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A note on the integer translates of a compactly
supported distribution on R

By

QIivyu SuN*)

1. Introduction and Result. Our object in this note is to show a relation between global
and local linear independence. To this aim, we introduce some definitions. Let ¢ be a
compactly supported distribution on R. The integer translates of ¢ are called globally
linearly independent if the condition > c¢(k) ¢(x — k) = 0 on RR implies c(k) = 0 for all

keZ

keZ. Let E* be the shift operator defined by E* ¢(x) = ¢(x + k) on R for ke Z. In (11,
A.Ben-Artzi and A. Ron exhibit an equivalence between global linear independence
and a very weak kind of local linear independence. They hoped that the theorem below
(Claim 6.1 in [1]) is true.

Theorem. Assume that the integer translates of the compactly supported distribution ¢
are globally linearly independent. Then there exists a bounded set A such that the conditions
Scek)p(x—k=0 on A and suppE *pnA+0

keZ
imply c(k) = 0.

But they constructed a counterexample for higher spatial dimensions, and they also
noticed that the theorem above unfortunately is true only for univariate splines. In this
note inspired by matrix method in wavelet theory we show that the above theorem is
valid for any compactly supported distribution and construct the set 4 explicitly.

The author would like to thank the referee for his correction.

2. Proof of Theorem. Without loss of generality we assume supp ¢ < [0, o) and
supp ¢ M [0, 1) % @, where we denote the support of ¢ by supp ¢ and the empty set by
0. Let N be the minimal integer n such that supp ¢ < [0, n]. Observe that the theorem
holds true for 4 = (— 3, %) when N = 0 or supp ¢ = {0}. Therefore we assume N > 1
hereafter. We prove our theorem in two cases.

Casel.supp¢p < {0,1,...,N}.

*) This project is partially supported by Zhejiang Provincial Natural Science Foundation of
China.
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Define A, = (— 1, N + ). Let ¢(k) be a sequence such that
Z C(k) ¢(X—k)=0, on Ala

keZ

ie.

m > ck)p(j—k) =0, for 0=j=N,
keZ

where we denote by ¢(j) the distribution with support in {0} which fulfills
(PpG), f> =<E 7 ¢, f) for all C* function f with support in (— $,3). In matrix nota-
tion, we can write (1) as

C1 lP1(O) =0,

where we denote

and

¢(0)
$(1)

r0= "

$(N)

Recall that ¢(0) + 0 and ¢(N) = 0. Therefore if C, has a zero row, ie, ¢;_;=0
forsoch§j§Nandall0§s§N,thenq=0f0rall — N £ j £ N and our theo-
rem is proved. On the other hand det C; must be zero otherwise ¥,(0) = 0 which is
a contradiction. Therefore

C_k +1 = Z ay, C—m

0osms<k

for some k < N — 1, where we denote Ck the k-th row of C,. In other words

Crt1-5=— Z amcm—s

osmsk
for all 0 <s<N. Denote by k, the maximal integer k' such that a, = 0 for
0 £ m £ k' — 1. Therefore a,, * 0.
Observe that if we construct a new sequence {Cy},.z such that

(2) ¢;=¢;

fork,— N£j<k+1and

(3) _ZZEj(b(x—j):O on R,
Jje

then &, = 0 for all keZ and C, has a zero row, which implies our theorem in Case 1,
by the assumption that the integer translates of ¢ are globally linearly independent. |
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Therefore the problem reduces to the construction of the sequence {C,} satisfying (2)
and (3). We inductively define
@) = X2 A Con—te—1+j
kos=m<k
forj=k + 2 and
1 1

N Cj=—— 2 Ay Con— g+~ Cht 1 —ko+j
Ay kot1=msk Ay,

for j < k — N — 1. From the construction above we have

(6) ;= 2 uCjim—i-1
koSmsk
and
~ Ay ~ 1.
Y Cj=— h  Citm—ke T T Cirk—ko+1
ko+1sm=<k Qg Ay,

for all jeZ. Therefore by (4) and (6) we have
2 Gem+1—))

