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Abstract. The local reconstruction from samples is one of most
desirable properties for many applications in signal processing, but
it has not been given as much attention. In this paper, we will
consider the local reconstruction problem for signals in a shift-
invariant space. In particular, we consider finding sampling sets
X such that signals in a shift-invariant space can be locally recon-
structed from their samples on X. For a locally finite-dimensional
shift-invariant space V we show that signals in V can be locally re-
constructed from its samples on any sampling set with sufficiently
large density. For a shift-invariant space V (φ1, . . . , φN ) generated
by finitely many compactly supported functions φ1, . . . , φN , we
characterize all periodic nonuniform sampling sets X such that
signals in that shift-invariant space V (φ1, . . . , φN ) can be locally
reconstructed from the samples taken from X. For a refinable
shift-invariant space V (φ) generated by a compactly supported re-
finable function φ, we prove that for almost all (x0, x1) ∈ [0, 1]2,
any signal in V (φ) can be locally reconstructed from its samples
from {x0, x1} + Z with oversampling rate 2. The proofs of our
results on the local sampling and reconstruction in the refinable
shift-invariant space V (φ) depend heavily on the linear indepen-
dent shifts of a refinable function on measurable sets with positive
Lebesgue measure and the almost ripplet property for a refinable
function, which are new and interesting by themselves.

1. Introduction

Given a discrete sampling set X ⊂ R, we say that signals (functions)
in a linear space V can be locally determined from their samples on X
if for any compact set K ⊂ R there exists another compact set K̃ ⊃ K
such that the restriction of a signal (function) f ∈ V on K is uniquely
determined by (and hence can be reconstructed from) its finite number
of samples f(xj) taken from K̃ ∩X. We call such a sampling set X as
a locally determining sampling set for the space V .
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The local reconstruction from samples is one of most desirable prop-
erties for many applications in signal processing, e.g. for implementing
real-time reconstruction numerically. However, the local reconstruc-
tion problem has not been given as much attention ([33, 50]). Aldroubi
and Gröchenig ([2]), and Sun and Zhou ([45]) discussed the local re-
construction of sampling for the spline space

Bn :=
{
f ∈ Cn−2

∣∣∣ The restriction of f on [k, k + 1) is a

polynomial of degree at most n− 1 for all k ∈ Z
}

=
{∑
k∈Z

c(k)Bn(· − k)
∣∣∣ (c(k))k∈Z is a sequence on Z

}
,(1.1)

generated by integer shifts of the B-spline Bn, n ≥ 2, while Gröchenig
and Schwab provided several fast local reconstruction methods for
sampling in [25]. Here the B-spline B1 is the characteristic func-
tion on [0, 1) and the B-splines Bn, n ≥ 2, are defined inductively by

Bn :=
∫ 1

0
Bn−1(· − t)dt.

In this paper, we consider the local reconstruction of signals (func-
tions) in a shift-invariant space from their samples on a discrete set.
Particularly, we will discuss the following problem: Given a shift-
invariant space V , find sampling sets X such that any signal (function)
f in V can be locally determined from its samples f(xj), xj ∈ X, taken
from X. Here a linear space V of functions on the real line is said to be
shift-invariant if f ∈ V implies f(·−k) ∈ V for all k ∈ Z ([4, 9, 10, 17]).

The paper is organized as follows. In Section 2, we prove that any
linear space V of signals (functions) on the real line, in which any signal
(function) could be locally determined from its samples on some weakly
relatively-separated sampling set, must be locally finite-dimensional
(Theorem 2.1). Here a linear space V of functions on the real line
is said to be locally finite-dimensional if for any compact set K, the
space V |K (the restriction of all functions f ∈ V onto K) is finite-
dimensional ([7]), and a discrete subset X of R is said to be weakly
relatively-separated if

(1.2)
∑
xj∈X

χxj+[−1/2,1/2](x) <∞ for all x ∈ R,

where χE is the characteristic function on a set E. We call the set
satisfying (1.2) is weakly relatively-separated since the set satisfying
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the following strong condition

(1.3) sup
x∈R

∑
xj∈X

χxj+[−1/2,1/2](x) <∞

is called to be a relatively-separated set, which has been widely used in
the nonuniform sampling ([3, 6, 43]). In Section 2, we also show that
for any locally finite-dimensional shift-invariant space V of continuous
signals (functions), any element in V can be locally reconstructed from
its samples taken on a uniform sampling set with sufficiently large
density (Theorem 2.2).

Given compactly supported functions φ1, . . . , φN on the line, we let
(1.4)

V (φ1, . . . , φN) :=
{ N∑
n=1

∑
k∈Z

cn(k)φn(·−k) : (cn(k))k∈Z ∈ `(Z), 1 ≤ n ≤ N
}

contain all (infinite) linear combinations of integer shifts of φ1, . . . , φN .
The concept of shift-invariant spaces arose in approximation theory,
wavelet theory, sampling theory etc (see [4, 7, 9, 10, 12, 17, 30, 38] and
extensive list of references therein). Since sampling in a shift-invariant
space is a realistic model for modelling signals with smoother spectrum,
and a suitable model for taking into account the real acquisition and
reconstruction devices, and the numerical implementation, it was well
studied in the last twenty years, see [2, 3, 5, 6, 13, 14, 15, 16, 20, 21,
25, 29, 39, 44, 43, 48, 49, 51] and extensive list of references therein.

