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We consider reconstruction of signals by a direct method for the solution of the discrete Fourier system.
We note that the reconstruction of a time-limited signal can be simply realized by using only either the
real part or the imaginary part of the discrete Fourier transform (DFT) matrix. Therefore, based on the
study of the special structure of the real and imaginary parts of the discrete Fourier matrix, we propose
a fast direct method for the signal reconstruction problem, which utilizes the numerically truncated
singular value decomposition. The method enables us to recover the original signal in a stable way from
the frequency information, which may be corrupted by noise and�or some missing data. The classical
inverse Fourier transform cannot be applied directly in the latter situation. The pivotal point of the
reconstruction is the explicit computation of the singular value decomposition of the real part of the DFT
for any order. Numerical experiments for 1D and 2D signal reconstruction and image restoration are
given. © 2006 Optical Society of America
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1. Introduction

Linear systems are one of the important classes of
scientific observing systems. An observing system,
usually, has an input f and an output F, usually
corrupted with additive noise E. The discrete Fourier
transform (DFT) � is one of the representations of the
input–output response. In the ideal case, that is, no
noise is added and no data are missing, the discrete
Fourier system can be expressed as
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where �N � exp(�i�2��N�), and N is the period of
the input signal f. The discrete system (1.1) is related

to a discretization of the integral equation of the first
kind (see the Appendix)

�Tf��u� ��
�1

1

exp�icux�f�x�dx � F�u�, (1.2)

which arises in many areas of physics and engineer-
ing, e.g., Fourier optics,1 antenna theory,2–4 object
restoration from experimental data,5–9 Fourier
transform spectroscopy10,11 image extrapolation in
optics,12 and so forth. This integral equation relates
to the Fourier transform of a time-limited signal.
But unlike the Fourier transform on L2���, ��, the
finite Fourier transform defined by the operator T in
Eq. (1.2) has unbounded inverse, so the problem of
solving Eq. (1.2) for f, for a given F, is ill posed.2 For
further details, see the Appendix.

In practical applications, when an input signal
passes through the DFT system, some of the fre-
quency information may be lost. The missing of some
frequency information is due to the time-domain sig-
nal or the space-domain signal passing through a
band-limited system. For example, suppose there is a
discrete time-limited digital signal f with period N
and N components passing through a discrete
Fourier system. Suppose that M samples of the peri-
odic frequency spectrum F of f are known. The pro-
cess can be described as a system of linear algebraic
equations
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�
l�0

N�1

�N
klfl�1 � Fk�1, k � 0, 1, . . . , M � 1, (1.3)

where �N � exp(�i�2��N�) and

f � �f1, f2, . . . , fN	T, F � �F1, F2, . . . , FM	T.

System (1.3) can be written in a finite rank matrix–
vector form:

�f � F, (1.4)

where F is the frequency signal, which can be par-
tially obtained by observation or experiments.

Similar to the above 1D discrete Fourier system,
the 2D discrete Fourier system can be described as
follows:

�f � �
m�0

M�1

�
n�0

N�1

�MN
lm,knf�m�1��n�1� � F�l�1��k�1�, (1.5)

where

�MN
lm,kn � exp��i2��lm�M � kn�N�	,

l � 0, 1, . . . , M � 1; k � 0, 1, . . . , N � 1.

Here �f is a tensor product, � � �MN�MN, f � �MN,
F � �MN. Numerically, we can use the Kronecker
multiplication to simplify the computation.

The general problem in the discrete Fourier system
is to recover the original signal f in a stable way from
the frequency information F, which may be corrupted
by noise and�or some partial missing data.

In an ideal situation, that is, no noise is added and
no data are missing, the widely used method is
the inverse fast Fourier transform (IFFT), especially
when the total number of sampling points is of the
form 2k for some integer k � 0.

In general, Eq. (1.4) is overdetermined and the IFFT

cannot be employed directly.13–16 Also, some draw-
backs are exhibited, such as in imaging interferometric
intensity and phase and�or height.17 All these difficul-
ties lead to the necessity of resorting to other methods
for solving the linear systems (1.4) and (1.5) when the
frequency data F is corrupted and�or partially miss-
ing. There are several approaches to the above prob-
lem. For instance, the singular value decomposition
(SVD) method of the discrete Fourier matrix � was
introduced for the superresolution18 and diffraction
application19; the nonquadratic regularization
method of the discrete Fourier system was proposed
for the Fourier synthetic aperture radar (SAR) image
reconstruction20 (see also Carrara et al.21 for a com-
prehensive discussion); and the spectral estimation
algorithms were developed for Fourier radar prob-
lems.17,22 Wingham19 further compared the SVD with
Miller’s regularization and obtained a least-squares
estimation.

The Fourier matrix � can be written as

� � �r � i�i,

where �r and �i denote the real and imaginary parts
of �, respectively. For a time-limited signal, we can
simply reconstruct it by either the real or imaginary
parts of the DFT system. We use the real part in this
paper. Then the input signal is the minimal-norm
least-squares solution of the system

�r f � Fr (1.6)

or

f � �r
†Fr, (1.7)

where the symbol † denotes the Moore–Penrose gen-
eralized inverse. Recall that the Moore–Penrose gen-
eralized inverse of a matrix A is the matrix that
assigns to each vector y the unique minimal-norm
least-squares solution of Ax � y. For theory and com-

Fig. 1. Input true 1D signal. Fig. 2. Exact frequency information.
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putational issues of generalized inverses, particu-
larly the interplay between the continuous and the
discrete version; see Ref. 23. Of course we do not
compute f by first computing the generalized inverse
and then by multiplying it by Fr. Rather we compute
f by a numerical method for solving the least-squares
problem.24,25

We want to point out more about the application of the
real or imaginary part of � to reconstruct the time-
limited signal f. As is known, the Fourier transform of
a time-limited even signal is equivalent to the real
part of � that applies to f, whereas the Fourier trans-
form of a time-limited odd signal is equivalent to the
imaginary part of � that applies to f. Therefore, if we
use Eq. (1.7) as the reconstruction system, it
is particularly useful for reconstruction of a time-
limited even signal. Nevertheless, any time-limited
signal can always be symmetrized to be an even sig-
nal.

