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Abstract. In this paper, we introduce two classes of localized integral opera-
tors on L2(Rd) with the Wiener class W and the Kurbatov class K of integral

operators as their models. We show that those two classes of localized integral

operators are pseudo-inverse closed non-unital subalgebra of B2, the Banach
algebra of all bounded operators on L2(Rd) with usual operator norm.

1. Introduction

In this companion paper of [46], we introduce two classes Wα
p,u and Cα

p,u of
localized integral operators

(1.1) Tf(x) =
∫

Rd

KT (x, y)f(y)dy, f ∈ L2 := L2(Rd)

on L2 (see (2.6) and (4.2) for definitions), and we establish the Wiener’s lemma for
those two subalgebras of B2, the Banach algebra of all bounded operators on L2 with
usual operator norm (see Theorems 3.1, 3.5, 4.1 and 4.3 for details). The application
of the above Wiener’s lemma to the study of stable sampling and reconstruction
procedure in a reproducing kernel Hilbert subspace of L2 will be discussed in the
subsequent paper.

Let W be the Wiener class of integral operators T on L2,

(1.2) W :=
{
T, ‖T‖W := ‖KT ‖W <∞

}
where ‖ · ‖p (1 ≤ p ≤ ∞) is the usual Lp := Lp(Rd) norm, and

(1.3) ‖K‖W := max
(

sup
x∈Rd

‖K(x, ·)‖1, sup
y∈Rd

‖K(·, y)‖1

)
for a kernel function K on Rd×Rd ([36]). The first class Wα

p,u of integral operators
to be introduced in this paper is essentially the Wiener class W with additional
regularity and decay at infinity, see (2.6) for the precise definition. For p = 1, α ∈
(0, 1], u(x, y) = (1 + |x− y|)γ with γ ≥ 0, Wα

p,u contains all integral operators T on
L2 whose kernels KT satisfy

(1.4) ‖KTu‖W + sup
0<δ≤1

δ−α‖ωδ(KT )u‖W <∞,
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where the modulus of continuity ωδ(K) of a kernel function K on Rd×Rd is defined
by

(1.5) ωδ(K)(x, y) := sup
|x′|≤δ,|y′|≤δ

|K(x+ x′, y + y′)−K(x, y)|.

Let K be the Kurbatov class of integral operators T on L2,

(1.6) K :=
{
T, ‖T‖K :=

∥∥ sup
y∈Rd

|KT (y, ·+ y)|
∥∥
K <∞

}
([37]). The second class Cα

p,u of integral operators to be introduced in this paper
is essentially the Kurbatov class K of integral operators with additional regularity
for kernels and decay at infinity for the enveloping kernel, see (4.2) for precise
definition. For 1 ≤ p ≤ ∞, α ∈ (0, 1] and u(x, y) = (1 + |x− y|)γ , Cα

p,u is the set of
integral operators T on L2 with kernels KT satisfying

(1.7)
∥∥ sup

y∈Rd

|(KTu)(y, ·+ y)|
∥∥

p
+ sup

0<δ≤1
δ−α‖ sup

y∈Rd

|(ωδ(KT )u)(y, ·+ y)|
∥∥

p
<∞.

We are interested in those two classes of integral operators because they include
(i) The projection operator P onto the wavelet space

V2(Φ) =

{∑
λ∈Λ

c(λ)φλ,
∑
λ∈Λ

|c(λ)|2 <∞

}
generated by a family of functions φλ, λ ∈ Λ, on Rd that have certain
regularity and decay at infinity ([13, 14, 15, 17, 35, 47]). The operator P
in (3.57) is such an projection operator by (3.58), while the operator Q in
(3.59) is a bounded operator from L2 to V2(Φ) that has bounded pseudo-
inverse.

(ii) The frame operator

Sf(x, ω) =
∑

(λ1,λ2)∈Λ

( ∫
y,η∈Rd

f(y, η)(V g)(y − λ1, η − λ2)e−iλ1(η−ω)dydη
)

×(V g)(x− λ1, ω − λ2), f ∈ V L2,

associated with a Gabor frame {U(λ1,λ2)g}(λ1,λ2)∈Λ in the time-frequency
plane V L2, where g ∈ L2 has certain regularity and fast decay at infinity,
Λ ⊂ IR2d is a countable set, and the short-time Fourier transform V of a
function f ∈ L2(Rd) with respect to the Gaussian window is defined as

V f(x, ω) = (2π)−d/2

∫
Rd

f(y) exp(−|x− y|2/2)e−iyωdy

([3, 4, 24, 28]).
(iii) The reconstruction operator

Rf(x) =
∑
γ∈Γ

∫
Rd

f(y)ψγ(y)dyψ̃γ(x), f ∈ L2

associated with an average sampling and reconstruction procedure, where
Γ represents the location of acquirement devices and where for each γ ∈ Γ,
ψγ is the impulse response of the acquirement device at location γ and
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ψ̃γ is the displayer for the sampling data at the location γ in a locally
finitely-generated space ([1, 47, 48]).

Given a Banach algebra B, we say that a subalgebra A of B is inverse-closed (re-
spectively pseudo-inverse closed) if T ∈ A and the inverse T−1 of the operator T be-
longs to B (respectively the pseudo-inverse of T † of the operator T belongs to B) im-
plies that T−1 ∈ A (respectively T † ∈ A), see [7, 23, 39, 52]. The inverse-closed sub-
algebra was first studied for periodic functions with absolutely convergent Fourier
series ([53]), which states that if a periodic function f does not vanish on the real
line and has absolutely convergent Fourier series, i.e., f(x) =

∑+∞
n=−∞ a(n)e−inx

and
∑+∞

n=−∞ |a(n)| <∞, then f−1 has absolutely convergent Fourier series too. A
significant non-commutative extension of the above Wiener’s lemma was given in
[8] for periodic functions f(x) =

∑+∞
n∈−∞ ane

−inx such that the Fourier coefficients
an, n ∈ ZZ, belong to a normed ring and satisfy

∑+∞
n=−∞ ‖an‖ < ∞, see [23, 39]

and references therein for further extensions. There are many equivalent formu-
lations to the classical Wiener lemma. One involving matrix algebras says that
the commutative Banach algebra W̃ :=

{(
a(j − j′)

)
j,j′∈Zd ,

∑
j∈Zd |a(j)| < ∞

}
is

an inverse-closed (and hence pseudo-inverse closed by the standard holomorphic
calculus) Banach subalgebra of B2(`2), the algebra of all bounded operators on
`2 ([22, 53]). In the study of spline approximation ([18, 19]), wavelet and affine
wavelets ([13, 34]), Gabor frame ([4, 28, 29]) and pseudo-differential operators
([9, 10, 20, 27, 31, 33, 41, 42, 49, 50, 51]), it arises extremely non-commutative
matrix of the form

(
a(λ, λ′)

)
λ,λ′∈Λ

having certain off-diagonal decay. Moreover
the Wiener’s lemma for those non-commutative matrices are crucial for the well-
localization of dual wavelet frames and dual Gabor frames ([4, 28, 34, 41]) and the
robust and finite implementation of the reconstruction procedure ([30, 47]). There-
fore there are lots of papers devoted to the Wiener’s lemma for infinite matrices
with various off-diagonal decay conditions (see [3, 4, 6, 19, 29, 32, 34, 41, 45, 46] and
also [30] for a short historical review). The Wiener’s lemma for integral (pseudo-
differential) operators is also an important chapter of the theory of inverse-closed
subalgebras ([5, 6, 9, 10, 11, 20, 28, 29, 32, 33, 38, 41, 42, 49, 50, 51] and also
[27, 37] for a historial review). For instance, it was proved that if T is an integral
operator in the Kurbatov class and if I + T has bounded inverse (I + T )−1 as an
operator on L2, then (I + T )−1T is an integral operator in the Kurbatov class too
(see [37, 38]), and that if T is a Weyl transform with symbol in M∞,1, the Sjöstrand
class containing the Hörmander class S0

0,0 and also some non-smooth symbols, and
if T has bounded inverse as an operator on L2 then T−1 is also a Weyl transform
with symbol in M∞,1 (see [41, 42]). The objective of this paper is to establish
Wiener’s lemma for the two classes Wα

p,u and Cα
p,u of localized integral operators

(see Theorems 3.1, 3.5, 4.1 and 4.3 for the requirements to the weight u and the
regularity exponent α).

