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Abstract. Signals with finite rate of innovation are those signals hav-
ing finite degrees of freedom per unit of time that specify them. In
this paper, we introduce a prototypical space Vq(Φ, Λ) modelling signals
with finite rate of innovation, such as stream of (different) pulses found
in GPS applications, cellular radio and ultra wide-band communication.
In particular, the space Vq(Φ, Λ) is generated by a family of well-localized
molecules Φ of similar size located on a relatively-separated set Λ using
`q coefficients, and hence is locally finitely-generated. Moreover that
space Vq(Φ, Λ) includes finitely-generated shift-invariant spaces, spaces
of non-uniform splines, and the twisted shift-invariant space in Gabor
(Wilson) system as its special cases. Use the well-localization prop-
erty of the generator Φ, we show that if the generator Φ is a frame
for the space V2(Φ, Λ) and has polynomial (subexponential) decay, then
its canonical dual (tight) frame has the same polynomial (subexponen-
tial) decay. We apply the above result about the canonical dual frame
to the study of the Banach frame property of the generator Φ for the
space Vq(Φ, Λ) with q 6= 2, and of the polynomial (subexponential) de-
cay property of the mask associated with a refinable function that has
polynomial (subexponential) decay.
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1. Introduction

A signal that has finite degree of freedom per unit of time, the number of
samples per unit of time that specify it, is called to be a signal with finite
rate of innovation ([60]). In this paper, we introduce a prototypical space
generated by a family of separated-located molecules of similar size for mod-
elling (periodic, discrete) signals with finite rate of innovation, and study
the (Banach) frame property of that generating family for that prototypi-
cal space. The non-uniform sampling and stable reconstruction problem for
that prototypical space will be discussed in the subsequent paper [58].

Date: April 14, 2006.
Key words and phrases. Frame, Banach frame, localized frame, signals with finite rate

of innovation, space of homogenous type, matrix algebra, refinable function, wavelets.

1



2 QIYU SUN

Our prototypical space Vq(Φ,Λ), for modelling time signals with finite
rate of innovation, is given by

(1.1) Vq(Φ,Λ) :=
{ ∑

λ∈Λ

c(λ)φλ, (c(λ))λ∈Λ ∈ `q(Λ)
}
,

where Λ is a relatively-separated subset of R, `q is the space of all q-
summable sequences on Λ, and the generator Φ := {φλ, λ ∈ Λ} is enveloped
by a function h in a Wiener amalgam space Wq(Lp,u),

(1.2) |φλ(x)| ≤ h(x− λ) for all λ ∈ Λ,

see Example 2.10 for details, and see also (2.13) for another convenient well-
localization assumption on the generator Φ considered in the paper.

Given any function f =
∑

λ∈Λ c(λ)φλ ∈ Vq(Φ,Λ), we see from the def-
inition of the space Vq(Φ,Λ) that, on any unit interval t + [−1/2, 1/2) of
time, it is determined by the coefficients c(λ) with λ ∈ t + [−1/2, 1/2).
Recalling that the total number of sampling locations λ ∈ Λ on each unit
interval t+[−1/2, 1/2) is bounded by the upper boundD(Λ) of the relatively-
separated subset Λ (see (2.4) for the definition), we then conclude that any
function in the space Vq(Φ,Λ) has finite rate of innovation.

The space Vq(Φ,Λ) is suitable for modelling (i) band-limited signals ([9,
34, 37]), (ii) signals in a shift-invariant space ([1, 3]), (iii) signals in the time-
frequency plane ([28]), (iv) non-uniform splines ([53, 60]), and (v) diffusion
wavelets ([20]), see Example 3.1 for details. More importantly, the space
Vq(Φ,Λ) is very convenient for modelling most of known signals with finite
rate of innovations in [22, 33, 40, 44, 46, 47, 60], for instance, (vi) stream of
pulses

∑
l alp(t−tl), found in example in GPS applications and cellular radio,

where p(t) is the antenna transmit pulse shape; (vii) stream of different
pulses

∑
l alpl(t − tl) found in modelling ultra wide-band, where different

incoming paths are subjected to different frequency-selective attentuations;
(viii) bandlimited signals with additive shot noise

∑
k∈Z c(k)sinc(t − k) +∑

l d(l)δ(t − tl); (ix) sum of bandlimited signals and non-uniform spline
signals, convenient for modelling electrocardiogram signals.

In this paper, we consider the (Banach) frame property of the well-
localized generator Φ for the space Vq(Φ,Λ). The principal results of this
paper are Theorems 4.1 and 4.5, where it is shown that if Φ is a frame
(resp. Riesz basis) for the space V2(Φ,Λ) ⊂ L2 and Φ is enveloped by
a function h in the Wiener amalgam space Wq(Lp,u) for the polynomial
weight u(x) = (1 + |x|)α with α > d(1− 1/p) or the subexponential weight
u(x) = exp(D|x|δ) with D > 0 and δ ∈ (0, 1), then its canonical dual frame
(resp. its dual Riesz basis) S−1Φ is enveloped by another function h̃ in the
same Wiener amalgam space. Unlike in the study of frame and Riesz basis
property for the shift-invariant setting, see Example 3.1 for details of that
setting, the main obstacle to solve the frame (Riesz basis) problem for the
space V2(Φ,Λ) generated by separately-located molecules Φ comes from the
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non-group structure on the molecules, which makes the standard approach
from Fourier analysis inapplicable. Our approach to the above frame prob-
lem is to show that the generator Φ enveloped by a function in a Wiener
amalgam space is self-localized in some matrix algebra of (Schur) Sjöstrand
class, see for instance [4, 24, 31, 32, 35, 56, 57] and references therein for
other numerous applications of various matrix algebras in numerical analy-
sis, wavelet theory, frame theory, and sampling theory.

The paper is organized as follow. In Section 2, we recall some basic
properties for spaces of homogenous type, some basic concept related to
(Banach) frames and basis, and we introduce families of separately-located
molecules of size one on spaces of homogenous type. Using the families
of separately-located molecules of size one in Section 2 as well-localized
building blocks, we generate a prototypical space Vq(Φ,Λ) in Section 3 for
modelling (periodic, discrete) signals with finite rate of innovation, band-
limited signals, signals in shift-invariant spaces, signals in time-frequency
domain, non-uniform splines, and diffusion wavelets. We show in Section 3
that the space Vq(Φ,Λ) is a subspace of Lq when the family Φ of building
blocks are separately-located and appropriately localized, see Theorem 3.2
for details. In Section 4, we consider the canonical dual frame, canonical
tight frame, dual Riesz basis, orthonormal basis for the space V2(Φ,Λ), and
establish the principal results of this paper that if Φ is a frame (Riesz basis)
of V2(Φ,Λ) and has certain polynomial (subexponential) decay, then its
canonical dual frame (dual Riesz basis), canonical tight frame (orthonormal
basis) have the same polynomial (subexponential) decay, see Theorems 4.1
and 4.5 for details. The corollaries of the above principal results for special
shift-invariant setting, (periodic) finite-innovation-rate setting, and Gabor
(Wilson) frame setting are mostly new, see Corollaries 4.3 and 4.6 – 4.8
for details. In Section 5, we apply Theorems 4.1 and 4.5 to show that if
the generator Φ is a frame for V2(Φ,Λ) and is enveloped by a function in a
Wiener amalgam space then it is Banach frame for the space Vq(Φ,Λ) with
q 6= 2, see Theorem 5.1. Finally in last section, we apply Theorems 4.1
and 4.5 to establish some connection between a globally-supported refinable
function and its mask, particularly, we prove in Theorem 6.1 that if the
generator Φ is a Riesz basis for V2(Φ,Λ), has polynomial decay at infinity,
and satisfies a refinement equation, then its mask has the same polynomial
decay.

In this paper, the capital letter C, if unspecified, denotes an absolute
constant which may be different at different occurrences.

2. Preliminary

2.1. Spaces of homogenous type. Let X be a set. A function ρ : X ×
X 7−→ [0,∞) is called a quasi-metric if (i) ρ(x, y) ≥ 0 for every x, y ∈ X,
ρ(x, x) = 0 for all x ∈ X, and #{y ∈ X : ρ(x, y) = 0} ≤ D0 for all x ∈ X;
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(ii) ρ(x, y) = ρ(y, x) for all x, y ∈ X; and (iii) ρ(x, y) ≤ L(ρ(x, z) + ρ(z, y))
for all x, y, z ∈ X, where D0 and L are positive constants, and #(E) denotes
the cardinality of a set E. In the standard definition of a quasi-metric ρ, the
set {y ∈ X : ρ(x, y) = 0} is assumed to be {x} for all x ∈ X instead ([21]).

The pair (X, ρ) is called a quasi-metric space.

A quasi-metric space (X, ρ) with Borel measure µ, to be denoted by
(X, ρ, µ), is said to be a space of homogenous type if µ is a non-negative
Borel measure that satisfies the doubling condition:

(2.1) 0 < µ(B(x, τ)) ≤ D1µ(B(x, τ/2)) <∞ for all τ > 0 and x ∈ X,

where D1 is a positive constant and B(x, τ) := {y ∈ X : ρ(x, y) < τ} is the
open ball of radius τ around x ([21, 41, 42]).

Remark 2.1. We say that a Borel measure µ on the space of homogenous
type satisfies uniform boundedness conditions if

(2.2) D2 ≤ µ(B(x, 1)) ≤ D3 for all x ∈ X

where D2, D3 are positive constants. For any space of homogenous type
(X, ρ, µ), it is known that an equivalent quasi-metric ρ̃ to the quasi-metric
ρ, in the sense that quasi-metric spaces (X, ρ) and (X, ρ̃) have the same
topology, such that the uniform boundedness condition is satisfied ([41, 42]).
So in this paper, we always assume that the Borel measure µ for a space of
homogenous type (X, ρ, µ) satisfies the uniform boundedness condition. The
uniform boundedness condition will be used later to establish the connection
between a space of homogenous type and its discretized subsets, such as
relatively-separated subsets or lattices, see, for instance, Proposition 2.7,
Remark 2.8, and Theorem 2.11.

