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Abstract. We investigate the construction of all reproducing kernel
Hilbert spaces of functions on a domain Ω ⊂ Rd that have a countable
sampling set Λ ⊂ Ω. We also characterize all the reproducing kernel
Hilbert spaces that have a prescribed sampling set. Similar problems are
considered for reproducing kernel Banach spaces, but now with respect
to Λ as a p-sampling set. Unlike the general p-frames, we prove that
every p-sampling set for a reproducing kernel Banach space yields a
reconstruction formula. Some applications are given to demonstrate
the general construction. The results of this paper uncover precisely
the affinity between stable sampling expansions and reproducing kernel
Hilbert and Banach spaces.
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1. Introduction

The Whittaker-Shannon-Kotel’nikov (WSK) sampling theorem states that
if a square-integrable function f is bandlimited to [−σ, σ], i.e., it is repre-
sentable as

f(t) =
∫ σ

−σ
e−ixtg(x) dx, t ∈ R

for some function g ∈ L2(−σ, σ), then f can be reconstructed from its
samples f(kπ/σ) taken at the equally spaced nodes kπ/σ on the time axis
R, and

(1.1) f(t) =
∞∑

k=−∞
f

(
kπ

σ

)
sin (σt− kπ)
σt− kπ

, t ∈ R

where the series is absolutely and uniformly convergent on any compact set
of the real line. Moreover

(1.2) ‖f‖2 =
∑
k∈Z

∣∣∣f(kπ
σ

)∣∣∣2.
The WSK-sampling theorem has many engineering applications and has

been generalized in numerous contexts, the reader may refer to the survey
papers and monographs [7, 10, 13, 14, 15, 16, 18, 25, 26]. It is observed
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that the space of all square-integrable functions bandlimited to [−σ, σ] is
a reproducing kernel Hilbert space on the real line with the reproducing
kernel sin (σ(t−s))

σ(t−s) , although this fact is not used in the classical proof of the
WSK-sampling theorem. Recall that a reproducing kernel Hilbert space H
(RKHS for short) is a (complex) Hilbert space of functions on a domain Ω
such that the evaluation functional is continuous, i.e., for any x ∈ Ω there
exists a positive constant Cx such that

(1.3) |f(x)| ≤ Cx‖f‖, f ∈ H

[5]. In this paper, we always assume that Ω ⊂ Rd. Nashed and his collab-
orators studied sampling theory for reproducing kernel Hilbert spaces in a
series of papers, see [19, 20, 21, 22]. In general, a reproducing kernel Hilbert
space H on a domain Ω may not admit a stable sampling set, that is, there
does not exist a countable subset Λ of Ω such that

A‖f‖ ≤
(∑
λ∈Λ

|f(λ)|2
)1/2

≤ B‖f‖, f ∈ H,

where A,B are positive constants. This leads to the natural question of
characterizing all the reproducing kernel Hilbert spaces that have a sampling
set. In this paper we discuss the general construction of all the reproducing
kernel Hilbert spaces that have a sampling set, and also we characterize all
the reproducing kernel Hilbert spaces on a set Ω that have Λ as a prescribed
sampling set. Our results generalize the corresponding work related to Riesz
bases [22].

The concept of reproducing kernel Hilbert spaces has a natural general-
ization in Banach spaces. Like the Hilbert space case, the sampling theory
for a Banach space involves Banach space frame (for reconstruction) and
p-frames (for determination). However, a p-frame in a Banach space does
not necessarily yield a reconstruction formula [9]. In Section 3, we will prove
that for every p-sampling set (corresponding to a p-frame) in a reproducing
kernel Banach space automatically yields a reconstruction formula. Similar
to the reproducing Hilbert space case, for a given set Ω ⊂ Rd and a countable
subset Λ ⊂ Ω, we also have a general construction for all the reproducing
kernel Banach spaces of functions on Ω with Λ as a p-sampling set. Some
applications will be discussed in the last section of this paper.