In Section 3, we characterize sampling sets of the form X0 +Z where
X0 ⊂ [0, 1) such that any signal (function) in the finitely-generated
shift-invariant space V (φ1, . . . , φN) can be locally reconstructed from
its samples taken from X0 + Z (Theorem 3.1).

A sampling set of the form X0 + Z with X0 ⊂ [0, 1) do not form a
uniform sampling set but consist of nonuniformly shifted unions of a
uniform sampling set Z, which is often refered to as a periodic nonuni-
form sampling set or a bunched sampling set ([11, 19, 27, 37, 41, 50]).
If we use the sampling rate to measure the sampling points per unit of
time. Then the sampling rates of the periodic non-uniform sampling
sets X0 + Z in Theorem 3.1 and X0 + NZ in Theorem 3.4 are M and
M/N respectively, where X0 = {xm, 1 ≤ m ≤ M} ⊂ [0, 1). For sig-
nals (functions) in a linear space V , Vetterli, Marziliano, Blu ([34, 47])
used the innovative rate to measure the degree of their freedom per
unit time. We remark that the innovative rate of signals (functions) in
the space V (φ1, . . . , φN) is N . From Theorem 3.1, the sampling rate
exceeds or is equal to the innovative rate N (see [43] for more general
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results about the sampling rate of a sampling set and the innovative
rate of signals).

For most of shift-invariant spaces, the local reconstruction of signals
(functions) in the shift-invariant space V (φ1, . . . , φN) from the samples
taken from X0 + Z could be possible only when the sampling rate is
sufficiently larger than the innovative rate (Theorem 2.2 and Remark
3.3). This inspires us to consider the periodic nonuniform sampling set
X with sampling rate one that can be used to sampling signals in V (φ)
(where signals have innovative rate one), particularly the sampling set
of the form X0 + NZ where N ≥ 1 and X0 ∈ [0, 1) has cardinality N .
In Theorem 3.4 we provides a sufficient condition on the generator φ
so that signals (functions) in that single-generated shift-invariant space
V (φ) can be locally reconstructed from its samples taken from X0+NZ
where X0 ⊂ [0, 1) has cardinality N . As an application of Theorem 3.4,
we show that the set X0 + NZ with X0 ⊂ (0, 1) having cardinality N
is always a locally determining sampling set for the space V (φ) if φ is
a ripplet (Corollary 3.5). Here a ripplet means a compactly supported
continuous function φ such that for any s ≥ 1, x0 < x1 < . . . < xs−1

and integers n0 < n1 < . . . < ns−1, det(φ(xi − ni′))0≤i,i′≤s−1 ≥ 0 (see
[23, 24, 36] and references therein for examples and characterizations).
As a B-spline Bn is a ripplet, this recovers the local reconstruction
result established in [2] for signals (functions) in a spline space.

A linear space V of functions on the real line is said to be refinable
if f(·/2) ∈ V for any f ∈ V , and a compactly supported function φ
is said to be refinable if the shift-invariant space V (φ) generated by
the integer shifts of the function φ is refinable. The refinable space
arose in wavelet theory, for instance, the zero-scaled space V0 in a
multiresolution analysis {Vj}j∈Z of L2 is a refinable shift-invariant space
([17]), but there are only few papers specially devoted to sampling
problems on a refinable shift-invariant space ([26, 27]). In Section 4,
we studied the local reconstruction of signals (functions) in a refinable
shift-invariant space. Precisely, we show in Theorem 4.1 that for almost
all (x0, x1) ∈ [0, 1]2 the periodic nonuniform sampling set {xi + k, 0 ≤
i ≤ 1, k ∈ Z} having sampling rate 2 is a locally determining sampling
set for the refinable shift-invariant space V (φ), and in Theorem 4.2 that
for almost all (x0, . . . , xN−1) ∈ [0, 1]N the set {xi + Nk, 0 ≤ i ≤ N −
1, k ∈ Z} having sampling rate 1 can be used as the sampling set from
which the samples taken can be used to locally reconstruct any signal
(function) in the refinable shift-invariant space V (φ) if φ is refinable
and supported on [0, N ]. The proofs of Theorems 4.1 and 4.2 depend
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heavily on two new properties of refinable functions (see Theorems A.1
and A.2 in the appendix), which are interesting by themselves.

2. Sampling in locally finitely-dimensional spaces

In this section, we first provide a necessary condition on the linear
space V in which any function could be locally reconstructed from its
samples on a weakly relatively-separated sampling set (Theorem 2.1),
and then show that continuous functions in a locally finite-dimensional
shift-invariant space V can be locally reconstructed from its samples on
a uniform sampling set with sufficiently large density (Theorem 2.2).

Theorem 2.1. Let V be a linear space of functions on the line. If
there exists a weakly relatively-separated subset X of R such that any
function in V can be locally determined from its samples on X, then V
is a locally finite-dimensional linear space.