Now a question that arises immediately is, what
about the condition number of �r? Is the generalized
inverse of �r uniformly bounded in N? If the condition
number of �r is large, then this is a discrete ill-posed
problem due to the frequency signal F
containing random noise. For example, we consider
a 10 � 10 DFT matrix �10�10 with entries �N

kn

� exp(�i�2�kn�N�) and period N � 10. It is easy to
see that the rank of �r is 6 since there are 4 zero
singular values and the only nonzero singular value
is 
10 with algebraic multiplicity 6. But in computer
computation, due to the roundoff error and the limit
of the machine precision, we can only obtain approx-
imate values of the singular values. So, by using dou-
ble precision in the computer computation, we get the
following singular values of this �r:

	nonzero��r� �





 3.162 277 660 168 384
3.162 277 660 168 383
3.162 277 660 168 382
3.162 277 660 168 382
3.162 277 660 168 381
3.162 277 660 168 380






,

	nearly zero��r� � �
1.945 788 483 288 222 � 10�15

1.253 079 556 056 248 � 10�15

5.263 367 760 387 904 � 10�16

2.198 412 987 245 457 � 10�18
�.

Thus numerically the rank of �r cannot actually be 6
and should be 9 in the computation by regarding the
last component of 	nearly zero��r� as zero. This will
cause difficulty for numerical computation. Therefore
we introduce the concept of � rank in Section 2 and
give a realistic algorithm in Section 3.

To stably recover the original information by
Eq. (1.7), some regularization technique should be
used. The numerically truncated-singular-value-decom-
position (NTSVD) method successfully suppresses the
instability induced by the small singular values (see Sec-

tion 3). Moreover, the special properties for �r and �i can
be explored more deeply (see Section 4). Our method
developed in this paper is based on both of these
methods, i.e., we resolve this problem by using the
NTSVD. We are able to perform the NTSVD explic-
itly since in this paper we derive explicit formulas for
the singular values and singular vectors for any order
N of the matrix, which is the essence of one of the
main contributions of the paper. This is also the piv-
otal point for the effectiveness of the numerical pro-
cedure based on the truncated singular value
decomposition (TSVD) analyzed in this paper.

The paper is organized as follows. In Section 2 we
recall the SVD method for solving linear DFT system.
In Section 3 we present the NTSVD for regularizing
the system. In Section 4 we derive explicit SVD for-
mulas for the real and imaginary parts of the Fourier
matrix �. In Section 5 we give realistic algorithms for
1D and 2D signal reconstruction problems. In Section
6 we present some numerical tests for 1D and 2D
signal reconstruction problems from corrupted fre-
quency information. In Section 7 we give a proof for
the explicit SVD formulas. In Section 8 we provide
conclusions and briefly mention some possible exten-
sions of the proposed method. Finally in the Appendix
we reformulate the Fourier transform over a finite
interval and state the numerical difficulties due to
ill-posedness. We also indicate the particular
discretization–collocation scheme that leads to the
DFT system (1.1).

Throughout this paper, AT and A* denote the trans-
pose and conjugate transpose of a matrix A, respec-
tively, IN is the unit matrix of order N, �x�2 �
��i�1

N 
xi

2�1�2 is the standard norm of x �

�x1, . . . , xN�T � RN, and A�:, s : t� denotes the subma-
trix formed by all rows between sth and rth columns
of a matrix A.

2. Singular Value Decomposition of the DFT Matrix

Let

� � �
1 1 1 · · · 1
1 �N �N

2 · · · �N
N�1

1 �N
2 �N

4 · · · �N
2�N�1�

É É É É É

1 �N
M�1 �N

2�M�1� · · · �N
�M�1��N�1�

� � �M�N

�M � N�, (2.1)

where �N � e�i�2��N�. Clearly the entries of � consist of
1, x, x2, . . . , xM�1 with x � 1, �N, . . . , �N

N�1. Then

� � �r � i�i.

The entries of �r and �i are cos�2�mn�N� and
�sin�2�mn�N�, respectively, m � 0, 1, . . . , M
� 1, and n � 0, 1, . . . , N � 1.

Let F represent �r or �i . The SVD of the matrix F
is of the form
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F � U�VT � �
i�1

N

	iuivi
T, (2.2)

where U � �u1, u2, . . . , uN	 � �M�N and V � �v1,
v2, . . . , vN	 � �N�N are orthonormal matrices,

UTU � VTV � IN,

IN is the unit matrix with order N, and the diagonal
matrix � � diag�	1, 	2, . . . , 	N	 satisfies

	1 � 	2 � · · · � 	N.

Note that the time-limited signals can be simply
reconstructed by using only �r. However, the condi-
tion number of �r is large for sufficiently large M and
N due to its rank deficiency. This causes difficulties in
computation, i.e., a small perturbation in F may lead
to large instability in the solution. Moreover, in the
presence of errors (machine precision error, measure-
ment errors, discretization errors, etc.), the rigorous

definition of the rank is not useful numerically.26,27

Practically, we introduce the numerical -rank r of a
matrix A � �M�N, with respect to the tolerance �, by

r � min�rank�B � A� : B � �M�N, � B�2 � .

Denote the singular values of A by 	i for i �
1, 2, . . . , N. In terms of the singular values of A, the
numerical -rank r satisfies

	r�1 �  � 	r
.