2. Sampling Sets for Reproducing Kernel Hilbert Spaces

In this section we describe a general construction for all the reproducing
kernel Hilbert spaces which admit a sampling set Λ. We first introduce a
few definitions and some preliminary results that will be needed in proving
our main results.
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A frame for a separable Hilbert space H is a sequence {xn} in H such
that there exist two positive constants A,B with the property that

A‖x‖2 ≤
∑
n

|〈x, xn〉|2 ≤ B‖x‖2, x ∈ H.(2.1)

The optimal constants (maximal for A and minimal for B) are called frame
bounds. When A = B = 1, {xn} is called a normalized tight frame. A
sequence {xn} is called Bessel if we only require the right side inequality of
(2.1) to hold. In the proof of our main results we also need a concept of
strongly disjoint or orthogonal frames introduced in [6] and [12]: two Bessel
sequences {xn} and {yn} are called strongly disjoint if

∑
n〈x, xn〉yn = 0

holds for all x ∈ H.
Let {xn} be a frame for a Hilbert space H. The associated analysis

operator T is the bounded linear operator defined by Tx =
∑

n〈x, xn〉en,
where {en} is the standard orthonormal basis for `2(Z). It is easy to verify
that the range space TH is closed and T is boundedly invertible operator
fromH to TH. Moreover, T ∗en = xn for each n and T ∗ is called the synthesis
operator. Let S = T ∗T (this operator is refereed as the frame operator for
{xn}). Then {S−1xn}, which is called standard dual frame, provides us the
reconstruction formula:

x =
∑
n

〈x, S−1xn〉xn =
∑
n

〈x, xn〉S−1xn, x ∈ H,(2.2)

where the convergence is in the Hilbert space norm.
Let H be a reproducing kernel Hilbert space of functions on a set Ω. A

sampling set is a countable subset Λ of Ω with the property that there exist
two positive constants A and B such that

(2.3) A‖f‖2 ≤
∑
λ∈Λ

|f(λ)|2 ≤ B‖f‖2, f ∈ H.

By the Riesz representation theorem, for any x ∈ Ω there exists hx ∈ H
such that

(2.4) f(x) = 〈f, hx〉, f ∈ H.
The function

(2.5) k(s, t) = 〈hs, ht〉
is known as the reproducing kernel of the RKHS H. By (2.1) – (2.4), we
conclude that the evaluation linear functional sequence {hλ, λ ∈ Λ} is a
frame for H, and that any function f in H can be reconstructed from its
sampling on Λ by the following reconstruction formula:

(2.6) f =
∑
λ∈Λ

f(λ)gλ, f ∈ H,

where {gλ : λ ∈ Λ} is a dual frame of {hλ : λ ∈ Λ}. The series in (2.6)
converges in the Hilbert space norm. It is very desirable for our consid-
eration of sampling to have the pointwise and/or uniform convergence for
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the reconstruction formula. The following well-known result, which can be
easily proved, tells us that the norm convergence in a RKHS implies the
pointwise convergence, and also the uniform convergence if the reproducing
kernel is bounded.

Lemma 2.1. Suppose that H is a reproducing kernel Hilbert space on Ω
with reproducing kernel k(s, t). If fn → f in the Hilbert space norm, then
{fn(t)} is convergent to f(t) for each t ∈ Ω. Moreover, the convergence is
uniform on Ω if k(t, t) is bounded.

By (2.6) and Lemma 2.1, we obtain a reconstruction formula in a repro-
ducing kernel Hilbert space that converges in the Hilbert space norm and
also pointwise.

Theorem 2.2. Assume that Λ is a sampling set for a reproducing kernel
Hilbert space H on a set Ω. Then there exists a frame {gλ, λ ∈ Λ} for H
such that

(2.7) f(t) =
∑
λ∈Λ

f(λ)gλ(t), f ∈ H,

where the convergence is both in norm and pointwise.

Now we introduce a procedure for constructing reproducing kernel Hilbert
spaces that have a sampling set, and later we will show that every reproduc-
ing kernel Hilbert space that has a sampling set can be constructed in that
procedure. Let Ω be a set and let Λ be a countable subset of Ω. Assume
that {xn} is a frame for a Hilbert space G, and Sn : Ω → R (or C) is a
sequence of functions satisfying the following two conditions:

(H1) {Sn(t)} ∈ `2(Z) for every t ∈ Ω.
(H2) {ηλ : λ ∈ Λ} is a frame for `2(Z), where ηλ := {Sn(λ)}n∈Z.

Now we define F by

(2.8) F (t) :=
∑
n∈Z

Sn(t)xn, t ∈ Ω.

The function F (t) is well-defined since {xn} is a frame and
∑

n |Sn(t)|2 <∞.
Clearly if x = 0 then 〈x, F (t)〉 = 0 for all t ∈ Ω. Conversely if 〈x, F (t)〉 = 0
for all t ∈ Ω, then the `2-sequence ξ := (〈xn, x〉)n∈Z satisfies

〈ξ, ηλ〉 =
∑
n

Sn(λ)〈x, xn〉 = 0 for all λ ∈ Λ.

