A note on the integer translates of a compactly supported distribution on **R**

By
QIYU SUN*)

1. Introduction and Result. Our object in this note is to show a relation between global and local linear independence. To this aim, we introduce some definitions. Let ϕ be a compactly supported distribution on \mathbb{R} . The integer translates of ϕ are called globally linearly independent if the condition $\sum_{k \in \mathbb{Z}} c(k) \phi(x-k) = 0$ on \mathbb{R} implies c(k) = 0 for all $k \in \mathbb{Z}$. Let E^k be the shift operator defined by $E^k \phi(x) = \phi(x+k)$ on \mathbb{R} for $k \in \mathbb{Z}$. In [1], A. Ben-Artzi and A. Ron exhibit an equivalence between global linear independence and a very weak kind of local linear independence. They hoped that the theorem below (Claim 6.1 in [1]) is true.

Theorem. Assume that the integer translates of the compactly supported distribution ϕ are globally linearly independent. Then there exists a bounded set A such that the conditions

$$\sum_{k \in \mathbb{Z}} c(k) \ \phi(x - k) = 0 \quad on \quad A \quad and \quad \operatorname{supp} E^{-k} \ \phi \cap A \neq \emptyset$$

imply c(k) = 0.

But they constructed a counterexample for higher spatial dimensions, and they also noticed that the theorem above unfortunately is true *only* for univariate splines. In this note inspired by matrix method in wavelet theory we show that the above theorem is valid for any compactly supported distribution and construct the set A explicitly.

The author would like to thank the referee for his correction.

2. Proof of Theorem. Without loss of generality we assume $\sup \phi \subset [0, \infty)$ and $\sup \phi \cap [0, 1) \neq \emptyset$, where we denote the support of ϕ by $\sup \phi$ and the empty set by \emptyset . Let N be the minimal integer n such that $\sup \phi \subset [0, n]$. Observe that the theorem holds true for $A = (-\frac{1}{2}, \frac{1}{2})$ when N = 0 or $\sup \phi = \{0\}$. Therefore we assume $N \ge 1$ hereafter. We prove our theorem in two cases.

Case 1. supp
$$\phi \subset \{0, 1, ..., N\}$$
.

^{*)} This project is partially supported by Zhejiang Provincial Natural Science Foundation of China.

Define $A_1 = (-\frac{1}{2}, N + \frac{1}{2})$. Let c(k) be a sequence such that

$$\sum_{k \in \mathbb{Z}} c(k) \ \phi(x - k) = 0, \quad \text{on} \quad A_1,$$

i.e.

(1)
$$\sum_{k \in \mathbb{Z}} c(k) \ \phi(j-k) = 0, \quad \text{for} \quad 0 \le j \le N,$$

where we denote by $\phi(j)$ the distribution with support in $\{0\}$ which fulfills $\langle \phi(j), f \rangle = \langle E^{-j} \phi, f \rangle$ for all C^{∞} function f with support in $(-\frac{1}{2}, \frac{1}{2})$. In matrix notation, we can write (1) as

$$C, \Psi_1(0) = 0,$$

where we denote

$$C_{1} = \begin{pmatrix} c_{0} & c_{-1} & \cdots & c_{-N} \\ c_{1} & c_{0} & \cdots & c_{-N+1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{N} & c_{N-1} & \cdots & c_{0} \end{pmatrix}$$

and

$$\Psi_1(0) = \begin{pmatrix} \phi\left(0\right) \\ \phi\left(1\right) \\ \vdots \\ \phi\left(N\right) \end{pmatrix}.$$

Recall that $\phi(0) \neq 0$ and $\phi(N) \neq 0$. Therefore if C_1 has a zero row, i.e., $c_{j-s} = 0$ for some $0 \leq j \leq N$ and all $0 \leq s \leq N$, then $c_j = 0$ for all $-N \leq j \leq N$ and our theorem is proved. On the other hand det C_1 must be zero otherwise $\Psi_1(0) = 0$ which is a contradiction. Therefore

$$\bar{C}_{k+1} = \sum_{0 \le m \le k} a_m \, \bar{C}_m$$

for some $k \leq N-1$, where we denote \overline{C}_k the k-th row of C_1 . In other words

$$c_{k+1-s} = \sum_{0 \le m \le k} a_m c_{m-s}$$

for all $0 \le s \le N$. Denote by k_0 the maximal integer k' such that $a_m = 0$ for $0 \le m \le k' - 1$. Therefore $a_{k_0} \ne 0$.