When A is given exactly, then it is natural to choose
B as the influence of rounding errors during compu-
tation of the SVD of A. Usually B� is a random matrix
with elements from a certain statistical distribution.
For example, in image processing, B often satisfies
the Gaussian distribution with zero mean and stan-
dard deviation � or Poisson distribution with a mean
value �. In view of this, we should not solve the prob-
lem by SVD directly; instead we should use some

Fig. 3. Noisy, fragmentary frequency.

Fig. 4. Reconstructions.

Fig. 5. Reconstructions for the noisy frequency.

Fig. 6. Input true 1D odd signal.
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regularization technique to SVD by taking into ac-
count the numerical � rank.

3. Numerically Truncated Singular Value
Decomposition Method for Least-Squares Problems

Fix an M � N matrix A and a vector b � RM. Now we
consider the following minimization problem:

min
x�RN

�Ax � b�2. (3.1)

Consider the SVD of the matrix A:

A � U�VT � �
i�1

N

	iuivi
T, (3.2)

where U � �u1, u2, . . . , uN	 � �M�N and V � �v1,
v2, . . . , vN	 � �N�N are orthonormal matrices,

UTU � VTV � IN,

and the diagonal matrix � � diag�	1, 	2, . . . , 	N	
satisfies


	1
 � 
	2
 � · · · �
	N
.

If the rank of A is r, then by the SVD of A, we see that
the solution xLS of the least-squares problem (3.1) of
minimal norm is

xLS � �
i�1

r 1
	i

�ui
Tb�vi, (3.3)

min
x�RN

�Ax � b�2
2 � �i�r�1

N |ui
Tb|2.

However, in practice, A may not be exactly rank de-
ficient, but instead numerically rank deficient, i.e., it
has one or more small but nonzero singular values
such that r � rank�A�. It is clear from (3.3) that the
small singular values inevitably give rise to difficul-

Fig. 7. Symmetrized true 1D odd signal.

Fig. 8. Exact frequency information for the symmetric case.

Fig. 9. Noisy, fragmentary frequency.

Fig. 10. Reconstructions.
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ties. The regularization technique for SVD means
some of the small singular values are truncated when
in computation, and hence it is called the NTSVD. We
apply this technique to the real and imaginary parts
of the Fourier matrix. Note that if the Fourier system
� is corrupted, then so are �r and �i. Now let A be
either �r or �i , and assume that A is corrupted by the
error matrix B. Then we replace A by a matrix Ar̃

that is close to A and mathematically rank deficient.
Our choice of Ar̃ is obtained by replacing the small
nonzero singular values 	r̃�1, 	r̃�2, . . . , 	N with exact
zeros, i.e.,

Ar̃ � �
i�1

r̃

	iuivi
T, (3.5)

where r̃ is usually chosen as r. We call Eq. (3.5) the
NTSVD of A. Now we use Eq. (3.5) instead of the
usual SVD (3.2) of the matrix A to compute the least-
squares solutions. Practically, we solve the minimi-
zation problem

min
x��N

�Ar̃ x � b�2, (3.6)

instead of Eq. (3.1). In this case, the approximated
solution xLS

appr of the minimal-norm least-squares
problem (3.1) is given by

xLS
appr � Ar̃

†b � �
i�1

r̃ 1
	i

�ui
Tb�vi, (3.7)

where Ar̃
† denotes the Moore–Penrose generalized in-

verse.

4. Symmetric Case: a Heuristic Approach

In Section 2 we deal with the M � N discrete Fourier
system � when M � N. However, we can always
obtain an M � M DFT system by padding M–N col-
umn vectors to the M � N discrete Fourier system �,
and the entries of the extended discrete Fourier
system consist of 1, x, x2, . . . , xM�1 with x � 1,
�M, . . . , �M

M�1. Correspondingly, padding M � N ze-
ros to the vector f does not change the frequency F.

For example, we can replace Eq. (2.1) by Eq. (4.1) if
we pad M � N zeros following the last component of
the vector f, which does not change the frequency F.
In this way, we obtain the discrete Fourier system in
the form

� � �
1 1 1 · · · 1
1 �M �M

2 · · · �M
M�1

1 �M
2 �M

4 · · · �M
2�M�1�

É É É É É

1 �M
M�1 �M

2�M�1� · · · �M
�M�1�2

� � �M�M,

(4.1)

where �M � e�i�2��M�. Clearly, � is a symmetric
matrix, but not Hermitian; the entries of � consist of
1, x, x2, . . . , xM�1 with x � 1, �M, . . . , �M

M�1, and �
satisfies

�T � �, �*� � ��* � MIM, (4.2)

where IM is the unit matrix of order M. Moreover, we
have the following SVDs for the real and imaginary
parts of the Fourier matrix �, whose proof is given in
Section 7.

Theorem 4.1. Let �r and �i be the real and imag-
inary parts of the Fourier matrix � given in Eq. (4.1).
We have the explicit formulas of the SVDs for �r and
�i,

�r � U�1V
T, �i � U�2V

T, (4.3)

where

�1 � diag�
M, . . . , 
M,
Ç

r

0, . . . , 0�,

�2 � diag�0, . . . , 0, 
M, . . . , 
M
Ç

M�r
�.

depend on whether M is even or odd.

(a) For M even, say M � 2p, we have r � p � 1 and

U � 
 1
M �

1 
2 · · · 
2 1 0 · · · 0

1 
2a1 · · · 
2ar�2 ar�1 
2br�2 · · · 
2b1

É É Ì É É É Ì É

1 
2aM�1 · · · 
2a�M�1��r�2� a�r�1��M�1� 
2b�M�1��r�2� · · · 
2bM�1

�, (4.4)

3116 APPLIED OPTICS � Vol. 45, No. 13 � 1 May 2006



where ak � cos�2k�⁄M� and bk � sin�2k�⁄M� for all
positive integers k. Note that in Eq. (4.5), all the non-
zero entries consist of the entries on the main diagonal
and on the subdiagonal below the cross diagonal (con-
sisting of zeros).

