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ABSTRACT. This article introduces an inhomogeneous uncertainty principle for digital low-
pass filters. The measure for uncertainty is a product of two factors evaluating the frequency
selectivity in comparison with the ideal filter and the effective length of the filter in the digital
domain, respectively. We derive a sharp lower bound for this product in the class of filters with
so-called finite effective length and show the absence of minimizers. We find necessary and certain
sufficient conditions to identify minimizing sequences. When the class of filters is restricted to a
given maximal length, we show the existence of an uncertainty minimizer. The uncertainty product
of such minimizing filters approaches the unrestricted infimum as the filter length increases. We
examine the asymptotics and explicitly construct a sequence of finite-length filters with the same
asymptotics as the sequence of finite-length minimizers.

1. Introduction

Various forms of uncertainty inequalities are central to many aspects of time-frequency
analysis and digital signal processing, see [1, 7] or [9, Chapter 2] and references therein.
The classical uncertainty inequality in one dimension can be regarded as a lower bound for
the product of the “essential length of the support” of a square-integrable function and of
its Fourier transform. Thus, it states a restriction on the extent that both a function and its
Fourier transform can be concentrated. A bound similar to the classical uncertainty principle
has been derived for the discrete Fourier transform in the digital domain [6, Theorem 1].

Instead of considering how signals represented by functions or sequences behave
under the Fourier transform, we investigate an uncertainty inequality for filters. This idea
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was motivated by works discussing certain approximations of low-pass analog filters and
their relation with the classical uncertainty principle [11, 12, 2]. Here, we work in the
digital domain and introduce a new measure for uncertainty to re-examine a well-known
phenomenon in signal processing. It is common knowledge in digital signal processing
that due to the discontinuities of an ideal low-pass filter in the frequency domain, it cannot
be approximated well without using an increasing filter-length in the time-domain. The
uncertainty inequality derived in this article bounds a cost functional for approximations of
the ideal half-band low-pass filter by a class of digital filters referred to as implementable
low-pass filters. Such filters are certain multiplication operators defined on L2([−π, π)),
the space of the Fourier transforms of all square-summable digital signals. They multiply
by absolutely continuous, 2π -periodic functions with square-integrable derivatives in the
frequency interval [−π, π). Hereby, the notion of a low-pass filter requires that the content
of signals is unchanged at zero frequency and completely suppressed at the frequency
ξ = ±π . The square-integrability of the derivative is equivalent to a moment condition for
the filter taps, see Remark 1 below. We often identify the filter with the associated function
in the frequency domain.

The cost functional in the present uncertainty inequality for digital low-pass filters
contains two factors: The first one is the mean-square deviation of an implementable low-
pass filter from the ideal half-band low-pass filter, the second one evaluates the effective
length of the filter taps by the L2-norm of the derivative of the implementable filter. We
call this an inhomogeneous uncertainty principle because of the first factor that is not
homogeneous in the implementable filter that is compared to the ideal half-band low-pass
filter. The new cost functional is bounded below, which constitutes an uncertainty inequality
for 2π -periodic filters: A sequence of implementable filters that approaches the ideal half-
band low-pass filter in L2([−π, π)) must grow in effective filter-length to observe the
uncertainty bound. Thus, the lower bound for the cost functional has a direct practical
relevance for the design of filter banks that are implemented by convolution in the digital
domain.

One may ask whether it is possible to use other norms to specify in which sense
the implementable filter approaches the ideal one and deduce other uncertainty principles.
Indeed, this is a valid question and we point to the remarks in the next section and in
the conclusion. For now it suffices to say that the usual approximation of filters in the
operator norm would amount to uniform convergence of the associated functions in the
frequency domain, which is impossible because implementable filters are continuous and
the ideal filter is not. On the other hand, approximating in the least-squares sense is a
standard technique in the literature when design restrictions need to be met. Here, it is the
requirement of finite effective length of the filter; elsewhere restrictions such as causality or
finite length have been considered [20, 3, 18, 19]. Similarly as in [18], we avoid introducing
the notion of a transition bandwidth in the filter implementation because it is not implicit
in the specification of the ideal low-pass filter and amounts to making an assumption about
the typical signal content.

This article is organized as follows. After fixing the notation in Section 2, we derive
the claimed uncertainty inequality for digital low-pass filters in Section 3 and exclude the
existence of minimizers in the set of low-pass filters with finite essential length. In Section 4,
we discuss some necessary conditions that minimizing sequences of filters have to satisfy in
order to be asymptotically optimal in the sense of our uncertainty principle. We also prove a
necessary and sufficient condition for sequences with a scaling limit and discuss examples.
In Section 5 we state properties of the filter having a given finite length that has the lowest
uncertainty product. Finally, we construct a minimizing sequence of finite-length filters for
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which the uncertainty product has the same asymptotics as for the sequence of finite-length
minimizers.

2. A Cost Functional for Digital Low-Pass Filters

Definition 1. A complex-valued, essentially bounded 2π -periodic function h defined on
R is called a low-pass filter if h has limits limξ→π h(ξ) = 0 and limξ→0 h(ξ) = 1. We say h

is implementable, denoted as h ∈ F , if it is absolutely continuous, so its derivative h′ exists
Lebesgue-almost everywhere, and if the restriction of h′ to [−π, π) is square-integrable.

The ideal (half-band) low-pass filter I is defined by

I (ξ) :=
{

1 , if ξ ∈ [−π
2 , π

2

]+ 2πZ ,

0 , otherwise .
(2.1)

Finally, a 2π -periodic low-pass filter h is called interpolatory if h(ξ)+h(ξ +π) = 1
a.e. on R.

Remark 1. Implementable low-pass filters form an affine subspace of the Sobolev-space
on the circle, H 1(T), which is a Hilbert space containing all of 2π -periodic functions f

with finite Sobolev-norm ‖f ‖H 1(T) = (‖f ‖2 + ‖f ′‖2
)1/2, where ‖ · ‖ denotes the usual

L2-norm on the interval [−π, π). Interpolatory filters are useful because they give rise
to interpolatory refinable or scaling functions via cascade algorithms, see e.g., [15] and
references therein.

We remark that for h ∈ F , the filter taps ĥ : Z → C given by the Fourier coefficients
ĥ(n) = ∫ π

−π
einξh(ξ) dξ observe a moment condition implicit in the square-integrability of

the derivative h′: ∑
n∈Z

n2
∣∣ĥ(n)

∣∣2 = ∥∥h′∥∥2 ≡
∫ π

−π

∣∣h′(ξ)
∣∣2 dξ < ∞ . (2.2)

Therefore, we also say that the effective length ‖h′‖ of any filter h in F is finite in the digital
domain. This definition of effective length seems less appropriate than the centered form
minn∈Z ‖(einξh)′‖ ≤ ‖h′‖. We choose the form without minimization for reasons explained
in Remark 2. The moment condition implies according to Chebyshev’s inequality that the
filter taps are concentrated,

 ∑
|n|≥M

∣∣ĥ(n)
∣∣2



1/2

≤ 1

M

∥∥h′∥∥ , M > 0 . (2.3)

On the other hand, due to the conditions h(π) = 0 and h(0) = 1, we can estimate

1 ≤ 1

2

∫ π

−π

∣∣h′(ξ)
∣∣ dξ ≤

√
π

2

∥∥h′∥∥ (2.4)

via the Cauchy-Schwarz inequality, and thus the square norm of h′ cannot be arbitrarily
small for a low-pass filter h ∈ F .

Finally, we note that the ideal low-pass filter satisfies the limit conditions in the
preceding definition of low-pass filters, but it is not continuous, and thus not implementable.
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Now we consider a cost functional that evaluates the efficiency of an implementable
low-pass filter in terms of its mean-square deviation from the ideal low-pass filter together
with the effective length of its filter taps.

Definition 2. If h is an implementable low-pass filter, we define the value of the cost
functional U by

U(h) := ‖h − I‖∥∥h′∥∥ =
[(∫ π

−π

|h(ξ) − I (ξ)|2 dξ

)(∑
n∈Z

n2
∣∣ĥ(n)

∣∣2)]1/2

. (2.5)

In Theorem 1, we will see that the infimum of U is nonzero and is not attained
among the implementable filters. However, there are minimizing sequences and according
to Theorem 2, they necessarily approach I in the L2-norm.

Remark 2. Unlike the uncertainty product in the classical case, the factor ‖h − I‖ used
in our definition of U is not homogeneous in h. In addition, we do not bound a product of
centered moments from below. The inhomogeneity and our definition of F do not allow
a simple, F-preserving translation operation that could be used in a centered version of
‖h − I‖. However, one could replace ‖h′‖ with the centered form of effective length,

min
n0∈Z

∥∥(einoξ h
)′∥∥ = min

n0∈Z

(∑
n∈Z

(n − n0)
2
∣∣ĥ(n)

∣∣2)1/2

.

The following proposition shows that this does not change the infimum of the uncertainty
product.

Proposition 1. The centered cost functional

Uc(h) := min
n0∈Z

‖h − I‖∥∥(einoξ h
)′∥∥

satisfies
inf
h∈F

Uc(h) = inf
h∈F

U(h) .

Proof. From the definition of the centered cost functional, we see Uc(h) ≤ U(h) for each
fixed h ∈ F . To see the needed complementary inequality infh∈F Uc(h) ≥ infh∈F U(h),
we first use simple substitution

inf
h∈F

min
n0∈Z

‖h − I‖∥∥(einoξ h
)′∥∥ = inf

h∈F
min
n0∈Z

∥∥h − einoξ I
∥∥∥∥h′∥∥ . (2.6)

Then, using the triangle inequality, we obtain ‖h − einoξ I‖ ≥ ‖|h| − I‖. Combining this
with the estimate ‖|h|′‖ ≤ ‖h′‖ [13, Theorem 6.17], we see that passing from h ∈ F to
|h| ∈ F lowers the uncertainty product,∥∥h − einoξ I

∥∥∥∥h′∥∥ ≥ ‖|h| − I‖∥∥|h|′∥∥ = U(|h|) ,

which completes the proof.

