L ) DT+ )N TGl + (1= )N gl (=)

S

= -R(A)XY., ( l]js ) ( N ) (D) (21 + )N (1 = )N =5 — (1 — 2)N 5 (1 4 2)N )

= 0,V1i<I<n+1.
Therefore {g},,,0 < s < n} satisfies (20). By induction there exist Laurent
polynomials g1*(2),0 < s < n, such that

l
ST Ni—s ) (=) 1= )Nl (x) = gl (2), VO<I<n.

s=0

Hence we get

D O R R R Gl [ a1
= 25 (V) eua-oy e+ () coa-s)

o+ () ) C0a- 9 Ge —a) vo1sisntL

N—1 %
9o

(2)



and {gg(2),9*(2),0 < s < n} satisfies (21). Hence Lemma 1 holds when
K =n+ 1. This completes the proof of Lemma 1.

Lemma 2. If gi(2),0 <1< N —1, satisfies

l
> ( z]js ) (=)' (142)V 0 g,(2)+(1=2) " 2g,(=2)) =0, V0 < I < N—1,

s=0

then there exist Laurent polynomials Ry and Ro such that

=2

-1

(1 - 21)593(22) = (Zl - 22)NR1(Z1, 22) + (1 — Zl)NRQ(Zl, 22).

S

Proof. By Lemma 1, there exist Laurent polynomials g; (22),0 <1 < N—1,
such that

1
Z < N ) (—D)!5 (1= 2)VN gk () = qu(2), ¥V 0<I<N-1.

l—s
5=0
Therefore we get
Sy (1= 21)°gs(22)
N N—s

Ef&ﬁ@ﬂEf&’a—aWs<s>64fu—@>

Yo i ()1 = 2) (1= 22) = (1= 21))Y mod (1—21)V
(z1 — )V N LG () (1 — 21)' mod (1 —21)V.

Hereafter we say that
A=B mod C

for Laurent polynomials A, B and C if (A — B)/C is still a Laurent polynomial.
This completes the proof of Lemma 2.

Lemma 3. Let N > 1 and let H(z,20) = (1 4+ 20)V(1 + 22)¥ (21 +
23)NG (21, 22), where G is a Laurent polynomial. If H satisfies

H(Zl, 22) + H(Z1, —22) + H(—Zl, 22) + H(—Zl, —22) =0, (22)
then there exist Laurent polynomials R and G5 such that
G(Zl, 22) = (]. - Zl)NR(Zl, 22) + (]. - ZQ)N(Zl - Z2)NG2(21, 22) (23)

and
G2(Z1, 22) + GQ(Zl, —22) = 0

10



Proof. Write
N—-1
G(Zl,ZQ) = (]. —21) hN 21,22 + Z 1 —21 hl 22).
[=0

Observe that

n—1

(Z1 +22)N = Z < ];] )(1 + 29 )N l( ].)l(]. - Zl)l.

=0

Therefore we get
N-1
(21+22 G(z1, 22) Z (1—21) hl (z2) mod (l—zl)N,
=0

where

l
§:<l—s> D' (14 20)N Ry (22). (24)

s=0
By (22) we get

(L+2)V 5 (1 —=2) ((1+22) hu(2s) + (1—Z2) Nhi(=25)) + (1 = 21)V x
NN 2N (U + 22) NV (z2) + (1= 22)Vhy(=22)) =0 mod (1 — 22)N.

and
(1 + ZQ)NEZ(ZQ) + (1 - ZQ)NBZ(_ZQ) = 0, vV 0 S l S N — 1. (25)

By the definition (24) of h;, we obtain that
hs(z2) =0 mod (1— ZQ)N

and
hs(22) = (1 — 22)V gs(22)

for some Laurent polynomial g;,0 < s < N — 1. Then we have

I (R [ (RS A
(1- zz)N’”sgs(—@)) =0 V 0<I<N-1,

and

G(z1,22) = (L= 21)V Ry(21, 22) + (1 — 22)V (21 — 22)V R (21, 20)

11



for Laurent polynomials Ry and Rs by Lemma 2. To use the formula in (25),
we get

(1= 23)N (27 — 2)N{(1 4 21)V (Ra(21, 22) + Ra(21, —22))
+(1 = 20)N(R2(=21, 22) + Ro(—21, —22))} =0 mod (1-2zH)N

and
Ro(21,2) 4+ Ra(21,—22) =0 mod (1 — z)N.

Let GQ(Zl,ZQ) = (RQ(Zl,ZQ) — RQ(Z1,—ZQ))/2 and R(Zl,ZQ) = Rl(Zl,ZQ) +
1/2(1 — 22)N (21 — 22)N (1 — 21) "N (Ra(21, 22) + Ra(z1, —22)). Then we get

Ga(z1,22) + G2(21,—22) =0
and
G(z1,22) = (1 — 21)N R(21,22) + (1 — 22)V (21 — 22) Y G (21, 22).
Lemma 3 is proved.