Proof. Let X be a weakly relatively-separated subset of R and assume
that any function in V can be locally determined from its samples on
X. Take a compact set K, and denote by V |K the linear space of the
restriction of all functions f ∈ V to K. By the local reconstruction
assumption on functions in V , there exists a compact set K ′ ⊃ K such
that for any function f ∈ V , its restriction on K is uniquely determined
by its finitely many samples on K ′ ∩X. Denote the dimension of the
space V |K by I1 and the cardinality of K ′ ∩X by I2. By the weakly-
relative-separatedness of the set X, we have that I2 < ∞. Therefore
it suffices to prove that I1 ≤ I2. Suppose, on the contrary, that I1 ≥
I2 + 1. Then there exist functions gi ∈ V, 1 ≤ i ≤ I2 + 1, whose
restrictions on K are linearly independent. Since the size of the matrix
(gi(xj))1≤i≤I2+1,xj∈K′∩X is (I2+1)×I2, there exists a nonzero vector v =
(v1, . . . , vI2+1) such that the function g := v1g1 + · · · + vI2+1gI2+1 ∈ V
satisfies that g(xj) = 0 for all xj ∈ K ′∩X. This together with the local
reconstruction assumption on functions in V implies the restriction of
the function g on K is identically zero, which contradicts to the linear
independence of the function gi, 1 ≤ i ≤ I2 + 1, on K.

�

Theorem 2.2. Let V be a locally finite-dimensional shift-invariant
space of continuous functions on the line. Then there exists M ∈ N
such that any function f ∈ V can be locally determined from the sam-
ples f(k/M), k ∈ Z.

Proof. By the assumption on the space V , there exist continuous func-
tions gn, 1 ≤ n ≤ N , such that their restriction on [0, 1] form a basis
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of V |[0,1], the set of the restriction of all functions in V on [0, 1]. By
the linear independence of the continuous functions g1, . . . , gN on [0, 1],
there exist positive constants A and B such that

A
( N∑
n=1

|c(n)|2
)1/2

≤
(∫ 1

0

∣∣∣ N∑
n=1

c(n)gn(x)
∣∣∣2dx)1/2

≤ B
( N∑
n=1

|c(n)|2
)1/2

for any vector c = (c(1), . . . , c(N)). On the other hand, by the conti-
nuity of the functions g1, . . . , gN , there exists M ∈ N such that

(∫ 1

0

∣∣∣ N∑
n=1

c(n)(gn − g̃Mn )(x)
∣∣∣2dx)1/2

≤ A

2

( N∑
n=1

|c(n)|2
)1/2

for any vector c = (c(1), . . . , c(N)), where

g̃Mn (x) =
M−1∑
m=0

gn(m/M)χ[m/M,(m+1)/M)(x).

Combining the above two inequalities yields

(M−1∑
m=0

1

M

∣∣∣ N∑
n=1

c(n)gn(m/M)
∣∣∣2)1/2

=
(∫ 1

0

∣∣∣ N∑
n=1

c(n)g̃Mn (x)
∣∣∣2dx)1/2

≥ A

2

( N∑
n=1

|c(n)|2
)1/2

(2.1)

for any vector c = (c(1), . . . , c(N)). Thus there exists an M×N matrix
B = (bmn)0≤m≤M−1,1≤n≤N by (2.1) such that

(2.2)
M−1∑
m=0

gn(m/M)bmn′ = δnn′ , 1 ≤ n, n′ ≤ N.

Now we start to establish the local reconstruction formula for func-
tions in V from their samples on Z/M . Take any f ∈ V . Then there
exist sequences (cn(k))k∈Z ∈ `(Z), 1 ≤ n ≤ N , by the shift-invariance
of the space V and by the construction of the functions gn, 1 ≤ n ≤ N ,
such that

(2.3) f(x) =
∑
k∈Z

f(x)χ[0,1)(x− k) =
N∑
n=1

∑
k∈Z

cn(k)g̃n(x− k)
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where g̃n = gnχ[0,1), 1 ≤ n ≤ N . Thus by (2.2) and (2.3), we have the
following local reconstruction formula:

f =
N∑
n=1

∑
k∈Z

( N∑
n′=1

M−1∑
m=0

cn′(k)g̃n′(m/M)bmn

)
g̃n(x− k)

=
N∑
n=1

∑
k∈Z

(M−1∑
m=0

f
(
k +

m

M

)
bmn

)
g̃n(x− k)(2.4)

for any f ∈ V .

�

From the proof of Theorem 2.2, we have

Corollary 2.3. Let V be a locally finite-dimensional shift-invariant
space of continuous functions on the line. If X0 := {xm ∈ [0, 1), 1 ≤
m ≤ M} is so chosen that any function g in V |[0,1] is uniquely deter-
mined by its samples g(xm), 1 ≤ m ≤M , then the periodic nonuniform
sampling set X0 + Z := {xm + k, xm ∈ X0, k ∈ Z} is a sampling set
such that any function in V can be locally determined from its samples
on X.

Remark 2.4. For a continuous function f on the line, define its mod-
ulus of continuity ωδ(f)(x) by

ωδ(f)(x) = sup
|y|≤δ
|f(x+ y)− f(x)|.