After deriving the lower bound for the uncertainty product in the next section, we turn
our attention to minimizing sequences. By the above remark, minimizing sequences for Uc

give rise to those for U . For this reason, we ignore the centered version of the uncertainty
product in the remainder of this article.
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In part of the engineering literature, the extent to which the ideal filter is approximated
is usually described by pass-band and stop-band behavior as well as the transition bandwidth.
The comparison with our approach motivates the following remark.

Remark 3. Given an implementable filter h and ε > 0, we denote

τ := λ({ξ ∈ [−π, π) : |h(ξ) − I (ξ)| > ε}) , (2.7)

where λ is the Lebesgue measure on R. The measure of the set where h and I deviate
by more than ε can be viewed as the transition bandwidth for a fixed peak error ε in the
pass and stop bands {ξ : |1 − h| < ε} and {ξ : |h| < ε}, respectively. Then, Chebyshev’s
inequality implies ∫ π

−π

|h(ξ) − I (ξ)|2 dξ ≥ ε2τ . (2.8)

The previous inequality shows that convergence of h to I in the L2-sense implies that the
product of the square of the peak error and the transition bandwidth approaches zero.

3. An Inhomogeneous Uncertainty Principle

In this section, we obtain a sharp lower bound for the cost functional U , which evaluates
the efficiency of an implementable approximation of the ideal half-band low-pass filter.

To simplify notation, we write the inner product of functions f and g in L2([−π, π))

as 〈f, g〉, by convention conjugate linear in the second entry. We also make frequent use of
the characteristic function χ[a,b) of a half-open subinterval [a, b) in [−π, π).

Theorem 1. The cost functional U(h) is bounded for all h ∈ F by

U(h) >
1

2
+
∣∣∣∣h (−π

2

)
− 1

2

∣∣∣∣
2

+
∣∣∣∣h (π2

)
− 1

2

∣∣∣∣
2

. (3.1)

This bound is sharp in the sense that equality is never achieved and that the infimum of
U(h) over all implementable low-pass filters is

inf
h∈F

U(h) = 1

2
. (3.2)

Proof. First, note that since h′ is in L2([−π, π)) and h is bounded, the function (I −h)h′
is integrable. Next, using the Cauchy-Schwarz inequality, we obtain

U(h) =
(∫ π

−π

|h(ξ) − I (ξ)|2 dξ

)1/2 (∫ π

−π

∣∣h′(ξ)
∣∣2 dξ

)1/2

(3.3)

≥
∫ π

−π

|h(ξ) − I (ξ)|∣∣h′(ξ)
∣∣ dξ .

We split into four subintervals〈|h − I |, ∣∣h′∣∣〉 = 〈(χ[−π,π/2) + χ[−π/2,0) + χ[0,π/2) + χ[π/2,π))|h − I |, ∣∣h′∣∣〉 (3.4)

and examine each term of the sum separately.
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The fact that h′ is in L2([−π, π)) and h is bounded implies that (|h|2)′ is integrable
and that |h|2 is absolutely continuous on [−π, π ]. By the same token, |1 − h|2 is also
absolutely continuous on [−π, π ]. Therefore,〈

χ[π/2,π)|h − I |, ∣∣h′∣∣,〉 = 〈χ[π/2,π)|h|, ∣∣h′∣∣〉 ≥ −Re
〈
χ[π/2,π)h, h′〉

= −Re
∫ π

π/2

1

2

d

dξ
|h(ξ)|2 dξ = 1

2

∣∣∣h(π
2

)∣∣∣2 .

Similarly, we obtain

〈
χ[−π,−π/2)|h − I |, ∣∣h′∣∣〉 ≥ Re

〈
χ[−π,−π/2)h, h′〉 = 1

2

∣∣∣h(−π

2

)∣∣∣2
and 〈

χ[−π/2,0)|h − I |, ∣∣h′∣∣,〉 ≥ −Re
〈
χ[−π/2,0)(h − I ), h′〉

= −Re
∫ 0

−π/2

1

2

d

dξ
|h(ξ) − 1|2 dξ = 1

2

∣∣∣h(−π

2

)
− 1
∣∣∣2 ,

as well as

〈
χ[0,π/2)|h − I |, ∣∣h′∣∣〉 ≥ Re

〈
χ[0,π/2)(h − 1), h′〉 = 1

2

∣∣∣h(π
2

)
− 1
∣∣∣2 .

The preceding inequalities imply

U(h) ≥
∫ π

−π

|h(ξ) − I (ξ)|∣∣h′(ξ)
∣∣ dξ (3.5)

≥ 1

2

[∣∣∣h (π
2

)∣∣∣2 +
∣∣∣h (−π

2

)∣∣∣2 +
∣∣∣h (π

2

)
− 1
∣∣∣2 +
∣∣∣h (−π

2

)
− 1
∣∣∣2] .

Together with the parallelogram law applied twice to the right-hand side of this inequality,
we conclude

U(h) ≥ 1

2
+
∣∣∣∣h (−π

2

)
− 1

2

∣∣∣∣
2

+
∣∣∣∣h (π2

)
− 1

2

∣∣∣∣
2

. (3.6)

Thus, inequality (3.6) implies U(h) ≥ 1/2 for every h ∈ F .
Now we exclude possible cases of equality. Let us assume that there is h0 ∈ F giving

equality in (3.6). Then, inequality (3.3) together with the inequalities for each subinterval
imply

Re
〈
h − I, sh′〉 = ∣∣〈h − I, sh′〉∣∣ = ‖h − I‖∥∥h′∥∥ ,

with a function s given by

s(ξ) :=
{

1 , ξ ∈ [−π, −π/2) ∪ [0, π/2)

−1 , ξ ∈ [−π/2, 0) ∪ [π/2, π)
.

The last two equalities can only be true if there exists λ ∈ R \ {0}, such that h − I = λsh′
almost everywhere, so

h′(ξ) = −λh(ξ),
π

2
< ξ ≤ π (3.7)
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and h is seen to be continuously differentiable on this subinterval. In addition, the boundary
value h(π) = 0 implies that the solution h of this ordinary differential equation satisfies
h(ξ) = 0, π/2 < ξ ≤ π and analogously h(ξ) = eλξ , 0 ≤ ξ ≤ π/2, thus contradicting
the continuity of h at ξ = π/2.

Moreover, the same argument excludes that there is a minimizer h0 of U giving
U(h0) = 1

2 . This establishes the first assertion of the theorem.
Let us now prove (3.2) by constructing a minimizing sequence. This construction

is motivated by Theorem 4 below. We consider a sequence {hn} of 2π -periodic functions
whose derivatives are of the form

h′
n(ξ) = cne

−n||ξ |− π
2 | sin ξ , −π ≤ ξ ≤ π , (3.8)

where cn is appropriately chosen so that h′
n can be integrated to an implementable low-pass

filter. To see that this is possible, we observe that h
′
n(ξ) = −h

′
n(−ξ), for all |ξ | < π , so

every hn is even. Furthermore, h
′
n(ξ) + h

′
n(ξ + π) = 0, for all |ξ | < π and h′

n is square
integrable. Integrating both sides of (3.8), we choose the constant of integration so that
hn(π) = 0 and obtain

hn(ξ) = −cn

n2 + 1

(
e−nπ/2 + e−n(ξ− π

2 )(n sin ξ + cos ξ)
)

, π/2 ≤ ξ ≤ π .

Setting

cn := − 1 + n2

2n + 2e−nπ/2
,

so that hn(±π/2) = 1/2, we obtain hn(ξ)+hn(ξ +π) = 1, for all |ξ | ≤ π , and hn(0) = 1,
thus concluding that hn is an interpolatory low-pass filter in F .

We proceed by showing {hn} is a minimizing sequence. Since I and each hn are even,
we obtain ∫ π

−π

|I (ξ) − hn(ξ)|2 dξ = 2
∫ −π/2

−π

|hn(ξ)|2 dξ + 2
∫ π

π/2
|hn(ξ)|2 dξ

= 4
∫ π

π/2
|hn(ξ)|2 dξ .

Similarly, from h′
n(ξ) = −h′

n(ξ + π) and the fact that h′ is odd follows∫ π

−π

∣∣h′
n(ξ)
∣∣2 dξ = 4

∫ π

π/2

∣∣h′
n(ξ)
∣∣2 dξ .

Thus, we can simplify

(U(hn))
2 = 16

∫ π

π/2
|hn(ξ)|2 dξ ×

∫ π

π/2

∣∣h′
n(ξ)
∣∣2 dξ , (3.9)

and observe that U(hn) → 1
2 is equivalent to

lim sup
n→∞

∫ π

π/2
|hn(ξ)|2 dξ ×

∫ π

π/2

∣∣h′
n(ξ)
∣∣2 dξ ≤ 1

64
. (3.10)

Now we estimate∫ π

π/2

∣∣h′
n(ξ)
∣∣2 dξ ≤ c2

ne
nπ

∫ π

π/2
e−2nξ dξ = c2

n

2n

(
1 − e−nπ

) ≤ c2
n

2n
. (3.11)



188 Bernhard G. Bodmann, Manos Papadakis, and Qiyu Sun

On the other hand, for π/2 ≤ ξ ≤ π we have e−nπ ≤ e−nξ , so

|hn(ξ)| ≤ cn

n2 + 1
enπ/2(e−nξ |n sin ξ + cos ξ | + e−nπ

) ≤ cn

n2 + 1
enπ/2(n + 2)e−nξ .

Therefore,∫ π

π/2
|hn(ξ)|2 dξ ≤ c2

n(
n2 + 1

)2 (n + 2)2

2n

(
1 − e−nπ

) ≤ c2
n(

n2 + 1
)2 (n + 2)2

2n
. (3.12)

Inequalities (3.11) and (3.12) imply

lim sup
n→∞

∫ π

π/2
|hn(ξ)|2 dξ ×

∫ π

π/2

∣∣h′
n(ξ)
∣∣2 dξ ≤ lim sup

n→∞
c4
n

4n2
(
n2 + 1

)2 (n + 2)2

≤ lim
n→∞

(
n2 + 1

)2
16n4

(n + 2)2

4n2
= 1

64
.