Example 2.2. Examples of spaces of homogeneous type include, for in-
stance, (i) Euclidean spaces of any dimension with isotropic or anisotropic
metrics induced by positive-definite bilinear forms (see e.g. [8, 58]); (ii)
the time-frequency plane Rd × Rd with the quasi-metric ρG defined by
ρG(x, y) = ming1,g2∈G |g1x − g2y| for x, y ∈ Rd × Rd, where G is a finite
subgroup of the group GL2d of all nonsingular (2d)× (2d) matrices (see e.g.
[29]); and (iii) compact Riemannian manifolds of bounded curvature, with
respect to geodesic metric, or also with respect to metrics induced by certain
classes of vector fields (see e.g. [20, 49]). Our model examples of spaces of
homogenous type in our considering signals with finite rate of innovation
are:

(i) Euclidean space Rd with standard Euclidean metric |·| and Lebesgue
measure µ; and

(ii) the sphere Sd ⊂ Rd+1 with dilated Euclidean metric ρδ and dilated
Lebesgue measure µδ on Sd, that is, ρδ(x, y) = δ|x−y|, x, y ∈ Sd and
µδ = δ−dm0 where 0 < δ ≤ 1, and |·| and m0 are standard Euclidean
metric and Lebesgue measure on Sd. For this model example, one



FRAMES IN SPACES WITH FINITE RATE OF INNOVATION 5

may verify that the constants L and Di, 0 ≤ i ≤ 3, in the definition
of a quasi-metric and in the doubling and uniform boundedness con-
ditions for a Borel measure are bounded by some constant C that is
independent of the parameter δ ∈ (0, 1].

2.2. Relatively-separated subsets and lattices. Let (X, ρ) be a quasi-
metric space. A discrete subset Λ of X is said to be a lattice if there exists
a positive constant D4 such that

(2.3) 1 ≤
∑
λ∈Λ

χB(λ,1)(x) ≤ D4 for all x ∈ X

([20]); and to be a relatively-separated subset if there exists a positive con-
stant D(Λ) such that

(2.4)
∑
λ∈Λ

χ
B(λ,1)

(x) ≤ D(Λ) for all x ∈ X

([1, 3]). Relatively-separated subsets of a space of homogenous type will be
used as the set of location of the molecules, see the Subsection 2.4, while the
lattice is used to define separately-located molecules of size one, see Remarks
2.3 and 2.8 below.

Remark 2.3. A quasi-metric space (X, ρ) is said to be uniformly discretiz-
able if there exists a lattice. Given a space of homogenous type (X, ρ, µ),
if it is a separable topological space, one may easily verify that it is uni-
formly discretizable. So, in this paper, we always assume that a space of
homogenous type is uniformly discretizable.

For a relatively-separated subset Λ of a space of homogenous type (X, ρ, µ),
the pair (Λ, ρ) is a quasi-metric space. The natural counting measure µc on
(Λ, ρ) satisfies uniform boundedness condition because

1 ≤ µc{λ ∈ Λ : ρ(λ, λ′) < 1} =
∑
λ∈Λ

χ
B(λ,1)

(λ′) ≤ D(Λ) for all λ′ ∈ Λ

by (2.4). But the counting measure µc does not satisfy the doubling condi-
tion in general. For example, the discrete set Zα := {2nα : 0 ≤ n ∈ Z}, α >
1, is a relatively-separated subset of the real line R with standard norm, and
the counting measure on Zα does not satisfy the doubling condition, since

µc(B(2nα, 2nα−1))
µc(B(2nα, 2nα))

→ 0 as n→∞.

Therefore for a relatively-separated subset Λ, (Λ, ρ, µc) is not always a space
of homogenous type, while, on the other hand, it can be verified that, for a
lattice Λ, the space (Λ, ρ, µc) is a space of homogenous type.

Example 2.4. (Example 2.2 first revisited) The set Λ0 := {k + εk : k ∈
Zd, εk ∈ [−1/2, 1/2)d} used in the study of nonharmonic analysis ([61]) is
a typical example of relatively-separated subsets of the space of homoge-
nous type (Rd, | · |,m). Similarly, one may verify that Λδ := {k/|k| : k ∈
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δZd+1, ||k|−1| ≤ dδ} is a relatively-separated subset of the space of homoge-
nous type (Sd, ρδ, µδ) and that a positive constant C independent of δ ∈ (0, 1]
can be found such that the constant D(Λδ) in (2.4) satisfies D(Λδ) ≤ C for
all δ ∈ (0, 1].

2.3. (p, r)-admissible weights. Let (X, ρ, µ) be a space of homogenous
type. A weight w in this paper means a positive symmetric continuous
function on X ×X that satisfies

(2.5) 1 ≤ w(x, y) = w(y, x) <∞ for all x, y ∈ X;

(2.6) w(x, x) ≤ D5 for all x ∈ X; and

sup
ρ(x,x̃)+ρ(y,ỹ)≤C0

w(x, y)
w(x̃, ỹ)

≤ D6 for all x, y, x̃, ỹ ∈ X,(2.7)

for any given C0 > 0, where D5 := D5(w) and D6 := D6(C0, w) are positive
constants.

Let 1 ≤ p, r ≤ ∞. We say that a weight w is (p, r)-admissible if there
exist another weight v and two positive constants D7 := D7(w) ∈ (0,∞)
and θ := θ(w) ∈ (0, 1) such that

(2.8) w(x, y) ≤ D7(w(x, z)v(z, y) + v(x, z)w(z, y)) for all x, y, z ∈ X,

(2.9) sup
x∈X

‖(vw−1)(x, ·)‖Lp′ (X) ≤ D7, and

(2.10) inf
τ>0

sup
x∈X

‖v(x, ·)‖Lr′ (B(x,τ)) + t sup
x∈X

‖(vw−1)(x, ·)‖Lp′ (X\B(x,τ)) ≤ D7t
θ

for all t ≥ 1, where p′ = p/(p− 1) and r′ = r/(r − 1).

The technical assumption on the weight w, (p, r)-admissibility, plays very
important role in our principal results, Theorems 4.1 and 4.5. The reader
may refer the following typical examples of (p, r)-admissible weights, poly-
nomial weights wα and subexponential weights eD,δ for simplification:

Example 2.5. (i) The polynomial weight wα(x, y) := (1 + ρ(x, y))α,
where α > d(X, ρ, µ)(1 − 1/p) and the minimal rate of polynomial
growth d(X, ρ, µ) is defined by

(2.11) d(X, ρ, µ) := inf
{
d : sup

x∈X,τ≥1
τ−dµ(B(x, τ)) <∞

}
([32, 57]). We remark that

d(X, ρ, µ) ≤ ln2D1 <∞
because it follows from (2.1) and (2.2) that

µ(B(x, τ)) ≤ Dj
1µ(B(x, 2−jτ)) ≤ D3D

j
1 ≤ D3D1τ

ln2 D1 for all τ ≥ 1,

where j is the unique integer so chosen that 1/2 < 2−jτ ≤ 1.
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(ii) The subexponential weight eD,δ(x, y) := exp(Dρ(x, y)δ), where D ∈
(0,∞) and δ satisfies the following assumption: there exists θ0 ∈
(0, 1) such that

(2.12) ρ(x, y)δ ≤ min(ρ(x, z)δ + θ0ρ(z, y)δ, θ0ρ(x, z) + ρ(z, y)δ)

holds for all x, y, z ∈ X. In this case, one may verify that v(x, y) =
exp(Dθ0ρ(x, y)δ) is a weight that satisfies (2.8) – (2.10). For the
case that the quasi-metric ρ is Hölder continuous, that is, there exist
positive constants β ∈ (0, 1) and C ∈ (0,∞) such that

|ρ(x, y)− ρ(z, y)| ≤ Cρ(x, z)β(ρ(x, y) + ρ(z, y))1−β

holds for all x, y, z ∈ X ([41, 42]), one may verify that there exists
δ0 ∈ (0, β) such that the equation (2.12) holds for all δ ∈ (0, δ0),
and hence eD,δ are (p, r)-admissible weights for sufficiently small
positive parameter δ. For the case that ρ is a metric, one can prove
that eD,δ are (p, r)-admissible weights for all δ ∈ (0, 1), particularly,
the inequality (2.12) holds for θ0 = 2δ − 1.

Remark 2.6. For the space of homogenous type (X, ρ, µ) having finite vol-
ume, that is, µ(X) < ∞, any weight is (p, r)-admissible. For instance, for
polynomial weight wα(x, y) := (1+ρδ(x, y))α on the unit sphere Sd ⊂ Rd+1

with dilated Euclidean metric ρδ and dilated Lebesgue measure µδ, see Ex-
ample 2.2, the constant D7 in (2.8)– (2.10), to be denoted by D7(α, δ),
can be bounded by an absolute constant C independent of δ ∈ (0, 1] when
α > d(1 − 1/p), while D7(α, δ) tends to infinity as δ tends to zero when
α ≤ d(1 − 1/p), see Remark 4.2 and Corollary 4.7 for the importance of
a upper bound for the constant D7 in (2.8)– (2.10) that is independent of
δ ∈ (0, 1].

In the following result, which will be used later in the proof of Theorem
4.1, we show that the restriction of a (p, r)-admissible weight on a space
of homogenous type to a relatively-separated subset is a (p, r)-admissible
weight on that subset.

Proposition 2.7. Let 1 ≤ p, r ≤ ∞, (X, ρ, µ) be a space of homogenous
type, Λ be a relatively-separated subset of X, and w be a (p, r)-admissible
weight on the space (X, ρ, µ). Then the restriction of the weight w on Λ,
to be denoted by wΛ, is a (p, r)-admissible weight on (Λ, ρ, µc). Moreover,
the constants D5(w), D6(C0, w) in (2.7) and θ(w) in (2.10) for w can be
used as the corresponding constants D5(wΛ), D6(C0, wΛ) and θ(wΛ) for wΛ

respectively, and the constant D7(wΛ) in (2.8) and (2.10) can be chosen to
be dependent only on the constant D7(w) in (2.8) and (2.10) for w, the
constants D5(w) in (2.6) for w, and D6(C0, w) in (2.7) for w, the constant
D(Λ) in (2.4), and the constants L,Di, 0 ≤ i ≤ 3, in the definition of the
space of homogenous type (X, ρ, µ).