Lemma 4. Let G be a Laurent polynomial and H(z1,22) = (14 21)N (1 +
2)N (21 + 22)NG(21, 20). If H satisfies (22), then G can be written as

G(Zl, 22) = (1 — Zl)N(Zl — ZQ)NG1(21, 22) + (1 — ZQ)N(Zl — ZQ)NGQ(Zl, 22)
(1 — Zl)N(l — ZQ)NG3(Z1, 22) + (1 — Zl)N(l — ZQ)N(Zl — ZQ)NG4(21,ZQ),

where Laurent polynomials G;,1 < j < 4, satisfies

Gi( )+ Gi(—z1,22) =0,

Ga(21, 22) + G2(21, —22) = 0,

G3(21,22) + (~1)NG3(—21, —2) = 0,

( -1 22)+G4( 21,22)+G4(21,22)+G4(—21,—22):0.

21, 22

(26)

Proof. By Lemma 3, there exists Laurent polynomial R and G2 such that
Ga(z1,22) + G2(21,—22) =0
and
G(z1,22) = (1 — 20)V R(21, 22) + (1 — 22)N (21 — 22) Y Ga(21, 20).
Therefore it suffices to prove
R(z1,22) = (21— 22) N G (21, 22)+(1=22) N G3(21, 22) +(1—22) N (21— 20) N G (21, 22)

(27)
where G1, G35, G4 satsifies (26).

12



By (22), we get

(1+ 22)V ((21 + 22)VR(21, 22) + (=21 + 22)V R(—21, 20)) +
(]. - Z2)N((Z1 - ZQ)NR(Zl, —22) + (—Zl - ZQ)NR(—Zl, —22)) =0

(28)
and

(21 + 22)V R(21, 22) + (=21 + 22) Y R(—21, 22) = Oquadmod (1 — z)".
Therefore we can written R as

R(z1,22) = (1 — 22)V Ri(21, 22) + (21 — 22)Y Ra(21, 20)

for some Laurent polynomials Ry and Ry. To use the above formula in (28), we
get

(1= 2)N{(21 + 22)V (Ra(21, 22) + (=1)V Ry (=21, —22))+
(21 = 2)V(R(21, —22) + (=1)¥Ri(=21,22))} =0 mod (f — 23)¥

and
Ri(z1,22) + (—1)NR1(—Z1, —22) =0 mod (zf - z%)N
Let
Gs(z1,22) = (Ri(z1,22) — (—1)V Ri(—21,—22))/2
and

Rs(21,22) = Ra(21,2-2)+(1=22)" (21— 22) "N ((R1 (21, 22)+ (= 1)V Ry (=21, —22)) /2.
Then we obtain that
G3(Z1, 22) + G3(—21, —22) =0

and
R(Zl,ZQ) = (21 — ZQ)NR3(21,Z2) + (1 — ZQ)NG3(Z1,ZQ).

To use the formula in (28), we get
(1 +22)N(R3(21, 22) +R3(—Zl, 22)) + (1 — ZQ)N(R?,(Zl, —22) +R3(—Zl, —22)) =0.
Hence there exist Laurent polynomials G; and G4 such that

R3(Zl,22) = G1(21,22) + (]. — ZQ)NG4(21,22)
Gl(Zl,ZQ) + Gl(—Zl,ZQ) = 0
G4(21, 22) + G4(21, —22) + G4(—21, 22) + G4(—21, —22) =0.

This completes the proof of Lemma 4.

Now we start to prove Theorem 1.

13



Proof of Theorem 1. To prove the necessity, we only need to prove that
Hy (&, ) satisfies (5).
By the definition (15) of an(k1, ke, k3, ks) we get

an(k, ka, ks, ka) +an(ke, ks, ka, k1) +an(ks, ka, k1, ko) +an (ka, k1, ko, k3) = 1.

Hence

Hy(&n) + Hy(§+mn) + Hy(§n+7) + Hy(§ +m,0 + 7)
—3)!
= Zk1+k2+k3+k4:4N73 % X (OéN(kl,kQ,k3,k4) + OéN(kQ,k3,k4,k1)+

ClN(kg,k4,k1,k2) + CEN(k4,k1,k‘2,k3)) X Hl(fﬂ?)kl
Hy(€+m ) Hi(&n+ )k Hy(E+mm+m)ks
= (Go(&;m) + Go(E+m,m) + Go(&,n+7) + Go(E +mp+m) N P = 1.