4. Some Necessary and Sufficient Conditions for
Minimizing Sequences

Since U measures the effective length of the filter as well as its frequency selectivity, it can
be considered as a cost functional that evaluates the effectiveness of approximations of the
ideal low-pass filter by implementable low-pass filters. So far, we have established (1) that
such approximations impose a positive cost which cannot be less than 1/2, (2) that we
cannot construct a minimizer of U within the class of implementable low-pass filters, but
(3) that the lower bound 1/2 is sharp because it is the limiting value of U for a minimizing
sequence of implementable low-pass filters. The goal of the present section is to find some
necessary and sufficient conditions for minimizing sequences.

Theorem 2. Let {hn}n∈N be a minimizing sequence of implementable low-pass filters,
that is, limn→∞ U(hn) = 1

2 . Then the following properties hold:

(i) Pointwise convergence at the cut-off frequency

lim
n→∞ hn

(π
2

)
= lim

n→∞ hn

(
− π

2

)
= 1

2
, (4.1)

(ii) convergence in the square mean

lim
n→∞ ‖hn − I‖ = 0 , (4.2)

(iii) almost-uniform convergence. More precisely, for every 0 < δ < π/2 we have

lim
n→∞ (sup{|hn(ξ) − I (ξ)| : |ξ | ∈ [0, π/2 − δ] ∪ [π/2 + δ, π ]}) = 0 . (4.3)

Proof.
(i) By (3.3), we have

0 ≤
∣∣∣hn

(π
2

)
− 1

2

∣∣∣2 +
∣∣∣hn

(
− π

2

)
− 1

2

∣∣∣2 ≤ U(hn) − 1

2
,
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and (i) follows because limn→∞ U(hn) = 1
2 .

(ii) Suppose, on the contrary, that (ii) is not true. Then, we have limn→∞ U(hn) = 1/2
and the limit superior of {‖hn − I‖}n∈N is nonzero. Consequently, there exists a subse-
quence {hk}k∈K, K ⊂ N of implementable low-pass filters such that limk→∞

∫ π

−π
|hk(ξ) −

I (ξ)|2 dξ = M0 ∈ (0, +∞]. Let us from now on for the sake of simplicity assume that the
subsequence {hk}k∈K is identical with {hn}n∈N. If M0 = +∞, then necessarily ||h′

n|| → 0,
which contradicts the lower bound ‖h′‖ ≥ √

2/π in Remark 1. If M0 ∈ (0, ∞), then

lim
n→∞

∫ π

−π

∣∣h′
n(ξ)
∣∣2 dξ = 1

4M0
, (4.4)

and so the sequence {hn} is bounded in the Sobolev space H 1(T) and we can pass to a
weakly convergent subsequence. Using compact Sobolev embedding [10, Theorem 7.26],
we see the convergence of this subsequence {hn} is uniform on [−π, π ]. By weak con-
vergence in the Sobolev space, taking an appropriate subsequence gives h(ξ) = 1 +
limp→∞

∫ ξ

0 h′
lp

(η) dη = 1 + ∫ ξ

0 g(η) dη for almost every ξ , thus h is absolutely con-

tinuous and the derivative g = h′ is square integrable. Consequently, h is a minimizer of
U in F , which contradicts Theorem 1.

(iii) Let J1 = [−π, −π/2 − δ], J2 = [−π/2 + δ, 0], J3 = [0, π/2 − δ] and J4 =
[π/2 + δ, π ]. The continuity of every hn implies that there exist ξ

(i)
n ∈ Ji , i ∈ {1, 2, 3, 4},

such that ∣∣I(ξ (i)
n

)− hn

(
ξ (i)
n

)∣∣ = max
ξ∈Ji

|I (ξ) − hn(ξ)|, i ∈ {1, 2, 3, 4} . (4.5)

By appropriately adjusting the values of I at ±π/2 so that every I − hn is continuous on
each of the intervals J̃i , where J̃1 = [−π/2 − δ, −π/2], J̃2 = [−π/2, −π/2 + δ], J̃3 =
[π/2 − δ, π/2] and J̃4 = [π/2, π/2 + δ], we get that there exist η

(i)
n in each J̃i satisfying∣∣I(η(i)

n

)− hn

(
η(i)

n

)∣∣ = min
ξ∈J̃i

|I (ξ) − hn(ξ)|, i ∈ {1, 2, 3, 4} . (4.6)

Starting from

δ
∣∣I(η(i)

n

)− hn

(
η(i)

n

)∣∣ ≤ ∫
J̃i

|I (ξ) − hn(ξ)| dξ

the Cauchy-Schwarz inequality implies

0 ≤ ∣∣I(η(i)
n

)− hn

(
η(i)

n

)∣∣ ≤ δ−1/2 ‖I − hn‖ n ∈ N, i ∈ {1, 2, 3, 4} .

Using (4.2) we get that for every i ∈ {1, 2, 3, 4},
lim

n→∞
∣∣I(η(i)

n

)− hn

(
η(i)

n

)∣∣ = 0 . (4.7)

Similarly as in the proof of Theorem 1, we first split into subintervals and use the Cauchy-
Schwarz inequality,

U(hn) =
(∫ π

−π

|I (ξ) − hn(ξ)|2 dξ

)1/2 (∫ π

−π

∣∣h′
n(ξ)
∣∣2 dξ

)1/2

≥
(∫ ξ

(1)
n

−π

+
∫ 0

ξ
(2)
n

+
∫ ξ

(3)
n

0
+
∫ π

ξ
(4)
n

+
∫ −π/2

η
(1)
n

+
∫ η

(2)
n

−π/2
+
∫ π/2

η
(3)
n

+
∫ η

(4)
n

π/2

)
∣∣(I (ξ) − hn(ξ))h′

n(ξ)
∣∣ dξ ,
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and then estimate term by term as in inequality (3.5),

U(hn) ≥ Re

(
−
∫ ξ

(1)
n

−π

+
∫ 0

ξ
(2)
n

−
∫ ξ

(3)
n

0
+
∫ π

ξ
(4)
n

−
∫ −π/2

η
(1)
n

+
∫ η

(2)
n

−π/2

−
∫ π/2

η
(3)
n

+
∫ η

(4)
n

π/2

)
(I (ξ) − hn(ξ))h′

n(ξ) dξ

≥ 1

2

4∑
i=1

∣∣I(ξ (i)
n

)− hn

(
ξ (i)
n

)∣∣2

+ Re

(
−
∫ −π/2

η
(1)
n

+
∫ η

(2)
n

−π/2
−
∫ π/2

η
(3)
n

+
∫ η

(4)
n

π/2

)
(I (ξ) − hn(ξ))h′

n(ξ) dξ

≥ 1

2

4∑
i=1

∣∣I(ξ (i)
n

)− hn

(
ξ (i)
n

)∣∣2
+ 1

2

(∣∣∣hn

(
− π

2

)∣∣∣2 − ∣∣hn

(
η(1)

n

)∣∣2)+ 1

2

(∣∣∣1 − hn

(− π

2

)∣∣∣2 − ∣∣1 − hn

(
η(2)

n

)∣∣2)
+ 1

2

(∣∣∣1 − hn

(π
2

)∣∣∣2 − ∣∣1 − hn

(
η(3)

n

)∣∣2)+ 1

2

(∣∣∣hn

(π
2

)∣∣∣2 − ∣∣hn

(
η(4)

n

)∣∣2) .

Using the parallelogram law as before, we obtain

U(hn) ≥ 1

2
+ 1

2

4∑
i=1

∣∣I(ξ (i)
n

)− hn

(
ξ (i)
n

)∣∣2
− 1

2

(∣∣hn

(
η(1)

n

)∣∣2 + ∣∣1 − hn

(
η(2)

n

)∣∣2 + ∣∣1 − hn

(
η(3)

n

)∣∣2 + ∣∣hn

(
η(4)

n

)∣∣2) .

Since by Equation (4.7), the terms hn(η
(2)
n )− 1 → 0, hn(η

(3)
n )− 1 → 0, hn(η

(1)
n ) → 0 and

hn(η
(4)
n ) → 0, and by the assumption U(hn) → 1

2 , the remaining sum must also converge
to zero.

Remark 4. The almost-uniform convergence stated in the preceding theorem is com-
monly used in filter design to measure how well the ideal filter is approximated [16]. Since
this condition is necessary for minimizing sequences of our uncertainty inequality, we have
a more refined tool to distinguish between various approximating sequences. In fact, we
will see examples of filters that fulfill all of the above necessary conditions but fail to be
minimizing for our uncertainty inequality.

Now we turn our attention to a class of sequences that covers examples of practical
relevance and enables us to formulate necessary and sufficient conditions to characterize
minimizing sequences in this class. As a first step, we discuss uncertainty-lowering opera-
tions.

Proposition 2. Symmetrization lowers the uncertainty product. More explicitly, let
S±f (ξ) := 1

2 (f (ξ) ± f (−ξ)) for any f ∈ L2([−π, π)). Then for h ∈ F , S+h ∈ F and
U(h) ≥ U(S+h). Equality holds if and only if S−h = 0.

Proof. It is straightforward to verify that S+h ∈ F for any h ∈ F . Using the parallelo-
gram equality and the symmetry of the ideal filter, we have

|h(ξ) − I (ξ)|2 + |h(−ξ) − I (ξ)|2 = 2 |S+h(ξ) − I (ξ)|2 + 2 |S−h(ξ)|2 . (4.8)
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Similarly, ∣∣h′(ξ)
∣∣2 + ∣∣h′(−ξ)

∣∣2 = 2
∣∣S+h′(ξ)

∣∣2 + 2
∣∣S−h′(ξ)

∣∣2 . (4.9)

Inserting this identity in the definition of the uncertainty product yields

(U(h))2 =
∫ π

0

(
|h(ξ) − I (ξ)|2 + |h(−ξ) − I (ξ)|2

)
dξ

×
∫ π

0

(∣∣h′(ξ)
∣∣2 + ∣∣h′(−ξ)

∣∣2) dξ (4.10)

≥ 4
∫ π

0

∣∣S+h(ξ) − I (ξ)
∣∣2 dξ ×

∫ π

0

∣∣S+h′(ξ)
∣∣2 dξ = (U(S+h))2 .