We leave the proof of the above proposition to the reader.
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2.4. Separately-located molecules with size one. Let 1 ≤ p, q ≤ ∞, w
be a weight, (X, ρ, µ) be a space of homogenous type, and Λ be a relatively-
separated subset of the space X. We denote the set of all Φ := {φλ, λ ∈ Λ}
with finite ‖Φ‖q,p,w by Bq,p,w(Λ), or Bq,p,w for brevity,

(2.13) Bq,p,w(Λ) := {Φ : ‖Φ‖q,p,w <∞},

and the unit ball of Bq,p,w(Λ) by B1
q,p,w(Λ),

(2.14) B1
q,p,w(Λ) := {Φ : ‖Φ‖q,p,w ≤ 1},

where

‖Φ‖q,p,w := sup
λ∈Λ

∥∥‖φλ(·)w(λ, ·)‖Lq(B(x,1))

∥∥
Lp(X)

+ sup
x∈X

∥∥(
‖φλ(·)w(λ, ·)‖Lq(B(x,1))

)
λ∈Λ

∥∥
`p(Λ)

,(2.15)

and ‖ · ‖Lq(K) denotes the usual Lq norm on Lq(K), the space of all q-
integrable functions on a measurable set K. Elements in Bq,p,w(Λ) will be
used as building blocks to generate a space suitable for modelling signals
with finite rate of innovation, see the next section for details. In Remark
2.10 below, we provide a model family of separately-located molecules with
similar size convenient for modelling signals with finite rate of innovation.

Remark 2.8. Let 1 ≤ p, q ≤ ∞, w be a weight, (X, ρ, µ) be a uniform-
discretizable space of homogenous type,X0 and Λ be a lattice and a relatively-
separated subset of the space X respectively. We define ‖Φ‖q,p,w,X0 for
Φ := {φλ, λ ∈ Λ}, a discretized correspondence of ‖Φ‖q,p,w, by

‖Φ‖q,p,w,X0 := sup
λ∈Λ

∥∥(
‖φλ(·)w(λ, ·)‖Lq(B(x0,1))

)
x0∈X0

∥∥
`p(X0)

+ sup
x0∈X0

∥∥(
‖φλ(·)w(λ, ·)‖Lq(B(x0,1))

)
λ∈Λ

∥∥
`p(Λ)

.(2.16)

One may verify that there exist positive constants A and B such that

(2.17) A‖Φ‖q,p,w ≤ ‖Φ‖q,p,w,X0 ≤ B‖Φ‖q,p,w.

Due to the above equivalence between ‖Φ‖q,p,w and ‖Φ‖q,p,w,X0, we may not
distinguish the norm ‖Φ‖q,p,w from its discretized version ‖Φ‖q,p,w,X0.

Remark 2.9. A function f that satisfies the size condition ‖|f(·)|(1 +
ρ(·, y)/d)α‖p ≤ 1 and the vanishing moment condition

∫
f(x)dµ(x) = 0

is called as a molecule of the Hardy space H1 centered around y and with
width d ([21, 48]). Since any φλ ∈ Φ := {φλ : λ ∈ Λ} ∈ B1

p,p,wα
(Λ) satis-

fies the same size condition ‖|φλ(·)|(1 + ρ(λ, ·))α‖p ≤ 1 to a molecule of the
Hardy space, we call any φλ ∈ Φ ∈ B1

q,p,w(Λ) as a molecule centered around
λ and with width one. Also we note that the center λ ∈ Λ are essentially
separated and the unit balls B(λ, 1), λ ∈ Λ, are finitely overlapped by the
assumption that Λ is a relatively-separated subset of X. So it is reasonable
to consider any Φ in B1

q,p,w(Λ) as a family of separately-located molecules
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with size one, and also as a family of building blocks that is well-localized
and separately-located.

Example 2.10. (Example 2.2 third revisited) Our model family of separately-
located molecules in Bq,p,w(Λ) for considering signals with finite rate of in-
novation, see also the Introduction section, is Φ = {φλ : λ ∈ Λ} that satisfies

(2.18) |φλ(x)| ≤ h(x− λ) for all x ∈ Rd and λ ∈ Λ,

where w(x, y) = u(x − y), x, y ∈ Rd for some positive function u on Rd, Λ
is a relatively-separated subset of Rd, and

(2.19) h ∈Wq(Lp,u).

Here we recall the definition of the Wiener amalgam space Wq(Lp,u),

(2.20) Wq(Lp,u) :=
{
f : ‖f‖q,p,u :=

∥∥(
‖fu‖Lq(k+[0,1]d)

)
k∈Zd

∥∥
`p(Zd)

<∞
}
.

The Wiener amalgam space Wq(Lp,u) consists of functions that are “locally”
in Lq and “globally” in weighted Lp with weight u, which becomes weighted
Lp space with weight u when q = p ([1]).

For the sets Bq,p,w(Λ) with different p, q, w, we have the following property,
which will be used later in the proofs of Theorems 3.2 and 4.1.

Theorem 2.11. Let 1 ≤ q, q′, p, p′ ≤ ∞, α, β ∈ R, (X, ρ, µ) be a uniformly-
discretizable space of homogenous type such that µ satisfies the uniform
boundedness condition. Assume that q ≤ q′, p ≤ p′, and that w and
w̃ are weights with the property that supx∈X ‖(ww̃−1)(x, ·)‖Lr < ∞ where
1/r = 1/p− 1/p′. Then

Bq′,p′,w̃(Λ) ⊂ Bq′,p,w(Λ) ⊂ Bq,p,w(Λ).

Moreover, there exist positive constants A and B such that

(2.21) ‖Φ‖q,p,w ≤ A‖Φ‖q′,p,w ≤ B‖Φ‖q′,p′,w̃.

Proof. Obviously it suffices to prove (2.21). The first inequality of the esti-
mate (2.21) holds because of the equivalence between ‖Φ‖q,p,w and its dis-
cretized correspondence ‖Φ‖q,p,w,X0 given in Remark 2.8, and the estimate,

‖f‖Lq(B(x0,1)) ≤ C‖f‖Lq′ (B(x0,1))

for any x0 ∈ X and any function f , which follows from the uniform bound-
edness condition (2.2).

From the definition of a weight and the uniform boundedness condition
for the Borel measure µ, there exists a positive constant C such that

‖(ww̃−1)(λ, ·)‖L∞(B(x,1)) ≤ C‖(ww̃−1)(λ, ·)‖Lr(B(x,1))

and
‖(ww̃−1)(λ, ·)‖L∞(B(x,1)) ≤ C‖(ww̃−1)(·, x)‖Lr(B(λ,1))
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for all λ ∈ Λ. This, together with the relatively-separatedness and the
assumption supx∈X ‖(ww̃−1)(x, ·)‖Lr <∞, implies that

sup
λ∈Λ

‖‖(ww̃−1)(λ, ·)‖L∞(B(x,1))‖Lr

+ sup
x∈X

‖(‖(ww̃−1)(λ, ·)‖L∞(B(x,1)))λ∈Λ‖`r(Λ) <∞.

Hence the second inequality of the estimate (2.21) follows. �

2.5. Frames and Banach frames. Given a Hilbert space H, we say that
E = {eλ, λ ∈ Λ} ⊂ H is a frame of the space H if there exist two positive
constants A,B > 0 such that

(2.22) A‖f‖2 ≤ ‖(〈f, eλ〉)λ∈Λ‖`2(Λ) ≤ B‖f‖2 for all f ∈ H.

For a frame E of a Hilbert space H, we define the frame operator S by

(2.23) Sf =
∑
λ∈Λ

〈f, eλ〉φλ.

It is known that if E is a frame then the frame operator S is bounded and
has bounded inverse, S−1E = {S−1eλ, λ ∈ Λ} is a frame for H, and the
following reconstruction formula holds for any f ∈ H:

(2.24) f =
∑
λ∈Λ

〈f, S−1eλ〉eλ =
∑
λ∈Λ

〈f, eλ〉S−1eλ

([13, 28]). The frame S−1E is known as the canonical dual frame of E.
Let δλλ′ stand for the usual Kronecker symbol. For a Hilbert spaceH with

E = {eλ, λ ∈ Λ} being its Riesz basis, we say that Ed = {edλ : λ ∈ Λ} ⊂ H

is a dual Riesz basis of E if Ed is a Riesz basis of H and 〈eλ, edλ′〉 = δλλ′

for all λ, λ′ ∈ Λ. For a Hilbert space H, we say that Eo = {eoλ : λ ∈ Λ} is
an orthonormal basis for H if Eo is a basis of H and 〈eoλ, eoλ′〉 = δλλ′ for all
λ, λ′ ∈ Λ.

Let 1 ≤ r ≤ ∞, B be a Banach space, E := {eλ, λ ∈ Λ} be a sequence of
elements from the dual B∗ of the space B. If (i) (〈g, eλ〉) ∈ `r(Λ) for all g ∈ B;
(ii) the norm ‖g‖B and ‖(〈g, eλ〉)λ∈Λ‖`r are equivalent, i.e., there exist two
positive constants A and B such that A‖g‖B ≤ ‖(〈g, eλ〉)λ∈Λ‖`r ≤ B‖g‖B
for all g ∈ B, then we say that E is a r-frame for B ([2, 14]). If we further
assume that (iii) there exists a bounded linear operator R : `r(Λ) 7−→ B
such that R(〈g, eλ〉) = g for all g ∈ B, then we say that E is a Banach
frame for B with respect to `r(Λ) ([11, 27]). The operator R is known as
the reconstruction operator. If the span of Φ is dense in B and there exist
constants A,B > 0 such that A‖c‖`r ≤ ‖

∑
λ∈Λ c(λ)eλ‖B ≤ B‖c‖`r for all

scalar sequence c := (c(λ))λ∈Λ ∈ `r(Λ), then we say that E is a r-Riesz basis
for B ([14]).
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3. Locally finitely-generated spaces

Let (X, ρ, µ) be a space of homogenous type, Λ be a relatively-separated
subset of the space X, and Φ := {φλ, λ ∈ Λ} be a family of separately-
located molecules of similar size that belongs to Bq,p,w(Λ) for some 1 ≤
p, q ≤ ∞ and weight w. We denote the space spanned by molecules in Φ
with `p coefficients by Vq(Φ,Λ),

(3.1) Vq(Φ,Λ) :=
{ ∑

λ∈Λ

c(λ)φλ :
∥∥(c(λ))λ∈Λ

∥∥
`q(Λ)

<∞
}
, 1 ≤ q ≤ ∞.

We define the space Vq(Φ,Λ) on spaces of homogenous type, instead of on
the real line mentioned in the Introduction section, for the unified treatment
for various time signals with finite rate of innovation, such as (i) periodic
signals x(t) with period T , x(t + T ) = x(t), (ii) (periodic) discrete sig-
nals {x(nT ), n ∈ Z} where T > 0, (iii) time signals on a finite interval
x(t), t ∈ [T0, T1], and (iv) time signals x(t), t ∈ (−∞,∞) ([44, 46, 47, 60]),
and also for considering diffusion wavelets on manifolds ([20]). The reader
may refer the two model examples of spaces of homogenous type, the Eu-
clidean space Rd and the unit sphere Sd with dilated metric ρδ in Example
2.2 for simplification.