(b) For M odd, say M � 2p � 1 , we have r � p
� 1 and

where ak and bk are as in part (a). Note again that in
Eq. (4.7) all the nonzero entries consist of the entries
on the main diagonal and on the subdiagonal below
the cross diagonal.

From Theorem 4.1 we also see that the Fourier
matrix � can be written as the product of matrices U,

V �







1 0 0 · · · · · · · · · · · · · · · 0 0

0

2
2

0 · · · · · · · · · · · · · · · 0

2
2

0 0

2
2

· · · · · · · · · · · · · · ·

2
2

0

É É É Ì É É É É É É

0 0 0 · · ·

2
2

0

2
2

· · · 0 0

0 0 0 · · · 0 1 0 · · · 0 0

0 0 0 · · ·

2
2

0 �

2
2

· · · 0 0

É É É Ì É É É Ì É É

0 0

2
2

· · · · · · · · · · · · · · · �

2
2

0

0

2
2

0 · · · · · · · · · · · · · · · 0 �

2
2 






�p � 1�th row, (4.5)

U � 
 1
M �

1 
2 · · · 
2 0 · · · 0

1 
2a1 · · · 
2ar�1 
2br�1 · · · 
2b1

É É Ì É É Ì É

1 
2aM�1 · · · 
2a�M�1��r�1� 
2b�M�1��r�1� · · · 
2bM�1

�, (4.6)

V �







1 0 0 · · · · · · · · · · · · 0 0

0

2
2

0 · · · · · · · · · · · · 0

2
2

0 0

2
2

· · · · · · · · · · · ·

2
2

0

É É É Ì É É É É É

0 0 0 · · ·

2
2


2
2

· · · 0 0

0 0 0 · · ·

2
2 �


2
2

· · · 0 0

É É É Ì É É Ì É É

0 0

2
2

· · · · · · · · · · · · �

2
2

0

0

2
2

0 · · · · · · · · · · · · 0 �

2
2 






�p � 1�th row, (4.7)
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V and a diagonal matrix � � �1 � i�2,

� � U�VT.

It is clear from Theorem 4.1 that �r is a rank-
deficient real matrix, that is, its rank is equal to the
number of positive singular value of �r. As described
in Section 2, this causes difficulties in computation,
i.e., a small perturbation in F may lead to a large
instability in the solution. In view of this, we use the
TSVD as in Section 3. In solving the minimization
problem (3.1) with A being the perturbation of �r, we
let r � �M � 2��2 when M is even and r � �M
� 1��2 when M is odd.

Remark 4.1. Note that �r is a symmetric matrix,
hence it is unitarily diagonalizable, i.e., there exists
an orthogonal matrix P�P�1 � PT� such that

P�1�r P � D,

where D is a diagonal matrix whose nonzero entries
are the eigenvalues of �r and the columns of P are
orthogonal eigenvectors belonging to the eigenvalues
�1, �2, . . . , �M. Thus the signal f can be recovered by
finding the minimal-norm least-squares solution of
the system PT�r Pf � F, i.e.,

f � PD†PTF,

where D† is the Moore–Penrose generalized inverse
of D,

D† � �
�1

�1 0 · · · 0
0 Ì Ì É

É Ì �r
�1 0

0 · · · 0 0
�,

where r � rank�D�. However, in general, the matrix
P is a full matrix, so the amount of computation may
become excessive for sufficiently large N. Computa-
tions of the singular values and singular vectors of �r

turn out to be effective since, as we show in this
paper, the matrix �r

T�r is sparse and moreover we
are able to determine explicit formulas for the SVD
for any order M. This result, which in essence is one
of the main contributions of the paper, is the pivotal
point for the effectiveness of the numerical procedure
based on the TSVD analyzed in this paper.

5. Applications in Signal Processing

For the general M � N �M � N� DFT system, we can
apply the TSVD method for recovering the input sig-
nal f. As is pointed out in Section 4, any M � N �M
� N� discrete Fourier system � can be extended to an
M � M DFT system where the entries consist of
1, x, x2, . . . , xM�1 with x � 1, �M, . . . , �M

M�1, by pad-
ding M � N column vectors to the M � N discrete
Fourier system �. Therefore we can use the proper-
ties in Section 4 to develop some useful algorithms.

A. 1D Problem

For practical application problems, the frequency in-
formation usually contains noise, i.e., instead of Ftrue,
we may have F � Ftrue � E, where E is an additive
noise. If we want to reconstruct the signal f, we need
to solve the following minimization problem:

�E�2 → min.

This is equivalent to solving the minimization problem

J�f�
def
�� ��r f � F�2 → min. (5.1)

From Section 4 we find that the SVD of matrices �r

can be easily obtained. So let �r � U�1V
T be the SVD

of matrix �r determined by Theorem 4.1, where
U � �u1, u2, . . . , uM	 and V � �v1, v2, . . . , vM	 are or-
dered by columns; the solution can be easily obtained
by the TSVD.

Based on the above analysis, we give a realistic
algorithm for 1D signal reconstruction.

Algorithm 5.1. Least-squares algorithm for 1D
signal reconstruction

Step 1. If M is even, r � M�2 � 1, Let V �
�v1, v2, . . . , vr�,
Construct U � �r�:, 1 : r�;
U�:, 2 : r � 1� � 
2U�:, 2 : r � 1�;
Go to Step 3; [Recall that by �r�:, 1 : r� we
mean the submatrix formed by all rows
between the first column and the rth col-
umn].