The Wiener’s lemma and its various generalizations and formulations have nu-
merous applications in numerical analysis, time-frequency analysis, wavelet theory,
frame theory, and sampling theory. For instance, the classical Wiener’s lemma and
its weighted variation ([53, 32]) were used to establish the decay property at in-
finity for dual generators of a shift-invariant space ([1, 35]); the Wiener’s lemma
for infinite matrices associated with twisted convolution was used in the study the
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decay properties of the dual Gabor frame for L2 ([3, 4, 28, 29]); the Jaffard’s and
Sjöstrand’s results ([34, 41]) and their extension ([45, 46]) for infinite matrices with
polynomial (exponential) decay were used in numerical analysis ([12, 30, 43, 44]),
wavelet analysis ([34]), time-frequency analysis ([24, 25, 26]), pseudo-differential
operators ([27, 31, 41]) and sampling ([2, 16, 26, 48]) and will also be used in the
proof of Theorems 3.5 and 4.3; and the Kurbatov’s result ([37, 38]) and its extension
([20]) was used in solving integral operator equations ([37]). The applications of
the Wiener’s lemma for the two classes Wα

p,u and Cα
p,u of localized integral operators

will be discussed in the subsequent paper.

We finish this section with some notation used later. Let Bq := B(Lq), 1 ≤
q ≤ ∞, be the set of all bounded operators on Lq with its norm denoted by
‖ · ‖Bq . For an operator T on a Hilbert space, we denote its adjoint operator by
T ∗. For an operator T in a Banach algebra B, we define its spectral radius ρB(T )
by ρB(T ) = lim supn→∞ ‖An‖1/n

B . For a bounded operator T on L2, we denote
by N(T ) ⊂ L2 the null space of the operator T , and by N(T )⊥ the orthogonal
complement of the null space N(T ). In this paper, the uppercase letter C denotes
an absolute constant which could be different at different occurrences.

2. Localized Integral Operators

In this section, we introduce the first class of localized integral operators on L2,
and discuss some basic algebraic properties of that class of integral operators.

In this paper, we use weights to describe localization of integral operators. Here
a weight u is a positive continuous function on Rd×Rd that is symmetric, diagonal-
normalized and slow-varying, i.e.,

(2.1) u(x, y) = u(y, x) for all x, y ∈ Rd,

(2.2) u(x, y) ≥ 1 and u(x, x) = 1 for all x, y ∈ Rd,

and

(2.3) C(u) := sup
x,y∈Rd

sup
|x′|≤1,|y′|≤1

u(x+ x′, y + y′)
u(x, y)

<∞.

The model examples of weights are polynomial weights

(2.4) uγ(x, y) = (1 + |x− y|)γ

with γ ≥ 0, and (sub)exponential weights

(2.5) eD,δ(x, y) = exp(D|x− y|δ)
with D > 0 and 0 < δ ≤ 1.

In this paper, we use modulus of continuity to describe the regularity of integral
operators. Given α ≥ 0, 1 ≤ p ≤ ∞ and a weight u on Rd × Rd, the first class of
localized integral operators to be discussed in this paper is

(2.6) Wα
p,u :=

{
T, ‖T‖Wα

p,u
:= ‖KT ‖Wα

p,u
<∞

}
,

where KT is the kernel function of the integral operator

(2.7) Tf(x) :=
∫

Rd

KT (x, y)f(y)dy f ∈ L2(Rd),
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the norm ‖K‖Wα
p,u

for a kernel function K on Rd × Rd is defined by

(2.8) ‖K‖Wα
p,u

:=



max
(

sup
x∈Rd

‖K(x, ·)u(x, ·)‖p, sup
y∈Rd

‖K(·, y)u(·, y)‖p

)
if α = 0

max
k,l∈Zd,|k|+|l|<α

‖∂k
x∂

l
yK(x, y)‖W0

p,u

+ max
k,l∈Zd,|k|+|l|<α

sup
0<δ≤1

δ−α+α0‖ωδ(∂k
x∂

l
yK(x, y))‖W0

p,u

if α > 0,

and α0 is the largest integer strictly smaller than α. Clearly, Wα
p,u becomes the

Wiener class W of integral operators when α = 0, p = 1 and u ≡ 1 is the trivial
weight.

In order to state our results for the class Wα
p,u of localized integral operators,

we recall a technical condition on weights. For p ≥ 1, we say that a weight u is
said to be p-admissible if there exists another weight v, and two positive constants
θ ∈ (0, 1) and C ∈ (0,∞) such that

(2.9) u(x, y) ≤ u(x, z)v(z, y) + v(x, z)u(z, y)

for all x, y, z ∈ Rd; and

(2.10) inf
τ≥1

‖v(x, ·)‖L1(B(x,τ)) + t‖(vu−1)(x, ·)‖Lp/(p−1)(Rd\B(x,τ)) ≤ Ctθ

for all x ∈ Rd and t ≥ 1, where B(x, τ) = {y ∈ Rd : |x − y| ≤ τ} is the ball
with center x and radius τ ([46]). The examples of p-admissible weights include
polynomial weights uγ with γ > d(1 − 1/p) and subexponential weights eD,δ with
δ ∈ (0, 1) and D > 0. We remark that the exponential weight eD,1, D > 0 are not
p-admissible weights.

Remark 2.1. We say that a weight u on Rd×Rd satisfies the Gelfand-Rykov-Shylov
condition if

(2.11) lim
n→∞

u(nx, ny)1/n = 0 for all x, y ∈ Rd

([21, 29]). One may easily check that the weight exp(|x − y|/ ln(1 + |x − y|))
satisfies the Gelfand-Rykov-Shylov condition but it is not a p-admissible weight.
For weight u of the form exp(κ(|x − y|)) where κ is a concave function on [0,∞)
with κ(0) = 0, it was proved in [46] that if u is a p-admissible weight then it satisfies
the Gelfand-Rykov-Shylov condition. But I do not know whether any p-admissible
weight satisfies the Gelfand-Rykov-Shylov condition.

Now we state some basic properties of the class Wα
p,u of localized integral oper-

ators on L2.

Theorem 2.2. Let α, β ≥ 0, 1 ≤ p, q ≤ ∞ and u, v be weights on Rd × Rd. Then
the following statements are true.

(i) T ∈ Wα
p,u if and only if T ∗ ∈ Wα

p,u.
(ii) If β ≥ α and T ∈ Wβ

p,u, then T ∈ Wα
p,u.

(iii) If p ≥ q, supx∈Rd ‖(vu−1)(x, ·)‖pq/(p−q) <∞ and T ∈ Wα
p,u, then T ∈ Wα

q,v.
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(iv) If T ∈ Wα
p,u and supx∈Rd ‖(u(x, ·))−1‖p/(p−1) < ∞, then T is a bounded

operator on Lq for 1 ≤ q ≤ ∞ but T does not have bounded inverse on Lq

for 1 ≤ q <∞.
(v) If T1, T2 ∈ Wα

p,u and if u is a p-admissible weight, then T1T2 ∈ Wα
p,u.

Proof. (i): The first conclusion holds since

(2.12) ‖T ∗‖Wα
p,u

= ‖T‖Wα
p,u

for all T ∈ Wα
p,u.

(ii): The second conclusion is true because of

(2.13) ‖T‖Wα
p,u

≤ ‖T‖Wβ
p,u

for all T ∈ Wβ
p,u with β ≥ α.

(iii): The third conclusion follows easily from

(2.14) ‖T‖Wα
q,v

≤ sup
x∈Rd

‖(vu−1)(x, ·)‖pq/(p−q)‖T‖Wα
p,u

for all T ∈ Wα
p,u.

(iv): The boundedness of an operator T ∈ Wα
p,u on Lp is proved by combining

(2.13), (2.14) and

(2.15) ‖T‖Bq ≤ ‖T‖W0
1,u0

for all T ∈ W := W0
1,u0

and 1 ≤ q ≤ ∞,

where u0 ≡ 1 is the trivial weight.
To prove the unboundedness of the inverse of the operator T ∈ Wα

p,u, we let
1 ≤ q < ∞, 1 = (1, 1, . . . , 1) ∈ Rd, φ be a nonzero smooth function supported on
[−1/2, 1/2]d, and define φz(x) = φ(x)eizx. Then

(2.16) ‖φα1‖q = ‖φ‖q for all α ∈ IR
by the definition, and

(2.17) lim
α→+∞

‖Tφα1‖q = 0

because ∥∥ sup
α∈IR

|Tφα1|
∥∥

q
≤

∥∥∥∫
Rd

|K(·, y)||φ(y)|dy
∥∥∥

q
≤ ‖φ‖q‖K‖W0

1,u0

≤ ‖φ‖q‖T‖Wα
p,u

sup
x∈Rd

‖u−1(x, ·)‖p/(p−1) <∞

and for almost all x ∈ Rd

|Tφα1(x)| ≤
∫

Rd

∣∣K(x, y + (dα)−1π1)φ(y + (dα)−1π1)−K(x, y)φ(y)
∣∣dy

→ 0 as α→ +∞.

Therefore the conclusion that the operator T does not have bounded inverse in Lq

follows from (2.16) and (2.17).