The modulus of continuity is a delicate tool in mathematical analysis
([18, 46]), and it has also been used to estimate the density of a stable
sampling set (see [1, 3, 6] and references therein). The modulus of con-
tinuity can also be used to estimate the density of a local determining
sampling set. Given a locally finite-dimensional shift-invariant space
V of continuous function on the real line if there exists a ∈ [0, 1] and
δ0 ∈ (0,∞) such that

(2.5) ‖ωδ0(f)‖L2([a,a+1]) ≤ β‖f‖L2([a,a+1]) for all f ∈ V

where β ∈ (0, 1), then using the argument in the proof of Theorem 2.2,
any weakly relatively-separated setX = {. . . < xi−1 < xi < xi+1 < . . .}
satisfying the following density property supi∈Z |xi+1 − xi| ≤ δ0 (such
as the uniform sampling set b + δZ with b ∈ R and δ ∈ [0, δ0]) is a
locally determining sampling set for the space V .
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Remark 2.5. A locally finitely-generated space generated by Φ =
{φλ}λ∈Λ is given by

(2.6) V (Φ) =
{∑
λ∈Λ

c(λ)φλ, (c(λ)) ∈ `(Λ)
}

where Λ is a weakly relatively-separated subset of R, Φ is a family of
continuous functions φλ, λ ∈ Λ, that are supported in a fixed neigh-
borhood λ + K0 of the center λ, `(Λ) is the space of all sequences on
Λ, and K0 is a bounded set ([43, 44]). The locally finitely-generated
space V (Φ) in (2.6) was introduced in [44] to model signals with fi-
nite rate of innovations (see [8, 34, 43, 47] and extensive references
therein for the study of sampling for signals with finite rate of in-
novations). A model space of locally finitely-generated spaces is the
shift-invariant space V (φ1, . . . , φN) in (1.4) generated by the shifts of
compactly supported functions φ1, . . . , φN . One may easily verify that
functions in the locally finitely-generated space V (Φ) in (2.6) is locally
finite-dimensional if φλ is supported in λ+K0 for some fixed compact
set K0, where Φ = {φλ, λ ∈ Λ}. Applying the argument used in the
proof of Theorem 2.1 we conclude that X = ∪k∈ZXk is a locally deter-
mining sampling set for the locally finitely-generated space V (Φ) if for
any k ∈ Z, Xk ⊂ [k, k + 1) is a finite set such that any functions in
V (Φ)|[k,k+1) is determined from its samples taken from Xk.

3. Sampling in finitely-generated shift-invariant spaces

The shift-invariant space V (φ1, . . . , φN) generated by compactly sup-
ported continuous functions φ1, . . . , φN is locally finite-dimensional.
Let X0 := {xm ∈ [0, 1), 1 ≤ m ≤ M} be so chosen that any func-
tion f in the space spanned by {φn(· − k)χ[0,1), 1 ≤ n ≤ N, k ∈ Z}
can be reconstructed from its samples f(xm), 1 ≤ m ≤ M . Then it
is noticed by Corollary 2.3 that the periodic nonuniform sampling set
X0 + Z := {xm + k, 1 ≤ m ≤ M,k ∈ Z} is a locally determining
sampling set for the space V (φ1, . . . , φN). In this section, we first char-
acterize all locally determining sampling sets of the form X0 + Z for a
finitely-generated shift-invariant space where X0 ⊂ [0, 1), and then we
give a sufficient condition on the set X0 ⊂ [0, 1) such that the periodic
nonuniform sampling set X0 +NZ with sampling rate one is a locally
determining sampling set for a single-generated shift-invariant space
where N ≥ 1.

To state our results, we recall the concept of linear independent
shifts. The nonzero compactly supported functions φ1, . . . , φN are said
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to have linear independent shifts if the semi-convolution defined by

(`(Z))N 3
(
(c1(k), . . . , cN(k))T

)
k∈Z 7−→

N∑
n=1

∑
k∈Z

cn(k)φn(· − k)

is one-to-one, where (`(Z))N is the N -copies of `(Z) ([30, 38]). We also
recall the Zak transform Zφ(x, ξ) of a function φ on the line by

Zφ(x, ξ) =
∑
k∈Z

φ(x+ k)e−ikξ

([29]).

Theorem 3.1. Let φ1, . . . , φN be compactly supported functions that
have linear independent shifts, and X0 := {xm ∈ [0, 1), 1 ≤ m ≤ M}.
Then the periodic nonuniform sampling set X0 + Z := {xm + k, 1 ≤
m ≤ M,k ∈ Z} is a locally determining sampling set for the space
V (φ1, . . . , φN) if and only if the matrix

(3.1) ZΦ(X0, ξ) :=
(
Zφn(xm, ξ)

)
1≤n≤N,1≤m≤M

has rank N for any complex number ξ, where Φ = (φ1, . . . , φN)T .

Proof. (=⇒) Suppose, on the contrary, that the matrix ZΦ(X0, ξ) in
(3.1) has rank less than N for some complex number ξ0. Then there
exists a nonzero vector v = (v1, . . . , vN)T such that the function φ :=∑N

n=1 vnφn satisfies∑
k∈Z

φ(xm + k)e−ikξ0 =: Z(φ)(xm, ξ0) = 0, 1 ≤ m ≤M.

Therefore the function f :=
∑

k∈Z e
−ikξ0φ(·+ k) ∈ V (φ1, . . . , φN) satis-

fies

f(xm + k′) = eik
′ξ0Z(φ)(xm, ξ0) = 0 ∀ k′ ∈ Z,

and hence is identically zero by the local reconstruction assumption.
This contradicts to the assumption that φ1, . . . , φN have linear inde-
pendent shifts.