Step 2. If M is odd, r � �M � 1��2, Let V
� �v1, v2, . . . , vr�, Construct U � �r�:,
1 : r� U�:, 2 : r� � 
2U�:, 2 : r�; Go to Step
3;

Step 3. fLS � �i�1
r �ui

TF�
M� vi.
Remark 5.1. Since both the diagonal matrix �

and V are known to be explicitly sparse matrices in
advance, therefore the amount of computation for
solving Eq. (5.1) lies in the construction of the matrix
U and the computation of fLS � �i�1

r �ui
TF�
M� vi. Let

us consider the even nodes M. The cost for construc-
tion of U is O�1

2M
2 �

3
2M�, and the cost for the com-

putation of fLS is O�1
4M

2 �
3
2M� . Thus the total amount

of computation for solving Eq. (5.1) is O�3
4M

2�. This
computational effort is much less than other decom-
position methods such as LU decomposition, Gauss–
Jordan elimination, and the usual SVD and so forth.
Similar discussions can be made for 2D time-limited
signal reconstruction problems.

B. 2D Problem

The following definition will be used in analyzing 2D
problems that involve the tensor product.

Definition 5.1. Given an array U � �Mx � My, one
can obtain a vector U � �MxMy by stacking the col-
umns of U. This defines a linear mapping vec:
�Mx � My → �MxMy,
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vec�U� � �U11, . . . ,UMx1, U12, . . . ,UMx2, . . . ,
U1My

, . . . ,UMxMy	T.

This corresponds to lexicographical column ordering
of the elements in the array U.

For a 2D problem, the computation process is a
little more complex than the 1D problem. However,
by employing the Kronecker product, we can still find
an easy way to reconstruct the original signal.

Let �x � Ax � Bxi, �y � Ay � Byi, Mx � dim��x�,
My � dim��y�, rx � rank�Ax�, and ry � rank�Ay�. Then

�x � �y � �Ax � Bxi� � �Ay � Byi�

� �Ax � Ay � Bx � By�
� �Ax � By � Bx � Ay�i.

The 2D minimization problem is in the form

min � �f � F�2, (5.2)

where � � real��x � �y�, f � vec�f�, and F � vec
�F�. From Theorem 4.1, we have

Ax � Ux��1x 0
0 0�Vx

T, Ay � Uy��1y 0
0 0�Vy

T,

Bx � Ux�0 0
0 �2x

�Vx
T, By � Uy�0 0

0 �2y
�Vy

T,

Fig. 11. Reconstructions for the noisy frequency.

Fig. 12. Input true 2D signal.

Fig. 13. Exact frequency information.

Fig. 14. Noisy, fragmentary frequency.
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where �1x � 
MxIrx
, �2x � 
MxIMx�rx

, �1y � 
MyIry
, and

�2y � 
MyIMy�ry
. So

� � Ax � Ay � Bx � By

��Ux � Uy���Vx � Vy�T, (5.3)

where

� � ��1x 0
0 0�� ��1y 0

0 0�� �0 0
0 �2x

�� �0 0
0 �2y

�.

From the discussion in Section 3, the least-squares
solution of minimal norm can be represented in the
following form:

fLS � �†F � �Vx � Vy��†�Ux � Uy�T F, (5.4)

where �† is in the form

�† � ��1x
�1 0

0 0�� ��1y
�1 0

0 0�
� �0 0

0 �2x
�1�� �0 0

0 �2y
�1�.

By definition 5.1, we can expand (5.4) as

�Ux � Uy�T F � vec�Uy
TFUx� � vec�F��

and

�†vec�F�� � vec���1y
�1 0

0 0�F���1x
�1 0

0 0�
� �0 0

0 �2y
�1�F��0 0

0 �2x
�1��

� vec��F1� 0
0 �F2�

��� vec�F��, (5.5)

where

F1� � U1y
TFU1x�
MxMy, F2� � U2y

TFU2x�
MxMy,

and U1x is the first rx columns of Ux, U2x is the last
Mx � rx columns of Ux, and U1y, U2y, V1x, V2x, V1y, V2y,
and so on.

We also note that

�Vx � Vy�vec�F�� � vec�Vy�F1� 0
0 �F2�

�Vx
T�

� vec��V1y V2y	�F1� 0
0 �F2�

�
� �V1xV2x	T�

� vec�V1yF1�V1x
T � V2yF2�V2x

T�. (5.6)

Hence

fLS � vec�V1yF1�V1x
T � V2yF2�V2x

T�. (5.7)

The above analysis yields an efficient algorithm for
2D signal reconstruction.

Algorithm 5.2. Least-squares algorithm for 2D
signal reconstruction

Construct Ux, Vx, Uy, Vy as in Theorem 4.1;

Fig. 15. Reconstructions.

Fig. 16. Noisy, fragmentary frequency.
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F1� � U1y
TFU1x�
MxMy;

F2� � U2y
TFU2x�
MxMy;

fLS � vec�V1yF1�V1x
T � V2yF2�V2x

T�.

6. Numerical Tests

In this section we give two examples for 1D or 2D
signal reconstructions to demonstrate the effective-
ness of the NTSVD method for recovering informa-
tion.

Example 6.1. 1D Two Pulse Signal Reconstruction

In this example we consider a 1D signal reconstruc-
tion problem, which is also discussed by Gerchberg28.
The input signal is given by

f�x� � 1000�rect(16�x �
3.5
32 �)

� rect(16�x �
3.5
32 �)�, (6.1)

in which the signal consisted of two pulses each 1
16

unit long (two samples per pulse), symmetrically
placed about the origin and separated by a length of
7
32 units. The pulses were 1000 units high and in
phase. Numerically, we define the signal f�t� in
��4, 4	. The function f is approximated by a discrete
vector f with M � 500 sampling points. Here f is a
discretization of the function f.