(v): Take two integral operators T1, T2 in Wα
p,u, and denote their kernels by

K1,K2 respectively. Then the kernel of their composition T := T1T2 is given by

(2.18) K(x, y) =
∫

Rd

K1(x, z)K2(z, y)dz,

which implies that

(2.19) ∂k
x∂

l
yK(x, y) =

∫
Rd

∂k
xK1(x, z)∂l

yK2(z, y)dz
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and

|ωδ(∂k
x∂

l
yK)(x, y)| ≤

∫
Rd

ωδ(∂k
xK1)(x, z)|∂l

yK2(z, y)|dz

+
∫

Rd

|∂k
xK1(x, z)|ωδ(∂l

yK2)(z, y)dz

+
∫

Rd

ωδ(∂k
xK1)(x, z)ωδ(∂l

yK2)(z, y)dz(2.20)

for all k, l ∈ Zd with |k|+ |l| < α. Therefore

(2.21) ‖T1T2‖Wα
p,u

≤ C‖T1‖Wα
p,u
‖T2‖Wα

1,v
+ C‖T1‖Wα

1,v
‖T2‖Wα

p,u

by (2.9) and (2.18) – (2.20), where v is the weight associated with the p-admissible
weight u. Applying (2.14) with q = 1 to the right hand side of the estimate (2.21)
yields

(2.22) ‖T1T2‖Wα
p,u

≤ C0‖T1‖Wα
p,u
‖T2‖Wα

p,u

where C0 is a positive constant independent of T1, T2 ∈ Wα
p,u. Hence the conclusion

(v) follows. �

By Theorem 2.2, we have

Corollary 2.3. Let 1 ≤ p, q ≤ ∞, α ≥ 0 and u be a p-admissible weight. Then
Wα

p,u is a non-unital algebra embedded in the algebra Bq of bounded operators on
Lq with the usual operator norm.

In order to use the general theory for Banach algebra ([23, 39, 52]), we create a
unital Banach subalgebra of B2 so that Wα

p,u can be imbedded into.

Theorem 2.4. Let α ≥ 0, 1 ≤ p ≤ ∞, u be a p-admissible weight, and I be the
identity operator on L2. Define

(2.23) IWα
p,u :=

{
λI + T : λ ∈ C and T ∈ Wα

p,u

}
with

(2.24) ‖λI + T‖IWα
p,u

:= |λ|+ C0‖T‖Wα
p,u

where C0 is the constant in (2.22). Then IWα
p,u is a unital Banach subalgebra of

B2.

Proof. By the conclusions (iv) and (v) of Theorem 2.2, IWα
p,u is a well-defined

algebra with the identity I. For any operators λ1I + T1 and λ2I + T2 in IWα
p,u,

‖(λ1I + T1)(λ2I + T2)‖IWα
p,u

≤ |λ1λ2|+ C0|λ1|‖T2‖Wα
p,u

+ C0|λ2|‖T1‖Wα
p,u

+ C0‖T1T2‖Wα
p,u

≤ ‖λ1I + T1‖IWα
p,u
‖λ2I + T2‖IWα

p,u
(2.25)

where the estimate in (2.22) has been used to obtain the last inequality. Hence
IWα

p,u is a unital Banach algebra.
By (2.15), we have

(2.26) ‖λI + T‖B2 ≤ |λ|+ ‖T‖B2 ≤ C‖λI + T‖IWα
p,u
,

which implies that IWα
p,u is a subalgebra of B2. �
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3. Wiener’s Lemma for Localized Integral Operators: Part I

In this section, we establish the principal results of this paper, the Wiener’s
lemma for the unital Banach subalgebra IWα

p,u of B2 with p-admissible weight
u (Theorem 3.1), and a weak version of the Wiener’s lemma for the non-unital
subalgebra Wα

p,u of B2 with exponential weight u (Theorem 3.5).

Theorem 3.1. Let α > 0, 1 ≤ p ≤ ∞, u be a p-admissible weight, and IWα
p,u be

defined as in (2.23). Then IWα
p,u is an inverse-closed Banach subalgebra of B2.

Using the standard holomorphic calculus ([40]), we have the following Wiener’s
lemma (Corollary 3.2) and Wiener-Levy theorem (Corollary 3.3) for the non-unital
algebra Wα

p,u.

Corollary 3.2. Let α > 0, 1 ≤ p ≤ ∞, u be a p-admissible weight, and Wα
p,u be

as in (2.6). Assume that T ∈ Wα
p,u has bounded pseudo-inverse, then its pseudo-

inverse T † belongs to Wα
p,u.

Corollary 3.3. Let α > 0, 1 ≤ p ≤ ∞, u be a p-admissible weight, and Wα
p,u be as

in (2.6). Assume that T ∈ Wα
p,u and g is an analytic function on a neighborhood

of the spectrum of the operator T in B2. Then g(T ) ∈ Wα
p,u if and only if g(0) = 0.

Remark 3.4. For 1 ≤ p ≤ ∞, α ≥ 0 and a p-admissible weight u, it follows from
Theorem 2.2 that integral operators inWα

p,u do not have bounded inverse on L2, but
those integral operators may or may not have bounded pseudo-inverse. For instance,
the projection operators to wavelet spaces, frame operators on the time-frequency
plane, and reconstruction operators for sampling mentioned in the Introduction
section have bounded pseudo-inverse. On the other side, a convolution operator
in the Wiener class W must not have bounded pseudo-inverse. The reason is the
following: Suppose, on the contrary, there is a convolution operator T ∈ Wα

p,u

having bounded pseudo-inverse. Define the Fourier transform f̂ of an integrable
function f by f̂(ξ) =

∫
Rd f(x)e−ixξdx and extend that definition to functions in L2

as usual. Then

(3.1) ‖K̂f̂‖2 ≥ C‖f̂‖2 for all f ∈ N(T )⊥

and

(3.2) K̂f̂ = 0 for all f ∈ N(T )

by the bounded pseudo-inverse assumption, where K(x − y) is the kernel of the
convolution operator T . Therefore for almost all ξ ∈ Rd either |K̂(ξ)| = 0 or
|K̂(ξ)| ≥ C, which is a contradiction since

∫
Rd |K(x)|dx < ∞ by the assumption

that T ∈ Wα
p,u ⊂ W.

The exponential weights eD,1(x, y) := exp(D|x−y|), D > 0, are not p-admissible
weights. For integral operators in Wα

p,u with u = eD,1 for some D > 0, we have the
following weak version of the Wiener’s lemma.

Theorem 3.5. Let α,D > 0, 1 ≤ p ≤ ∞, eD,1(x, y) := exp(D|x − y|), and let
Wα

p,eD,1
be as in (2.6). Assume that T ∈ Wα

p,eD,1
and its pseudo-inverse T † belongs

to B2. Then T † ∈ Wα
p,eD′,1

for some D′ ∈ (0, D).
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Remark 3.6. The crucial step in the proof of Theorem 3.1 is to establish

(3.3) ρIWα
p,u

(λI + T ) = ρB2(λI + T ) for all λI + T ∈ IWα
p,u

where α > 0, 1 ≤ p ≤ ∞ and u is a p-admissible weight. But the above equal-
ity about spectral radius on two different algebras is not long true when u is an
exponential weight. For instance, we let

Tkf(x) =
∫

IR

φ(x− y − k)f(y)dy, f ∈ L2,

where k ≥ 1 and φ is a nonnegative C∞ function supported on [−1/2, 1/2] that
satisfies

∫
IR
φ(x) = 1. Then for any λ ∈ IC, n ∈ IN and D > 0, we have

(3.4) ‖(λI + Tk)n‖B2 ≤ (|λ|+ 1)n,

and

‖(λI + Tk)n‖IWα
1,eD,1

= |λ|n +
n∑

l=1

n!
(n− l)!l!

|λ|n−l

∫
IR

φl(x− lk) exp(Dx)dx

≥ |λ|n +
n∑

l=1

n!
(n− l)!l!

|λ|n−leDl(k−1/2)

∫
IR

φl(x− lk)dx

= (λ+ eD(k−1/2))n,(3.5)

where φ1 = φ and for l ≥ 2, φl := φl−1 ∗ φ is the convolution between φ and φl−1.
Combining (3.4) and (3.5) shows that the equality (3.3) does not hold for integral
operator λI + Tk when u is an exponential weight eD,1 with positive D.

Remark 3.7. We see from Remark 3.6 that the standard argument in the Ba-
nach algebra ([23, 39, 52]) could not be used to establish Wiener’s lemma for the
class Wα

p,u of integral operators with exponential weights. Our new approach in
the proof of Theorem 3.5 is based on the Wiener’s lemma for infinite matrices with
exponential decay (see [6, 19, 34, 46] and also Lemma 3.11), and the new obser-
vation that for an integral operator T ∈ Wα

p,u having bounded pseudo-inverse, the
orthogonal complement N(T )⊥ of the null space N(T ) is a locally finitely-generated
space V2(Φ) with localized frame generator Φ that was introduced and studied in
[47] (see Lemma 3.12 for detailed statement). The above observation for the space
N(T )⊥ indicates that signals in a reproducing kernel Hilbert subspace of L2 that
has localized smooth reproducing kernel could be reconstructed from their samples
on a discrete set in a stable way, see the subsequent paper for the detailed study.