Observe that if we construct a new sequence $\{\tilde{c}_k\}_{k\in\mathbb{Z}}$ such that

$$(2) \tilde{c}_j = c_j$$

for $k_0 - N \le j \le k + 1$ and

(3)
$$\sum_{j \in \mathbb{Z}} \tilde{c}_j \phi(x - j) = 0 \quad \text{on} \quad \mathbb{R},$$

then $\tilde{c}_k = 0$ for all $k \in \mathbb{Z}$ and C_1 has a zero row, which implies our theorem in Case 1, by the assumption that the integer translates of ϕ are globally linearly independent.

Therefore the problem reduces to the construction of the sequence $\{\tilde{c}_k\}$ satisfying (2) and (3). We inductively define

(4)
$$\tilde{c}_j = \sum_{k_0 \le m \le k} a_m \tilde{c}_{m-k-1+j}$$

for $j \ge k + 2$ and

(5)
$$\tilde{c}_j = -\frac{1}{a_{k_0}} \sum_{k_0+1 \le m \le k} a_m \tilde{c}_{m-k_0+j} + \frac{1}{a_{k_0}} \tilde{c}_{k+1-k_0+j}$$

for $j \le k - N - 1$. From the construction above we have

$$\tilde{c}_j = \sum_{k_0 \le m \le k} a_m \tilde{c}_{j+m-k-1}$$

and

(7)
$$\tilde{c}_{j} = -\sum_{k_{0}+1 \leq m \leq k} \frac{a_{m}}{a_{k_{0}}} \tilde{c}_{j+m-k_{0}} + \frac{1}{a_{k_{0}}} \tilde{c}_{j+k-k_{0}+1}$$

for all $j \in \mathbb{Z}$. Therefore by (4) and (6) we have

$$\begin{split} &\sum_{j \in \mathbb{Z}} \tilde{c}_j \, \phi(m+1-j) \\ &= \sum_{j \in \mathbb{Z}} \tilde{c}_{j+1} \, \phi(m-j) \\ &= \sum_{k_0 \le s \le k} a_s \sum \tilde{c}_{j+s-k} \, \phi(m-j) \\ &= \sum_{k_0 \le s \le k} a_s E^{m+s-k} \left(\sum_{j \in \mathbb{Z}} \tilde{c}_j \, \phi(\cdot -j) \right) (0). \end{split}$$

Recall that $\tilde{c}_j = c_j$ for $k_0 - N \le j \le k+1$ and (1). Therefore we have

$$\sum_{j\in\mathbb{Z}} \tilde{c}_j \, \phi(k+1-j) = \sum_{k_0 \le s \le k} a_s E^{m+s-k} \left(\sum_{j\in\mathbb{Z}} c_j \, \phi(\cdot -j) \right) (0) = 0.$$

Inductively we have

$$\sum_{j\in\mathbb{Z}} \tilde{c}_j \, \phi(n-j) = 0$$

for $n \ge k + 1$. Similarly by (5) and (7) we have

$$\sum_{j\in\mathbb{Z}} \tilde{c}_j \, \phi(n-j) = 0$$

for $n \le k_0 - 1$. Therefore

$$\sum_{i \in \mathbb{Z}} \tilde{c}_j \, \phi(n-j) = 0 \quad \text{for all} \quad n \in \mathbb{Z}.$$

Recall that supp $\phi \subset \{0, 1, ..., N\}$. Therefore

$$\sum_{j \in \mathbb{Z}} \tilde{c}_j \, \phi(x - j) = 0 \quad \text{for} \quad x \in \mathbb{R}$$

and the construction of a sequence $\{\tilde{c}_j\}$ satisfying (2) and (3) is finished. This proves our theorem for $A_1=(-\frac{1}{2},N+\frac{1}{2})$ in Case 1.

Case 2. supp $\phi \notin \{0, 1, ..., N\}$.

Define $A_2 = (0, N)$. Let c(k) be a sequence such that

(8)
$$\sum_{k \in \mathbb{Z}} c(k) \phi(x - k) = 0 \quad \text{on} \quad A_2.$$

Therefore we have

(9)
$$\sum_{k \in \mathbb{Z}} c(k) \, \phi(x - k + j) = 0 \quad \text{on} \quad (0, 1)$$

for $0 \le j \le N - 1$. In matrix notation, we wrote (9) as

$$C_2 \Psi_2(x) = 0$$

for $x \in (0, 1)$, where we denote

$$C_{2} = \begin{pmatrix} c_{0} & c_{-1} & \cdots & c_{-N+1} \\ c_{1} & c_{0} & \cdots & c_{-N+2} \\ \vdots & \vdots & \ddots & \vdots \\ c_{N-1} & c_{N-2} & \cdots & c_{0} \end{pmatrix}$$

and

$$\Psi_2(x) = \begin{pmatrix} \phi(x) \\ \phi(x+1) \\ \vdots \\ \phi(x+N-1) \end{pmatrix}.$$