This, together with the assumptions that {ηλ : λ ∈ Λ} is a frame for `2(Z)
and that {xn} is a frame for G, implies that x = 0. Using the above function
F , we construct a space H of functions on Ω by

(2.9) H := {〈x, F (t)〉 : x ∈ G}.
Therefore the linear map

G 3 x 7−→ 〈x, F (t)〉 ∈ H
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is one-to-one and onto. SoH becomes a Hilbert space with the inner product
on H defined by 〈f, g〉 := 〈x, y〉 if f(t) = 〈x, F (t)〉 and g(t) = 〈y, F (t)〉.
Moreover the space H is a reproducing kernel Hilbert space because for any
t ∈ Ω, we have

(2.10) |f(t)| = |〈x, F (t)〉| ≤ ‖F (t)‖‖x‖ = ‖F (t)‖‖f‖ for all f ∈ H.

For the reproducing kernel space H in (2.9), we have the following results
about its sampling sets:

Theorem 2.3. (i) Λ is a sampling set for the reproducing kernel Hilbert
space H in (2.9).

(ii) Every reproducing kernel Hilbert space admitting a sampling set Λ can
be constructed in the way described above.

To prove Theorem 2.3, we recall a lemma in [12].

Lemma 2.4. Let {xn} be a frame for a Hilbert space G and T be its associ-
ated analysis operator. Let {yn} be the standard dual of {xn} and P be the
orthogonal projection from `2(Z) onto TG. Then

(i) {Tyn} and {P⊥en} are strongly disjoint.
(ii) {Tyn + P⊥en} is a frame for `2(Z).

Proof of Theorem 2.3. (i) Since {xn} and {ηλ} are frames for G and `2(Z)
respectively, there exist two positive constants A and B such that

A‖x‖2 ≤
∑
n∈Z
|〈x, xn〉|2 ≤ B‖x‖2, x ∈ G,

and
A‖ξ‖2 ≤

∑
λ∈Λ

|〈ξ, ηλ〉|2 ≤ B‖ξ‖2, ξ ∈ `2(Z).

Take any f ∈ H, and write f(t) = 〈x, F (t)〉 for x ∈ G. Then

f(λ) =
∑
n∈Z

Sn(λ)〈x, xn〉 = 〈ξ, ηλ〉, λ ∈ Λ,

where ξ = {〈x, xn〉} ∈ `2(Z). Therefore∑
λ∈Λ

|f(λ)|2 =
∑
λ∈Λ

|〈ξ, ηλ〉|2 ≤ B‖ξ‖2

= B
∑
n∈Z
|〈x, xn〉|2 ≤ B2‖x‖2 = B2‖f‖2

and similarly,∑
λ∈Λ

|f(λ)|2 =
∑
Λ∈Λ

|〈ξ, ηλ〉|2 ≥ A‖ξ‖2 ≥ A2‖x‖2 = A2‖f‖2.

This proves that Λ is a sampling set for the reproducing kernel Hilbert space
H.
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(ii) Now assume thatH is a reproducing kernel Hilbert space which admits
a countable sampling set Λ. Then there exists two positive constants A and
B such that

(2.11) A‖f‖2 ≤
∑
λ∈Λ

|f(λ)|2 ≤ B‖f‖2 , f ∈ H.

By (2.11), {xλ : λ ∈ Λ} is a frame for H, where xλ := hλ, the evaluation
functional at the sampling location λ. Let {gλ : λ ∈ Λ} be the standard dual
frame of {xλ : λ ∈ Λ}, and T : H → `2(Λ) be the analysis operator for {gλ}.
By Lemma 2.4, {Txλ} and {P⊥eλ} are strongly disjoint and {Txλ +P⊥eλ}
is a frame for `2(Λ), where P is the orthogonal projection of TH and {eλ}
is the standard orthonormal basis for `2(Λ).

Now we define

Sλ(t) :=
{
gλ(t) if t 6∈ Λ,
gλ(λ′) + 〈P⊥eλ, eλ′〉 if t = λ′ ∈ Λ.