In our numerical test, the frequency information F
of the original signal f is obtained by passing through
the discrete Fourier system with Gaussian noise
added, i.e.,

F : � Fnoise � Ftrue � rand(size�Ftrue�),

where rand�·� represents the Gaussian noise function
and size �·� represents that the dimension of Fnoise is
the same as Ftrue. The signal-to-noise ratio (SNR) is
37.32 dB.

The true 1D signal and its frequency information
are plotted in Figs. 1 and 2, respectively, while the
reconstruction figure via the NTSVD method is plot-
ted as in Fig. 5. From Fig. 5, we see that the shape of
the reconstructed signal is not too much affected by
noise. The reason for this phenomenon, we believe, is
that the error propagation is successfully suppressed
by the NTSVD, i.e., the small singular values play a
minor role in the numerical computation.

To simulate the practical applications and to dem-
onstrate the advantage of the NTSVD method, we
consider the signal reconstruction problem in case
the frequency data are severely damaged. For in-
stance, some parts of the frequency information F are
missing or undetected due to various reasons. Figure
3 is the noisy, fragmentary frequency information
with some missing frequency data that are replaced
by zero, F�1� � 0, F�N�5� � 0, F�N�4 � 1 : N� � 0,
while Fig. 4 is the original signal (solid curve) and the
reconstruction signal (dashed curve) obtained from
the NTSVD method in this paper. Here the notation
F�N�4 � 1 : N� � 0 means that the vector is formed
by replacing all rows between N�4 � 1 and N [includ-
ing the �N�4 � 1�th row and the Nth row] with zeros.
From Fig. 4 we see that the reconstructed signal has
almost the same shape as the original one. Compar-
ing Fig. 5 with Fig. 4, we find that the reconstructions
are not too much affected by noise but are much more
dependent on the quality of the frequency informa-
tion. We note that this example provides a symmetric

Fig. 17. Reconstructions. Fig. 18. Noisy, fragmentary frequency.
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time-limited signal. This is equivalent to saying that
only the real part of the Fourier matrix plays a role in
the reconstruction. Actually, any time-limited signal
can be symmetrized. For example, suppose the input
signal is

f�x� � 1000�rect(16�x �
3.5
32 �) � rect(16�x �

3.5
32 �)�,

(6.2)

which is an odd signal, then its symmetric form can
be obtained by

Therefore the recovery process is the same as in the
even signal. The simulation results are shown in
Figs. 6–11 with similar captions as in the even
signal.

Note that the symmetrization of a time-limited sig-
nal leads to only a slight increase in the computa-
tional cost in the numerical implementation, since in
Remark 5.1 we have shown that the total amount of
computation for solving Eq. (5.1) is O�3

4M
2�. Therefore,

for a symmetrized signal with 2M points, the cost

would be O�3M2�. This computational cost is quite
reasonable for modern computers.

Example 6.2. Photoimage Restoration

In this example we consider a 2D signal reconstruc-
tion problem: photoimage restoration. The original
image is the widely used 256 � 256 photo “Lena.” See
Figs. 12 and 13 for the original image and its fre-
quency spectrum, respectively. Numerically, image f
is approximated by a discrete vector f with Mx

� My � 28 sampling points.
The frequency information F is obtained by a pro-

cedure similar to the one as shown in Example 6.1:

passing the discrete Fourier system to get the output
Ftrue, adding Gaussian white noise to Ftrue with a SNR
level of 32.81 dB, and replacing the partial frequency
information by zero (that is, those parts of the fre-
quency information that are missing). We assume
that the frequencies of the four quadrants are lost one
by one. Figure 12 is a plot of the original 2D signal;
Fig. 13 is a plot of its frequency spectrum. Figures
14–21 are the plots of the noisy, fragmentary fre-
quency information and the corresponding recon-
structions via the NTSVD method. Note that for

f�x� ��1000rect�16�x �
3.5
32 ��� 1000rect�16�x �

3.5
32 �� for x � ��4, 4	,

1000rect�16�x �
3.5
32 ��� 1000rect�16�x �

3.5
32 �� for x � �4, 12	.

(6.3)

Fig. 19. Reconstructions. Fig. 20. Noisy, fragmentary frequency.
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visualizing the frequency information more clearly,
we swap the first and third quadrants and the second
and fourth quadrants. From Figs. 14–19 we observe
that the image is not damaged much and most of the
details are preserved. Figures 20 and 21 indicate that
the fourth quadrant of the shifted frequency plays a
more important role than others in the quality of
reconstruction.

7. Proof of Theorem 4.1

For proof of the theorem, we need the following lem-
mas.

Lemma 7.1. Suppose � � �M � M is the Fourier
matrix, and let �r :� �r

T�r and �i :� �i
T�i. Then

(1) If M is even, then

�r �






M 0 0 · · · · · · · · · · · · · · · 0 0

0
M
2

0 · · · · · · · · · · · · · · · 0
M
2

0 0
M
2

· · · · · · · · · · · · · · ·
M
2

0

É É É Ì É É É É É É

0 0 0 · · ·
M
2

0
M
2

· · · 0 0

0 0 0 · · · 0 M 0 · · · 0 0

0 0 0 · · ·
M
2

0
M
2

· · · 0 0

É É É Ì É É É Ì É É

0 0
M
2

· · · · · · · · · · · · · · ·
M
2

0

0
M
2

0 · · · · · · · · · · · · · · · 0
M
2 






� �p � 1�th row, (7.1)