The necessity is proved.
To prove the sufficiency, we need to prove all trigonometric polynomial
G(&,n) such that H(&,m) = (14 )N (1 + N (1 + EEM)NG(€, ) satisfies

HEn+HE+m,n)+HEn+r)+HE+m,n+7)=0 (29)

can be written as

G(E,m) = G (€m) + (1= )N (1 = EMNG, () + (1 — &)V (1 - D)V Gy (¢,
(1= V(1= NGy (€, m) + (1 - )N (1= MV (L - DGy (€, ),

where trigonometrical polynomials G;,1 < j < 4, satisfies (16).
Let 21 = e_’f, 29 = €. Define

é(zla z2) = €2Ni§G(f, n)

and
I-NI(zl, 22) = (]. + Zl)N(]. + Z2)N(21 + Zg)Né(Zl, 22).

Then we can write (29) as
I-NI(zl, 22) + .E[(—Zl, 22) + I:I(zl, —22) + .E[(—Zl, —22) =0.
Hence there exists G;,1 < j < 4, such that G, satisfy (16) and

é(zl, 22) = (1 — Zl)N(Zl — ZQ)NG1(21, z9 + (1 — ZQ)N(Zl — ZQ)NGQ(Zl, 22)
(]. - Zl)N(]. - ZQ)NGg(Zl, 22) + (]. - Zl)N(]. - ZQ)N(Zl - Z2)NG4(21, 22).

Therefore Theorem 1 follows when z; = e % and 2z, = €.

3. Proof of Theorem 2
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To prove Theorem 2, we need some lemmas.

Lemma 5. Define D = U}_,D;, where

Dy = {(&n);2r/3 <¢<4r/3,2r/3 <n < 4n/3},
Dy = {(&m);2n/3 <E<6m/5,0<n<21/3},

Dy = {(&m);(n,€) € D1},

D4 = {(5,77),(77,5) €D3}7

Dy = {(6m):23n/186 < 4/3,237/36 < 1 < 27/3},
D6 = {(5:77):(77:5) EDS}a

Dr = {(£m):23m/366 < 25/3,0 < 5 < 7/3}.

DS = {(5,77)’ (77,5) € D7}

Then there exists a constant 6; < 1 such that

0<hEn) < 3o, Y (EmeD.

Proof. By the symmetry and continuity of I, it suffices to prove
0<Ix(&m) <1/4 ¥V (&m) € DoU Dy UD3UDsU Dy.

We divide five cases to prove it.
Case 1. (£,m) € Dy.
In this case cos® £/2 < 1/4 and cos®? /2 < 1/4. Then we obtain

L(&,m) < 1/16 cos® (€ +n)/2(1+sin? £/2+sin® /2 +sin?(£+1)/2) < 1/4. (30)

Case 2. (£,m) € Dy.
In this case, we have

cos? /2 cos? (€ +1)/2 < maz(cos® £/2,1/4cos?(£/2 + 27 /3),sin* £/4).
Then we have

L(¢&,m) < 4max(cos* £/2,1/4cos? £/2cos(£/2 + 21/3), cos?(£/2) sin* £/4) < 1/4
31)
Case 3.a. (§,n) € Dz and 0 <n < /3.
In this case, sin®7/2 + sin? (¢ +n)/2 < sin? £/2 and cos® n/2 cos?(& +1)/2 <
cos? /6 cos®(£/2 + 7/6). Then we have

L(&,m) < cos?&/2cos®m/6cos?(£/2+ m/6)(1 4 2sin? £/2)

< cos? 237 /36 cos® 7 /6 cos? 297 /36(1 + 2sin? 237/36) < 1/4. (32)

Case 3.b. (¢,n) € D3 and 7/3 <n < 27/3.
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In this case, sin®7/2 + sin?(¢ + )/2 < sin®7/3 + sin?(¢/2 + 7/3) and
cos®>n/2cos?(€ +1)/2 < sin* /4. Then we have

I(&m) < cos?€/2sin® £/4(7/4 + sin? 37 /5 + sin? 147/15)
< cos? 231 /36 sin* 237/72(7/4 + sin® 37/5 + sin® 147 /15) < 1/4.
(33)
Case 4. (¢,n) € Ds.
In this case, 1 +sin® £/2 +sin? 5/2 +sin?(€ +1)/2 < 3 and cos? 17/2 cos? (€ +
n)/2 < cos? 231 /72 cos?(£/2 + 237 /72) < cos? 237 /72. Then we have

I,(&,m) < 3cos® /3 cos® 231 /72 < 1/4. (34)

Ca‘se 5. (fﬂ?) € D7-
In this case sin®7/2 + sin?(¢ +n)/2 < sin® 7/6 + sin*(£/2 4+ 7/6) < 5/4 and
cos® /2 cos? (€ +1)/2 < cos? £/2. Then we have

L(&,m) < cos* €/2(9/4 + sin” £/2) < cos? 237 /72(9/4 + sin? 237/72) < 1/4.
(35)
Combining (31)-(36), we get (30) and Lemma 5 is proved.