Then Sλ(t) satisfies the two conditions (H1) and (H2). In fact,

(H1):
∑

λ∈Λ |Sλ(t)|2 <∞ follows from

∑
λ∈Λ

|〈P⊥eλ, eλ′〉|2 = ‖P⊥eλ′‖2 <∞

and ∑
λ∈Λ

|gλ(t)|2 ≤
∑
λ∈Λ

|〈gλ, ht〉|2 <∞

by the frame property of {gλ}, where ht is the evaluation functional
at the location t ∈ Ω.

(H2): {ηλ := {Sλ′(λ)}λ′∈Λ, λ ∈ Λ} is a frame for `2(Λ) by Lemma 2.4 and
the fact that ηλ = Txλ + P⊥eλ, λ ∈ Λ.

Define F (t) :=
∑

λ∈Λ Sλ(t)xλ, t ∈ Ω. Then it remains to prove that the
operator

H 3 f 7−→ 〈f, F (t)〉 ∈ H

is the identity. Take any f ∈ H. For t 6∈ Λ, we have

(2.12) 〈f, F (t)〉 =
∑
λ∈Λ

Sλ(t)〈f, xλ〉 =
∑
λ∈Λ

f(λ)gλ(t) = f(t),
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where the last equality follows from the pointwise convergence of the recon-
struction formula (2.7). While for t = λ′ ∈ Λ, we obtain

〈f, F (t)〉 =
∑
λ∈Λ

Sλ(λ′)〈f, xλ〉

=
∑
λ∈Λ

f(λ)(gλ(λ′) + 〈P⊥eλ, eλ′〉)

=
∑
λ∈Λ

f(λ)gλ(λ′) +
∑
λ∈Λ

〈f, xλ〉〈P⊥eλ, eλ′〉

=
∑
λ∈Λ

f(λ)gλ(λ′) = f(t),(2.13)

where we have used Theorem 2.2 and Lemma 2.4 to obtain the last two
identities. Combining the two cases in (2.12) and (2.13) leads to

f(t) = 〈f, F (t)〉 for all f ∈ H and t ∈ Ω,

and hence this completes the proof. �

As a special case, we call a sampling set for H exact if the corresponding
evaluation functional sequence is a Riesz basis for H. In any non-exact
sampling case, we always have a over-sampling for the function space. The
following proposition follows immediately from the standard frame theory
(cf. [12]):

Proposition 2.5. A sampling set Λ for a Hilbert space H of functions is
exact if and only if {(f(λ))λ∈Λ : f ∈ H} = `2(Λ).

In the general construction described before Proposition 2.5, if we further
require that both {xn} and {ηλ} be Riesz bases forH and `2(Λ), respectively,
then we have {(f(λ)) : f ∈ H} = TηTxH = `2(Λ), where Tx and Tη are
the analysis operator for {xλ} and {ηλ}, respectively. Thus, Λ is an exact
sampling set for H by Proposition 2.5. Similar to the proof of Theorem 2.3
(ii), any reproducing kernel Hilbert space with an exact sampling set can be
constructed this way. Thus we have

Theorem 2.6. The following are equivalent:
(i) H is a reproducing kernel Hilbert space with an exact sampling set.
(ii) H can be constructed as in the general construction with {xn} and

{ηλ} being Riesz bases for H and `2(Z), respectively.

3. Sampling Sets for Reproducing Kernel Banach spaces

A reproducing kernel Banach space is a Banach space B of functions on
a set Ω such that the evaluation functions f → f(t) is continuous for each
t ∈ Ω. A countable subset Λ of Ω is called a p-sampling set (p ≥ 1) for a
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Banach space B if there exist two positive constants A and B such that

(3.1) A‖f‖B ≤
(∑
λ∈Λ

|f(λ)|p
)1/p

≤ B‖f‖B, f ∈ B.

In this section, we investigate p-sampling in reproducing kernel Banach
spaces.

Let X be a Banach space and X∗ be its dual. The dual relation g(x)
will be still denoted by 〈x, g〉, where x ∈ X and g ∈ X∗. A countable set
{gk} ⊂ X∗ is called a p-frame if there exist positive constants A and B such
that

(3.2) A‖x‖X ≤
(∑
k∈Z
|〈x, gk〉|p

)1/p
≤ B‖x‖X , x ∈ X,

i.e., the analysis operator T defined by

T : X 3 x 7−→ {〈x, gk〉} ∈ `p(Z)

is bounded from both above and below. If {gk} is p-frame for a Banach space
X, and if, in addition, there exists a bounded linear operator R : `p → X
such that RT = IX , the identity operator on X, then {gk} is called a Banach
frame with respect to the `p space. In this case we have the reconstruction
formula:

x =
∑
k∈Z
〈x, gk〉g̃k, x ∈ X,

where g̃k = Rek with {ek, k ∈ Z} is the standard basis of `p.
Unlike the Hilbert space case, the reconstruction operator R does not

necessarily exist for p-frames. It is observed in [9] that there exists a p-
frame {gk} for a Banach space X, for which no family {g̃k} ⊂ X satisfies
that

x =
∑
λ

〈x, gk〉g̃k, x ∈ X.