We provide some flexibility on the assumption Φ ∈ Bq,p,w(Λ) for the gener-
ator Φ in the above definition of the space Vq(Φ,Λ), instead of the enveloping
assumption (1.2) for the generator Φ mentioned in the Introduction section,
for unified treatment to different modelling situations, such as, q = 1, p = ∞
when modelling slow-varying signals with shot noises ([60]), 1 ≤ p, q ≤ ∞
for modelling signals in a shift-invariant space ([1]), q = ∞, 1 ≤ p ≤ ∞ for
decomposing a time signal via Gabor (Wilson) system ([28]), see Example
3.1 for more details about the last two setting.

As mentioned in the Introduction section, we have that any function in
the space Vq(Φ,Λ) has finite rate of innovation, and that the space Vq(Φ,Λ)
is a locally finitely-generated space suitable for modelling known signals with
finite rate of innovations in [22, 33, 40, 44, 46, 47, 60], such as, stream of (dif-
ferent) pulses found in example in GPS applications, cellular radio, and ultra
wide-band; bandlimited signals with additive shot noise; sum of bandlim-
ited signals and non-uniform spline signals for modelling electrocardiogram
signals. Also the space Vq(Φ,Λ) is suitable for modelling band-limited sig-
nals, signals in a shift-invariant space, functions in the time-frequency plane,
non-uniform splines, see Example 3.1 below.

Example 3.1. (i) The Paley-Wiener space space BΩ, since the Shan-
non sampling theorem states that the Paley-Wiener space BΩ is gen-
erated by the sinc function, BΩ = {

∑
k∈Z c(k)sinc(Ωx−k) : (c(k)) ∈

`2} where sinc(x) = sin(πx)/(πx) ([1, 9, 34, 37]).
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(ii) The finitely-generated shift-invariant space Vq(φ1, . . . , φN ),
(3.2)

Vq(φ1, . . . , φN ) :=
{ N∑

n=1

∑
k∈Zd

cn(k)φn(· − k) : (cn(k))k∈Zd ∈ `q, 1 ≤ n ≤ N
}

generated by finitely many functions φ1, . . . , φN on Rd. The shift-
invariant space (3.2) and its various generalizations are widely used
in wavelet analysis, approximation theory, sampling theory etc, see,
for instance, [1, 2, 6, 7, 17, 38, 39, 52] and references therein. In the
above shift-invariant setting, we have that Φ := {φn(·−k) : 1 ≤ n ≤
N, k ∈ Zd} belongs to Bq,p,w(Zd) if and only if φn, 1 ≤ n ≤ N , belong
to the Wiener amalgam space Wq(Lp,u), where w(x, y) = u(x − y)
for some positive function u on Rd.

(iii) The twisted shift-invariant space{ ∑
k,l∈Zd

c(k, l)e−iαk(ω−βl)(V ψ)(x− αk, ω − βl) :
∑

k,l∈Zd

|c(k, l)|2 <∞
}

in the time-frequency domain Rd × Rd, which is generated by a
Gabor system

Ψ :=
{
e−iβlxψ(x− αk) : k, l ∈ Zd

}
,

where α, β are positive numbers, ψ is a window function on Rd, and
V is the short-time Fourier transform with the Gaussian window
function defined by

V f(x, ω) = (2π)−d/2

∫
Rd

e−iyωf(y)e−|y−x|2/2dy, f ∈ L2

(see, for instance, [4, 10, 28, 36, 51, 57] and references therein for
historical remarks and recent development on Gabor system). In the
above twisted-shift-invariant case, the family of building blocks

Φ :=
{
e−iαk(ω−βl)(V ψ)(x− αk, ω − βl) : (αk, βl) ∈ αZd × βZd

}
belongs to Bq,p,w(αZd × βZd) if and only if ψ belongs to the modu-
lation space Mp

u , where

Mp
u := {f : V f(x, ω)u(x, ω) ∈ Lp(R2d)},

where w((x, ω), (x′, ω′)) = u(x − x′, ω − ω′). (The reader may re-
fer [28] for various properties and applications of the modulation
spaces). We remark that since the Gabor system with Gaussian win-
dow and αβ < 1 is a frame of L2 (see e.g. [28]), the space L2(Rd) is
isomorphic to a twisted shift-invariant space on the time-frequency
plane Rd ×Rd, and hence also to a space of the form (3.1) on the
time-frequency plane.
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(iv) The space Sm of all square-integrable polynomial splines of order m
satisfying m − 1 continuity conditions at each knot ti, where m is
a positive integer m and T := {ti}+∞

i=−∞ is a bi-infinite increasing
sequence satisfying

(3.3) 0 < T0 := inf
i
ti+m − ti ≤ sup

i
ti+m − ti =: T1 <∞

(see e.g. [53]).The reason is that

(3.4) Sm =
{∑

i∈Z

c(i)Bi(x) :
∑
i∈Z

|c(i)|2 <∞
}

by Curry-Scheonberg representation, where Bi is the normalized B-
spline associated with the knots ti, . . . , ti+m ([53]). Moreover, since
the normalized B-spline Bi(x) has support in [ti, ti+m] and satisfies
0 ≤ Bi(x) ≤ 1 ([53]), the family of building blocks Φ = {Bi, ti ∈ T}
belongs to Bq,p,w(T) for any 1 ≤ p, q ≤ ∞ and any weigth w.

In the following result, which will be used in Sections 4 and 5 to the study
of (Banach) frames, we show that the space Vq(Φ,Λ) is a subspace of Lq if
Φ ∈ Bq,1,w0(Λ) ⊂ Bq,p,w(Λ), where 1 ≤ p, q ≤ ∞ and the weight w satisfies
supx∈X ‖w−1(x, ·)‖p/(p−1) <∞.

Theorem 3.2. Let 1 ≤ q ≤ ∞ and (X, ρ, µ) be a space of homogenous type
with the property that µ satisfies the uniform boundedness condition (2.2)
and X is uniformly-discretizable. Assume that Λ is a discrete subset of X,
Φ := {φλ, λ ∈ Λ} ∈ Bq,1,w0(Λ), and Vq(Φ,Λ) is defined as in (3.1). Then

(3.5) Vq(Φ,Λ) ⊂ Lq.

Moreover,

∥∥∥ ∑
λ∈Λ

c(λ)φλ

∥∥∥
Lq

≤ C
∥∥(
c(λ)

)
λ∈Λ

∥∥
`q(Λ)

‖Φ‖q,1,w0(3.6)

for every sequence (c(λ))λ∈Λ ∈ `q(Λ), and

(3.7)
∥∥(
〈f, φλ〉

)
λ∈Λ

∥∥
`r(Λ)

≤ C‖f‖Lr‖Φ‖q,1,w0

for all f ∈ Lr with q/(q − 1) ≤ r ≤ ∞.
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Proof. Take a sequence c = (c(λ))λ∈Λ ∈ `q(Λ) and let f =
∑

λ∈Λ c(λ)φλ.
We then have

‖f‖q
Lq ≤

∑
x0∈X0

∫
B(x0,1)

( ∑
λ∈Λ

|c(λ)|q|φλ(x)|
)
×

( ∑
µ∈Λ

|φµ(x)|
)q−1

dx

≤
∑
λ∈Λ

|c(λ)|q
∑

x0∈X0

( ∫
B(x0,1)

|φλ(x)|qdx
)1/q

×
( ∫

B(x0,1)

( ∑
µ∈Λ

|φµ(x)|
)q
dx

)1−1/q

≤ ‖c‖q
`q(Λ) ×

(
sup
λ∈Λ

∑
x0∈X0

‖φλ‖Lq(B(x0,1))

)
×

(
sup

x0∈X0

∑
λ∈Λ

‖φλ‖Lq(B(x0,1))

)q−1

≤ ‖c‖q
`q(Λ)‖Φ‖

q
q,1,w0

for 1 ≤ q <∞, and similarly

‖f‖L∞ ≤ ‖c‖`∞(Λ)

(
sup

x0∈X0

∑
λ∈Λ

‖φλ‖L∞(B(x0,1))

)
≤ ‖c‖`∞(Λ)‖Φ‖∞,1,w0

for q = ∞. Therefore the estimate (3.6), and hence (3.5), follows.
Let f ∈ Lr. Using Hölder inequality, we obtain

‖(〈f, φλ〉)λ∈Λ‖`r(Λ) ≤
∥∥∥( ∑

x0∈X0

‖f‖Lr(B(x0,1))‖φλ‖Lr/(r−1)(B(x0,1))

)
λ∈Λ

∥∥∥
`r(Λ)

≤ ‖Φ‖r/(r−1),1,w0
‖f‖r ≤ ‖Φ‖q,1,w0‖f‖r,

where the last inequality follows form (2.21). This proves (3.7). �

Remark 3.3. For the special case that the space Vq(Φ,Λ) is a shift-invariant
space Vq(φ1, . . . , φN ) generated by finitely many functions φ1, . . . , φN , sim-
ilar estimates to the ones in (3.6) and (3.7) are established by Jia and Mic-
chelli under weak assumption φ1, . . . , φN ∈ Lq, where

Lq :=
{
f :

∥∥∥ ∑
k∈Zd

|f(·+ k)|
∥∥∥

Lq([0,1]d)
<∞

}
([39, Theorems 2.1 and 3.1]).

4. Canonical Dual Frames and Dual Riesz Basis

In this section, we consider the frame property of the generator Φ for the
space V2(Φ,Λ) ⊂ L2. The main results of this section are Theorems 4.1 and
4.5.

Theorem 4.1. Let 2 ≤ q ≤ ∞, 1 ≤ p ≤ ∞, (X, ρ, µ) be a space of ho-
mogenous type such that the space X is uniformly discretizable and that the
Borel measure µ satisfies the uniform boundedness condition (2.2), Λ be a
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relatively-separated subset of X, Φ := {φλ, λ ∈ Λ}, V2(Φ,Λ) be as in (3.1),
and define the frame operator S by

(4.1) Sf =
∑
λ∈Λ

〈f, φλ〉φλ.

Assume that w is a (p, 2)-admissible weight and that Φ ∈ Bq,p,w(Λ). Then
the following statements are true.

(i) If Φ is a frame of V2(Φ,Λ), then the canonical dual frame S−1Φ :=
{S−1φλ : λ ∈ Λ} ∈ Bq,p,w(Λ) with S−1φλ ∈ V1(Φ,Λ) for all λ ∈ Λ.