(⇐=) By the assumption on the matrix ZΦ(X0, ξ), similar to the
Euclidean algorithm for co-prime polynomials we can extend that N ×
M matrix ZΦ(X0, ξ) to an M ×M square matrix A(ξ) whose entries
are trigonometrical polynomials and whose determinant is a nonzero
monomial ([31]). Then the inverse matrix A(ξ)−1 of the M×M square
matrix A(ξ) has trigonometrical polynomial entries, and the M × N
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matrix B(ξ) =
(∑

k∈Z bmn(k)e−ikξ
)

1≤m≤M,1≤n≤N obtained from placing

the first N columns of the inverse matrix A(ξ)−1 side-by-side satisfies

ZΦ(X0, ξ)B(ξ) = IN for all complex number ξ,

or equivalently
(3.2)

M∑
m=1

∑
k′∈Z

φn(xm + k′)bmn′(k − k′) = δnn′δk0, ∀ 1 ≤ n, n′ ≤ N, k ∈ Z.

Thus for any f =
∑N

n=1

∑
k∈Z cn(k)φn(· − k) ∈ V (φ1, . . . , φN), we have

M∑
m=1

∑
k′∈Z

f(xm + k′)bmn(k − k′)

=
M∑
m=1

N∑
n′=1

∑
k′,k′′∈Z

cn′(k
′′)φn′(xm + k′ − k′′)bmn(k − k′)

=
N∑

n′=1

∑
k′′∈Z

cn′(k
′′)δnn′δkk′′ = cn(k), ∀ 1 ≤ n ≤ N, k ∈ Z.

This yields the following local reconstruction formula:

f(x) =
N∑
n=1

∑
k∈Z

( M∑
m=1

∑
k′∈Z

f(xm + k′)bmn(k − k′)
)
φn(x− k)

for any f ∈ V (φ1, . . . , φN).

�

For a single-generated shift-invariant space V (φ), we obtain the fol-
lowing result from Theorem 3.1, which was established in [19].

Corollary 3.2. Let φ be a compactly supported function that has linear
independent shifts, and X0 := {xm ∈ R, 1 ≤ m ≤ M}. Then any
function in the shift-invariant space V (φ) can be locally reconstructed
from its sample taken from X0 + Z := {xm +k : 1 ≤ m ≤M,k ∈ Z} if
and only if the trigonometric polynomials Zφ(x1, ξ), . . . , Zφ(xM , ξ) do
not have common zero.

Remark 3.3. Recall that the innovative rate of functions in the space
V (φ1, . . . , φN) are equal toN , while the sampling rate of {x1, . . . , xM}+
Z is equal to M . From Theorem 3.1, the sampling rate is always
larger than or equal to the rate of innovation of functions when the
reconstruction procedure is local. If the number M of sampling points
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taken in [0, 1) is the same as the number N of generators in the shift-
invariant space V (φ1, . . . , φN), we can reformulate the assumption that
the matrix ZΦ(X0, ξ) has rankN for any complex number ξ in Theorem
3.1 as

(3.3) detZΦ(X0, ξ) = c0e
−ik0ξ

for some 0 6= c0 ∈ R and k0 ∈ Z. For most of finitely-generated
shift-invariant spaces V (φ1, . . . , φN), a local reconstruction procedure
from a periodic nonuniform sampling set of the form X0 + Z exists
only for oversampling (i.e., M > N). For instance, noting that for
n ≥ 3 and x0 ∈ [0, 1), the Zak transform ZBn(x0, ξ) =

∑n−1
k=0 Bn(x0 +

k)e−ikξ of the B-spline is not a monomial, we conclude from (3.3) that
oversampling is necessary for locally reconstructing signals in the spline
spaces Bn, n ≥ 3, in (1.1) from their samples in a periodic nonuniform
sampling set {x0 + k| k ∈ Z}. For a refinable function φ supported
on [0, N ] that has linear independent shifts, its was proved in [26] that
{ l

2N−2 | 0 ≤ l ≤ 2N−2 − 1} + Z with sampling rate 2N−2 is a locally
determining sampling set for the refinable shift-invariant space V (φ).

The above remark about the sampling rate of a sampling set and
the innovative rate of functions inspires us to consider the local recon-
struction of non-uniform sampling on a sampling set with its sampling
rate being the same as the rate of innovation of functions in the shift-
invariant space. We discuss such sampling and reconstruction proce-
dure in the following result, while the corresponding result for the spline
space case has been established in [2].

Theorem 3.4. Let φ be a function supported on [0, N ] where N ∈ N.
Assume that x0, . . . , xN−1 ∈ [0, 1) and that

(
φ(xn + n′)

)
0≤n,n′≤N−1

is

nonsingular. Then the set {xn + Nk, 0 ≤ n ≤ N − 1, k ∈ Z} having
sampling rate one is a locally determining sampling set for the shift-
invariant space V (φ).

Proof. Let f :=
∑

k∈Z c(k)φ(· − k) ∈ V (φ). Then for any k ∈ Z,

f(xn +Nk) =
∑
l∈Z

N−1∑
n′=0

c(lN − n′)φ(xn +Nk −Nl + n′)

=
N−1∑
n′=0

c(kN − n′)φ(xn + n′)(3.4)
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by the support property of φ. Let B = (bnn′)1≤n,n′≤N be the inverse of
the matrix (φ(xn + n′))0≤n,n′≤N−1. Then it follows from (3.4) that

(3.5) c(kN − n′) =
N−1∑
n=0

bnn′f(xn +Nk) for all k ∈ Z.