That is why the existence of a reconstruction operator is often assumed in
the definition of Banach frames [1, 3, 8, 9, 11]. However, a reconstruction
formula is possible for some special p-frames. For instance, it was proved
in [3] that under certain natural conditions on the generators, a translation
p-frame for a finitely generated shift-invariant subspace is always a Banach
frame. In general, a p-frame {gk} is a Banach frame if and only if the range
space TX of the analysis operator T is complemented in `p [9].

Similarly to sampling in a Hilbert space, p-sampling for a Banach space
are related to Banach space frame and p-frame in that space. In particular,
for a Banach space B of functions on a set Ω, a countable subset Λ of Ω is
p-sampling set for the space B if and only if {hλ} is p-frame for the space B,
where hλ is the evaluation functional: x→ x(λ). In the following result, we
show that a reconstruction formula always exists for the p-frame {hλ, λ ∈ Λ}
associated with a p-sampling set Λ on a reproducing kernel Banach space.



SAMPLING EXPANSION 9

Theorem 3.1. Assume that Λ is a p-sampling set for a reproducing kernel
Banach space B on a set Ω. Then there exists a sequence of functions {Sλ(t)}
on Ω such that the following are satisfied:

(B1) {Sλ(t)} ∈ `q(Λ) for every t ∈ Ω, where 1
p + 1

q = 1.
(B2) {ηλ : λ ∈ Λ} is a p-frame for TB, where ηλ := {Sλ′(λ) : λ′ ∈ Λ} and

T : B → `p(Λ) is defined by Tf := {f(λ′)}λ′∈Λ.
(B3) f(t) =

∑
λ∈Λ f(λ)Sλ(t), t ∈ Ω, with the pointwise convergence.

Proof. Since B is a reproducing kernel Banach space, it follows that for
each t ∈ Ω there exists a bounded linear functional ht on B such that
f(t) = 〈f, ht〉 for all f ∈ B. Note that the analysis operator T associated
with the sampling functionals for Λ is both bounded and bounded below.
Therefore T−1 : TB → B is a bounded linear operator, and so (T−1)∗ht is
bounded linear functional on TB which is closed subspace of `p. Extend
(T−1)∗ht to a bounded linear functional, say St, on (`p)∗ = `q, and write
ηt = {Sλ(t)}λ∈Λ. Then, clearly {Sλ(t)} satisfies (B1). For (B3),
(3.3)
f(t) = 〈f, ht〉 = 〈T−1Tf, ht〉 = 〈Tf, (T−1)∗ht〉 = 〈Tf, ηt〉 =

∑
λ∈Λ

f(λ)Sλ(t),

and the convergence in the summation f(t) =
∑

λ∈Λ f(λ)Sλ(t) is pointwise.
By (3.3), we have

f(λ) =
∑
λ′∈Λ

f(λ′)Sλ′(λ) = 〈Tf, ηλ〉,

and therefore (∑
λ∈Λ

|〈Tf, ηλ〉|p
)1/p

=
(∑
λ∈Λ

|f(λ)|p
)1/p

.

This together with the definition of the sampling set Λ implies that(∑
λ∈Λ

|〈Tf, ηλ〉|p
)1/p

≤ B‖f‖ ≤ B‖T−1‖‖Tf‖

and (∑
λ∈Λ

|〈Tf, ηλ〉|p
)1/p

≥ A‖f‖ ≥ A

‖T‖
‖Tf‖,

where A and B are the two constants defining the p-sampling set Ω. Hence
{ηλ} is p-frame for TB from the definition of p-frame, and then (B2) holds.