(2) If M is odd, then

Proof. Consider a unit circle that is partitioned into
N equal arcs with the nodes �l � 2kl��M, l � 0,
2, . . . , M � 1. Note that cos �l is the projection onto
the x axis of the vector extending from the center of
the unit circle to the point �cos �l, sin �l�, where sin �l

is the projection onto the y axis. Therefore the follow-
ing equalities can be easily obtained:

�
l�0

M�1

cos
2kl�

M cos
2k�l�

M � �
l�0

M�1

sin
2kl�

M sin
2k�l�

M � 0

(7.5)

for all integers k, k� with k � k� � MZ,

�
l�0

M�1

cos2
2kl�

M � �
l�0

M�1

sin2
2kl�

M �
M
2 (7.6)

for all k � Z with 2k � MZ, and

�i �







0 0 0 · · · · · · · · · · · · · · · 0 0

0
M
2

0 · · · · · · · · · · · · · · · 0 �
M
2

0 0
M
2

· · · · · · · · · · · · · · · �
M
2

0

É É É Ì É É É É É É

0 0 0 · · ·
M
2

0 �
M
2

· · · 0 0

0 0 0 · · · 0 0 0 · · · 0 0

0 0 0 · · · �
M
2

0
M
2

· · · 0 0

É É É Ì É É É Ì É É

0 0 �
M
2

· · · · · · · · · · · · · · ·
M
2

0

0 �
M
2

0 · · · · · · · · · · · · · · · 0
M
2 






� �p � 1�th row (7.2)

�r �







M 0 0 · · · · · · · · · · · · 0 0

0
M
2

0 · · · · · · · · · · · · 0
M
2

0 0
M
2

· · · · · · · · · · · ·
M
2

0

É É É Ì É É É É É

0 0 0 · · ·
M
2

M
2

· · · 0 0

0 0 0 · · ·
M
2

M
2

· · · 0 0

É É É Ì É É Ì É É

0 0
M
2

· · · · · · · · · · · ·
M
2

0

0
M
2

0 · · · · · · · · · · · · 0
M
2 





�p � 1�th row,

(7.3)

�i �







0 0 0 · · · · · · · · · · · · 0 0

0
M
2

0 · · · · · · · · · · · · 0 �
M
2

0 0
M
2

· · · · · · · · · · · · �
M
2

0

É É É Ì É É É É É

0 0 0 · · ·
M
2 �

M
2

· · · 0 0

0 0 0 · · · �
M
2

M
2

· · · 0 0

É É É Ì É É Ì É É

0 0 �
M
2

· · · · · · · · · · · ·
M
2

0

0 �
M
2

0 · · · · · · · · · · · · 0
M
2 






�p � 1�th row. (7.4)
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�
t�0

M�1

cos
2kl�

M sin
2k�l�

M � 0 (7.7)

for all integers k, k�. These relationships directly lead
to (1) and (2) for even M and odd M, respectively. □

Lemma 7.2. The eigenvalue decompositions of
�r and �i are given by

�r � VT�1V, �i � VT�2V,

where �1 � diag�M, . . . , M,
Ç

r

0, . . . , 0� and �2 �

diag�0, . . . , 0, M, . . . , M
Ç

M�r

�. The matrix V is orthogo-

nal, i.e., VTV � I and is in the form

for even M and

V �







1 0 0 · · · · · · · · · · · · 0 0

0

2
2

0 · · · · · · · · · · · · 0

2
2

0 0

2
2

· · · · · · · · · · · ·

2
2

0

É É É Ì É É É É É

0 0 0 · · ·

2
2


2
2

· · · 0 0

0 0 0 · · ·

2
2 �


2
2

· · · 0 0

É É É Ì É É Ì É É

0 0

2
2

· · · · · · · · · · · · �

2
2

0

0

2
2

0 · · · · · · · · · · · · 0 �

2
2 





� �p � 1�th row (7.9)

for odd M, where r � �M � 2��2 for even M and r
� �M � 1��2 for odd M.

Proof. We will only discuss Fourier matrix of even
order. Let det(C) denote the determinant of a square
matrix C. It is easy to show

det��r � �I� � ����M�2 � 1�M � ��M�2 � 1. (7.10)

Thus the distinct eigenvalues of �r are N and 0. Fur-
thermore, one can easily determine the correspond-
ing orthonormal eigenvectors (7.8) by construction. □

Proof of Theorem 4.1

Proof. Suppose �r � U�1V
T, then �r

T�r � V�1
2VT is

an eigenvalue decomposition. From Lemma 7.2, we
see

�1 � diag� 
M, . . . ,
M
Ç

r

, 0, . . . , 0�,

and obviously V can be taken as Eq. (7.8) or (7.9),
respectively. Once V is determined, the first r col-
umns of U can be easily established by relationship
�rV � U�1 due to the nonzero singular values. The
remaining columns can just be taken as vectors or-
thogonal to the first r columns. Note �r

T�i � 0°, thus
we get U as Eq. (4.4) or (4.6) for even M and odd M,
respectively. □

8. Discussion and Conclusion

We have proposed a NTSVD algorithm for recovering
information through the Fourier system. The algo-
rithm is based on the study of the special structure of
the real and imaginary parts of the discrete Fourier
matrix �.

The TSVD method is applicable when the system is
overdetermined, since in such a case the solution of a
least-squares problem is inevitable. This method is
also useful for radar problems16,20,21 and medical im-
age processing problems, such as magnetic resonance
imaging (MRI), computerized tomography, and mag-
netic resonance spectroscopic imaging.13 Because this
kind of problem involves selection of observations, it
may be expensive and sometimes dangerous.