(ii) If Φ is a frame of V2(Φ,Λ), then the canonical tight frame S−1/2Φ :=
{S−1/2φλ : λ ∈ Λ} ∈ Bq,p,w(Λ) with S−1/2φλ ∈ V1(Φ,Λ) for all
λ ∈ Λ.

(iii) If Φ is a Riesz basis of V2(Φ,Λ), then the dual Riesz basis S−1Φ of
Φ belongs to Bq,p,w(Λ).

(iv) If Φ is a Riesz basis of V2(Φ,Λ), then S−1/2Φ is an orthonormal
basis of V2(Φ,Λ) and belongs to Bq,p,w(Λ).

Remark 4.2. Keeping track on the constants in the proof of Theorem 4.1,
we conclude that S−1Φ and S−1/2Φ in the first and second statements (resp.
the third and forth statements) of Theorem 4.1 satisfies

(4.2) ‖S−1Φ‖q,p,w + ‖S−1/2Φ‖q,p,w ≤ C

for all Φ ∈ Bq,p,w(Λ) with ‖Φ‖q,p,w ≤ 1, where the constant C depends
only on the parameters p, q, the constants D0, L in the definition of the
quasi-metric ρ, the constants D1, D2, D3 in the double condition and uni-
form boundedness condition for the Borel measure µ, the constant D4 in
the lattice X0, the constant D(Λ) for the relatively-separated subset Λ, the
constants D5, D6, D7 and θ in (2.5)– (2.10) for the weight w, and the upper
and lower frame bounds for the frame Φ (resp. the upper and lower Riesz
bounds for the Riesz basis Φ). The uniform boundedness result (4.2) for
S−1Φ and S−1/2Φ can be used to reach the uniform stability for the recon-
struction procedure for functions in scaling and wavelet spaces at different
scales, such as scaling and wavelet spaces on a bounded interval (see e.g.
[16, 19]), periodic scaling and wavelet spaces (see e.g. [12, 50]), nonstation-
ary multiresolution analysis (see e.g. [18]), and diffusion scaling and wavelet
spaces (see e.g. [20]). The following Corollary 4.7 for periodic signals with
finite rate of innovation is such an example.

As an easy application of Theorem 4.1, we have the following result for
the shift-invariant setting, see Example 3.1.

Corollary 4.3. Let 1 ≤ p ≤ ∞, 2 ≤ q ≤ ∞, u(x) = (1 + |x|)α for some
α > d(1− 1/p) or u(x) = exp(D|x|δ) for some D > 0 and δ ∈ (0, 1), and let
φ1, . . . , φN belong to the Wiener amalgam space Wq(Lp,u). Then

(i) If Φ := {φn(· − k) : 1 ≤ n ≤ N, k ∈ Zd} is a frame of the shift-
invariant space V2(φ1, . . . , φN ), then {(S−1φn)(· − k) : 1 ≤ n ≤
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N, k ∈ Zd} is the canonical dual frame of Φ, {(S−1/2φn)(· − k) : 1 ≤
n ≤ N, k ∈ Zd} is the canonical tight frame for V2(φ1, . . . , φN ), and
S−1φn, S

−1/2φn ∈Wq(Lp,u), 1 ≤ n ≤ N .
(ii) If Φ := {φn(· − k) : 1 ≤ n ≤ N, k ∈ Zd} is a Riesz basis of the

shift-invariant space V2(φ1, . . . , φN ), then {(S−1φn)(· − k) : 1 ≤ n ≤
N, k ∈ Zd} is a dual Riesz basis of Φ, {(S−1/2φn)(· − k) : 1 ≤
n ≤ N, k ∈ Zd} is an orthonormal basis for V2(φ1, . . . , φN ), and
S−1φn, S

−1/2φn ∈Wq(Lp,u), 1 ≤ n ≤ N .

Remark 4.4. The results in Corollary 4.3 about canonical dual frame,
canonical tight frame, and orthnormal basis are new, while similar results
about dual Riesz basis can be found in [1, 39]. In particular, the dual
Riesz basis property for q = ∞ and p = 1 was established by Aldroubi and
Gröchenig ([1, Theorem 2.3]), while the result in [39, Theorem 4.1] states
that S−1φ1, . . . , S

−1φN ∈ Lq if φ1, . . . , φN ∈ Lq. Since Lq ⊂ Wq(Lp,u),
comparing with Jia and Micchelli’s result in [39], we make strong assumption
on the functions φ1, . . . , φN which leads to better results for their dual Riesz
basis.

A weight w on Rd is said to be translation-invariant if w(x, y) = u(x− y)
for some positive function u on Rd. Similarly for 1 ≤ p, r ≤ ∞, a weight w
on Rd is said to be (p, r)-admissible translation-invariant if it is translation
invariant and if there exists another translation-invariant weight v with the
property that (2.8) – (2.10) hold.

For the case that the space (X, ρ, µ) of homogenous type is the Euclidean
space Rd with standard Euclidean metric and Lebesgue measure, we have a
result similar to Theorem 4.1 but with different but very convenient local-
ization assumption for the generator Φ.

Theorem 4.5. Let 1 ≤ p ≤ ∞ and Λ be a relatively-separated subset
of Rd. Assume that w is a (p,min(2, p))-admissible translation-invariant
weight with w(x, y) := u(x−y) for some positive function u on Rd, and that
Φ := {φλ, λ ∈ Λ} is a frame for V2(Φ,Λ) and satisfies

(4.3) |φλ(x)| ≤ h(x− λ) for all x ∈ Rd and λ ∈ Λ

for some function h in the Wiener amalgam space W∞(Lp,u). Then there ex-
ists another function h̃ in the same Wiener amalgam space W∞(Lp,u) such
that the canonical dual frame S−1Φ and the canonical tight frame S−1/2Φ
satisfy

(4.4) |S−1φλ(x)|+ |S−1/2φλ(x)| ≤ h̃(x− λ) for all x ∈ Rd and λ ∈ Rd.

Taking our familiar polynomial weights and subexponential weights as
the weight w in Theorem 4.5, we have the following corollary.

Corollary 4.6. Let 1 ≤ p ≤ ∞, u(x) = (1 + |x|)α for some α > d(1 −
1/p) or u(x) = exp(D|x|δ) for some D > 0 and δ ∈ (0, 1), and Λ be a
relatively-separated subset of Rd. Assume that Φ := {φλ : λ ∈ Λ} satisfies
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(4.3) for some function h in the Wiener amalgam space W∞(Lp,u), and
that Φ is a frame (Riesz basis) of V2(Φ,Λ). Then the canonical dual frame
(dual Reisz basis) S−1Φ and the canonical tight frame (orthonormal basis)
S−1/2Φ satisfy (4.4) for some function h̃ in the same Wiener amalgam space
W∞(Lp,u).

For 1 ≤ q, p ≤ ∞, T ≥ 1 and u be a weight on Rd, we define the periodic
Wiener amalgam space W T

q (Lp,u) be the space of all periodic functions f
with period T such that

‖f‖q,p,u,T = ‖‖fu‖Lq(k+[−1/2,1/2]d)‖`p([−T/2,T/2)d∩Zd).

As an application of Theorem 4.5 with standard modification, we have the
following results for the model setting for (periodic) signals with finite rate
of innovation (see Example 2.10), and for Gabor (Wilson) frame setting (see
Example 3.1).

Corollary 4.7. Let 1 ≤ p ≤ ∞, T ≥ 2, E = {0, 1}d, u(x) = (1 + |x|)α

for some α > d(1 − 1/p) or u(x) = exp(D|x|δ) for some D > 0 and δ ∈
(0, 1), and Λ be a relatively-separated subset of T [−1/2, 1/2)d. Assume that
Φ := {φλ : λ ∈ Λ} satisfies the following properties: (i) φλ, λ ∈ Λ, are
periodic function with period T , i.e. φλ(· − kT ) = φλ for k ∈ Zd; (ii)
|φλ(x)| ≤ h(x−λ) for some periodic function h with period T in the periodic
Wiener amalgam space W T

∞(Lp,u), and (iii) there exist positive constants A
and B with the property that

A2
∑
λ∈Λ

|c(λ)|2 ≤
∥∥ ∑

λ∈Λ

c(λ)φλ

∥∥2

L2([−T
2

, T
2

)d)
≤ B2

∑
λ∈Λ

|c(λ)|2(4.5)

holds for all sequences (c(λ))λ∈Λ ∈ `2(Λ). Define the frame operator S by

Sf =
∑
λ∈Λ

〈f, φλ〉L2([−T/2,T/2])φλ,

Then the dual Riesz basis S−1Φ and the orthonormal basis S−1/2Φ satisfy

|S−1φλ(x)|+ |S−1/2φλ(x)| ≤ h̃(x− λ), x ∈ Rd

for some function h̃ in the same periodic Wiener amalgam space W∞(Lp,u).
Moreover, the periodic Wiener amalgam norm ‖h̃‖q,p,u,T of h̃ is bounded by
some constant C independent of the period T (particularly depending only
on p, d, u,D(Λ), the upper and lower Riesz bounds in (4.5), and the periodic
Wiener amalgam norm ‖h‖q,p,u,T of h).

Corollary 4.8. Let 1 ≤ p ≤ ∞, V be the short-time Fourier transform
with Gaussian window, u(x) = (1 + |x|)α for some α > 2d(1 − 1/p) or
u(x) = exp(D|x|δ) for some D > 0 and δ ∈ (0, 1), G be a finite group of
(2d) × (2d) nonsingular matrices, and Λ be a relatively-separated subset of
the time-frequency plane Rd×Rd. Assume that Φ := {φλ : λ ∈ Λ} satisfies

|V φλ(x, ω)| ≤ inf
g∈G

h((x, ω)g − λ), (x, ω) ∈ Rd ×Rd
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for some function h in the Wiener amalgam space W∞(Lp,u), and that Φ
is a frame (Riesz basis) of V2(Φ,Λ). Then the canonical dual frame (dual
Riesz basis) S−1Φ and the canonical tight frame (orthonormal basis) S−1/2Φ
satisfy

|V S−1φλ(x, ω)|+ |V S−1/2φλ(x, ω)| ≤ inf
g∈G

h̃((x, ω)g − λ), (x, ω) ∈ Rd ×Rd

for some function h̃ in the same Wiener amalgam space W∞(Lp,u).

Remark 4.9. The results in Corollary 4.8 for the Gabor system, i.e. the
finite group G contains only the unit matrix, was established in [31, 32] for
p = 1 and in [4] for p = 1 and u(x) ≡ 1. The results in Corollary 4.8 for the
Gabor system are new for 1 < p <∞, and the ones for the Wilson system,
i.e. the finite group G contains more than the unit matrix, are completely
new. The author believe that the results in Corollary 4.8 will be useful to
establish the Littlewood-Paley decomposition of an Lp function via a Gabor
(Wilson) system or a local (co)sine system, c.f. [26].