�

Now we consider the general construction of reproducing kernel Banach
spaces that have Λ as a p-sampling set. More precisely, we will prove

Theorem 3.2. Let {yk} ⊂ X∗ be p-frame for a Banach space X and Λ be
a countable subset of Ω. Suppose that Sk(t), k ∈ Z, satisfy

(B1) {Sk(t)} ∈ `q(Z) for every t ∈ Ω, where 1
p + 1

q = 1.
(B2′) {ηλ : λ ∈ Λ} is a p-frame for `p(Z), where ηλ := {Sk(λ)}.
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Then

B :=
{∑
k∈Z
〈x, yk〉Sk(t), x ∈ X

}
is a reproducing kernel Banach space with Λ as a p-sampling set of B, where
the norm of f ∈ B is defined to be ‖x‖ when f(t) :=

∑
k∈Z〈x, yk〉Sk(t).

Proof. Let A,B and C,D be the p-frame bounds corresponding to the p-
frames {yk} and {ηλ}. To see that B is well defined (and so it is Banach space
isometric to X), we only need to check that if

∑
k〈x, yk〉Sk(t) = 0 for all t,

then x = 0. In fact, if
∑

k〈x, yk〉Sk(t) = 0 for all t, then
∑

k〈x, yk〉Sk(λ) = 0
for all λ ∈ Λ, which implies that 〈ξ, ηλ〉 = 0 for each λ ∈ Λ, where ξ =
{〈x, yk〉}. Since {ηλ} is a p-frame for `p, it follows that ξ = 0, and therefore
x = 0 since {yk} is a p-frame for X.

Next we show that B is a reproducing kernel Banach space. For each
t ∈ Ω, we have

|f(t)| ≤
(∑

k

|〈x, yk〉|p
)1/p(∑

k

|Sk(t)|q
)1/q

≤ B‖x‖
(∑

k

|Sk(t)|q
)1/q

= B
(∑

k

|Sk(t)|q
)1/q
‖f‖,

where 1/p+1/q = 1. Thus f → f(t) is continuous, and so B is a reproducing
kernel Banach space.

Finally we prove that Λ is a p-sampling set. Note that

f(λ) =
∑
k

〈x, yk〉Sk(λ) = 〈Tx, ηλ〉

where Tx := {〈x, yk〉}. Thus(∑
λ∈Λ

|f(λ)|p
)1/p

=
(∑
λ∈Λ

|〈Tx, ηλ〉|p
)1/p

≤ D‖Tx‖

= D
(∑

k

|〈x, yk〉|p
)1/p

≤ DB‖x‖ = DB‖f‖,

and similarly (∑
λ∈Λ

|f(λ)|p
)1/p

≥ CA‖f‖.

Therefore Λ is a p-sampling set for B, as claimed. �

Remark 3.2. When the sampling set Λ induces a bounded unconditional
basis, i.e, when TB = `p, it is clear from the construction that {Sλ} ⊂ B (in
fact, Sλ = T−1eλ, where eλ = δλ ∈ `p). However, unlike the Hilbert space
sampling case, we don’t know whether {Sλ} can be always chosen in such a
way that each Sλ is in B. Therefore we ask:
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Question. Is it true that we can always choose {Sλ} in such a way that
each Sλ ∈ B? If so, is the convergence in

f(t) =
∑
k

f(λ)Sλ(t)

always in the Banach space norm?

4. Applications

We give a few applications of Theorem 3.2 in this section.
Denote by W (L1) the space of all measurable functions f such that

‖f‖W (L1) :=
∑
k∈Zd

sup
x∈k+[0,1)d

|f(x)| <∞.

For φ1, . . . , φN in W (L1), we define the shift-invariant space Vp(φ1, . . . , φN )
by

Vp(φ1, . . . , φN ) :=
{ N∑
n=1

∑
k∈Zd

cn(k)φn(t− k) : {cn(k)} ∈ `p
}
,

and equip Vp(φ1, . . . , φN ) by usual Lp norm, where 1 ≤ p ≤ ∞. For sampling
and reconstruction of signals in a shift-invariant space, the reader may refer
to [2, 4, 23, 25] and references therein.

Theorem 4.1. Let 1 ≤ p ≤ ∞, Λ be a countable subset of Rd, and
φ1, . . . , φN be continuous functions in W (L1). Assume that Vp(φ1, . . . , φN )
is a closed subspace of Lp. Then

(i) Vp(φ1, . . . , φN ) is a reproducing kernel Banach space.
(ii) Λ is a p-sampling set for Vp(φ1, . . . , φN ) provided that {ηλ : λ ∈ Λ} is

a p-frame for `p(Zd×ZN ) with ηλ = {φn(λ−k) : (k, n) ∈ Zd×ZN},
where ZN = {1, . . . , N}.