Observe that $\det C_2 \neq 0$ implies $\Psi_2(x) = 0$ on (0,1) and $\operatorname{supp} \phi \subset \{0,1,\ldots,N\}$, which contradicts the assumption of Case 2. Therefore we must have $\det C_2 = 0$. As in Case 1, we have

$$c_{k+1-s} = \sum_{k_0 \le m \le k} a_m c_{m-s}$$

for some $k \le N-2$ and all $0 \le s \le N-1$, where we assume $a_{k_0} \ne 0$. Also we can construct a sequence $\{\tilde{c}_j\}$ satisfying (2), (4) and (5) with $j \le k-N-1$ in (5) replaced by $j \le k-N$ and $k_0-N \le j \le k+1$ in (2) replaced by $k_0-N+1 \le j \le k+1$. Therefore by the same procedure as in Case 1 we can prove

(10)
$$\sum_{j\in\mathbb{Z}} \tilde{c}_j \, \phi(x-j) = 0 \quad \text{on} \quad \mathbb{R} \setminus \mathbb{Z}.$$

Denote

$$\widetilde{\phi}(x) = \sum_{j \in \mathbb{Z}} \widetilde{c}_j \, \phi(x - j) \,.$$

From the construction of $\{\tilde{c}_j\}$ we have the formula

(11)
$$E'\widetilde{\phi} = \sum_{k_0 - k \leq m \leq 0} a_{m+k_0} E^m \widetilde{\phi}.$$

Recall from (8) that $\tilde{\phi}(x) = \sum c(j) \phi(x-j)$ on $(k_0, k+2)$, and supp $\tilde{\phi} \subset \mathbb{Z}$. By (11) and the same procedure as in Case 1 we have $\tilde{\phi} = 0$. Hence $\tilde{c}_j = 0$ for all $j \in \mathbb{Z}$ and

 $c_j = 0$ for $k_0 - N + 1 \le j \le k + 1$ by the assumption that the integer translates of ϕ are globally linearly independent.

From the proof above we know that C_2 has a zero row, i.e., $c_{j_0-s}=0$ for all $0 \le s \le N-1$ and some $0 \le j_0 \le N-1$. Recall from (8) that

$$\sum_{j_0-N \le j \le j_0} c_j \, \phi(x-j) = 0 \quad \text{on} \quad (j_0-1, j_0+1),$$

when $j_0 \ge 1$, i.e.,

$$c_{j_0-N} \phi(x-j_0+N) = 0$$
 on (j_0-1, j_0+1) ,

or

$$c_{i_0-N} \phi(y) = 0$$
 on $(N-1, N+1)$.

Recall that supp $\phi \cap (N-1,N] \neq \emptyset$. Hence $c_{j_0-N}=0$. Inductively we have $c_j=0$ for $-N+1 \leq j \leq j_0-N$. Further by supp $\phi \cap [0,1) \neq \emptyset$ we have $c_j=0$ for $j \geq j_0$. Thus we prove our theorem for $A_2=(0,N)$ in Case 2. The proof of the theorem is finished.

In conclusion, we construct a counterexample such that the above mentioned set A can not be chosen as a small neighborhood of supp ϕ .

Example. Define $\delta^i(i=0,1)$ be a distribution defined by $\langle \delta^0, f \rangle = f(0)$ and $\langle \delta^1, f \rangle = f'(0)$ for any smooth function f. Let $\phi(x) = \delta^0(x) + 2\delta^0(x-3) + \delta^0(x-5) + \delta^1(x) + \delta^1(x-3)$. Therefore supp $\phi = \{0,3,5\}$. It is easy to check that the integer translates of ϕ are globally linearly independent since $\hat{\phi}(\xi) = (1+2e^{3i\xi}+e^{5i\xi}) + (i\xi)(1+e^{3i\xi})$. On the other hand,

$$\phi(x-5) - \phi(x-3) - \phi(x-2) + \phi(x) - \phi(x+2) - \phi(x+3) + \phi(x+5) = 0$$

on $\left(-\frac{1}{2},\frac{1}{2}\right) \cup \left(\frac{5}{2},\frac{7}{2}\right) \cup \left(\frac{9}{2},\frac{11}{2}\right)$, which is a neighborhood of $\{0,3,5\}$.

References

[1] A. Ben-Artzi and A. Ron, On the integer translates of a compactly supported function: dual bases and linear projectors. SIAM J. Math. Anal. 21, 1550-1562 (1990).

Eingegangen am 23.1.1992*)

Anschrift des Autors:

Qiyu Sun Center of Mathematical Sciences Zhejiang University Hangzhou, Zhejiang 310027 P.R. of China

^{*)} Eine Neufassung ging am 10.6.1992 ein.