If S−h is nonzero, then the above inequality is strict.

Proposition 3. Let P be the idempotent map defined on f ∈ L2([−π, π)) by

Pf (ξ) = 1

2
(1 + f (ξ) − f (ξ + π)) . (4.11)

We have for all h ∈ F that Ph ∈ F and U(h) ≥ U(Ph). Equality holds if and only if
Ph = h.

Proof. From the definition it follows that Ph ∈ F if h ∈ F , in particular Ph(0) = 1
and Ph(±π) = 0, and that Ph is interpolatory. The filter taps of Ph observe

(Ph)∧(n) =




π, n = 0

0, n ∈ 2Z \ {0}
ĥ(n), else

. (4.12)

So all even Fourier coefficients of Ph are zero except the zeroth one. This property is also
true for the ideal filter I . Therefore, unless these Fourier coefficients are unchanged, the
sum
∑

n n2|ĥ(n)|2 strictly decreases, and so does ‖I − h‖2 =∑n |Î (n) − ĥ(n)|2.

Corollary 1. Symmetrizing and applying P are commuting operations, PS+h = S+Ph

for any filter h ∈ F . Consequently, the composition of both operations maps F into the
affine subspace of symmetric, interpolatory filters in F , while lowering U .

Proof. This follows from (S+h)∧(n) = 1
2 (ĥ(n) + (h)∧(n)) and from the definition of

the mapping P .

Theorem 3. If the sequence {hn}n∈N ⊂ F satisfies U(hn) → 1
2 then necessarily both

‖S−hn‖‖h′
n‖ → 0 and ‖Phn − hn‖‖h′

n‖ → 0.

Proof. This follows from inspecting the nonnegative terms that get dropped in the proofs
of the preceding uncertainty-lowering operations. The term discarded in inequality (4.10)
must converge, ∫ π

0
|S−hn(ξ)|2 dξ ×

∫ π

−π

∣∣h′
n(ξ)
∣∣2 dξ → 0 , (4.13)

and using the orthogonality 〈h − Ph, Ph − I 〉 = 0 that is seen from the Fourier series
representation of h − Ph and Ph − I as derived from Equation 4.12 yields∑

k

k2
∣∣ĥn(k)

∣∣2 ×
∑

k

∣∣ĥn(k) − (Phn)
∧(k)
∣∣2 → 0 , (4.14)



192 Bernhard G. Bodmann, Manos Papadakis, and Qiyu Sun

otherwise it would be possible to lower either U(Phn) or U(S+hn) below the infimum
value of U for sufficiently large n.

Because of the preceding propositions and corollaries, it is sufficient to concentrate on
symmetric, interpolatory filters for the practical purpose of designing minimizing sequences.
In the following theorem, we study a necessary and sufficient condition for minimizing
sequences in the presence of an asymptotic scaling behavior forhn near the cut-off frequency.

Theorem 4. If a sequence of filters {hn} ⊂ F satisfies ‖S−hn‖‖h′
n‖ → 0 as well as

‖Phn − hn‖‖h′
n‖ → 0 and there exists a sequence of nonnegative scaling factors {sn}n∈N,

sn → 0, such that {PS+hn} can be rescaled to a sequence{
fn(η) = (PS+hn)

(π
2

(1 + snη)
)

, η ≥ 0
}

n∈N

, (4.15)

that converges in Sobolev norm

∫ 1/sn

0
|fn − f |2 dη +

∫ 1/sn

0

∣∣f ′
n − f ′∣∣2 dη → 0 (4.16)

to some absolutely continuous function f observing f, f ′ ∈ L2(R+) and f (0) = 1
2 , then

U(hn) → 1
2 if and only if f (ξ) = 1

2eλξ for any fixed λ < 0.

Proof. First we note that passing from hn to S+hn does not change the limit of U(hn).
In addition, the assumptions on the antisymmetric and noninterpolatory parts imply that
‖PS+hn − S+hn‖ ‖S+h′

n‖ → 0, so we have limn→∞ U(hn) = limn→∞ U(PS+hn) if the
limit on the right-hand side exists.

Thus, we may from now on assume that hn is a sequence of interpolatory, symmetric
filters. We note that using these properties of each hn together with the rescaling∫ π

π/2
|hn(ξ)|2 dξ = π

2
sn

∫ 1/sn

0
|fn(η)|2 dη (4.17)

and ∫ π

π/2

∣∣h′
n(ξ)
∣∣2 dξ = 2

π
s−1
n

∫ 1/sn

0

∣∣f ′
n(η)
∣∣2 dη (4.18)

give

(U(hn))
2 = 16

∫ 1/sn

0
|fn(η)|2 dη

∫ 1/sn

0

∣∣f ′
n(η)
∣∣2 dη , (4.19)

converging by assumption to

lim
n→∞(U(hn))

2 = 16
∫ ∞

0
|f (η)|2 dη

∫ ∞

0

∣∣f ′(η)
∣∣2 dη . (4.20)

Finding the minimum of the right-hand side expression over all f, f ′ ∈ L2(R+) that observe
f (0) = 1

2 yields again via an argument involving the Cauchy-Schwarz inequality and cases
of equality as in Theorem 1 the condition

f ′ = λf (4.21)
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with some λ < 0. Thus, f (η) = 1
2eλη and by inserting this in the right-hand side of

Equation (4.20) gives limn(U(hn))
2 = 1

4 , independent of λ < 0.

The following two examples satisfy the necessary conditions in Theorem 2, but they
fail to be minimizing sequences. These examples have been chosen because they are
for other reasons desirable as approximations of the ideal low-pass filter. Either of the
two represents an example in the unified class of filters with maximum flatness described
in [17]. For more background on the Butterworth interpolatory filter, see [8].

Example 1 (Digital Butterworth interpolatory filter). If we take the square modulus of
the digital Butterworth filter with cut-off frequency π/2, we obtain a family {hn}n∈N of
symmetric and interpolatory filters given by

hn(ξ) := (1 + cos ξ)n

(1 + cos ξ)n + (1 − cos ξ)n
. (4.22)

The sequence observes hn(0) = 1 for each n, and because of the monotonicity of the cosine
it approaches the ideal filter uniformly almost everywhere, but we note that

lim
n→∞ hn

(π
2

+ η

n

)
= 1

1 + e2η
(4.23)

and thus this sequence cannot be minimizing for our uncertainty principle. Instead, by the
scaling limit (4.23) and the explicit evaluation of (4.20) in this case, we have

lim
n→∞ U(hn) = 4

[∫ ∞

0

dη(
1 + e2η

)2
∫ ∞

0

4e4η(
1 + e2η

)4 dη

]1/2

= 1

3

√
6(ln 4 − 1) ≈ 0.5075 .

Example 2 (Daubechies interpolatory filter). We consider the filter sequence

hn(ξ) = cos2n ξ

2

n−1∑
k=0

(
n + k

k

)
sin2k ξ

2

used by Ingrid Daubechies in the construction of compactly supported wavelets [4, 5]. Yves
Meyer [14] expresses these nonnegative, interpolating filters as

hn(ξ) = cn

∫ π

ξ

(sin η)2n+1 dη (4.24)

= 1 − cn

∫ ξ

0
(sin η)2n+1 dη (4.25)

with c−1
n = ∫ π

0 (sin η)2n+1 dη, similarly as in the definition of the minimizing sequence in
the proof of Theorem 1. Again, each hn is symmetric, interpolatory, and contained in F .
One may show that hn approaches the ideal filter almost uniformly. However,

lim
n→∞ hn

(
π

2
+ η√

2n + 1

)
= 1

2
− 1√

2π

∫ η

0
e−y2/2 dy , (4.26)
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and again this cannot constitute a minimizing sequence for U . Calculating the integrals in
this case, gives

lim
n→∞ U(hn)=

[
2

π3/2

∫ ∞

0

(∫ ∞

ξ

e−η2/2 dη

)2

dξ

]1/2

=
√

2
√

2 − 2

π
≈ 0.5135 . (4.27)

Example 3. The minimizing sequence constructed in the proof of Theorem 1, given by
the even, interpolatory filters that observe hn(0) = 1 and

h′
n(ξ) = − 1 + n2

2n + 2e−nπ/2
e−n||ξ |− π

2 | sin ξ , −π ≤ ξ ≤ π , (4.28)

satisfies the condition of the preceding theorem, because with fn(η) = hn(
π
2 (1 + η

n
)) we

obtain the convergence

fn(η) = χ[0,n)(η)

2n + 2e−nπ/2

(
e−nπ/2 + e−πη/2

(
n sin
(π

2
+ πη

2n

)
− cos

(π
2

+ πη

2n

)))
→ 1

2
e−πη/2

that is for n ∈ N dominated by the square-integrable function η �→ 3
2e−ηπ/2. Similarly, the

derivative

f ′
n(η) = − π

2n
χ[0,n)(η)

1 + n2

2n + 2e−nπ/2
sin
(π

2
+ πη

2n

)
e−πη/2 → −π

4
e−πη/2 (4.29)

is dominated by η �→ π
2 e−πη/2. Consequently, {hn} is a minimizing sequence, which has

already been demonstrated by explicit calculation of U(hn) in the proof of Theorem 1.

5. Uncertainty Minimizers Among Low-Pass Filters of a
Given Length

For practical purposes, digital filters with infinite impulse response are implemented by
truncating the filter taps. Clearly, this would apply to our example of a minimizing sequence,
and one could now study how any such minimizing sequence is affected by a truncation
operation. Instead, we choose to specialize the problem of finding minimizing sequences
for U by restricting F to trigonometric polynomials, that is, filters of finite length. It turns
out that in this restricted affine space there is a minimizer for U . The crucial property
derived in this section is the rate of convergence of the minimal value of U as the filter
length increases, see Theorem 5 below.

Definition 3. For n ≥ 0, let Fn be the set of all implementable low-pass filters that are
trigonometric polynomials of degree at most 2n + 1, that is,

Fn :=



2n+1∑
k=−2n−1

ake
−ikξ ∈ F


 .