Proof. (i) By the assumption on the closedeness condition of Vp(φ1, . . . , φN ),
it is shown in [3] that there exists a positive constant B such that
(4.1)

B−1‖f‖Lp ≤ inf
{
‖{cn(k)}‖`p : f(t) =

N∑
n=1

∑
k∈Zd

cn(k)φn(t− k)
}
≤ B‖f‖Lp

holds for all f ∈ Vp(φ1, . . . , φN ). For every t ∈ Rd and

f(t) =
N∑
n=1

∑
k∈Zd

cn(k)φn(t− k) ∈ Vp(φ1, . . . , φN )
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we have

|f(t)| =
∣∣∣ N∑
n=1

∑
k∈Zd

cn(k)φn(t− k)
∣∣∣

≤ ‖{cn(k)}‖`∞
N∑
n=1

∑
k∈Zd

|φn(t− k)|

≤ ‖{cn(k)}‖`p
( N∑
n=1

‖φn‖W (L1)

)
.(4.2)

Therefore, by (4.1) and (4.2), we obtain

|f(t)| ≤ inf
{
‖{cn(k)}‖`p : f(t) =

N∑
n=1

∑
k∈Zd

cn(k)φn(t− k)
}
×

N∑
n=1

‖φn‖W (L1)

≤ B‖f‖Lp

( N∑
n=1

‖φn‖W (L1)

)
, t ∈ Rd,

and hence the evaluation functional f → f(t) is a continuous on Vp(φ1, . . . , φN ).
This proves that Vp(φ1, . . . , φN ) is a reproducing kernel Banach space. Re-
calling from the Theorem 1 in [3] that there exist functions ψ1, ..., ψN in
V1(φ1, . . . , φN ) with the property that

f(t) =
N∑
n=1

∑
k∈Zd

φn(t− k)×
∫

Rd

f(s)ψn(s− k)ds, f ∈ Vp(φ1, . . . , φN ).

Therefore the function kt defined by

kt(s) :=
N∑
n=1

∑
k∈Zd

φn(t− k)ψn(s− k)

belongs to V1(φ1, . . . , φN ) ⊂ Vp(φ1, . . . , φN )∗ for every t ∈ R, and is the re-
producing kernel kt for the reproducing kernel Banach space Vp(φ1, . . . , φN )
in the sense that

f(t) =
∫

Rd

f(s)kt(s)ds, f ∈ Vp(φ1, . . . , φN ).

(ii) If f(t) =
∑N

n=1

∑
k∈Zd cn(k)φn(t − k) =

∑N
n=1

∑
k∈Zd dn(k)φn(t −

k) for some {cn(k)}, {dn(k)} ∈ `p(Zd × ZN ), then
∑N

n=1

∑
k∈Zd(cn(k) −

dn(k))φn(t− k) = 0. In particular we have {cn(k)− dn(k)} is orthogonal to
ηλ for all λ ∈ Λ. Thus cn(k) = dn(k) for all 1 ≤ n ≤ N and k ∈ Zd by the p-
frame assumption, which implies that any function f in Vp(φ1, . . . , φN ) has a
unique representation f(t) =

∑N
n=1

∑
k∈Zd cn(k)φn(t− k). By (4.1) and the

above unique representation of a function in Vp(φ1, . . . , φN ), φ1, . . . , φN is a
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p-Riesz basis for Vp(φ1, . . . , φN ), i.e., there exist positive constants A,B > 0
such that

(4.3) A‖f‖Lp ≤ ‖{cn(k)}‖`p ≤ B‖f‖Lp

whenever f(t) =
∑N

n=1

∑
k∈Zd cn(k)φn(t−k) ∈ Vp(φ1, . . . , φN ). Let ek,n(m, j) =

δ(k,n),(m,j). Then clearly {ek,n : (k, n) ∈ Zd × ZN} is a p-frame for `p(Zd ×
ZN ). Let

B :=
{ N∑
n=1

∑
k∈Zd

〈x, ek,n〉φn(t− k), x ∈ `p(Zd × ZN )
}

be as defined in the proof of Theorem 3.2. Then we have that Vp(φ1, . . . , φN ) =
B and that the norm ‖f‖B = ‖x‖`p = ‖{〈x, ek,n〉}‖`p is equivalent the Lp-
norm of Vp(φ1, . . . , φN ) by (4.3). This together with Theorem 3.2 implies
that Λ is a p-sampling set for Vp(φ1, . . . , φN ). �

Now we consider the second application.