Our algorithms are also applicable for the case of
nonuniform nodes Fk, k � 1, 2, . . .. In such a case, in
order to recover f, a simple way is to interpolate first
the right-hand side F to form a new vector F with
equidistant entries, then apply our algorithm to F.
Finally, we determine the solution by memorizing the
locations of the original signal.

Appendix: the Fourier Transform over a Finite Interval

Consider the integral operator T defined by Eq. (1.2)
on the space L2��1, 1	 of all square-integrable func-
tions (finite energy signals on ��1, 1	). The results of
Slepian and Pollak12 guarantee the existence of a
complete set of real eigenfunctions ��jj�0

� for the in-
tegral operator and a corresponding decreasing se-
quence of real positive eigenvalues ��jj�0

�. Indeed,

V �







1 0 0 · · · · · · · · · · · · · · · 0 0

0

2
2

0 · · · · · · · · · · · · · · · 0

2
2

0 0

2
2

· · · · · · · · · · · · · · ·

2
2

0

É É É Ì É É É É É É

0 0 0 · · ·

2
2

0

2
2

· · · 0 0

0 0 0 · · · 0 1 0 · · · 0 0

0 0 0 · · ·

2
2

0 �

2
2

· · · 0 0

É É É Ì É É É Ì É É

0 0

2
2

· · · · · · · · · · · · · · · �

2
2

0

0

2
2

0 · · · · · · · · · · · · · · · 0 �

2
2 





� �p � 1�th row (7.8)
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the eigenfunction �n is identified as the angular pro-
late spheroidal function of order n while the corre-
sponding �n is the value of the radial prolate
spheroidal function of the same order evaluated at 1
(with our normalization). Moreover, the eigenfunc-
tions satisfy the orthogonality condition

�
�1

1

�i�t��j�t�dt �� 0, i � j,
2�

c �i
2, i � j.

The completeness of these functions in L2��1, 1	
guarantees that the range of the operator defined by
Eq. (1.2) is dense in this space.

Again, the results of Slepian and Pollak12 show
that the eigenfunction �n has n zeros in the interval
��1, 1	 and hence the higher-order terms in the ap-
proximation will be rapidly oscillating.

For physical problems in Fourier optics and an-
tenna theory, for example, this behavior leads to high
losses in the near field resulting in severe interfer-
ence due to, e.g., plasma effects. The reader is re-
ferred, for example, to the exposition in Fante and
Mayhan3 for a discussion of the physical aspects of
this problem. To avoid these difficulties, it is usually
necessary to constrain the set of admissible solutions
to an appropriate (compact) subset of a space of
smoother functions to avoid excessive oscillations,
and restore well-posedness. This is one of the earliest
approaches to regularization by using a priori infor-
mation about the class of admissible solutions (in this
case compactness of the set of admissible solutions).
See, for example, Ref. 22 and references cited therein
to the work of Tikhonov.

The numerical approach based on collocation and
finite difference approximations of the integral equa-
tion (1.2) leads to the matrix problem (1.1) or (1.5) in
the 2D case. Take Eq. (1.1) as an example. Let c
��1 in (1.2) and convert the interval ��1, 1	 to
�0, 2�	 by setting t � ��x � 1�. Divide the interval

�0, 2�	 into N equidistant parts and set uk � k�. Then
Eq. (1.2) can be approximated by rectangular quadra-
ture and collocation as

2
N exp�iuk� �

j�0

N�1

exp��iktj�f� tj

�
� 1�� F�uk�,

k � 0, . . . , N � 1, (A1)

where tj � j�2��N�. Denote by fj � f�tj�� � 1� and
Fk � �N�2�cos ukF�uk�; then Eq. (A1) leads to Eq. (1.1).

It is an intrinsic property of ill-posedness that any
discretization of an ill-posed linear operator equation
leads to a system of equations with the property that
the inverse (or the generalized inverse) of the coeffi-
cient matrix is not uniformly bounded in N. But the
inverse of the DFT matrix in Eq. (1.1) is uniformly
bounded in N. There is no contradiction since the
coefficient matrix of the system that arises from dis-
cretization of Eq (1.2) is actually 1�N times the ma-

trix in Eq. (1.1). Irrespective of how one defines the
coefficient matrix of the discretization of Eq. (1.2), the
condition number of the discretized system tends to
infinity as N tends to infinity. Recall that the condi-
tion number of the nonsingular system Ax � y is
equal to the product of the norm of A and the norm of
the inverse of A. Recall also that the row norm of a
matrix is the maximum of the sums of moduli of
elements in each row. It is easy to show that the row
norm of the inverse coefficient matrix in Eq. (A1) is of
order N, so it is not bounded in N. Since all matrix
norms (or more generally all norms on a finite-
dimensional space) are equivalent, the preceding
statement is true irrespective of the norm used.

This numerical approach provides a practical
scheme for resolving these difficulties and without
the necessity to compute the eigenvectors of the in-
tegral operator. For example, Abdelmalek and Kas-
vand29 discuss the Gauss LU decomposition of a
discretized Fredholm system of Eq. (1.2) and a trun-
cated LU decomposition is proposed; Abdelmalek et
al.30 utilize the Gauss–Jordan elimination of a regu-
larized discretized Fredholm system of Eq (1.2);
Huang and Narendra31 use the pseudoinverse char-
acterized by SVD for restoring the noisy degraded
images. Of course numerical difficulties and instabil-
ity would still arise for very large-order matrices
since the inverse or generalized inverse of the matrix
is not uniformly bounded in N (or M and N for the
case of a rectangular matrix). We resolve this prob-
lem by using the TSVD, which we are able to perform
explicitly since we derive in this paper formulas for
the singular values and singular vectors for any order
N of the matrix.

We express our sincere thanks for the very helpful
comments from the anonymous referees that led to the
improved version of the paper. The research is sup-

Fig. 21. Reconstructions.
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