This yields the following local reconstruction formula:

(3.6) f(x) =
∑
k∈Z

N−1∑
n′=0

(N−1∑
n=0

bnn′f(xn +Nk)
)
φ(x−Nk + n′)

for any f ∈ V (φ), and hence completes the proof.

�

In [23], it is proved that for any ripplet φ, det(φ(xi−ni′))0≤i,i′≤s−1 > 0
if φ(xi − ni) > 0 for all 0 ≤ i ≤ s − 1. Therefore by Theorem 3.4, we
have the following result about local reconstruction of sampling in a
shift-invariant space generated by a ripplet.

Corollary 3.5. Let φ be a continuous ripplet such that φ(x) > 0 for all
x ∈ (0, N) and φ(x) = 0 otherwise, and let x0, . . . , xN−1 ∈ (0, 1). Then
{xn +Nk, 0 ≤ n ≤ N − 1, k ∈ Z} is a locally determining sampling set
for the shift-invariant space V (φ).

Remark 3.6. It is known that BN , N ≥ 2, are ripplets ([23]), and
hence any function in the spline space (1.1) can be locally reconstructed
from its samples on {xn + Nk, 1 ≤ n ≤ N, k ∈ Z} if 0 < x1 < · · · <
xN−1 < 1, which was established in [2], see [45] for a complete charac-
terization of locally determining sampling sets for the spline space.

4. Sampling in refinable shift-invariant spaces

In this section, we consider the local reconstruction of functions in
a refinable shift-invariant space. Based on the results obtained in this
section, we believe that the periodic non-uniform sampling has better
performance than the uniform sampling from the viewpoint of local
reconstruction.

Theorem 4.1. Let φ be compactly supported refinable function that
has linear independent shifts. Then for almost all (x0, x1) ∈ [0, 1]2,
the periodic nonuniform sampling set {xi + k, 0 ≤ i ≤ 1, k ∈ Z} with
sampling rate 2 is a locally determining sampling set for the refinable
shift-invariant space V (φ).
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Proof. For a refinable function φ, it follows from Theorem A.1 in the
Appendix that the vector (φ(x + k))k∈Z is a nonzero vector for al-
most all x ∈ (0, 1), and that for any nonzero complex number ξ′,∑

k∈Z φ(x+k)e−ikξ
′ 6= 0 for almost all x ∈ [0, 1). Thus for any x0 ∈ [0, 1]

and any root ξ′ of the trigonometric polynomial
∑

k∈Z φ(x0 + k)e−ikξ,∑
k∈Z φ(x1 + k)e−ikξ

′ 6= 0 for almost all x1 ∈ [0, 1]. Hence the trigono-
metric polynomials

∑
k∈Z φ(x0 + k)e−ikξ and

∑
k∈Z φ(x1 + k)e−ikξ do

not have common (complex) roots for almost all (x0, x1) ∈ [0, 1]2. This
together with (3.1) and Theorem 3.1 proves the desired conclusion.

�

Unlike B-spline BN , N ≥ 2, most of refinable functions φ such as
the Daubechies’ scaling functions ([17]) are not ripplets ([23, 24, 36]).
Thus not all sets of the form {xn + Nk, 0 ≤ n ≤ N − 1, k ∈ Z} with
{xn, 0 ≤ n ≤ N − 1} ⊂ (0, 1) can be used as a locally determining
sampling set. In Theorem A.2, we show that any refinable function is
“almost” a ripplet. Therefore by Theorems 3.4 and A.2, we have the
following result about periodic nonuniform sampling in a refinable shift-
invariant space with the sampling rate being the same as the innovative
rate of signals in the refinable shift-invariant space.

Theorem 4.2. Let φ be a refinable function that has linear independent
shifts and is supported on [0, N ], where N ≥ 1. Then for almost all
(x0, . . . , xN−1) ∈ [0, 1]N , the periodic nonuniform sampling set {xn +
Nk, 0 ≤ n ≤ N−1, k ∈ Z} with sampling rate 1 is a locally determining
sampling set for the refinable shift-invariant space V (φ).

Appendix A. Two properties of refinable functions

In the appendix, we show that the shifts of a refinable function on
the line are linearly independent on every measurable set with positive
Lebesgue measure (Theorem A.1), and that any refinable function on
the line is “almost” a ripplet (Theorem A.2). Those two properties
of refinable functions, a strong version of locally linearly independent
shifts and a weak version of ripplets, are interesting by themselves and
have been used in the study of sampling in a refinable shift-invariant
space, particularly in the proofs of Theorems 4.1 and 4.2. The affine
self-similarity of refinable functions plays the essential role in the proof
of two above new properties ([12, 28]).

A.1. Linearly independent shifts on a measurable set with pos-
itive Lebesgue measure. We say that a nonzero compactly sup-
ported distribution φ on the real line has locally linearly independent



14 QIYU SUN

shifts if for any open set A,
∑

k∈Z c(k)φ(· − k) = 0 on A if and only if
c(k) = 0 for all integers k such that φ(·−k) 6≡ 0 on A ([22, 32, 35, 42]).
Clearly, a compactly supported distribution that has locally linearly in-
dependent shifts must have linearly independent shifts, while the con-
verse is not true in general. For instance the function φ(x) = χ[0,3/2]

has linearly independent shifts, but it does not have locally linearly in-
dependent shifts. But for a compactly supported refinable distribution
φ, it was proved that φ has linearly independent shifts if and only if
φ has locally linearly independent shifts, see [32, 35] for an integrable
refinable function and [42] for a refinable distribution. The locally lin-
early independent shifts of a function φ can be interpreted as the linear
independence of the shifts of the function φ on any open set. In the fol-
lowing, we establish a result for refinable functions which can roughly
be thought as the linear independence of the shifts of the function φ
on any measurable set with positive Lebesgue measure.