Theorem 4.2. Let ϕ be a real function that satisfies

(4.4)
∫

R
ϕ(t)2(1 + |t|)2γdt <∞

for some γ > 1/2, and

(4.5) the Fourier transform ϕ̂(ξ) does not vanish for all ξ ∈ R.

Write

(4.6) κϕ(u, v) =
∫

R
ϕ(t− u)ϕ(t− v)dt,

and let U := {uj}j∈Z be such that

(4.7) ∞ > sup
j 6=j′
|uj − uj′ | ≥ inf

j 6=j′
|uj − uj′ | ≥ ε > 0.

Define

(4.8) Xp :=
{∑
j∈Z

c(j)κϕ(u, uj) : {c(j)} ∈ `p(Z)
}
,

where 1 ≤ p ≤ ∞ and ‖f‖ := ‖{c(j)}‖`p for f ∈ Xp. Then the set U is a
p-sampling set for Xp.
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Proof. For any u ∈ R, we have

∑
j

|κϕ(u, uj)|2(1 + |u− uj |)2γ

≤
∑
j

(
2γ
∫

R
|ϕ(t− u)||ϕ(t− uj)|

×
(

(1 + |t− u|)γ + (1 + |t− uj |)γ
)
dt
)2

≤ 22γ+1
∑
j

(∫
R
|ϕ(t− u)||ϕ(t− uj)|(1 + |t− u|)γdt

)2

+22γ+1
∑
j

(∫
R
|ϕ(t− u)||ϕ(t− uj)|(1 + |t− uj |)γdt

)2

= 22γ+1(I + II).(4.9)

Noting that there exists an absolute constant C such that

∑
l∈Z

(∫ l+1

l
|ϕ(t− u)|2dt

)1/2

≤
(∑
l∈Z

∫ l+1

l
|ϕ(t− u)|2dt× (1 + |l − u|)2γ

)1/2

×
(∑
l∈Z

(1 + |l − u|)−2γ
)1/2

≤ C for all u ∈ R,(4.10)

and

∑
j

(∫ l+1

l
|ϕ(t− uj)|2dt

)1/2

≤
(∑

j

∫ l+1

l
|ϕ(t− uj)|2dt× (1 + |l − uj |)2γ

)1/2

×
(∑

j

(1 + |l − uj |)−2γ
)1/2

≤ C for all l ∈ Z,(4.11)
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we then have the following estimate for the item I in (4.9):

I ≤
∑
j

(∑
l∈Z

(∫ l+1

l
|ϕ(t− u)|2(1 + |t− u|)2γdt

)1/2

×
(∫ l+1

l
|ϕ(t− uj)|2dt

)1/2)2

≤
∑
j

(∑
l∈Z

∫ l+1

l
|ϕ(t− u)|2(1 + |t− u|)2γdt

×
(∫ l+1

l
|ϕ(t− uj)|2dt

)1/2)
×
∑
l′∈Z

(∫ l′+1

l′
|ϕ(t− uj)|2dt

)1/2
≤ C1(4.12)

for some positive constant C1 independent of u. Similarly, we have the
following estimate for the item II in (4.9):

(4.13) II ≤ C2

for some positive constant C2 independent of u. Combining (4.12) and
(4.13), and recalling κϕ(u, v) = κϕ(v, u), we conclude that
(4.14)
sup
i

∑
j

|κϕ(ui, uj)|2(1+|ui−uj |)2γ+sup
j

∑
i

|κϕ(ui, uj)|2(1+|ui−uj |)2γ <∞.

By Theorem 3.2 in [19], the matrix A = [κϕ(ui, uj)] is an invertible matrix
on `2(Z). This, together with the estimate (4.14) and the Wiener lemma for
infinite matrices in [24], implies that A−1 = (b(i, j)) satisfies

(4.15) sup
i

∑
j

|b(i, j)|2(1+|ui−uj |)2γ+sup
j

∑
i

|b(i, j)|2(1+|ui−uj |)2γ <∞.

Therefore {ηi : i ∈ Z} is a frame for `q(Z), where ηi = {κϕ(ui, uj)} by (4.15).
From Theorem 3.2, it then follows that {uj} is a sampling set for Xp. �
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