4.1. Proof of Theorem 4.1. To prove Theorem 4.1, we recall a matrix
algebra in [57]. Let 1 ≤ p ≤ ∞, (X, ρ, µ) be a space of homogenous type,
Λ and Λ′ be two relatively-separated subsets of the space X, and w be a
weight on X. We define the matrix algebra Ap,w(Λ,Λ′) of Schur class by

(4.6) Ap,w(Λ,Λ′) :=
{
A := (A(λ, λ′))λ∈Λ,λ′∈Λ′ : ‖A‖Ap,w <∞

}
,

where

‖A‖Ap,w := sup
λ∈Λ

∥∥(
A(λ, λ′)w(λ, λ′)

)
λ′∈Λ′

∥∥
`p(Λ′)

+ sup
λ′∈Λ′

∥∥(
A(λ, λ′)w(λ, λ′)

)
λ∈Λ

∥∥
`p(Λ)

(see, e.g., [32, 35, 57]). By Remark 2.8, we have that, for Φ := {φλ, λ ∈ Λ},
(4.7)

Φ ∈ Bq,p,w(Λ) if and only if (‖φλ‖Lq(B(x0,1)))x0∈X0,λ∈Λ ∈ Ap,w(X0,Λ).

For a matrix A in Ap,w(Λ,Λ′), we define its transpose A∗ by

A∗ := (A(λ, λ′))λ′∈Λ′,λ∈Λ ∈ Ap,w(Λ′,Λ).

To prove Theorem 4.1, we need some properties of the matrices in the Schur
class Ap,w(Λ,Λ′). The third property in Lemma 4.10 below is usually known
as the Wiener’s lemma, see, for instance, [4, 24, 31, 32, 35, 56, 57] and
references therein for its recent development and various applications.

Lemma 4.10. Let 1 ≤ p ≤ q ≤ ∞, set r = pq/(q − p), X be a space of
homogenous type such that X is uniformly discretizable and that µ satisfies
the uniform boundedness condition, w and w̃ are weights on X, and Λ,Λ′,Λ′′

are relatively-separated subsets of X. Then the following statements are true.
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(i) If supx∈X ‖(ww̃−1)(x, ·)‖Lr < ∞, then there exists a positive con-
stant C such that

(4.8) ‖A‖Ap,w ≤ C‖A‖Aq,w̃ for all A ∈ Aq,w̃(Λ,Λ′).

(ii) If there exists another weight v on X such that (2.8) and (2.9) holds,
then there exists a positive constant C such that

(4.9) ‖AB‖Ap,w ≤ C‖A‖Ap,w‖B‖Ap,w

for all A ∈ Ap,w(Λ,Λ′) and B ∈ Ap,w(Λ′,Λ′′), where

AB :=
( ∑

λ′∈Λ′

A(λ, λ′)B(λ′, λ′′)
)
λ∈Λ,λ′′∈Λ′′

.

(iii) If w is a (p, 2)-admissible weight on X and if A is a matrix in
Ap,w(Λ,Λ) with the property that A∗ = A,

(4.10) 〈Ac, c〉 ≥ D〈c, c〉 for all c ∈ H,

and

(4.11) PA = AP = A,

where D is a positive constant, H is a Hilbert subspace of `2(Λ),
and P is the projection operator from `2(Λ) to H, then for any
λ > 0, both Aγ and its Moore-Penrose pseudo-inverse (Aγ)† be-
long to Ap,w(Λ,Λ). Here the Moore-Penrose pseudo-inverse of Aγ

is the unique matrix that satisfies P (Aγ)† = (Aγ)†P = (Aγ)† and
Aγ(Aγ)† = (Aγ)†Aγ = P.

Proof. Lemma 4.10 is essentially established in [57], except we further use
Proposition 2.7 to restrict weights on the space (X, ρ, µ) of homogenous type
to its relatively-separated subset (Λ, ρ, µc). We omit the details of the proof
here. �

To prove Theorem 4.1, we also need a result about the Gram matrix,
which implies that Φ in Theorem 4.1 is self-localized in the matrix algebra
Ap,w(Λ,Λ).

Lemma 4.11. Let 1 ≤ p, q ≤ ∞, (X, ρ, µ) be a space of homogenous type
with the property that X is uniformly discretizable and that µ satisfies the
uniform bounded condition, Λ and Γ be relatively-separated subsets of the
space (X, ρ, µ), w be a weight on X with the property that (2.8) and (2.9)
hold for some weight v on X, and Φ = {φλ : λ ∈ Λ} and Ψ = {ψγ : γ ∈ Γ}
satisfy

(4.12) ‖Φ‖q,p,w + ‖Ψ‖q/(q−1),p,w <∞.

Define the Gram matrix AΨ,Φ = (AΨ,Φ(γ, λ))γ∈Γ,λ∈Λ by

(4.13) AΨ,Φ(γ, λ) :=
∫

X
ψγ(x)φλ(x)dµ(x).
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Then

(4.14) AΨ,Φ ∈ Ap,w(Γ,Λ).

Moreover, there exists a positive constant C such that

(4.15) ‖AΨ,Φ‖Ap,w ≤ C‖Ψ‖q/(q−1),p,w‖Φ‖q,p,w.

Proof. Obviously it suffices to prove (4.15). Let X0 be a uniformly discretiz-
able set of X. Define

QΨ,q/(q−1) =
(
‖ψγ‖Lq/(q−1)(B(x0,1))

)
γ∈Γ,x0∈X0

and
QΦ,q =

(
‖φλ‖Lq(B(x0,1))

)
λ∈Λ,x0∈X0

.

By (4.7), (4.12), Lemma 4.10, and the following estimate for any γ ∈ Γ and
λ ∈ Λ:

|AΨ,Φ(γ, λ)| ≤
∑

x0∈X0

‖ψγ‖Lq/(q−1)(B(x0,1))‖φλ‖Lq(B(x0,1)),

we obtain

‖AΨ,Φ‖Ap,w ≤ C‖QΨ,q/(q−1)‖Ap,w‖Q∗
Φ,q‖Ap,w

+C‖QΦ,q‖Ap,w‖Q∗
Ψ,q/(q−1)‖Ap,w

≤ C‖Ψ‖q/(q−1),p,w‖Φ‖q,p,w <∞.(4.16)

Therefore the estimate (4.15) follows. �

Now we are ready to start the proof of Theorem 4.1.

Proof of Theorem 4.1. First we prove the first statement of Theorem 4.1.
Let AΦ,Φ = (AΦ,Φ(γ, λ))γ,λ∈Λ be as in (4.13). Then

(4.17) AΦ,Φ ∈ Ap,w(Λ,Λ)

by Theorem 2.11, Lemma 4.11, and the assumption Φ ∈ Bq,p,w(Λ).
By the frame property of Φ in V2(Φ,Λ), there exists a positive constant

C0 such that
(4.18)∑

λ,λ′∈Λ

〈φλ, f〉AΦ,Φ(λ, λ′)〈φλ′ , f〉 =
∥∥∥ ∑

λ∈Λ

〈f, φλ〉φλ

∥∥∥2

2
≥ C0

∑
λ∈Λ

|〈φλ, f〉|2

for any f ∈ V2(Φ,Λ). Let

(4.19) H =
{
(〈φλ, f〉)λ∈Λ : f ∈ V2(Φ,Λ)

}
.

Then H is a Hilbert subspace of `2(Λ) by the frame property of Φ. For any
sequence d = (d(λ))λ∈Λ ∈ H⊥, we have

(4.20)
∑
λ′∈Λ

AΦ,Φ(λ, λ′)d(λ′) =
∑
λ′∈Λ

〈φλ′ , φλ〉d(λ′) = 0.
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Using (4.17), (4.18) and (4.20), and applying Lemma 4.10 with H being as
in (4.19), we obtain that

(4.21) (AΦ,Φ)† ∈ Ap,w(Λ,Λ).

We write (AΦ,Φ)† := (Ad
Φ(λ, λ′))λ,λ′∈Λ, and define Φd = {φd

λ : λ ∈ Λ} by

(4.22) φd
λ :=

∑
λ′∈Λ

Ad
Φ(λ, λ′)φλ′ .

Then

(4.23) Φd ⊂ V1(Φ,Λ)

by (4.21) and the fact that Ap,w(Λ,Λ) ⊂ A1,w0(Λ,Λ) by Lemma 4.10 and
the assumption on the weight w;

‖Φd‖q,p,w ≤
∥∥∥( ∑

λ′∈Λ

|Ad
Φ(λ, λ′)|‖φλ′‖Lq(B(x0,1))

)
λ∈Λ,x0∈X0

∥∥∥
Ap,w

≤ C‖(AΦ,Φ)†‖Ap,w‖Φ‖q,p,w <∞(4.24)

by (4.9), (4.21) and (4.22); and

(4.25) Φd = S−1Φ

because(
〈Sφd

λ, f〉
)
λ∈Λ

=
( ∑

λ1,λ2∈Λ

Ad
Φ(λ, λ2)〈φλ2 , φλ1〉〈φλ1 , f〉

)
λ∈Λ

= A†ΦAΦ

(
〈φλ1 , f〉

)
λ1∈Λ

=
(
〈φλ, f〉

)
λ∈Λ

for all f ∈ V2(Φ,Λ).

Hence the first statement follows from (4.23), (4.24), and (4.25).

Now we prove the second statement of Theorem 4.1. Using (4.17), (4.18),
and (4.20), and applying Lemma 4.10 with H being as in (4.19), we obtain
that

(4.26) ((AΦ,Φ)1/2)† ∈ Ap,w(Λ,Λ).

We write ((AΦ,Φ)1/2)† = (Ao
Φ(λ, λ′))λ,λ′∈Λ and define Φo = {φo

λ : λ ∈ Λ} by

(4.27) φo
λ :=

∑
λ′∈Λ

Ao
Φ(λ, λ′)φλ′ .

Similar to the above argument for Φd, we have

(4.28) Φo ⊂ V1(Φ,Λ)

and

(4.29) ‖Φo‖q,p,w ≤ C‖((AΦ,Φ)1/2)†‖Ap,w‖Φ‖q,p,w <∞.