Remark 3.8. Let α,D > 0 and 1 ≤ p ≤ ∞. I conjecture that a weak version of the
Wiener’s lemma for integral operators T in Wα

p,eD,1
holds, i.e., If 0 6= λ ∈ IC, T ∈

Wα
p,eD,1

and λI + T has bounded inverse in B2, then there exists D′ ∈ (0, D) such
that (λI + T )−1 = λ−1I + T̃ for some T̃ ∈ Wα

p,eD′,1
, or equivalently (λI + T )−1T ∈

Wα
p,eD′,1

.

3.1. Proof of Theorem 3.1. By Theorem 2.4, using the standard argument in
the Banach algebra ([23, 39, 52]), it suffices to prove (3.3) for any λI + T ∈ IWα

p,u

where α > 0, 1 ≤ p ≤ ∞ and u is a p-admissible weight. In this paper, we will
prove a bit stronger result than the equality (3.3).
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Theorem 3.9. Let α > 0, 1 ≤ p ≤ ∞, u be a p-admissible weight and IWα
p,u be as

in (2.23). Then there exist positive constants C ∈ (0,∞) and θ̃ ∈ (0, 1) such that

(3.6) ‖(λI + T )n‖IWα
p,u

≤ C
(C‖λI + T‖IWα

p,u

‖λI + T‖B2

) 3(3+θ̃)
2+θ̃

nlog4(3+θ̃)(
‖λI + T‖B2

)n

hold for all n ≥ 1 and λI + T ∈ IWα
p,u.

To prove Theorem 3.9, other than those properties in Theorem 2.2 for operators
in the algebra Wα

p,u, we need the following paracompact properties about operators
in the algebra Wα

p,u.

Lemma 3.10. Let α > 0, 1 ≤ p ≤ ∞, u be a p-admissible weight, and Wα
p,u be as

in (2.6). Then the following statements hold.

(vi) If T1, T3 ∈ Wα
p,u and T2 ∈ W0

p,u, then T1T2T3 ∈ Wα
p,u.

(vii) There exist positive constants C ∈ (0,∞) and θ̃ ∈ (0, 1) such that

(3.7) ‖T 2‖W0
p,u

≤ C‖T‖1+θ̃
Wα

p,u
‖T‖1−θ̃

B2

holds for any T ∈ Wα
p,u.

Proof. (vi): Take integral operators T1, T3 in Wα
p,u and T2 in W0

p,u, and denote the
kernels of the integral operators T1, T2, T3 and their composition T := T1T2T3 by
K1,K2,K3 and K respectively. One may easily verify that those integral kernels
are related by

(3.8) K(x, y) =
∫

Rd

∫
Rd

K1(x, z1)K2(z1, z2)K3(z2, y)dz1dz2.

Thus

(3.9) ∂k
x∂

l
yK(x, y) =

∫
Rd

∫
Rd

∂k
xK1(x, z1)K2(z1, z2)∂l

yK3(z2, y)dz1dz2

and

|ωδ(∂k
x∂

l
yK)(x, y)|

≤
∫

Rd

∫
Rd

ωδ(∂k
xK1)(x, z1)|K2(z1, z2)||∂l

yK3(z2, y)|dz1dz2

+
∫

Rd

∫
Rd

|∂k
xK1(x, z1)||K2(z1, z2)|ωδ(∂l

yK3)(z2, y)dz1dz2

+
∫

Rd

∫
Rd

|ωδ(∂k
xK1)(x, z1)||K2(z1, z2)|ωδ(∂l

yK3)(z2, y)dz1dz2(3.10)

where k, l ∈ Zd with |k| + |l| < α. Let α0 be the largest integer strictly smaller
than α. Applying (2.22) twice, we obtain from (3.9) and (3.10) that

‖∂k
x∂

l
yK(x, y)‖W0

p,u
≤ C

(
sup
x∈Rd

‖(vu−1)(x, ·)‖p/(p−1)

)2‖∂k
xK1(x, y)‖W0

p,u

×‖K2(x, y)‖W0
p,u
‖∂l

yK3(x, y)‖W0
p,u

≤ C‖T1‖Wα
p,u
‖T2‖W0

p,u
‖T3‖Wα

p,u
(3.11)
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and

‖ωδ(∂k
x∂

l
yK)(x, y)‖W0

p,u
≤ C

(
sup
x∈Rd

‖(vu−1)(x, ·)‖p/(p−1)

)2

×
(
‖ωδ(∂k

xK1)(x, y)‖W0
p,u
‖K2(x, y)‖W0

p,u

×‖∂l
yK3(x, y)‖W0

p,u
+ ‖∂k

xK1(x, y)‖W0
p,u

×‖K2(x, y)‖W0
p,u
‖ωδ(∂l

yK3)(x, y)‖W0
p,u

+‖ωδ(∂k
xK1)(x, y)‖W0

p,u
‖K2(x, y)‖W0

p,u

×‖ωδ(∂l
yK3)(x, y)‖W0

p,u

)
≤ Cδα−α0‖T1‖Wα

p,u
‖T2‖W0

p,u
‖T3‖Wα

p,u
(3.12)

for all δ ∈ (0, 1) and k, l ∈ Zd with |k|+ |l| < α. Therefore

(3.13) ‖T1T2T3‖Wα
p,u

≤ C‖T1‖Wα
p,u
‖T2‖W0

p,u
‖T3‖Wα

p,u

by (3.11) and (3.12), and the conclusion (vi) is proved.

(vii): Take T ∈ Wα
p,u, and let K be the kernel of the integral operator T in Wα

p,u.
Then for any x, y ∈ Rd and δ ∈ (0, 1),

|K(x, y)| ≤ (ωδK)(x, y) +
∣∣∣δ−2d

∫
t,t′∈δ[−1/2,1/2]d

K(x+ t, y + t′)dtdt′
∣∣∣

≤ (ωδK)(x, y) + δ−3d/2‖Tχy+δ[−1/2,1/2]d‖2

≤ (ωδK)(x, y) + δ−d‖T‖B2(3.14)

where χE is the characteristic function on a set E. Let α0 be the largest integer
strictly smaller than α. Then

(3.15) δ0 := min
(
1,

( ‖T‖B2

‖T‖Wα
p,u

)1/(α−α0+d))
≤ C

( ‖T‖B2

‖T‖Wα
p,u

)1/(α−α0+d)

by (2.13) and (2.15). Let θ be the exponent in the definition of the p-admissible
weight u, v be the weight associated with the p-admissible weight u, θ1 = d

α−α0+d ,
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and θ̃ = θ1 + (1− θ1)θ. Then it follows from (2.9), (2.10), (3.14) and (3.15) that∫
Rd

|K(x, y)|v(x, y)dy

≤ inf
τ≥1

( ∫
|x−y|≤τ

(
(ωδ0K)(x, y) + δ−d

0 ‖T‖B2

)
v(x, y)dy

+
∫
|x−y|>τ

|K(x, y)|v(x, y)dy
)

≤ C inf
τ≥1

(
‖ωδ0(K)‖W0

p,u

( ∫
|x−y|≤τ

|(vu−1)(x, y)|p/(p−1)dy
)(p−1)/p

+δ−d
0 ‖T‖B2

∫
|x−y|≤τ

v(x, y)dy

+‖T‖W0
p,u

( ∫
|x−y|>τ

|(vu−1)(x, y)|p/(p−1)dy
)(p−1)/p)

≤ C inf
τ≥1

((
δα−α0
0 ‖T‖Wα

p,u
+ δ−d

0 ‖T‖B2

)
‖v(x, ·)‖L1(B(x,τ))

+‖T‖Wα
p,u
‖(vu−1)(x, ·)‖Lp/(p−1)(Rd\B(x,τ))

)
≤ C‖T‖θ1

Wα
p,u

inf
τ≥1

(
‖T‖1−θ1

B2 ‖v(x, ·)‖L1(B(x,τ))

+‖T‖1−θ1
Wα

p,u
‖(vu−1)(x, ·)‖Lp/(p−1)(Rd\B(x,τ))

)
≤ C‖T‖θ̃

Wα
p,u
‖T‖1−θ̃

B2 for all x ∈ Rd.

Thus

(3.16) ‖T‖W0
1,v

≤ C‖T‖θ̃
Wα

p,u
‖T‖1−θ̃

B2

where v is the weight associated with the p-admissible weight u, and C ∈ (0,∞)
and θ̃ ∈ (0, 1) are constants independent of T ∈ Wα

p,u. The conclusion (vii) then
follows from (2.21) and (3.16). �

Now we start to prove Theorem 3.9.