Theorem A.1. Let φ be compactly supported, integrable and refinable,
and have linear independent shifts. Then for any measurable set E with
positive Lebesgue measure,

∑
k∈Z c(k)φ(· − k) = 0 on E if and only if

c(k) = 0 for all integers k with φ(· − k) 6≡ 0 on E.

Proof. (⇐=) For any measurable set E, we have that
∑

k∈Z c(k)φ(· −
k) = 0 on E if c(k) = 0 for all integers k with φ(· − k) 6≡ 0 on E.

(=⇒) By the refinability of the compactly supported function φ and
by the assumption that φ has linear independent shifts, φ(·/2) is a finite
linear combination of φ(· − k), k ∈ Z ([30, 42]). Therefore without loss
of generality, we may assume that φ satisfies the following refinement
equation

(A.1) φ(x) =
N∑
k=0

c0(k)φ(2x− k)

where N ≥ 1,
∑N

k=0 c0(k) = 2 and c0(0)c0(N) 6= 0. Define

B0 = (c0(2i− j))0≤i,j≤N−1 and B1 = (c0(2i− j + 1))0≤i,j≤N−1,

where we set c0(i) = 0 if i < 0 or i > N . Then

(A.2) B0 and B1 are nonsingular matrices

by the linear independent shifts of φ ([32, 35, 42]), and the vector
Φ(x) := (φ(x), . . . , φ(x+N − 1))T satisfies

(A.3) Φ(x/2) = B0Φ(x) and Φ((x+ 1)/2) = B1Φ(x), x ∈ [0, 1]

by the refinement equation (A.1), see [12].
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Let En, 1 ≤ n ≤ N , be the family of measurable sets E ⊂ [0, 1] with
positive Lebesgue measure |E| such that

N−1∑
k=0

cEs (k)φ(·+ k) = 0 on E, 1 ≤ s ≤ n

for some vectors cEs := (cEs (0), . . . , cEs (N − 1))T , 1 ≤ s ≤ n, such that
{cEs , 1 ≤ s ≤ n} spans a n-dimensional subspace of RN . Clearly our
conclusion on linear independent shifts of the refinable function φ on
measurable sets follows from E1 = ∅. In the following we will prove
that En are empty sets for all 1 ≤ n ≤ N by induction.

Claim: En, 1 ≤ n ≤ N , are empty sets.

First we prove that EN = ∅. Suppose on the contrary that EN 6= ∅.
Notice that EN contains all measurable sets E ⊂ [0, 1] with positive
Lebesgue measure such that φ(·+ n) = 0 on E for all 0 ≤ n ≤ N − 1.
Then E0 = ∪E∈ENE ∈ EN and

(A.4) |E0| = sup
E∈EN

|E| > 0.

For any l ≥ 1 and 0 ≤ k :=
∑l−1

l′=0 εl′2
l′ ≤ 2l − 1 where εl′ ∈ {0, 1},

applying (A.3) iteratively yields

(A.5) Bεl−1
· · ·Bε0Φ(x) = Φ(2−lx+ 2−lk).

This together with (A.2) and (A.4) implies that

(A.6) |(2lE0 − k) ∩ [0, 1]| ≤ |E0|
for all 0 ≤ k ≤ 2l − 1. On the other hand,

(A.7)
2l−1∑
k=0

|(2lE0 − k) ∩ [0, 1]| =
2l−1∑
k=0

|(2lE0) ∩ [k, k + 1]| = 2l|E0|.

Thus

(A.8) |E0 ∩ [2−lk, 2−l(k + 1))| = 2−l|E0|, 0 ≤ k ≤ 2l − 1, l ∈ N
by (A.6) and (A.7). For a measurable function f on [0, 1], we define
the average function

fl(x) = 2−l
∫ 2−l(k+1)

2−lk

f(y)dy

if x ∈ [2−lk, 2−l(k+ 1)) for some 0 ≤ k ≤ 2l− 1. By Lebesgue theorem
([40]),

(A.9) lim
l→+∞

fl(x) = f(x) for almost all x ∈ [0, 1].
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For the characteristic function χE0 , the corresponding average functions
fl, l ≥ 1, are identically |E0| by (A.8), which together with (A.4) and
(A.9) implies that E0 ⊂ [0, 1] has measure 1, or equivalently E0 =
[0, 1], which in turn implies that φ ≡ 0, a contradiction to the nonzero
assumption on φ.

Inductively we assume that En = ∅ for all n0 + 1 ≤ n ≤ N , where
0 ≤ n0. If n0 = 0, the inductive proof is done. So we assume that
n0 ≥ 1 hereafter. Suppose on the contrary that En0 6= ∅. We observe
that for any sets E1, E2 ∈ En0 , either E1 ∪ E2 belongs to En0 or E1 ∩
E2 has zero Lebesgue measure by the inductive hypothesis, since the
space generated by the family of vectors cE1

s and cE2
s , 1 ≤ s ≤ n0

corresponding to those two sets E1 and E2 has its dimension being
either equal to or strictly larger than n0. Therefore the maximal sets
in En0 are disjoint each other by the above observation. Here a set
E ∈ En0 is said to be a maximal set if there does not exist E ′ ∈ En0

such that E ⊂ E ′ and |E| < |E ′|. This implies that for any given ε > 0,
the family En0(ε) of all maximal sets E ∈ En0 with |E| > ε has finite
cardinality since they are disjoint. Hence there exists Ẽ0 ∈ En0 such
that

(A.10) |Ẽ0| = sup
E∈En0

|E| > 0.