= ZZE,‘+1 ¢(m—j)
= X 42X g Plm—))

koSs<k

= X asE'"”"<_ZZC~,~¢(‘#j))(0)-

ko<s<k
Recall that &; = ¢; for kg — N < j < k + 1 and (1). Therefore we have
ok +1—-j)= % asE'"“"‘<Z ¢l —j)> (0) =0.
jeZ ko=<s=k jeZ

Inductively we have

S &¢m—j)=0

jeZ

for n = k + 1. Similarly by (5) and (7) we have
2 Cpn—j)=0
jeZ

for n £ ky — 1. Therefore

Y ¢ipmn—j)=0 forall neZ

jeZ
Recall that supp ¢ < {0,1,..., N}. Therefore

2 Co(x—j)=0 for xeR

jeZ
and the construction of a sequence {c;} satisfying (2) and (3) is finished. This proves
our theorem for A; = (— 3, N + ) in Case 1.



362 Q. Sun ARCH. MATH.

Case 2. supp¢¢{0,1,..., N}.
Define A, = (0, N). Let c(k) be a sequence such that

(8) Yck)p(x—k)=0 on A,.
keZ

Therefore we have

9) ck)pix—k+j)=0 on (01)
keZ

for 0 £ j £ N — 1. In matrix notation, we wrote (9) as
C,P,(x)=0

for xe(0,1), where we denote

Co €C-1 77 Conygy
e I S
Cn-1 Cn-2 Co
and
P(x)
o(x + 1)
'Pz(x): :
¢(x+ N —1)

Observe that detC, # 0 implies ¥,(x) =0 on (0,1) and supp¢ < {0,1,...,N},‘
which contradicts the assumption of Case 2. Therefore we must have det C, = 0. As
in Case 1, we have

Cha1-5s= 2o GuCpg

ko<m<k
for some k<N —2 and all 0 <s< N — 1, where we assume o, + 0. Also we can ;
construct a sequence {¢;} satisfying (2), (4) and (5) with j < k — N — 1 in (5) replaced by
jSk—Nand kg — N=<j<k+1in (2) replaced by kg — N + 1 < j < k + 1. There- !
fore by the same procedure as in Case 1 we can prove

(10 ZEjd)(x—j):O on R\Z.

Denote

$)= 3 &o(x—J).
jeZ
From the construction of {¢;} we have the formula
(11) Ed= ¥ a,, E"d. |

ko—k=m=0

Recall from (8) that ¢(x) = X c(j) (x —j) on (ko, k + 2), and supp@ = Z. By (i1) |
and the same procedure as in Case 1 we have ¢ = 0. Hence ¢;=0 for all jeZ and
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¢;=0for kg — N +1=<j<k+1 by the assumption that the integer translates of ¢
 are globally linearly independent.
From the proof above we know that C, has a zero row, ie, ¢; _,=0 for all
0<s< N —1andsome0 < j, £N — 1. Recall from (8) that
2 gox—j)=0 on (jo—1 jo+1),
jo=NSjsjo
when j, =2 1, ie,
Cjo—N dx—jo+N)=0 on (jo—1,j,+1),
or
Ci-n®(» =0 on (N -1, N+1).

Recall that suppé n (N — 1, N] + 0. Hence c;, _y = 0. Inductively we have ¢; = 0 for
~-N+1£j<j,— N. Further by supp ¢ n[0,1) + ¢ we have ¢; =0 for j 2]0 Thus
we prove our theorem for 4, = (0, N) in Case 2. The proof of the theorem is finished.

In conclusion, we construct a counterexample such that the above mentioned set A
can not be chosen as a small neighborhood of supp ¢.

Example. Define 6'(i=0,1) be a distribution defined by (6°,f)» = f(0) and
(L = f'(0) for any smooth function f Let ¢(x)=68%x)+26% —3)+
8%0x — 5) + 6" (x) + 6'(x — 3). Therefore supp ¢ = {0,3,5}. It is easy to check that
the integer translates of ¢ are globally linearly independent since ¢ &=
(142> + €39 + (i&) (1 + €*'%). On the other hand,

Px =35 —p(x =3) = d(x —2) + ¢(x) — ¢(x +2) — p(x + 3)
+¢d(x+5=0
on (-1, 0U(3,))u (3,4, which is a neighborhood of {0,3,5}.
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