The set Fn is an affine subspace of F and hence the set of all differences of two filters in
Fn is a linear space, denoted as

Qn = {h1(ξ) − h2(ξ) : h1, h2 ∈ Fn} .
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Lemma 1. Let n ≥ 0. Then there exists hn ∈ Fn so that U(hn) = infh∈Fn
U(h). This

minimizer is a trigonometric polynomial of the form

hn(ξ) = 1

2
+

n∑
k=0

cn,k cos(2k + 1)ξ (5.1)

with coefficients cn,k ∈ R, 0 ≤ k ≤ n. The coefficients satisfy

cn,k = 1

1 + γ 2
n (2k + 1)2


c∞,k + 1

2σn

− 1

σn

n∑
j=0

c∞,j

1 + γ 2
n (2j + 1)2


 , (5.2)

where c∞,j = 2(−1)j

(2j+1)π
, σn = ∑n

j=0
1

1+γ 2
n (2j+1)2 , and the only remaining unknown γn in

the expression for cn,k observes

γ 2
n =
∫ π

−π
|I (ξ) − hn(ξ)|2 dξ∫ π

−π

∣∣h′
n(ξ)
∣∣2 dξ

. (5.3)

Proof. Choosing h0(ξ) = 1
2 + 1

2 cos ξ gives U(h0) = √
π
( 3π

16 − 1
2

)1/2 ≈ 0.529. Since
h0 ∈ Fn for all n ≥ 0, we know infh∈Fn

U(h) ≤ U(h0).
By the inequality ‖h′‖ ≥ √

2/π stated in Remark 1 for any h(ξ) = ∑2n+1
k=−2n−1

ake
−ikξ ∈ Fn ⊂ F , when h is close to optimal, ‖h − I‖ cannot be arbitrarily large. In

addition, by Minkowski’s inequality we have

‖h‖ ≤ ‖h − I‖ + ‖I‖ = ‖h − I‖ + √
π .

Therefore we can restrict infh∈Fn
U(h) = infh∈Fn,‖h‖≤K U(h) with some sufficiently large

K . The existence of hn ∈ Fn so that infh∈Fn
U(h) = U(hn) now follows because U is

continuous on the compact set {h ∈ Fn : ‖h‖ ≤ K}.
Let hn ∈ Fn satisfy U(hn) = infh∈Fn

U(h). We note that the previously defined
operators S+ and P leave Fn invariant, therefore the minimizer hn must satisfy S+hn = hn

and Phn = hn. In addition, hn must be real-valued, because otherwise taking the real part
would lower U(hn). Thus,

hn(ξ) = 1

2
+

n∑
k=0

cn,k cos(2k + 1)ξ (5.4)

for coefficients cn,k ∈ R, 0 ≤ k ≤ n.
By the definition of hn, U(hn + tq) ≥ U(hn) for all t ∈ R and all q ∈ Qn. If we

specialize to real-valued q, then d
dt

|t=0(U(hn + tq))2 = 0 implies∫ π

−π

|I (ξ) − hn(ξ)|2 dξ ×
∫ π

−π

h′
n(ξ)q ′(ξ) dξ

−
∫ π

−π

∣∣h′
n(ξ)
∣∣2 dξ ×

∫ π

−π

q(ξ)(I (ξ) − hn(ξ)) dξ = 0 .

Integrating by parts, and setting αn := ∫ π

−π
|h′

n(ξ)|2 dξ, βn := ∫ π

−π
|I (ξ) − hn(ξ)|2dξ we

obtain ∫ π

−π

(
βnh

′′
n(ξ) + αn(In(ξ) − hn(ξ))

)
q(ξ) dξ = 0 (5.5)
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for all real-valued q ∈ Qn, where In(ξ) = 1
2 +∑n

k=0 c∞,k cos(2k + 1)ξ, n ≥ 1, denotes
the projection of the ideal filter onto the subspace of trigonometric polynomials of maximal
degree 2n + 1 in L2([−π, π)).

Choosing q in (5.5) by qk(ξ) := cos(2k + 1)ξ − cos ξ ∈ Qn, 1 ≤ k ≤ n, and using
the usual orthogonality relations for trigonometric polynomials in the inner product with

βnh
′′
n(ξ) + αn(In(ξ) − hn(ξ)) =

n∑
k=0

(
αnc∞,k − (αn + (2k + 1)2βn

)
cn,k

)
cos(2k + 1)ξ ,

we obtain

αnc∞,k − (αn + (2k + 1)2βn

)
cn,k = αnc∞,0 − (αn + βn)cn,0, 1 ≤ k ≤ n . (5.6)

Solving this for cn,k leads to the expression

cn,k = c∞,k − (c∞,0 − (1 + γ 2
n

)
cn,0
)

1 + γ 2
n (2k + 1)2

(5.7)

in terms of the unknowns γn = √
βn/αn and cn,0. The latter can then be eliminated using∑n

k=0 cn,k = 1/2 which follows from hn(0) = 1. This gives the claimed expression for
cn,k in Equation (5.2).

Remark 5. Using the last lemma, we can reduce the problem of finding the minimizers
among the finite-length filters to a problem of minimizing the uncertainty product in terms
of the unknown parameter γn. To this end, we insert the expression (5.2) for cn,k into
Equation (5.4) and compute

αn = π

n∑
k=0

(2k + 1)2|cn,k|2

and

βn = π

(
n∑

k=0

|c∞,k − cn,k|2 +
∞∑

k=n+1

|c∞,k|2
)

= π

(
n∑

k=0

|c∞,k − cn,k|2 + 1

2
−

n∑
k=0

|c∞,k|2
)

in terms of the unknown γn. The minimization of the resulting uncertainty product U(hn) =
(αnβn)

1/2 can then be accomplished numerically with standard software packages such as
Mathematica. The results suggest that there is a unique minimizer for each n. However, at
this time we have no analytical proof of uniqueness. We have listed the numerical values of
the coefficients cn,k for hn up to n = 10 in Table 1 and plotted the filters for n ∈ {1, 3, 5, 7, 9}
in Figure 1. Approximating the ideal filter by finite-length minimizers does not seem to give
rise to a Gibbs-like phenomenon. Intuitively, this can be attributed to the presence of the
factor ‖h′‖ in U(h), which imposes smoothness. Moreover, numerical evidence suggests
that all the finite-length minimizers are decreasing on [0, π ]. It would be nice to have a
proof of this property.

The numerically constructed finite-length minimizers exhibit slow decay of ‖I − hn‖,
see Figure 1, while U(hn) approaches 1

2 rather rapidly according to Table 1. The following

theorem calculates the asymptotics of U(hn), ‖I − hn‖2, and ‖h′
n‖2.



An Inhomogeneous Uncertainty Principle for Digital Low-Pass Filters 197

FIGURE 1 Finite-length minimizers for n = 1, 3, 5, 7, 9.

Theorem 5. Let n ≥ 0 and hn ∈ Fn be chosen as a minimizer, U(hn)= infh∈Fn
U(h).

Then

U(hn) − 1

2
= 9(ln n)3

8π4n3
(1 + o(1)) , (5.8)∫ π

−π

|I (ξ) − hn(ξ)|2 dξ = π

6 ln n
(1 + o(1)) , (5.9)

and ∫ π

−π

∣∣h′
n(ξ)
∣∣2 dξ = 3 ln n

2π
(1 + o(1)) . (5.10)

The lemmas below prepare the proof of Theorem 5. They include the use of some
sum formulas for series appearing in Appendix A.

The general strategy we pursue in these lemmas is controlling the decay of the un-
known γn as the index n of the finite-length uncertainty minimizer hn increases. The proof
of Theorem 5 is a consequence of using the estimates for γn to bound αn.

Lemma 2. Let the sequence {hn}n∈N be chosen as in Theorem 5. For each n ∈ N,
we denote αn := ∫ π

−π
|h′

n(ξ)|2 dξ , βn := ∫ π

−π
|I (ξ) − hn(ξ)|2 dξ , γn := (βn/αn)

1/2, and

δn := ((n + 1)γn)
−1. Then

lim
n→∞ γn = 0 , (5.11)

but it converges sufficiently slowly such that

lim
n→∞ δn = 0 . (5.12)
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TABLE 1

The Coefficients for the Finite-Length Minimizers up to n = 10

n U(hn) cn,0 cn,1 cn,2 cn,3

0 0.528918 0.5
1 0.517389 0.544726 -0.0447260
2 0.505252 0.538903 -0.0616654 0.0227624
3 0.503762 0.553877 -0.0728444 0.0261662 -0.00719880
4 0.501931 0.555770 -0.0798107 0.0269070 -0.00856115
5 0.501501 0.563675 -0.0868949 0.0293444 -0.00983698
6 0.500951 0.565695 -0.0910562 0.0301887 -0.0107038
7 0.500775 0.570723 -0.0960616 0.0320831 -0.0117058
8 0.500549 0.572397 -0.0989599 0.0328662 -0.0123470
9 0.500463 0.575938 -0.1027480 0.0344095 -0.0131691

10 0.500351 0.577304 -0.1049410 0.0351125 -0.0136816

n cn,4 cn,5 cn,6 cn,7 cn,8

4 0.00569485

5 0.00625008 -0.00253760
6 0.00639742 -0.00283263 0.00231151
7 0.00685014 -0.00314338 0.00247207 -0.00121753
8 0.00701549 -0.00335921 0.00252005 -0.00131591 0.00118328
9 0.00739941 -0.00361843 0.00265801 -0.00142683 0.00124577

10 0.00756222 -0.00379042 0.00271027 -0.00150460 0.00126632

n cn,9 cn,10

9 -6.88330×10−4

10 -7.31237×10−4 6.93547×10−4

Proof. First, we show that if U(hn) = infh∈Fn
U(h), then {hn} forms a minimizing

sequence for U on F . This is true because U is continuous on F equipped with the Sobolev
norm and ∪nFn is dense in F . So with the existence of a minimizing sequence in F there
is one in ∪nFn. Consequently, the sequence of finite-length minimizers gives

lim
n→∞ αnβn = 1

4
. (5.13)

Now (5.11) follows easily from the necessary condition βn → 0 for uncertainty minimizing
sequences in Theorem 2 (ii) and the limit in (5.13).