Proof of Theorem 3.9. Take an operator B := λI + T ∈ IWu
p,α. For n ≥ 1, we

write Bn = λnI +Bn and define

(3.17) bn = ‖B‖n
B2 + ‖Bn‖IWα

p,u
.

Then

(3.18) bn+1 ≤ ‖B‖n+1
B2 + ‖B‖IWα

p,u
‖Bn‖IWα

p,u
≤ b1bn

by Theorem 2.4. Let θ̃ ∈ (0, 1) and C0 ∈ (0,∞) be the constants in the conclusion
(vii) of Lemma 3.10 and in the equation (2.22) respectively. Then by Theorem 2.2
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and Lemma 3.10, we obtain

b4n ≤ ‖B‖4n
B2 + |λ|4n + C0‖B4

n‖Wα
p,u

+ 4C0|λ|n‖B3
n‖Wα

p,u

+6C0|λ|2n‖B2
n‖Wα

p,u
+ 4|λ|3nC0‖Bn‖Wα

p,u

≤ 4(|λ|n + ‖B‖n
B2)(bn)3 + C‖Bn‖2

Wα
p,u
‖B2

n‖W0
p,u

≤ 4(|λ|n + ‖B‖n
B2)(bn)3 + C(bn)3+θ̃‖Bn‖1−θ̃

B2

≤ C(bn)3+θ̃
(
max(|λ|, ‖B‖B2)

)n(1−θ̃)
.(3.19)

Therefore for any n =
∑k

i=0 εi4
i with εi ∈ {0, 1, 2, 3},

bn ≤ bε01 C
1−θ̃(max |λ|, ‖B‖B2)n1(1−θ̃)(bn1)

3+θ̃

≤ · · ·

≤
k∏

t=0

(b1)εt(3+θ̃)t

×
k∏

t=1

C(1−θ̃)(3+θ̃)t−1

×
k∏

t=1

(
max |λ|, ‖B‖B2)nt(1−θ̃)(3+θ̃)t−1

≤
( Cb1

max(|λ|, ‖B‖B2)

) 3(3+θ̃)
2+θ̃

nlog4(3+θ̃)(
max(|λ|, ‖B‖B2)

)n

,(3.20)

where nt =
∑k

i=t εi4
i−t. Combining the above estimate of bn with the fact that

(3.21) |λ| ≤ ‖B‖B2

by the conclusion (iv) of Theorem 2.2 proves the desired conclusion (3.6). �

3.2. Proof of Theorem 3.5. To prove Theorem 3.5, we first recall the Schur class
Ap,u(Λ) of infinite matrices in [46], see [3, 4, 6, 19, 29, 32, 34, 41] for other classes
of infinite matrices and [30] for a historical review. We say that Λ is a relatively-
separated subset of Rd if supx∈Rd

∑
λ∈Λ χλ+[−1/2,1/2]d(x) < ∞ where χE is the

characteristic function on a set E. For 1 ≤ p ≤ ∞, a relatively-separated set Λ and
a weight u on Rd × Rd, the Schur class Ap,u(Λ) of infinite matrices is defined as
follows:

(3.22) Ap,u(Λ) =
{
A := (a(λ, λ′))λ,λ′∈Λ, ‖A‖Ap,u

<∞
}

where

(3.23) ‖A‖Ap,u(Λ) = max
(

sup
λ∈Λ

‖a(λ, ·)u(λ, ·)‖`p , sup
λ′∈Λ

‖a(·, λ′)u(·, λ′)‖`p

)
and ‖ · ‖`p denotes the usual `p norm (see [6, 19, 34] for p = ∞ and [46] for
1 ≤ p ≤ ∞). Also we define

(3.24) Ãp,u(Λ) = Ap,u(Λ) ∩ A1,u(Λ)

with

(3.25) ‖A‖Ãp,u(Λ) = max(‖A‖Ap,u(Λ), ‖A‖A1,u(Λ)), A ∈ Ãp,u(Λ)

see [5, 29] for similar setting. For infinite matrices in Ãp,u(Λ) with exponential
weight, we have the following properties:



14 QIYU SUN

Lemma 3.11. Let 1 ≤ p ≤ ∞, D > 0 and Λ be a relatively-separated subset of Rd.
Then the following statements are true.

(i) Ap,eD̃,1
(Λ) ⊂ Ãp,eD,1(Λ) for all D̃ > D.

(ii) A ∈ Ãp,eD,1(Λ) if and only if A∗ ∈ Ãp,eD,1(Λ).
(iii) If A,B ∈ Ãp,eD,1(Λ), then AB ∈ Ãp,eD,1(Λ).
(iv) If A ∈ Ãp,eD,1(Λ) and the pseudo-inverse A† of the operator A is a bounded

operator on `2, then there exists a positive constant D′ ∈ (0, D) such that
A† ∈ Ãp,eD′,1(Λ).

Proof. We follow the same argument as the one used in [34, 46]. For the complete-
ness of the paper, we include a concise proof here.

(i): The first conclusion holds because ‖ exp(−δ| · |)‖`q < ∞ for all δ > 0 and
1 ≤ q ≤ ∞.

(ii): The second statement follows directly from the definition of the Schur class
Ãp,eD,1(Λ).

(iii): Note that

(3.26) eD,1(x, y) ≤ eD,1(x, z)eD,1(z, y), x, y, z ∈ Rd.

Therefore for any A,B ∈ Ãp,eD,1 , we obtain

‖AB‖Ãp,eD,1
≤ max

(
‖A‖Ãp,eD,1

‖B‖A1,eD,1
, ‖A‖A1,eD,1

‖B‖Ãp,e
D′,1

)
≤ ‖A‖Ãp,eD,1

‖B‖Ãp,eD,1
,(3.27)

which proves the third conclusion.
(iv): By (3.27), we have

‖An‖Ãp,eD,1
≤

(
‖A‖Ãp,eD,1

)n
, 1 ≤ n ∈ IN.(3.28)

By the definition of an infinite matrix, we obtain

(3.29) ‖An‖A∞,e0,1
≤ ‖An‖B2 ≤ ‖A‖n

B2 , 1 ≤ n ∈ IN.

Combining (3.28) and (3.29) leads to

‖An‖A1,e
D′,1

≤ inf
τ≥1

‖A‖n
B2

∑
|k|≤τ

exp(D′|k|) + ‖A‖A1,eD,1
exp(−(D −D′)τ)

≤ C inf
τ≥1

‖A‖n
B2 exp(2D′τ) + ‖A‖A1,eD,1

exp(−(D −D′)τ)

≤ C(‖A‖Ãp,eD,1
)nD′/(D+D′)(‖A‖B2)nD/(D+D′),

and

‖An‖Ap,e
D′,1

≤ inf
τ≥1

‖A‖n
B2

( ∑
|k|≤τ

eD′p|k|)1/p + ‖A‖Ap,eD,1
e−(D−D′)τ

≤ C(‖A‖Ãp,eD,1
)nD′/(D+D′)(‖A‖B2)nD/(D+D′).

Combining the above two estimates leads to

(3.30) ‖An‖Ãp,e
D′,1

≤ C(‖A‖Ãp,eD,1
)nD′/(D+D′)(‖A‖B2)nD/(D+D′).
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Therefore for any positive matrix A ∈ Ãp,eD,1 with C1I ≤ A ≤ C2,

‖A−1‖Ãp,e
D′,1

≤ C−1
2

∞∑
n=0

‖Bn‖Ãp,e
D′,1

≤ C
∞∑

n=0

(C2 + ‖A‖Ãp,eD,1

C2

)nD′/(D+D′)(C2 − C1

C2

)nD/(D+D′)

<∞(3.31)

by (3.30), where B = I − C−1
2 A and D′ ∈ (0, D) is chosen so that(C2 + ‖A‖Ãp,eD,1

C2

)D′(C2 − C1

C2

)D

< 1.

By the standard holomorphic calculus ([40]),

(3.32) A† =
∫
C

(
(z̄I −A∗)(zI −A)

)−1(z̄I −A)
dz

z

for any matrix A with A† ∈ B2, where C is a smooth curve on the complex plane that
contains the nonzero spectrum of the operator A. Therefore the fourth conclusion
follows from (3.31) and (3.32). �

To prove Theorem 3.5, we need the following crucial result about the orthogonal
complement of the null space N(T ).

Lemma 3.12. Let α > 0 and u0 ≡ 1 be the trivial weight. Assume that T ∈ Wα
1,u0

and its pseudo-inverse T † belongs to B2. Then there exists δ0 > 0 such that Φ =
{φλ, λ ∈ δ0Zd} is a frame generator of the locally finitely-generated space

(3.33) V2(Φ) :=
{ ∑

λ∈δ0Zd

c(λ)φλ,
∑

λ∈δ0Zd

|c(λ)|2 <∞
}

and

(3.34) N(T )⊥ = V2(Φ),

where

(3.35) φλ(x) =
∫

[−δ0/2,δ0/2]d
KT∗T (λ+ t, x)dt ∈ N(T )⊥, λ ∈ δ0Zd

and KT∗T is the integral kernel of T ∗T .