Lemma 6. Let § < 1 and C' be two constants. If nonnegative function f
satisfies

i) f(&+2mm,n+ 2n7) = f(£,n) holds for all m,n € Z;

i) 0<fEm) <1

iii) |£(€n)| < Cmin(|€ — x|, In — 7]) when 0 < ¢, < 2r;

iv) 0 < f(&mn) < 6 < 1 when (&§,m) € [2n/3,4m/3] x [0,27] U [0, 27] X
[27/3,47/3].

then there exists A > 0 independent of k such that

f(27¢,20n) <277
1

k
Jj=

holds for all k > 2 when (¢,n) € [7/2,37/2] x [0,27] U [0,27] x [n/2,37/2].
w2 << 3r/20rm/4<n<37/4

Lemma 6 can be proved by the argument similar to the one of Lemma 10 of
Chapter 3 in [M]. We omit the details here.

Lemma 7. Let Iy be defined in (19). Then there exists a constant A > 0
such that

k
[ a2, 27n) <27 2M

j=1
holds for all k > 4 when 7/2 < { <3n/2orn/2<n<3m/2.
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Proof. By (15), (19) we get 0 < anr(k1, ko, k3, ka) < 1, anr(ki, ka, k3, ka)
is not zero only if ky > M and I > 0. Therefore we get
La(&m) < Yty %b(g’n)kl(l — Iy(€, )M 3=k

< (L(En)+1-L(¢n)™M3 =1

when I5(¢,n) > 1/4 and

La(&m) < B(EM (1= L(&n)™M* i ey (1/3)"
(bythemonotonyof & when 0<t<1/4)
< L(EmM(L = Ip(&m)tM23M (4/3)1M P x

- 4M—3 (4M—3)! 1k (3\AM—3—k
Ekle kl!(4M737k1)!(Z) 1(1) !

(ZS1,(¢,m)(1 — I(&,m)%) ™,

when I5(¢,n7) < 1/4. By the monotony of #(1 — ¢)* when 0 < ¢ < 1/4 and
Lemma 5, there exists a constant 0 < § < 1 independent of M such that

IA

IZM(f) 77) S 6M

when (¢,1) € D, where D is defined in Lemma 5. Observe that (£,n) € D;U Ds
or (2¢,2n) € D when (§,n) € [r/3,27/3] x [0,27/3] U [0,27/3] x [r/3,27/3].
Therefore we get

holds for all (¢,7) € DU [7/3,27/3] x [0,27/3] U [0,27/3] x [7/3,27/3]. Ob-
serve that (26 —2m,2n) € [r/3,27/3] x[0,237/18] when (§,n) € [237/18, 47 /3] x
[0,237/36] and (2¢,2n—2x) € [0, 237 /18] x[x /3,27 /3] when ({,7n) € [0, 237/36] x
[237/18,47/3]. Therefore we get

L (&,m)(Iaar (26, 20))° Toar (46, ) < 6
holds when
(€,m) € [0,47/3] x [2/3, 47 /3] U [2/3, 47/3] x [0, 47 /3].
By the definition of Iy we have
Lm(§,m) = Tap (=€, —n).
Therefore we get
Lar(€,m)(Tanr (26, 20))° Tona (4€, 4n) < 6™

when
(&,m) € [0,27] x [2m/3, 47 /3| U [27/3,47/3] X [0, 27].

Then Lemma 7 follows from Lemma 6.
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Now
we start to prove Theorem 2.

Proof of Theorem 2. By (3) and the definition of ¢o2ps, we have

bon1 (6,m) = Tons (€/2,1/2)b201(€/2,1/2).

Let ko be the unique integer such that m > max(|27%0¢|, |27 %oy|) > 7/2 when
max([€], n]) > 8, Let (€, ko) € [0, 27] x [/2,37/2) U [r/2,37/2] x [0, 21] be
the unique point such that (&, , ) — (27%0&,27%0n) € 27Z x 2nZ. Observe
that

|Ganr(&,m) <1
since 0 < Iy (€,m) < 1. Then by Lemma 7 we get

|fons (€)= TT5-, I2M(2fj£,ijn)<132M(2_k§,2_kn)
<II5% " In(2€xg, 27k,
< 6(k0—1)N < 6_M(max(|§|/7r, |77|/7T))_M1n6/1n2:

when max(|¢], |n|) > 8. Theorem 2 is proved since

|6(&,m)| < O(L+[¢] + [nl)~*

implies ¢ € C%~2 when 3 > 2.
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