We begin the proof of estimate (5.12) by showing a weaker version,

lim sup
n→∞

δn < ∞ . (5.14)

Suppose on the contrary that (5.14) is not true. Then there exists an increasing sequence
nl, l ≥ 1, so that liml→∞ δnl

= +∞. Without loss of generality we may then assume that

γnl
≤ 1

nl

(5.15)
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for all l ≥ 1.
We recall that taking ξ = 0 in (5.1) gives

∑n
k=0 cn,k = 1

2 by hn ∈ Fn. Henceforth,
we abbreviate

τn := (1 + γ 2
n

)
cn,0 − c∞,0 .

Inserting the expression for cn,k in (5.7) in this sum, we have(
n∑

k=0

1

1 + γ 2
n (2k + 1)2

)
τn = 1

2
−

n∑
k=0

c∞,k

1 + γ 2
n (2k + 1)2

=
∞∑

k=0

γ 2
n (2k + 1)2c∞,k

1 + γ 2
n (2k + 1)2

+
∞∑

k=n+1

c∞,k

1 + γ 2
n (2k + 1)2

. (5.16)

The prefactor of τn in (5.16) is bounded below by
∑n

k=0
1

1+γ 2
n (2n+1)2 . With the assump-

tion (5.15) we can estimate the corresponding prefactor of τnl
by nl+1

1+γ 2
nl

(2nl+1)2 ≥ (nl +
1)(1 + (2nl+1)2

n2
l

)−1 ≥ nl/10. Using series summation formula (A.3) for the first term and

inserting the explicit values of c∞,k = 2(−1)k/(2k + 1)π then implies

|τnl
| ≤ 20

πnl

(∣∣∣∣∣
∞∑

k=0

(−1)kγ 2
nl

(2k + 1)

1 + γ 2
nl

(2k + 1)2

∣∣∣∣∣+
∣∣∣∣∣

∞∑
k=nl+1

(−1)k

(2k + 1)
(
1 + γ 2

nl
(2k + 1)2

)
∣∣∣∣∣
)

≤ 20

πnl

(
πe−π/(2γnl

)

2
(
1 + e−π/γnl

) + 1

(2nl + 3)
(
1 + γ 2

nl
(2nl + 3)2

)
)

.

Hereby, we have estimated the magnitude of the remaining alternating series by that of its
first term. The exponential e−π/(2γnl

) decreases faster than any polynomial as γnl
≤ 1

nl
→

0, so we conclude

|τnl
| ≤ C

(
γ 2
nl

+ 1

n2
l

)
≤ C/n2

l .

Here and hereafter, C denotes a positive absolute constant that may change from one
inequality to the next. Using the bound on τnl

and the explicit values of c∞,k in the
expression for cn,k in (5.7) gives the inequality

|cnl,k| = |c∞,k + τnl
|

1 + γ 2
nl

(2k + 1)2
≤ C

2k + 1
for all l ∈ N and 0 ≤ k ≤ nl .

Substituting the above estimate into αnl
= π
∑nl

k=0(2k + 1)2c2
nl,k

, we obtain

αnl
≤ C(nl + 1) ,

which by δnl
= αnl

(nl+1)
√

αnl
βnl

and the limit in (5.13) contradicts the assumption that

liml→∞ δnl
= +∞.

Now we prove (5.12). We first derive a more precise lower bound for the prefactor
of τn in (5.16). By the monotonicity of the function (1 + 4t2)−1 on R

+, we can use an
integral comparison estimate∫ (n+1/2)γn

γn/2

dt

1 + 4t2
≥

n∑
k=0

γn

1 + γ 2
n (2k + 1)2

≥
∫ (n+3/2)γn

3γn/2

dt

1 + 4t2
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to obtain∣∣∣∣∣
n∑

k=0

1

1 + γ 2
n (2k + 1)2

− 1

2γn

arctan((2n + 1)γn) + 1

2γn

arctan γn

∣∣∣∣∣ ≤ 2 . (5.17)

Combining this estimate with γn → 0 and the boundedness of δn, the inverse of the prefactor
of τn in (5.16) is seen to be O(γn). Applying series summation formula (A.3) in (5.16) and
estimating the second alternating series as for the case of τnl

, we have

|τn| ≤ Cγn

(
1

2
−

n∑
k=0

c∞,k

1 + γ 2
n (2k + 1)2

)

≤ Cγn



∣∣∣∣∣

∞∑
k=0

(−1)kγ 2
n (2k + 1)

1 + γ 2
n (2k + 1)2

∣∣∣∣∣+
∣∣∣∣∣

∞∑
k=n+1

c∞,k

1 + γ 2
n (2k + 1)2

∣∣∣∣∣



≤ Cγn

(
e−π/(2γn)

1 + e−π/γn
+ 1

(2n + 3) + γ 2
n (2n + 3)3

)
. (5.18)

The second term observes

1

2n + 3 + γ 2
n (2n + 3)3

= γn

(γn(2n + 3))3
(

1 + 1
γ 2
n (2n+3)2

) ≤ Cγnδ
3
n , (5.19)

so we conclude

|τn| ≤ Cγn

(
e−π/(2γn) + γnδ

3
n

)
.

Inserting the bound for |τn| in αn = π
∑

k(2k + 1)2|cn,k|2, with the expression (5.7)
for the coefficients cn,k , gives

αn = π

n∑
k=0

(2k + 1)2(c∞,k + τn)
2(

1 + γ 2
n (2k + 1)2

)2
= O

(
γ 4
n

) n∑
k=0

(2k + 1)2(
1 + γ 2

n (2k + 1)2
)2 + O

(
γ 2
n

) ∣∣∣∣∣
n∑

k=0

(−1)k(2k + 1)(
1 + γ 2

n (2k + 1)2
)2
∣∣∣∣∣

+ 4

π

n∑
k=0

1(
1 + γ 2

n (2k + 1)2
)2 . (5.20)

All terms but the last one are O(γn) by the usual integral comparison argument. The last term
is estimated using the Taylor formula for the function (1+4t2)−2 and t ∈ [kγn, (k +1)γn],
0 ≤ k ≤ n, we know that there exists θ ∈ [kγn, (k + 1)γn] such that∣∣∣∣∣ 1(

1 + 4t2
)2 − 1(

1 + γ 2
n (2k + 1)2

)2 + 16
(
k + 1

2

)
γn

(t − (k + 1/2)γn)(
1 + γ 2

n (2k + 1)2
)3
∣∣∣∣∣

≤ 16
∣∣20θ2 − 1

∣∣(
1 + 4θ2

)4 (t − (k + 1/2)γn)
2 ≤ Cγ 2

n

(
1 + 4θ2)−3 ≤ Cγ 2

n

(
1 + 4t2)−3

,
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where replacing θ by t involves changing C by a factor that is independent of n. We obtain∣∣∣∣∣
n∑

k=0

γn(
1 + γ 2

n (2k + 1)2
)2 −

∫ (n+1)γn

0

dt(
1 + 4t2

)2
∣∣∣∣∣

≤ Cγ 3
n

∫ (n+1)γn

0

dt(
1 + 4t2

)3 ≤ Cγ 3
n . (5.21)

Inserting this estimate in (5.20) gives

αn = 4

πγn

∫ (n+1)γn

0

dt(
1 + 4t2

)2 + O(γn) . (5.22)

Multiplying both sides of the above estimate by πγn/4, and then taking limit, we have

lim
n→∞

∫ (n+1)γn

0

dt(
1 + 4t2

)2 = π

8
.

On the other hand, ∫ ∞

0

dt(
1 + 4t2

)2 = 1

2

∫ π/2

0
cos2 θ dθ = π

8
.

Comparing the upper limits of integration, (5.12) follows.

We can now use the result γn(n + 1) → ∞ in a repetition of some of the preceding
arguments to make the estimate of γn more precise.

Lemma 3. Let the sequence {hn}n∈N be as in Theorem 5. Using the same notation as in
the preceding lemma, we have the asymptotic estimate

γ −1
n = 3 ln n

π
(1 + o(1)) . (5.23)

Proof. We begin by showing that τn = (1 + γ 2
n )cn,0 − c∞,0 is given by

τn = 4

π
γne

−π/(2γn)(1 + o(1)) + O
(
γ 2
n δ3

n

)
. (5.24)

Revisiting the proof of the preceding theorem, we use γn → 0 and γn(n + 1) → ∞ to
deduce from (5.17) that

n∑
k=0

γn

1 + γ 2
n (2k + 1)2

= 1

2
arctan(2(n + 1)γn) + O(γn) = π

4
(1 + o(1)) .

Therefore, we have instead of (5.18) the more precise expression

τn = 4γn

π
(1 + o(1))

(
e−π/(2γn)

1 + e−π/γn
+ O(1)

(2n + 3) + γ 2
n (2n + 3)3

)
. (5.25)

The second term within the parentheses is O(γnδ
3
n) as demonstrated in (5.19) with the

help of δn → 0. Further estimating (1 + e−π/γn)−1 = 1 + o(1) completes the derivation
of (5.24).
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We proceed by showing

γ 2
n e−π/γn = 1

8π2n3
(1 + o(1)) . (5.26)

Recall that

αn = π

n∑
k=0

(2k + 1)2|cn,k|2 , (5.27)

and

βn = π

∞∑
k=n+1

|c∞,k|2 + π

n∑
k=0

|c∞,k − cn,k|2 . (5.28)

Multiplying both sides of (5.27) with γ 2
n , subtracting (5.28), and using (5.7), we obtain

0 = τ 2
n

n∑
k=0

1 − γ 2
n (2k + 1)2(

1 + γ 2
n (2k + 1)2

)2 − 4τn

n∑
k=0

γ 2
n (2k + 1)2c∞,k(

1 + γ 2
n (2k + 1)2

)2
+

∞∑
k=0

γ 4
n (2k + 1)4c2∞,k − γ 2

n (2k + 1)2c2∞,k(
1 + γ 2

n (2k + 1)2
)2

+
∞∑

k=n+1

c2∞,k + 3γ 2
n (2k + 1)2c2∞,k(

1 + γ 2
n (2k + 1)2

)2
=: S1 + S2 + S3 + S4 . (5.29)

To bound S1, we note that γn

∑n
k=0

1−γ 2
n (2k+1)2

(1+γ 2
n (2k+1)2)2 is the Riemann sum approximation of

the integral
∫ (n+1)γn

0 (1 − 4t2)(1 + 4t2)−2 dt with the nodes at (k + 1/2)γn, 0 ≤ k ≤ n.