Define the operator T on V2(Φ,Λ) by Tf =
∑

λ∈Λ〈f, S−1φλ〉φo
λ. From (4.21)

and (4.25) it follows that 〈Tφλ, f〉 = 〈φo
λ, f〉 for all λ ∈ Λ and f ∈ V2(Φ,Λ),

which implies that

(4.30) Tφλ = φo
λ for all λ ∈ Λ.
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For any f, h ∈ V2(Φ,Λ),

〈ST 2f, h〉 =
∑

λi∈Λ,1≤i≤5

〈f, S−1φλ1〉Ao
Φ,Φ(λ1, λ2)〈φλ2 , S

−1φλ3〉

Ao
Φ,Φ(λ3, λ4)〈φλ4 , φλ5〉〈φλ5 , h〉

=
〈
((AΦ,Φ)1/2)†Q((AΦ,Φ)1/2)†AΦ,Φc, d

〉
= 〈c, d〉 = 〈f, h〉,

where c = (〈φλ, h〉)λ∈Λ, d = (〈φλ, S
−1f〉)λ∈Λ, and Q is the projection oper-

ator from `2(Λ) to the sequence space H in (4.19). Thus

(4.31) T = S−1/2.

Therefore the second statement in Theorem 4.1 follow from (4.28), (4.29),
(4.30), and (4.31).

Then the third statement of Theorem 4.1. By the first statement, we have

(4.32) φλ =
∑
λ′∈Λ

〈φλ, S
−1φλ′〉φλ′ for all λ ∈ Λ.

This together with the Riesz basis assumption proves the third statement.

Finally the last statement of Theorem 4.1 follows from

S−1/2φλ =
∑
λ′∈Λ

〈S−1/2φλ, S
−1/2φλ′〉S−1/2φλ′ for all λ ∈ Λ.

and the Riesz basis assumption on Φ. �

4.2. Proof of Theorem 4.5. To prove Theorem 4.5, we apply similar ar-
gument to the one used in the proof of Theorem 4.1, essentially except using
the matrix algebra Cp,w(Λ) of Sjöstrand class instead of the matrix algebra
Ap,w(Λ,Λ) of Schur class. Here for 1 ≤ p ≤ ∞, a translation-invariant
weight w on Rd of the form w(x, y) = u(x − y) for some positive function
u, and a relatively-separated subset Λ of Rd, the Sjöstrand class Cp,w(Λ) is
defined by

Cp,α(Λ) :=
{
A := (A(λ, λ′))λ,λ′∈Λ,

‖A‖Cp,α := ‖(A∗(k)u(k))k∈Zd‖`p <∞
}
,(4.33)

where

A∗(k) = sup
λ∈m+[−1/2,1/2)d,λ′∈m+k+[−1/2,1/2)d,m∈Zd×Zd

|A(λ, λ′)|, k ∈ Zd.

The Sjöstrand class C1,w0(Z
d) was introduced by Sjöstrand for the study of

pseudo-differential operators, see [4, 5, 30, 54, 57] and references therein for
the recent developments and various applications.

Similar to Lemma 4.10, we have the following properties for the matrix
algebra Cp,w(Λ) of Sjöstrand class.
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Lemma 4.12. ([57]) Let 1 ≤ p ≤ q ≤ ∞, set r = pq/(q − p), w and w̃
are translation-invariant weights on Rd of the form w(x, y) = u(x, y) and
w̃(x, y) = ũ(x − y) where u, ũ are some positive functions on Rd, and Λ is
a relatively-separated subset of Rd. Then the following statements are true.

(i) If ‖uũ−1‖Lr <∞, then there exists a positive constant C such that

(4.34) ‖A‖Cp,w ≤ C‖A‖Cq,w̃ for all A ∈ Cq,w̃(Λ,Λ′).

(ii) If there exists another translation-invariant weight v such that (2.8)
and (2.9) holds, then there exists a positive constant C such that

(4.35) ‖AB‖Cp,w ≤ C‖A‖Cp,w‖B‖Cp,w

for all A,B ∈ Cp,w(Λ).
(iii) If w is a (p,min(2, p))-admissible translation-invariant weight on Rd

and if A is a matrix in Cp,w(Λ) that satisfies (4.10), (4.11) and
A∗ = A, then for any λ > 0, both Aγ and its Moore-Penrose pseudo-
inverse (Aγ)† belong to Cp,w(Λ).

Now we start the proof of Theorem 4.5.

Proof of Theorem 4.5. By (4.3), it follows that for any λ ∈ k+ [−1/2, 1/2)d

and λ′ ∈ k′ + [−1/2, 1/2)d with k, k′ ∈ Zd,

|〈φλ, φλ′〉|

≤
∫
Rd

|h(x− λ)||h(x− λ′)|dx

≤
∑

ε∈{−1,0,1}d,l∈Zd

‖h‖L∞(l+[−1/2,1/2]d)‖h‖L∞(k−k′+ε−l+[−1/2,1/2]d).

This, together with the Wiener amalgam space assumption on h and admis-
sibility assumption on the translation-invariant weight w, implies that the
Gram matrix AΦ,Φ in (4.13) belongs to Cp,w(Λ),

(4.36) AΦ,Φ ∈ Cp,w(Λ).

Using the similar argument used in the proof of Theorem 4.1 and applying
(4.36) and the Wiener’s lemma for infinite matrices in the Sjöstrand class
Cp,w(Λ) (the third statement in Lemma 4.12), we have that

(4.37) (AΦ,Φ)†, ((AΦ,Φ)1/2)† ∈ Cp,α(Λ),

which implies that there exists a sequence G = (g(k)) with

(4.38) (g(k)u(k)) ∈ `p

such that

|(AΦ,Φ)†(λ, λ′)|+ |((AΦ,Φ)1/2)†(λ, λ′)| ≤ g(k − k′)

for all λ ∈ k+[−1/2, , 1/2)d, λ′ ∈ k′+[−1/2, 1/2)d with k, k′ ∈ Zd. Therefore
for any λ ∈ k + [−1/2, 1/2)d and x ∈ k′ + [−1/2, 1/2)d with k, k′ ∈ Zd, we
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have that

|S−1φλ(x)|+ |S−1/2φλ(x)|
≤

∑
k′′∈Zd

∑
λ′′∈Λ∩k′′+[−1/2,1/2)d

g(k − k′′)H(x− λ′′)

≤ C0

∑
k′′∈Zd

g(k − k′′) sup
t∈[−1,1)d

|h(k′ − k′′ − t)| ≤ h̃(x− λ),(4.39)

where

(4.40) h̃(x) = C0 sup
l∈(x+[−1,1]d)∩Zd

∑
k′′∈Zd

g(k′′) sup
t∈[−1,1)d

|h(l − k′′ − t)|.

From (4.38), (4.40) and the assumption h ∈ W∞(Lp,u), it follows that h̃ ∈
W∞(Lp,u). This together with (4.39) proves (4.4), and hence completes the
proof. �

5. Banach Frames

In this section, we discuss the Banach frame property of the generator Φ
for the space Vr(Φ,Λ) with r 6= 2.

Theorem 5.1. Let X, ρ, µ, q, p, w,Λ,Φ, S be as in Theorem 4.1, q/(q−1) ≤
r ≤ q, and Vr(Φ,Λ) as in (3.1). Then Φ is a Banach frame for the space
Vr(Φ,Λ) with respect to `r(Λ) (resp. r-Riesz basis for the space Vr(Φ,Λ)) if
Φ is a frame (resp. Riesz basis) of V2(Φ,Λ).

As an application of Theorem 5.1, we have the following result for the
shift-invariant setting.

Corollary 5.2. Let 1 ≤ p ≤ ∞, 2 ≤ q ≤ ∞, q/(q − 1) ≤ r ≤ q, u(x) =
(1+ |x|)α for some α > d(1−1/p) or u(x) = exp(D|x|δ) for some D > 0 and
δ ∈ (0, 1), and φ1, . . . , φN belong to the Wiener amalgam space Wq(Lp,u).
Then Φ := {φn(· − k) : 1 ≤ n ≤ N, k ∈ Zd} is a Banach frame (resp. Riesz
basis) of the shift-invariant space Vr(φ1, . . . , φN ) if Φ is a frame (resp. Riesz
basis) of V2(φ1, . . . , φN ).

Remark 5.3. For the case that q = ∞, the frame result in Corollary 5.2
was proved by Aldroubi, Tang, and the author under the weak assumption
φ1, . . . , φN ∈W∞(L1,0) ⊂W∞(Lp,u), while the result for 1 ≤ q <∞ is new.
The Riesz basis result in Corollary 5.2 is true under the weak assumption
that φ1, . . . , φN ∈ Lq ⊂ Wq(Lp,u), see [39, Theorems 4.1 and 4.2]. For the
shift-invariant setting, using a characterization of the frame property in the
Fourier technique ([2, 6, 39]), it is shown that the converse in Corollary 5.2
is true. The author believes that the converse in Theorem 5.1 is true for
the non-shift-invariant setting, that is, Φ is a frame (resp. Riesz basis) for
V2(Φ,Λ) if Φ is a Banach frame (resp. Riesz basis) for the space Vr(Φ,Λ)
with r 6= 2.
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By Theorems 3.2 and 4.1, the proof of Theorem 5.1 depends, in turn, on
the following result about the extension of an operator P on V2(Φ,Λ).

Theorem 5.4. Let X, ρ, µ, q, p, w,Λ,Φ, S be as in Theorem 4.1. Let q/(q−
1) ≤ r ≤ q and define Vr(Φ,Λ) as in (3.1). If Φ is a frame for V2(Φ,Λ),
then the operator P , to be defined by

(5.1) P : f 7−→
∑
λ∈Λ

〈f, φλ〉S−1φλ,

is a bounded operator from Lr to Vr(Φ,Λ) and satisfies

(5.2) Pf = f for all f ∈ Vr(Φ,Λ).

Proof. By Theorem 3.2, the operator P in (5.1) defines a bounded operator
from Lr to Vr(Φ,Λ) for any r between q/(q − 1) and q. The reconstruction
formula (5.2) for 1 ≤ r ≤ q and r < ∞ follows the frame reconstruction
formula

(5.3) f =
∑
λ∈Λ

〈f, φλ〉S−1φλ for all f ∈ V2(Φ,Λ)

([13, 28]), the density of `2 ∩ `r in `r, and the following estimate∥∥∥ ∑
λ1,λ2,λ3∈Λ

|c(λ1)| × |〈φλ1 , φλ2〉| × |Ad
Φ(λ2, λ3)| × |φλ3 |

∥∥∥
r

≤ C‖c‖`r(Λ)‖AΦ,Φ‖A1,w0
‖(AΦ,Φ)†‖A1,w0

‖Φ‖r,1,w0

≤ C‖c‖`r(Λ)‖AΦ,Φ‖Ap,w‖(AΦ,Φ)†‖Ap,w‖Φ‖r,p,w

≤ C‖c‖`r(Λ)‖AΦ,Φ‖Ap,w‖(AΦ,Φ)†‖Ap,w‖Φ‖q,p,w <∞

for any c := (c(λ))λ∈Λ ∈ `r(Λ) by (4.21), Theorem 3.2, and Lemmas 4.10
and 4.11.