Proof. By Theorem 2.2 and the assumption on the integral operator T , we have

(3.36) T ∗T ∈ Wα
1,u0

,

(3.37) T ∗Tf = 0 for all f ∈ N(T )

and

(3.38) A‖f‖2 ≤ ‖T ∗Tf‖2 ≤ B‖f‖2 for all f ∈ N(T )⊥

where A and B are positive constants.
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We note that

‖T ∗Tf‖2 ≤
( ∑

λ∈δZd

δ−d
∣∣∣ ∫

[−δ/2,δ/2]d
(T ∗Tf)(λ+ t)dt

∣∣∣2)1/2

+
( ∫

Rd

∣∣∣ ∫
Rd

ωδ(KT∗T )(x, y)|f(y)|dy
∣∣∣2dx)1/2

≤
( ∑

λ∈δZd

δ−d
∣∣∣ ∫

[−δ/2,δ/2]d
(T ∗Tf)(λ+ t)dt

∣∣∣2)1/2

+Cδα−α0‖T ∗T‖Wα
1,u0

‖f‖2 ∀f ∈ L2,(3.39)

where δ ∈ (0, 1). Therefore by (3.36) – (3.39) there exists a sufficiently small
δ0 ∈ (0, 1) such that

1
2
Aδ

d/2
0 ‖f‖2 ≤

( ∑
λ∈δ0Zd

∣∣∣ ∫
[−δ0/2,δ0/2]d

(T ∗Tf)(λ+ t)dt
∣∣∣2)1/2

≤ 2δd/2
0 B‖f‖2

for all f ∈ N(T )⊥, or equivalently

(3.40)
1
2
Aδ

d/2
0 ‖f‖2 ≤

( ∑
λ∈δ0Zd

|〈f, φλ〉|2
)1/2

≤ 2δd/2
0 B‖f‖2

for all f ∈ N(T )⊥. Then the conclusion follows from (3.40) and the fact that
φλ ∈ N(T )⊥ for all λ ∈ δ0Zd. �

Now we start to prove Theorem 3.5.

Proof of Theorem 3.5. Let δ0 and Φ = {φλ}λ∈δ0Zd be as in Lemma 3.12. Define
the auto-correlation matrices AΦ,Φ and ATΦ,TΦ for the frame generators Φ and TΦ
of the space V2(Φ) in (3.33) by

(3.41) AΦ,Φ =
(
〈φλ, φµ〉

)
λ,µ∈δ0Zd

and

(3.42) ATΦ,TΦ =
(
〈Tφλ, Tφµ〉

)
λ,µ∈δ0Zd ,

and let

(3.43) H := AΦ,Φ`
2(δ0Zd) =

{
(〈f, φλ〉)λ∈δ0Zd , f ∈ V2(Φ)

}
.

Then by (3.41) – (3.43) and Theorem 2.2

(3.44) AΦ,Φc = ATΦ,TΦc = 0

for all c ∈ H⊥,

(3.45)

 ‖c‖2
`2 = 〈SΦf, f〉

〈AΦ,Φc, c〉 = ‖SΦf‖2
2

〈ATΦ,TΦc, c〉 = ‖TSΦf‖2
2

for all c = (〈f, φλ〉)λ∈δ0Zd ∈ H, where SΦf =
∑

λ∈δ0Zd〈f, φλ〉φλ is the frame
operator on V2(Φ).

For 1 ≤ p ≤ ∞ and 0 ≤ α,D0 <∞, we define

(3.46) W̃α
p,eD0,1

:= Wα
p,eD0,1

∩Wα
1,eD0,1

,
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and

(3.47) ‖T‖W̃α
p,eD0,1

= max
(
‖T‖Wα

p,eD0,1
, ‖T‖Wα

1,eD0,1

)
for T ∈ W̃α

p,eD0,1
.

Applying the similar argument used in the proof of Theorem 2.2 and recalling the
fact that

(3.48) eD0,1(x, y) ≤ eD0,1(x, z)eD0,1(z, y) for all x, y, z ∈ Rd and D0 ≥ 0,

we have

(3.49) ‖T1T2‖W̃α
p,eD0,1

≤ C‖T1‖W̃α
p,eD0,1

‖T2‖W̃α
p,eD0,1

for all T1, T2 ∈ W̃α
p,eD0,1

,

and

(3.50) ‖T ∗3 ‖W̃α
p,eD0,1

= ‖T3‖W̃α
p,eD0,1

for all T3 ∈ W̃α
p,eD0,1

.

Also we notice that

(3.51) Wα
p,eD̃0,1

⊂ W̃α
p,eD0,1

⊂ Wα
p,eD0,1

for any 1 ≤ p ≤ ∞ and 0 ≤ D0 < D̃0. Therefore

(3.52) T ∈ W̃α
p,eD̃,1

by (3.51) and the assumption on the operator T , where D̃ = D/2.

For any λ, µ ∈ δ0Zd, we have

〈φλ, φµ〉 =
∫

δ0[−1/2,1/2]d

∫
δ0[−1/2,1/2]d

K̃2(λ+ t, µ+ s)dtds

and

〈Tφλ, Tφµ〉 =
∫

δ0[−1/2,1/2]d

∫
δ0[−1/2,1/2]d

K̃3(λ+ t, µ+ s)dtds

where K̃2 and K̃3 are the kernel of the integral operators (T ∗T )2 and (T ∗T )3 in
W̃α

p,eD̃,1
respectively. The above two expressions together with (3.49), (3.50) and

(3.52) implies that the correlation matrices AΦ,Φ and ATΦ,TΦ belong to the Schur
class Ãp,eD̃,1

(δ0Zd) of infinite matrices, i.e.,

(3.53) AΦ,Φ, ATΦ,TΦ ∈ Ãp,eD̃,1
(δ0Zd).

By (3.40), (3.44), (3.45), (3.53), and Lemma 3.11, there exists D′ ∈ (0, D/2)
such that the pseudo-inverses A†Φ,Φ and A†TΦ,TΦ of the auto-correlation matrices
AΦ,Φ and ATΦ,TΦ belong to Ãp,eD′,1(δ0Zd), that is,

(3.54) A†Φ,Φ := (b(λ, µ))λ,µ∈δ0Zd ∈ Ãp,eD′,1(δ0Zd)

and

(3.55) A†TΦ,TΦ := (t(λ, µ))λ,µ∈δ0Zd ∈ Ãp,eD′,1(δ0Zd).

Define

(3.56) P (x, y) =
∑

λ,µ∈δ0Zd

b(λ, µ)φλ(x)φµ(y)
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and

(3.57) Pf(x) =
∫

Rd

P (x, y)f(y)dy ∀ f ∈ L2.

Then

Pf(x) =
∑

λ,µ∈δ0Zd

b(λ, µ)φλ(x)
∫

[−δ0/2,δ0/2]d
Sf(µ+ t)dt = 0

for all f ∈ N(T ) by (3.37), and

Pf(x) =
∑

λ,µ,µ′∈δ0Zd

b(λ, µ)φλ(x)〈φµ, φµ′〉c(µ′)

=
∑

λ∈δ0Zd

c(λ)φλ =: f ∀ f ∈ N(T )⊥ = V2(Φ)

by (3.34), (3.43) – (3.45), (3.54), and Lemma 3.12, where c = (c(λ))λ∈δ0Zd ∈ H.
Thus P is the projection operator onto N(T )⊥, that is,

(3.58) Pf = f if f ∈ N(T )⊥, and Pf = 0 if f ∈ N(T ).

Similarly we define

(3.59) Q(x, y) =
∑

λ,µ∈δ0Zd

t(λ, µ)φλ(x)φµ(y)

and

(3.60) Qf(x) =
∫

Rd

Q(x, y)f(y)dy ∀ f ∈ L2.

Clearly we have

(3.61) QP = PQ = Q.