The bound γn

∑∞
k=n+1

1−γ 2
n (2k+1)2

(1+γ 2
n (2k+1)2)2 ≤ ∑∞

k=n+1(1 + γ 2
n (2k + 1)2)−1 ≤ ∫∞

γn(n+1/2)
(1 +

4t2)−1 dt , with (n + 1)γn → ∞ by Lemma 3 and
∫∞

0 (1 − 4t2)(1 + 4t2)−2 dt = 0 then
gives

n∑
k=0

1 − γ 2
n (2k + 1)2(

1 + γ 2
n (2k + 1)2

)2 = γ −1
n

(∫ ∞

0

1 − 4t2(
1 + 4t2

)2 dt + o(1)

)
= o
(
γ −1
n

)
. (5.30)

Together with the refined estimate of τn in (5.24), this yields

S1 =
(
O
(
γ 2
n e−π/γn

)+ O
(
γ 3
n δ3

ne
−π/2γn

)+ O
(
γ 4
n δ6

n

))
o
(
γ −1
n

)
= o
(
γne

−π/γn
)+ o

(
γnδ

3
n

)
. (5.31)

Before combining the Landau symbols, we have dropped powers of γn and δn that are not
needed in the final estimate, as well as the bounded term e−π/2γn .

Inserting the value of c∞,k in S2, we may write this sum as a series of type (A.4)
with a remainder, and then estimate the alternating series remainder by its first term, since
t �→ 2t

(1+4t2)2 is decreasing on t > 1/
√

12 and we know γn(n + 1) → ∞. In so doing we
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have

S2 = −4τn




 ∞∑

k=0

−
∞∑

k=n+1


 γ 2

n (2k + 1)2c∞,k(
1 + γ 2

n (2k + 1)2
)2



= −4
( 4

π
γne

−π/(2γn)(1 + o(1)) + O
(
γnδ

3
n

))

×
(πe−π/(2γn)

4γn

(1 + o(1)) + O
(
γnδ

3
n

))
= −4e−π/γn(1 + o(1)) + o

(
γnδ

3
n

)
. (5.32)

Using the summation formula (A.2) for the third term gives

S3 = 4γ 2
n

π2

∞∑
k=0

γ 2
n (2k + 1)2 − 1(

1 + γ 2
n (2k + 1)2

)2 = 2e−π/γn(1 + o(1)) . (5.33)

Moreover,

S4 = 4

π2

∞∑
k=n+1

1 + 3γ 2
n (2k + 1)2(

1 + γ 2
n (2k + 1)2

)2
(2k + 1)2

= (1 + o(1))
12

π2γ 2
n

∞∑
k=n+1

(2k + 1)−4 = γnδ
3
n

4π2
(1 + o(1)) . (5.34)

Since the terms (5.31), (5.32), (5.33), and (5.34) sum to zero according to (5.29), we
conclude

−2e−π/γn(1 + o(1)) + γnδ
3
n

4π2
(1 + o(1)) = 0 . (5.35)

Then (5.26) follows because by definition γ 3
n δ3

n = 1
(n+1)3 .

Now writing the exponent on the left-hand side as (2γn ln γn − π)/γn and using
γn → 0 yields the claimed estimate

γ −1
n = 3 ln n

π
(1 + o(1)) . (5.36)

Now we are ready to prove Theorem 5.

Proof of Theorem 5. We recall that Lemma 3 states

γ −1
n = 3 ln n

π
(1 + o(1)) . (5.37)

The asymptotics (5.9) and (5.10) follow from αnβn → 1
4 and (5.23). It remains to
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prove (5.8). By (5.1) and αn = π
∑n

k=0(2k + 1)2|cn,k|2, we have

αn = π

n∑
k=0

(2k + 1)2|c∞,k + τn|2(
1 + γ 2

n (2k + 1)2
)2

= 4

π

n∑
k=0

1(
1 + γ 2

n (2k + 1)2
)2 + 4τn

n∑
k=0

(−1)k(2k + 1)(
1 + γ 2

n (2k + 1)2
)2

+ πτ 2
n

n∑
k=0

(2k + 1)2(
1 + γ 2

n (2k + 1)2
)2

= S′
1 + S′

2 + S′
3 . (5.38)

Eliminating γ 2
n δ3

n in (5.24) with (5.35) gives

τn = 4

π
γne

−π/(2γn)(1 + o(1)) . (5.39)

Writing S′
1 as a sum of series appearing in (A.1) and (A.2) with a remainder, and estimating

with the help of (5.26), we get

S′
1 = 4

π


1

2

∞∑
k=0

(
1 − (2k + 1)2γ 2

n(
1 + (2k + 1)2γ 2

n

)2 + 1

1 + γ 2
n (2k + 1)2

)

−
∞∑

k=n+1

1(
1 + γ 2

n (2k + 1)2
)2



= 4

π


 π

8γn

− π2e−π/γn

4γ 2
n

(1 + o(1)) −
∞∑

k=n+1

2−4γ −4
n (k + 1/2)−4(1 + o(1))




= 4

π

{
π

8γn

− π2e−π/γn

4γ 2
n

(1 + o(1)) − 1

48n3γ 4
n

(1 + o(1))

}

= 4

π

{
π

8γn

− π2e−π/γn

4γ 2
n

(1 + o(1)) − π2e−π/γn

6γ 2
n

(1 + o(1))

}

= 1

2γn

− 5πe−π/γn

3γ 2
n

(1 + o(1)) . (5.40)

Using the series formula (A.4) as for (5.32) with the estimate (5.39) for τn, we obtain

S′
2 = 4

( 4

π
γne

−π/(2γn)
)

×



 ∞∑

k=0

−
∞∑

k=n+1


 (−1)k(2k + 1)(

1 + γ 2
n (2k + 1)2

)2

 (1 + o(1))

= 16

π
γne

−π/(2γn)

(
π2e−π/(2γn)

8γ 3
n

(1 + o(1)) + O
( 1

n3γ 4
n

))

= 2πγ −2
n e−π/γn(1 + o(1)) . (5.41)

To bound S′
3 we apply again a Riemann sum argument analogous to (5.30),

n∑
k=0

(2k + 1)2(
1 + γ 2

n (2k + 1)2
)2 = γ −3

n

(∫ ∞

0

4t2(
1 + 4t2

)2 dt + o(1)

)
= O
(
γ −3
n

)
,
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which yields together with (5.39) that

S′
3 = O

(
γ −1
n e−π/γn

) = o
(
γ −2
n e−π/γn

)
. (5.42)

Combining the estimates for (5.42), (5.41), and (5.40) in (5.38), we get

αn = 1

2γn

+ πe−π/γn

3γ 2
n

(1 + o(1)) .

This, together with the asymptotics of γn in (5.26) and (5.23), gives

αnβn = α2
nγ

2
n = 1

4
+ πe−π/γn

3γn

(1 + o(1))

= 1

4
+ 1

24πn3γ 3
n

(1 + o(1))

= 1

4
+ 9(ln n)3

8π4n3
(1 + o(1)) .

This proves the remaining estimate in Theorem 5,

U(hn) = (αnβn)
1/2 = 1

2
+ 9(ln n)3

8π4n3
(1 + o(1)) . (5.43)

6. Explicit Construction of Finite-Length Low-Pass
Filters with Optimal Uncertainty Asymptotics

In this section, we consider a sequence of interpolatory, symmetric finite-length filters that
behave asymptotically like the optimal finite-length approximation of the ideal low-pass
filter in the sense of the uncertainty product. Let γ �

n be given by

(
γ �
n

)2
e−π/γ �

n = 1

8πn3
, (6.1)

and define

τ �
n :=

(
n∑

k=0

1

1 + (γ �
n

)2
(2k + 1)2

)−1 (
1

2
−

n∑
k=0

c∞,k

1 + (γ �
n

)2
(2k + 1)2

)
. (6.2)

These quantities are defined for all n ∈ N because of the monotonicity of the function
t−2e−πt in {t ≥ 1}. We note that γ �

n → 0 as n → ∞. Moreover, taking the logarithm on
both sides of (6.1) yields as in (5.23) that

1

γ �
n

= 3 ln n

π
(1 + o(1)) , (6.3)

so δ�
n := ((n + 1)γ �

n )−1 = o(1), similarly as before. Let

h�
n(ξ) := 1

2
+

n∑
k=0

c∞,k + τ �
n

1 + (γ �
n

)2
(2k + 1)2

cos(2k + 1)ξ . (6.4)
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FIGURE 2 Difference between hn and h�
n.

Clearly h�
n belongs to Fn and is a symmetric interpolatory low-pass filter. Moreover, h�

n

is close to the optimal implementable low-pass filter in Fn in the sense of the following
theorem. We have plotted the difference between hn and h�

n for n = 1, 3, 5, 7, 9 in Figure 2.

Theorem 6. Let {hn}n∈N be the sequence of finite-length minimizers and {h�
n}n∈N be

defined as in (6.4). Then both sequences have the same asymptotic behavior,

lim
n→∞

U
(
h�

n

)− 1/2

infh∈Fn
U(h) − 1/2

= 1 . (6.5)

Proof. By setting ξ = 0 in Equation (6.4), we have that

τ �
n = (1 + (γ �

n

)2)
c�
n,0 − c∞,0 .