For r = ∞, we have q = ∞. Take any x0 ∈ X and f =
∑

λ∈Λ c(λ)φλ ∈
V∞(Φ,Λ) with c := (c(λ))λ∈Λ ∈ `∞(Λ). We define fx0,N =

∑
ρ(λ,x0)≤N c(λ)φλ

for N ≥ 1. Then by (2.2), there exists a positive constant C for any δ > 0
(independent of x0 ∈ X and N ≥ 1) such that

sup
x∈B(x0,1)

|f(x)− fx0,N (x)|

≤
∑

ρ(λ,x0)>N

|c(λ)| sup
x∈B(x0,1)

|φλ(x)|

≤ C‖c‖`∞(Λ)‖Φ‖∞,p,w

( ∑
ρ(λ,x0)>N

w(λ, x0)−p/(p−1)
)(p−1)/p

≤ C‖c‖`∞(Λ)‖Φ‖∞,p,w‖w(·, x0)χX\B(x0,N/L−1)(·)‖Lp/(p−1) ,(5.4)
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and

sup
x∈B(x0,1)

∣∣∣ ∑
λ∈Λ

〈f − fx0,N , φλ〉S−1φλ(x)
∣∣∣

≤ ‖c‖`∞
∑
λ∈Λ

∑
ρ(λ′,k)>N,λ′∈Λ

|〈φλ′ , φλ〉| sup
x∈B(x0,1)

|S−1φλ(x)|

≤ ‖c‖`∞

( ∑
ρ(λ,x0)≥N/(2L),λ∈Λ

∑
λ′∈Λ

+
∑
λ∈Λ

∑
ρ(λ,λ′)≥N/(2L),λ′∈Λ

)
|〈φλ′ , S

−1φλ〉| sup
x∈B(x0,1)

|S−1φλ(x)|

≤ ‖c‖`∞(Λ)‖AΦ,Φ‖A1,w0

∑
ρ(λ,x0)≥N/(2L)

sup
x∈B(x0,1)

|S−1φλ(x)|

+‖c‖`∞‖S−1Φ‖∞,1,w0 sup
λ∈Λ

∑
ρ(λ′,λ)≥N/(2L),λ′∈Λ

|〈φλ′ , φλ〉|

≤ C‖c‖`∞(Λ)‖AΦ,Φ‖Ap,w

×‖S−1Φ‖∞,p,w sup
x∈X

‖(w(x, ·))−1χX\B(x,N/(2L2)−1)(·)‖Lp/(p−1) ,(5.5)

where L is the constant in the definition of the quasi-metric ρ. By (2.9),
(5.3), (5.4), (5.5), Theorem 4.1, Lemma 4.11, and the assumption Φ ∈
B∞,p,α(Λ), we obtain

sup
x∈B(x0,1)

|f(x)− Pf(x)|

= sup
x∈B(x0,1)

∣∣f(x)−
∑
λ∈Λ

〈f, φλ〉S−1φλ(x)
∣∣

= sup
x∈B(x0,1)

∣∣(f − fx0,N )(x)−
∑
λ∈Λ

〈f − fx0,N , φλ〉S−1φλ(x)
∣∣

≤ C‖c‖`∞(Λ) sup
x∈X

‖(w(x, ·))−1χX\B(x,N/(2L2)−1)(·)‖Lp/(p−1) → 0

as N →∞. This proves (5.2) for r = ∞, and hence completes the proof. �

6. Refinable Functions With Global Support

In this section, we consider an application of Theorem 4.1 to the study of
refinable functions with global support.

Fix a matrix M whose eigenvalues have norm strictly larger than one. We
say that functions φ1, . . . , φN are refinable if there exists a matrix-valued `2-
sequence (a(k))k∈Zd such that

(6.1) φ(M−1·) =
∑
k∈Zd

a(k)φ(· − k),

where φ = (φ1, . . . , φN )T . The sequence (a(k))k∈Zd is known as the mask
of the refinable function φ. The reader may refer [15, 23, 43, 48, 59] and
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references therein for its various properties and applications to the theory of
multiresolution analysis and the construction of wavelets. In the following
result, we show that if a refinable function has polynomial decay then the
mask has the same polynomial decay.

Theorem 6.1. Let 2 ≤ p ≤ ∞, α > d(1−1/p), and φ1, . . . , φN be functions
on Rd. Assume that φn(x)(1 + |x|)α ∈ Lp, 1 ≤ n ≤ N , {φn(· − k) : 1 ≤ n ≤
N, k ∈ Zd} is a Riesz basis for the shift-invariant space V2(φ1, . . . , φN ), and
φ = (φ1, . . . , φN )T satisfies the refinement equation (6.1). Then the mask
(a(k))k∈Zd belongs to `pα(Zd), that is, (a(k)(1 + |k|)α)k∈Zd ∈ `p.

Proof. By Corollary 4.3, there exist functions φ̃1, . . . , φ̃N such that φ̃n(x)(1+
|x|)α ∈ Lp, 1 ≤ n ≤ N , and

(6.2)
∫
Rd

φn(· − k)φ̃n′(x− k′)dx = δnn′δkk′

for all 1 ≤ n, n′ ≤ N and k, k′ ∈ Zd. From (6.1) and (6.2), it follows that

|a(k)| ≤
N∑

n,n′=1

∫
Rd

|φn(M−1x)||φ̃n′(x− k)|dx

≤ |detM |
N∑

n,n′=1

∑
l∈Zd

‖φn‖Lp(M−1(l+[0,1]d))‖φ̃n′‖Lp(l−k+[0,1]d), k ∈ Zd.

Therefore∥∥(
a(k)(1 + |k|)α

)
k∈Zd

∥∥
`p

≤ C

N∑
n,n′=1

∥∥(
‖φn‖Lp(M−1(l+[0,1]d))

)
l∈Zd

∥∥
`1

∥∥(
‖φ̃n‖Lp(l+[0,1]d)(1 + |l|)α

)
l∈Zd

∥∥
`p

+C
N∑

n,n′=1

∥∥(
‖φn‖Lp(M−1(l+[0,1]d))(1 + |M−1l|)α

)
l∈Zd

∥∥
`p

×
∥∥(
‖φ̃n‖Lp(l+[0,1]d)

)
l∈Zd

∥∥
`1

≤ C
N∑

n,n′=1

‖φn(x)(1 + |x|)α‖p‖φ̃n′(x)(1 + |x|)α‖p <∞.

This completes the proof. �

Using the similar argument with some modification, we have the follow-
ing result about the mask of a refinable function that has (sub)exponential
decay.

Theorem 6.2. Let 2 ≤ p ≤ ∞, δ ∈ (0, 1], D > 0, and φ1, . . . , φN be func-
tions on Rd. Assume that φn(x) exp(D|x|δ) ∈ Lp, 1 ≤ n ≤ N , {φn(· −
k) : 1 ≤ n ≤ N, k ∈ Zd} is a Riesz basis for the shift-invariant space
V2(φ1, . . . , φN ), and φ = (φ1, . . . , φN )T satisfies the refinement equation
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(6.1). Then there exists a positive constant D′, which is usually strictly
smaller than D, such that the mask (a(k))k∈Zd satisfies (a(k) exp(D′(1 +
|k|)δ))k∈Zd ∈ `p.

Remark 6.3. Similar results to the ones in Theorems 6.1 and 6.2 about
the interaction between the decay at infinity of a refinable function and
its mask was discussed in [39, 55]. In particular, Jia and Micchelli proved
that if φ ∈ L2 then the mask (a(k))k∈Zd ∈ `1 ([39]). We remark that for
α > d(1 − 1/p) with p ≥ 2, φ(x)(1 + |x|)α ∈ Lp implies that φ ∈ L2 and
(a(k))k∈Zd ∈ `pα implies that (a(k))k∈Zd ∈ `1. Thus comparing with Jia and
Micchelli’s result in [39] and the result in Theorem 6.1, we make stronger
assumption on the refinable function which leads to better decay for its
mask.

Remark 6.4. The author believes that the conclusion in Theorem 6.1 is true
for 1 ≤ p < 2 with the Riesz basis assumption for the space V2(φ1, . . . , φN )
replaced by the corresponding assumption for the space Vp(φ1, . . . , φN ). The
author further conjectures that the following statement is true: Let 1 ≤ p ≤
∞, α > d(1 − 1/p), (a(k))k∈Zd be a summable sequence of N ×N matrices
such that H(ξ) = |detM |−1

∑
k∈Zd a(k)e−ikξ is Hölder continuous at the

origin, that one is an eigenvalue of H(0) with one-dimensional eigenspace,
and that all other eigenvalues of the matrix H(0) lie inside the open unit
circle. Define φ = (φ1, . . . , φN )T by φ̂(ξ) =

∏∞
j=1H((MT )−jξ)v0, where v0

is a nonzero eigenvector of the matrix H(0) associated with the eigenvalue
one. Assume that (φ̂n(ξ + 2kπ))1≤n≤N,k∈Zd has full rank N for all ξ ∈ Rd.
Then (a(k)(1+ |k|)α)k∈Zd ∈ `p if and only if 〈φ(·−x), h〉(1+ |x|)α ∈ Lp, 1 ≤
n ≤ N , for all C∞ function h supported in [−1, 1]d. The reader may refer
[55] for a partial result to the above conjecture.
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[32] K. Gröchenig and M. Leinert, Symmetry of matrix algebras and symbolic calculus

for infinite matrices, Trans, Amer. Math. Soc., to appear.
[33] Y. Hao, P. Marziliano, M. Vetterli, and T. Blu, Sampling and reconstruction of ECG

as a signal with a finite rate of innovation, submitted to IEEE Trans.Biomedical
Engineering.

[34] J. R. Higgins, Five short stories about the cardinal series, Bull. Amer. Math. Soc.,
12(1985), 45–89.

[35] S. Jaffard, Properiétés des matrices bien localisées prés de leur diagonale et quelques
applications, Ann. Inst. Henri Poincaré, 7(1990), 461–476.
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