Also for any λ ∈ δ0Zd,

T ∗TQφλ =
∑

µ1,µ2∈δ0Zd

t(µ1, µ2)〈φµ2 , φλ〉T ∗Tφµ1

=
∑

µ1,µ2,µ3,µ4∈δ0Zd

t(µ1, µ2)〈φµ2 , φλ〉〈Tφµ1 , Tφµ3〉b(µ3, µ4)φµ4

= φλ,(3.62)

where we have used (3.58) to obtain the second equality. Therefore Q is the pseudo-
inverse of the operator T ∗T by (3.61) and (3.62).
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Now we prove that Q ∈ W̃α
p,eD′,1

. Let ϕ(x) = χ[−δ0/2,δ0/2]d(x) and K be the
kernel of the integral operator T ∗T . By (3.49) and (3.55), we obtain∥∥∂k

x∂
l
yQ(x, y)

∥∥
W̃0

p,e
D′,1

=
∥∥∥∫

[−δ0/2,δ0/2]d

∫
[−δ0/2,δ0/2]d

∑
λ,µ∈δ0Zd

t(λ, µ)

×(∂k
xK)(x, λ+ t)(∂l

yK)(µ+ t′, y)dtdt′
∥∥∥
W̃0

p,e
D′,1

≤ C
∥∥∥ ∑

λ,µ∈δ0Zd

|t(λ, µ)|ϕ(x− λ)ϕ(y − µ)
∥∥∥
W̃0

p,e
D′,1

×‖(∂k
xK)(x, y)‖W̃0

p,e
D′,1

‖(∂l
yK)(x, y)‖W̃0

p,e
D′,1

≤ C‖A†TΦ,TΦ‖Ãp,e
D′,1

(δ0Zd)‖T‖
4
W̃α

p,e
D′,1

,

and ∥∥ωδ(∂k
x∂

l
xQ)(x, y)

∥∥
W̃0

p,e
D′,1

≤
∥∥∥∫

[−δ0/2,δ0/2]d

∫
[−δ0/2,δ0/2]d

∑
λ,µ∈δ0Zd

|t(λ, µ)|

×ωδ(∂k
xK)(x, λ+ t)|∂l

yK(y, µ+ t′)|dtdt′
∥∥∥
W̃0

p,e
D′,1

+
∥∥∥∫

[−δ0/2,δ0/2]d

∫
[−δ0/2,δ0/2]d

∑
λ,µ∈δ0Zd

|t(λ, µ)|

×|∂k
xK(x, λ+ t)||ωδ(∂l

yK)(y, µ+ t′)|dtdt′
∥∥∥
W̃0

p,e
D′,1

+
∥∥∥∫

[−δ0/2,δ0/2]d

∫
[−δ0/2,δ0/2]d

∑
λ,µ∈δ0Zd

|t(λ, µ)|

×|ωδ(∂k
xK)(x, λ+ t)||ωδ(∂l

yK)(y, µ+ t′)|dtdt′
∥∥∥
W̃0

p,e
D′,1

≤ C
∥∥∥ ∑

λ,µ∈δ0Zd

|t(λ, µ)|ϕ(x− λ)ϕ(y − µ)
∥∥∥
W̃0

p,e
D′,1

×
(
‖ωδ(∂k

xK)(x, y)‖W̃0
p,e

D′,1
‖(∂l

yK)(x, y)‖W̃0
p,e

D′,1

+‖(∂k
xK)(x, y)‖W̃0

p,e
D′,1

‖ωδ(∂l
yK)(x, y)‖W̃0

p,e
D′,1

‖ωδ(∂k
xK)(x, y)‖W̃0

p,e
D′,1

‖ωδ(∂l
yK)(x, y)‖W̃0

p,e
D′,1

)
≤ Cδα−α0‖A†TΦ,TΦ‖Ãp,e

D′,1
‖T‖4

W̃α
p,e

D′,1
∀ δ ∈ (0, 1),

where k, l ∈ Zd with |k|+ |l| < α, and α0 is the largest integer strictly smaller than
α. The above two estimates prove the conclusion that the pseudo-inverse of (T ∗T )†

is an integral operator in W̃α
p,eD′,1

. This together with T † = (T ∗T )†T ∗ and (3.49)
and (3.50), (3.51) completes the proof. �
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4. Wiener’s Lemma for Localized Integral Operators: Part II

In this section, we introduce the second class of localized integral operators with
the Kurbatov class as its model, and establish the Wiener’s lemma for that class of
localized integral operators (Theorems 4.1 and 4.3).

Take α ≥ 0, 1 ≤ p ≤ ∞ and a weight u on Rd × Rd, and let α0 be the largest
integer strictly smaller than α. The second class Cα

p,u of localized integral operators

(4.1) Tf(x) =
∫

Rd

KT (x, y)f(y)dy, f ∈ L2

to be discussed in this paper is defined as follows:

(4.2) Cα
p,u :=

{
T, ‖T‖Cα

p,u
:= ‖KT ‖Cα

p,u
<∞

}
,

where for a kernel function K on Rd × Rd

(4.3) G(K)(x) = sup
y∈Rd

|K(y, x+ y)|

and

‖K‖Cα
p,u

=



‖G(Ku)‖p if α = 0,∑
k,l∈Zd,|k|+|l|<α

‖∂k
x∂

l
yK(x, y)‖C0

p,u

+
∑

k,l∈Zd,|k|+|l|<α

sup
0<δ≤1

δ−α+α0‖ωδ(∂k
x∂

l
yK(x, y))‖C0

p,u

if α > 0.

For α = 0 and the polynomial weight u(x, y) = (1+ |x−y|)γ with γ ≥ 0, we see that
T ∈ Cα

p,u if its kernel KT (x, y) is enveloped by the kernel K0(x − y) of a localized
convolution operator,

|KT (x, y)| ≤ K0(x− y), x, y ∈ Rd

for some function K0 with ‖K0(·)(1 + | · |)γ‖p < ∞ (see [20, 37, 38] for p = 1 and
γ = 0). Clearly for any 1 ≤ p ≤ ∞, regularity exponent α ≥ 0 and weight u, the
class Cα

p,u of integral operators just defined is a subset of the class Wα
p,u of integral

operator introduced in Section 2,

(4.4) Cα
p,u ⊂ Wα

p,u,

but the converse is not true. For instance, the integral operator with kernelK(x+y)
belongs to Wα

1,u0
but not to Cα

1,u0
where K is a nonzero compactly supported C∞

function and u0 ≡ 1 is the trivial weight.

To state our results for localized integral operators in Cα
p,u, we recall a technical

condition on the weight u ([46]). We say that a weight u is strongly p-admissible
if there exists another weight v, two positive constants C ∈ (0,∞) and θ ∈ (0, 1)
such that (2.9) holds and

inf
τ≥1

∥∥G(v)
∥∥

L1(B(0,τ))
+ t

∥∥G(vu−1)
∥∥

Lp′ (Rd\B(0,τ))
≤ Ctθ(4.5)

for all t ≥ 1 ([46]). The model examples of strongly p-admissible weights are poly-
nomial weights uγ(x, y) := (1+|x−y|)γ with γ > d(p−1)/p, and the subexponential
weights eD,δ(x, y) = exp(D|x− y|δ) with D > 0 and 0 < δ < 1. Clearly a strongly
p-admissible weight is p-admissible. I believe that those two concepts for weights
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are different, but I do not have any particular example of p-admissible weight that
is not strongly p-admissible.

Theorem 4.1. Let α > 0, 1 ≤ p ≤ ∞, u be a strongly p-admissible weight on
Rd × Rd, and Cα

p,u be as in (4.2). Assume that T ∈ Cα
p,u, 0 6= λ ∈ IC and λI + T

has bounded inverse on B2. Then (λI + T )−1 = λ−1I + T̃ for some T̃ ∈ Cα
p,u, or

equivalently (λI + T )−1T ∈ Cα
p,u.

Using the standard holomorphic calculus ([40]), we have the Wiener’s lemma for
the class Cα

p,u of localized integral operators.

Corollary 4.2. Let α > 0, 1 ≤ p ≤ ∞, u be a strongly p-admissible weight on
Rd × Rd, and T ∈ Cα

p,u. Then the following statements hold.

(i) If T has bounded pseudo-inverse T †, then T † ∈ Cα
p,u.

(ii) If g is analytic on a neighborhood of the spectrum of the operator T with
g(0) = 0, then g(T ) ∈ Cα

p,u.

The exponential weight u(x, y) = exp(D|x − y|) are not strong p-admissible
weights. For localized integral operators T ∈ Cα

p,u with exponential weights, we
have

Theorem 4.3. Let α,D > 0, eD,1(x, y) = exp(D|x−y|), and Cα
p,eD,1

be as in (4.2).
Assume that T ∈ Cα

p,eD,1
and T has bounded pseudo-inverse T †. Then T † ∈ Cα

p,eD′,1

for some D′ ∈ (0, D).

4.1. Proof of Theorem 4.1. We can prove Theorem 4.1 by following the proof
of Theorem 3.1 line by line, except using Proposition 4.4 below instead of Theorem
2.2 and Lemma 3.10. We omit the details of the proof here.

Proposition 4.4. Let α, β ≥ 0, 1 ≤ p, q ≤ ∞ and u be a weight on Rd×Rd. Then
the following statements are true.

(i) (Cα
p,u)∗ = Cα

p,u.
(ii) If β ≥ α then Cβ

p,u ⊂ Cα
p,u.