Similar to the proof of the estimate (5.26), we deduce that the sequence {τ �
n } has the

asymptotics

τ �
n = 4

π
γ �
n e−π/2γ �

n (1 + o(1)) . (6.6)

Set α�
n := ∫ π

−π
|h�

n
′(ξ)|2 dξ , β�

n := ∫ π

−π
|I (ξ) − h�

n(ξ)|2 dξ . By expressing c�
n,k in

terms of γ �
n and τ �

n , we obtain

α�
n = π

n∑
k=0

(2k + 1)2

(
c∞,k + τ �

n

)2(
1 + (γ �

n

)2
(2k + 1)2

)2 , (6.7)

and

β�
n = π

∞∑
k=n+1

|c∞,k|2 + π

n∑
k=0

(
(2k + 1)2γ �

n
2c∞,k − τ �

n

)2(
1 + (γ �

n

)2
(2k + 1)2

)2 . (6.8)
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Replacing γn in (5.38) by γ �
n in (6.1), and using the estimate (6.6) for τ �

n instead of (5.39)
for τn, we get

α�
n = 1

2γ �
n

+ πe−π/γ �
n

3γ �
n

2
(1 + o(1)) . (6.9)

Multiplying both sides of (6.7) with γ �
n

2 and then subtracting (6.8), we obtain

β�
n − α�

nγ
�
n

2 = τ �
n

2
n∑

k=0

1 − γ �
n

2(2k + 1)2(
1 + γ �

n
2(2k + 1)2

)2 − 4τn

n∑
k=0

γ �
n

2(2k + 1)2c∞,k(
1 + γ �

n
2(2k + 1)2

)2
+

∞∑
k=0

γ �
n

4(2k + 1)4c2∞,k − γ �
n

2(2k + 1)2c2∞,k(
1 + γ �

n
2(2k + 1)2

)2
+

∞∑
k=n+1

c2∞,k + 3γ �
n

2(2k + 1)2c2∞,k(
1 + γ �

n
2(2k + 1)2

)2 . (6.10)

Similar to the estimates in (5.31), (5.32), (5.33), and (5.34), we then have

β�
n − α�

nγ
�
n

2 = −2e−π/γ �
n (1 + o(1)) + 1

4π2γ �
n

2n3
(1 + o(1)) = o

(
e−π/γ �

n
)
. (6.11)

Combining the estimates in (6.9) and (6.11) yields

α�
nβ

�
n = α�

n

(
α�

nγ
�
n

2 + o
(
e−π/γ �

n
))

= α�
n

2
γ �
n

2 + o
((

γ �
n

)−1
e−π/γ �

n

)

=
(1

2
+ πe−π/γ �

n

3γ �
n

(1 + o(1))
)2 + o

((
γ �
n

)−1
e−π/γ �

n

)

= 1

4
+ πe−π/γ �

n

3γ �
n

(1 + o(1)) .

Thus,

U
(
h�

n

)− 1

2
= (α�

nβ
�
n

)1/2 − 1

2
= πe−π/γ �

n

3γ �
n

(1 + o(1)) . (6.12)

Therefore the estimate in (6.5) follows from applying l’Hôpital’s rule to the quotient
of (6.12) and (5.8), together with the asymptotics of γ �

n according to (6.3).

7. Conclusion

In this work, we derived a lower bound for the cost functional U that evaluates the efficiency
of digital low-pass filters. The motivation for this cost functional was to search for an optimal
compromise in the trade-off between the frequency selectivity of a filter in comparison with
the ideal filter and the effective length of a filter when implemented in the time domain.
The fact that in the affine space of implementable low-pass filters, U never assumes its
infimum lead to the study of minimizing sequences for U . The last part of the article
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was dedicated to filters that minimize U for a given maximal filter length, and to the
construction of a sequence that has the same asymptotics as the sequence of finite-length
minimizers. Perhaps the most surprising part of our results is that this sequence of finite-
length minimizers converges only very slowly to the ideal filter in the mean-square norm of
the frequency interval. Unfortunately, we cannot offer any intuitive reason for this behavior,
other than that the cost functional U imposes smoothness on the finite-length minimizers. A
related phenomenon is the absence of Gibbs-like oscillations in the plots of the minimizers.

We conclude by remarking that generalizations of the uncertainty principle to band-
pass filters with several disjoint pass bands are straightforward. In addition, one may
adjust the amplification factor of each pass band separately. All that is needed is the
requirement that the filter given by an absolutely continuous function with square-integrable
derivative attains the desired value in each pass and stop band at least once. The resulting
uncertainty bound is then half of the �2-norm of the sequence of amplification factors.
Another generalization of the uncertainty inequality presented here would be to use an
Lp-norm instead of the mean-square deviation ‖h − I‖ and replace the Cauchy-Schwarz
inequality by Hölder’s in the proof of the lower bound for U . However, this requires
using the Lq -norm of h′ with the index q conjugate to p, and in order to relate this norm
to localization properties of the filter in the time domain one needs the Hausdorff-Young
inequality which only applies when q ≥ 2 or equivalently 1 ≤ p ≤ 2. Another version of
the uncertainty inequality can be obtained by replacing the interval [−π, π) with the real line
and reformulating the limiting conditions for low-pass filters in the analog domain. Finally,
one may investigate in which sense this uncertainty inequality generalizes to low-pass filters
in higher dimensions.

Appendix

A. Series Summation Formulas

Lemma A.1. Let s > 0. Then

∞∑
k=0

1

1 + (2k + 1)2s2
= π

4s
− πe−π/s

2s
(
1 + e−π/s

) , (A.1)

∞∑
k=0

(2k + 1)2s2 − 1(
1 + (2k + 1)2s2

)2 = π2e−π/s

2s2
(
1 + e−π/s

)2 , (A.2)

∞∑
k=0

(−1)k(2k + 1)s2

1 + (2k + 1)2s2
= πe−π/(2s)

2
(
1 + e−π/s

) , (A.3)

and

∞∑
k=0

(−1)k(2k + 1)(
1 + (2k + 1)2s2

)2 = π2e−π/(2s)
(
1 − e−π/s

)
8s3
(
1 + e−π/s

)2 . (A.4)

Proof. First, we show these series summation formulas for fixed s > 0. By the
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elementary identity (1 + a2)−1 = ∫∞
0 sin te−at dt valid for all a > 0, we have

∞∑
k=0

1

1 + (2k + 1)2s2
=

∞∑
k=0

∫ ∞

0
sin te−(2k+1)st dt

=
∫ ∞

0

e−st sin t

1 − e−2st
dt = 1

2si
lim

ε→0+

∫
|t |≥ε

e−t (1−i/s)

1 − e−2t
dt . (A.5)

For any fixed 1 ≤ L ∈ Z,

∫ (L+1/2)π

0

∣∣∣∣e−(K+it)(1−i/s)

1 − e−2(K+it)

∣∣∣∣+
∣∣∣∣e−(−K+it)(1−i/s)

1 − e−2(−K+it)

∣∣∣∣ dt

≤ 4
∫ (L+1/2)π

0
e−K−t/s dt → 0 (A.6)

as K → +∞, and∫
R

∣∣∣∣e−(t+i(L+1/2)π)(1−i/s)

1 − e−2(t+i(L+1/2)π)

∣∣∣∣ dt = e−(L+1/2)π/s

∫
R

∣∣∣∣ e−t

1 + e−2t

∣∣∣∣ dt → 0 (A.7)

as the integer L tends to positive infinity. Combining the above two limits and the fact that
the function e−z(1−i/s)(1 − e−2z)−1 is an analytic function on the whole complex plane
except at πiZ, we obtain

lim
ε→0+

∫
|t |≥ε

e−t (1−i/s)

1 − e−2t
dt = lim

ε→0+

∫
|z|=ε,Rez>0

e−z(1−i/s)

1 − e−2z
dz

+
∞∑
l=1

lim
ε→0+

∫
|z−lπi|=ε

e−z(1−i/s)

1 − e−2z
dz

= πi

2
+ πi

∞∑
l=1

(−1)le−lπ/s = πi

2
− πie−π/s

1 + e−π/s
. (A.8)

Therefore (A.1) follows from (A.5) and (A.8). Similar to the proof of the assertion (A.1),
we have

∞∑
k=0

(2k + 1)2s2 − 1(
1 + (2k + 1)2s2

)2 =
∞∑

k=0

∫ ∞

0
t cos te−(2k+1)st dt

= 1

2s2

∫
R

te−(1−i/s)t

1 − e−2t
dt = − π2

2s2

∞∑
l=1

l(−1)le−lπ/s = π2e−π/s

2s2
(
1 + e−π/s

)2 ,

and (A.2) follows.
Using the identity a

1+a2 = ∫∞
0 cos te−at dt for a > 0, we have

∞∑
k=0

(−1)k(2k + 1)s2

1 + (2k + 1)2s2
=

∞∑
k=0

(−1)k
∫ ∞

0
s cos te−(2k+1)st dt

= 1

2

∫
R

e−(1−i/s)t

1 + e−2t
dt .
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One may easily verify that the function f (z) := e−(1−i/s)z(1 + e−2z)−1 is analytic on the
whole complex plane except at πi(Z+ 1/2), that the integral

∫
|Rez|=K,0≤Imz≤Lπ

|f (z)||dz|
has zero limit as K → +∞ for any positive constant, and that

∫
Imz=Lπ

|f (z)||dz| has zero
limit as the positive integer L tends to infinity. Therefore

1

2

∫
R

e−(1−i/s)t

1 + e−2t
dt = 1

2

∞∑
l=0

lim
ε→0+

∫
|z−(l+1/2)πi|=ε

s2e−(1−i/s)z

1 + e−2z
dz

= π

2

∞∑
l=0

(−1)le−(l+1/2)π/s = πe−π/(2s)

2
(
1 + e−π/s

) ,

which yields the identity (A.3).
Analogous to the proof of the identity (A.3), we obtain (A.4) by

∞∑
k=0

(−1)k(2k + 1)(
1 + (2k + 1)2s2

)2 = 1

2s

∞∑
k=0

(−1)k
∫ ∞

0
t sin te−(2k+1)st dt

= 1

4is3

∫
R

te−(1−i/s)t

1 + e−2t
dt = 1

4is3

∞∑
l=0

lim
ε→0+

∫
|z−(l+1/2)πi|=ε

ze−(1−i/s)z

1 + e−2z
dz

= π2

4s3

∞∑
l=0

(−1)l
(
l + 1

2

)
e−(l+1/2)π/s = π2e−π/(2s)

(
1 − e−π/s

)
8s3
(
1 + e−π/s

)2 .
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