Similar to the argument used in the proof of the equation (A.8), we
have

(A.11) |Ẽ0 ∩ [2−lk, 2−l(k + 1))| = 2−l|Ẽ0|, 0 ≤ k ≤ 2l − 1, l ∈ N.

Therefore Ẽ0 = [0, 1] by (A.11) and the Lebesgue theorem (A.10) for
the characteristic function χẼ0

. This implies that there exists a nonzero

vector c = (c(0), . . . , c(N − 1))T such that
∑N−1

k=0 c(k)φ(· + k) = 0 on
[0, 1], which contradicts to the locally linear independent shifts of the
refinable function φ ([32, 35, 42]). This completes the inductive proof
of the Claim and also the theorem.

�

A.2. Ripplet property of a refinable function. In this subsection,
we show that any refinable function on the line is “almost” a ripplet.

Theorem A.2. Let φ be compactly supported and integrable, have lin-
ear independent shifts, and satisfy a refinement equation

(A.12) φ(x) =
N∑
k=0

c0(k)φ(2x− k)
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where N ≥ 1 and the sequence {c0(k)}Nk=0 satisfies
∑N

k=0 c0(k) = 2 and
c0(0)c0(N) 6= 0. Then (φ(xn + n′))0≤n,n′≤N−1 is nonsingular for almost
all (x0, . . . , xN−1) ∈ [0, 1]N .

Proof. Set Φ(x) = (φ(x), . . . , φ(x+N − 1))T . Let

E0 = {x ∈ [0, 1], Φ(x) = 0}.
Inductively we define

E(x0) = {x ∈ [0, 1], Φ(x) is in the space spanned by Φ(x0)}
for x0 ∈ [0, 1]\E0,

E(x0, . . . , xn) = {x ∈ [0, 1], Φ(x) is in the space

spanned by Φ(x0), . . . ,Φ(xn)}
for xn ∈ [0, 1]\E(x0, . . . , xn−1) where 1 ≤ n ≤ N − 2. By Theo-
rem A.1, the sets E0, E(x0) with x0 6∈ E0, E(x0, . . . , xn) with xn 6∈
E(x0, . . . , xn−1) where n ≥ 1 have zero Lebesgue measures.

Let E be the set of all (x0, . . . , xN−1)T ∈ [0, 1]N such that
(
φ(xn +

n′)
)

0≤n,n′≤N−1
is singular. Then

|E| ≤
∫
x0∈E0

(∫
x1,...,xN−1∈[0,1]N−1

1 dx1 . . . dxN−1

)
dx0

+

∫
x0∈[0,1]\E0

∫
x1∈E(x0)

(∫
x2,...,xN−1∈[0,1]N−2

1 dx2 . . . dxN−1

)
dx1dx0

+ · · ·

+

∫
x0∈[0,1]\E0

∫
x1∈[0,1]\E(x0)

· · ·
∫
xN−3∈[0,1]\E(x0,...,xN−4)

×
∫
xN−2∈E(x0,...,xN−3)

(∫
[0,1]

1 dxN−1

)
dxN−2 · · · dx1dx0

+

∫
x0∈[0,1]\E0

∫
x1∈[0,1]\E(x0)

· · ·
∫
xN−2∈[0,1]\E(x0,...,xN−3)

×
∫
xN−1∈E(x0,...,xN−2)

1 dxN−1dxN−2 · · · dx1dx0

= 0,

and the conclusion follows.

�
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[25] K. Gröchenig and H. Schwab, Fast local reconstruction methods for nonuniform
sampling in shift-invariant spaces, SIAM J. Matrix Anal. Appl., 24(2003), 899–
913.

[26] J. A. Hogan and J. D. Lakey, Sampling and oversampling in shift-invariant and
multiresolution spaces I: validation of sampling schemes, International Journal
of Wavelets, Multiresolution and Information Processing, 3(2005), 257–281.

[27] J. A. Hogan and J. D. Lakey, Periodic nonuniform sampling in shift-
invariant spaces, In “Harmonic Analysis and Applications In Honor of John
J. Benedetto” edited by C. Heil, Birkhuser Boston, 2006, pp. 253–287.

[28] D. Huang and Q. Sun, Affine similarity of refinable functions, Approximation
Theory and its Applications, 15(3)(1999), 81–91.

[29] A.J.E.M. Janssen, The Zak transform and sampling for wavelet subspaces,
IEEE Transaction on Signal Processing, 41(1993), 3360–3364.

[30] R.-Q. Jia and C. A. Micchelli, On linear independence of integer translates of
a finite number of functions, Proc. Edinburgh Math. Soc., 36(1992), 69–75.

[31] W. Lawton, S. L. Lee and Z. Shen, An algorithm for matrix extension and
wavelet construction, Math. Comp., 65(1996), 723–737.
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