(iii) If
∥∥G(vu−1)

∥∥
pq/(p−q)

<∞ and 1 ≤ q ≤ p ≤ ∞ then Cα
p,u ⊂ Cα

q,v.
(iv) If T ∈ Cα

p,u and ‖G(u−1)‖p/(p−1) < ∞, then T is a bounded operator on
Lq, 1 ≤ q ≤ ∞, but T does not have bounded inverse on Lq, 1 ≤ q <∞.

(v) If T1, T2 ∈ Cα
p,u then T1T2 ∈ Cα

p,u.
(vi) If T1, T3 ∈ Cα

p,u and T2 ∈ C0
p,u then T1T2T3 ∈ Cα

p,u.
(vii) If α > 0 then there exists C ∈ (0,∞) and θ̃ ∈ (0, 1) such that

(4.6) ‖T 2‖C0
p,u

≤ C‖T‖1+θ̃
Cα

p,u
‖T‖1−θ̃

B2 for all T ∈ Cα
p,u.

Proof. We will use the similar argument to the one in the proofs of Theorem 2.2
and Lemma 3.10, except when proving the paracompact property (vii). We include
a complete proof for the convenience.

(i): The first conclusion holds because of ‖T ∗‖Cα
p,u

= ‖T‖Cα
p,u

for all T ∈ Cα
p,u.

(ii): The second conclusion is true since ‖T‖Cα
p,u

≤ ‖T‖Cβ
p,u

for all T ∈ Cβ
p,u with

β ≥ α.
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(iii): The third conclusions follows from the fact that

(4.7) ‖T‖Cα
q,v

≤
∥∥G(vu−1)

∥∥
pq/(p−q)

‖T‖Cα
p,u

for all T ∈ Cα
p,u.

(iv): The fourth conclusion can be easily deducted from (4.4) and the fourth
conclusion of Theorem 2.2.

(v): Take two integral operators T1, T2 ∈ Cα
p,u. From (2.1) – (2.3), (2.9), (2.19)

and (2.20) it follows that ‖T1T2‖Cα
p,u

≤ C‖T1‖Cα
p,u
‖T2‖Cα

1,v
+ C‖T1‖Cα

1,v
‖T2‖Cα

p,u

where v is the weight in (2.19). This together with (4.7) implies that

(4.8) ‖T1T2‖Cα
p,u

≤ C‖G(vu−1)‖p/(p−1)‖T1‖Cα
p,u
‖T2‖Cα

p,u
,

and hence completes the proof of the fifth conclusion.
(vi): Take T1, T3 ∈ Cα

p,u and T2 ∈ C0
p,u. By (3.9), (3.10) and (4.8), we have

(4.9) ‖T1T2T3‖Cα
p,u

≤ C‖T1‖Cα
p,u
‖T2‖C0

p,u
‖T3‖Cα

p,u
.

The conclusion (vi) is then proved.
(vii): Take an integral operator T ∈ Cα

p,u and let K be its kernel. Then by (2.1)
– (2.3), (2.9), (3.14) and (4.5), we obtain

‖T 2‖C0
p,u

=
∥∥∥ sup

x∈Rd

∣∣∣ ∫
Rd

K(x, x+ z)K(x+ z, x+ ·)dz
∣∣∣u(x, x+ ·)

∥∥∥
p

≤ C inf
τ≥1

{∥∥∥ sup
x∈Rd

∫
|z−·|≤τ

G(Ku)(z)
{
|(Kv)(x+ z, x+ ·)|

+|(Kv)(x, x+ · − z)|
}
dz

∥∥∥
p

+C
∥∥∥∫

|z−·|≥τ

G(Ku)(z)G(Kv)(· − z)dz
∥∥∥

p

}
≤ C inf

τ≥1
inf

0<δ0≤1

{∥∥∥∫
|z−·|≤τ

G(Ku)(z)G(ωδ0(K)v)(· − z)dz
∥∥∥

p

+δ−d
0 ‖T‖B2

∥∥∥∫
|z−·|≤τ

G(Ku)(z)G(v)(· − z)dz
∥∥∥

p

+‖G(Ku)‖p‖G(Kv)‖L1(Rd\B(0,τ))

}
≤ C inf

τ≥1
inf

0<δ0≤1

{
δα−α0
0 ‖T‖C0

p,u
‖T‖Cα

p,u
‖G(vu−1)‖Lp/(p−1)(B(0,τ))

+δ−d
0 ‖T‖B2‖T‖C0

p,u
‖G(v)‖L1(B(0,τ))

+‖T‖2
C0

p,u
‖G(vu−1)‖Lp/(p−1)(Rd\B(0,τ))

}
≤ C inf

τ≥1

{
‖T‖C0

p,u
‖G(v)‖L1(B(0,τ)) inf

0<δ0≤1

(
δα−α0
0 ‖T‖Cα

p,u
+ δ−d

0 ‖T‖B2

)
+‖T‖2

C0
p,u
‖G(vu−1)‖Lp/(p−1)(Rd\B(0,τ))

}
≤ C‖T‖

α−α0+2d
α−α0+d

Cα
p,u

inf
τ≥1

{
‖T‖

α−α0
α−α0+d

B2 ‖G(v)‖L1(B(0,τ))

+‖T‖
α−α0

α−α0+d

Cα
p,u

‖G(vu−1)‖Lp/(p−1)(Rd\B(0,τ))

}
≤ C‖T‖1+θ̃

Cα
p,u
‖T‖1−θ̃

B2 ,(4.10)
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where v and θ are the weight and the constant associated with the strong p-
admissible weight u, and θ̃ = θ(α−α0)+d

α−α0+d . Therefore the conclusion (vii) follows. �

4.2. Proof of Theorem 4.3. For 1 ≤ p ≤ ∞ and a weight u, we recall the
Sjöstrand class Cp,u(δ0Zd) of infinite matrices

(4.11) Cp,u(δ0Zd) :=
{
A = (A(λ, µ))λ,µ∈δ0Zd , ‖A‖Cp,u(δ0Zd) <∞

}
,

where δ0 > 0 and

(4.12) ‖A‖Cp,u(δ0Zd) :=
∥∥∥(

sup
λ∈δ0Zd

|A(λ, λ+ µ)|u(λ, λ+ µ)
)

µ∈δ0Zd

∥∥∥
`p

(see [41] for p = 1, [34] for p = ∞, and [46] for 1 ≤ p ≤ ∞). Define

(4.13) C̃p,u(δ0Zd) = Cp,u(δ0Zd) ∩ C1,u(δ0Zd)

and

(4.14) ‖A‖C̃p,u(δ0Zd) = max
(
‖A‖Cp,u(δ0Zd), ‖A‖C1,u(δ0Zd)

)
for A ∈ C̃p,u(δ0Zd).

For the Sjöstrand class Cp,u(δ0Zd) with exponential weight, we have the following
result.

Lemma 4.5. Let 1 ≤ p ≤ ∞ and D, δ0 > 0. Then the following statements are
true.

(i) A ∈ C̃p,eD,1(δ0Zd) if and only if A∗ ∈ C̃p,eD,1(δ0Zd).
(iii) If A,B ∈ C̃p,eD,1(δ0Zd), then AB ∈ C̃p,eD,1(δ0Zd).
(iv) If A ∈ C̃p,eD,1(δ0Zd) and the pseudo-inverse A† of the operator A is a

bounded operator on `2, then there exists a positive constant D′ ∈ (0, D)
such that A† ∈ C̃p,eD′,1(δ0Zd).

Proof. The conclusions can be proved by following the proof of Lemma 3.11 step
by step, except replacing Ãp,eD,1(δ0Zd) by Cp,eD,1(δ0Zd). We omit the details of the
proof here. �

Now we start to prove Theorem 4.3.

Proof of Theorem 4.3. The conclusion can be proved by copying the proof of The-
orem 3.5 line by line, except replacing Ãp,eD,1(δ0Zd) by C̃p,eD,1(δ0Zd), Cα

p,u by Wα
p,u,

and using Lemma 4.5 instead of Lemma 3.11. �
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[16] E. Cordero and K. Gröchenig, Localization of frames II, Appl. Comput. Harmonic Anal.,

17(2004), 29–47.
[17] I. Daubechies, Ten Lectures on Wavelets, CBMF Conference Series in Applied Mathematics,

61, SIAM, Philadelphia, 1992.

[18] C. de Boor, A bound on the L∞-norm of the L2-approximation by splines in terms of a
global mesh ratio, Math. Comp., 30(1976), 687–694.

[19] S. Demko, Inverse of band matrices and local convergences of spline projections, SIAM J.

Numer. Anal., 14(1977), 616–619.
[20] B. Farrell and T. Strohmer, Wiener’s lemma for the Heisenberg group and a class of pseu-

dodifferential operators, Preprint 2006.
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[26] K. Gröchenig, Localization of frames, Banach frames, and the invertibility of the frame

operator, J. Fourier Anal. Appl., 10(2004), 105–132.
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