REGULARITY OF BUTTERWORTH REFINABLE FUNCTIONS

ATHUA FAN AND QIYU SUN

ABSTRACT. Let Up be the refinable function with Butterworth filter cos2™ % ( cos2NV %-{-
sin®N %)71 and let s,(¥x) be the Fourier exponent of ¥ of order p (0 < p < 00).
It is proved that

In3 In(1+37%)

Ofsoo(\I’N)_NES 2 (N>1)
and for 0 < p < c©
_In(1+7)?) < (1 )_Nln_S In(1+3°N) (N> 1)
pln2 = (TN In2 — In2 -

where r € (0,1) is independent of p and N.

1. INTRODUCTION AND RESULT

In this paper we study the solutions of some refinement equations of the form
o(@) =) ¢d2e—j)  (z€R) (1)
JEL
where the coefficients ¢; are supposed to satisfy the arithmetic condition ZjeZ c;j =2
and the exponential decay condition |c;| < Ce il (O, 8 > 0 constants). Solutions of
a refinement equation are called refinable functions. The 2r-periodic function
1 Y
mi) = 3 e
JEZ
is called the filter of the refinement equation (1). A continuous function ¢ is called a
cardinal interpolant if ¢(0) = 1 and ¢(k) = 0 for all nonzero integer k. It is known
that there is an important class of refinable functions which are cardinal interpolants

and whose filters satisfy
m(&) +m(§+7) =1. (2)

Such a filter m(&) can be put into the factorized form

mie = (M) me ®)
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where N is a strictly positive integer and R() is a 2m-periodic function whose Fourier
coefficients decay exponentially. The minimal degree solution of (2) having the fac-

torized form (3) is given by

N—
N & N—-1+s\ .,.¢
my (& —cos 5 E_O sin?® 2.

The corresponding refinable functions, denoted by ®,, are the self-convolution of

[\

Daubechies’ scaling functions, and they are cardinal interpolants (see [3, 4, 5]). We
will study the solution of the equation (2) whose filter has a simpler factorized form
(3) given by

mN(ﬁ) — COS2Ng ( 2N§ 2N g) (4)

These filters are well known in signal processing as the transfer functions of the “But-
terworth filter” (see [8] for a detailed review). The corresponding refinable functions,
denoted by Wy, are said to be Butterworth refinable functions, which are also cardi-
nal interpolants. Denote by f the Fourier transform of an integrable function or a
tempered distribution f. In the form of Fourier transform, the equation (1) becomes

&5(5) = m(§/2)$(§/2). Hence we get the useful formula

\/I}N(g) = (Si2/62/2>2N ﬁ <COS2N 2—n—1§ 4 gin2V 2_n_1§> *1. (5)
n=1

The aim of this paper is to study the regularity of ¥ . The regularity of refinable

functions is of central importance in the theory of wavelets. A usual approach is to
study the Fourier exponents, which are also called Sobolev exponents in the literature.
For a tempered distribution f with measurable Fourier transform, define its Fourier

exponents s,(f) by

() =sw{s: [IFOPa+Ehrds <=} ©0<p<x)

soclf) = sup {5+ )1+ e = 0(1) [¢] = o0}

In [1] , Cohen and Daubechies studied the regularity of refinable functions ¥y and
gave some numerical results on the Fourier exponents s,(¥y) for p =1/2,1,2,4 and
N =1,2,---,19. They noticed that for large value of N the Fourier exponent s,(¥ y)
reveals a linear asymptotic behavior and the limit ratio s,(¥y)/N indicates that the
worst decay of Uy occurs at the points 29717 /3. In this paper, we confirm the above

observation by proving
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Theorem 1. Let Uy be defined as above. Then
NIn3 < In(1+ 37V)

0<55(Ty)—
< Soo( W) In2 — In 2
for all N > 1, and
In(1+7y?) NIn3 _In(1+377")
T 0 e (Uy) — <
pln2 < 5(¥w) In2 — In2

for all N > 1 and 0 < p < oo, where rq € (0,1) is a constant independent of p and
N.

As a consequence of Theorem 1, we have

Corollary 1. Let Uy be defined as above. Then

. Sp(\I’N)_ln3
R e

(0<p< o)
and
Jim (s,(x) — 5,(¥)) =0 (0 < pg < o).

2. PROOF

To get the lower bound estimate of s,(Vy), we introduce an auxiliary 7-periodic

even function defined by

h(€) = max{|cos£/2], |sin£/2]}. (6)
It is clear that h(§) = cos&R2 if |£] < m/2 and h() = [sin&R2] if 7/2 < |£] < .

Furthermore, we have

h(€) > 3 (€[-2,2]+nZ,
h(E)h(28) > 1, ¢e (-3, -5U[5, 5] + 7, (7)
hER(20)h(4€) > (L)%, €€ (%, -] U 32, 1)) + 7 Z.

Proof. For simplicity, we write Hy(§) = h(§)h(2£) and H3(&) = h(&)h(28)h(4E).
Since h is an even function with period 7, it suffices to prove (7) for £ € [0, 7/2]. The

first inequality of (7) follows from the facts that h(£) decreases on [0,7/2] and that
h(m/3) = \/3/2.

Let t = cos?£/2. By a simple calculation, we obtain that

H,y(€)? = cos® g sin? € = 4t*(1 — t) (8)
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and that ¢ € [(24+ /2 — V/3)/4,3/4] for any £ € [7/3,57/12] . Observe that

d B
(21— 1)) = 3t(2/3 — 1).

This, together with (8), implies that Hy (&) increases on the interval [r/3, 2 arccos 1/2/3]
and decreases on the interval [2 arccos y/2/3,57/12]. Thus,

Hy(&) > min{Hy(7/3), Hy(57/12)} = Hy(m/3) = 3/4, VY & € [n/3,5m/12].

It is the second inequality of (7).
If € € [57/12,7/2], we have 2§ € [57/6, 7| and 4¢ € [6b7/3,2n] = [-7/3,0] + 2.
Therefore
H;(€)* = cos? g sin? € cos? 26 = 4t*(1 — )(8t* — 8t + 1)?

where t = cos?£/2 € [1/2,(2+ V2 — V/3)/4]. Let
gi(t) = t2(1 —t)(8t* — 8t + 1)?, ga(t) = 56t> — 88t* + 35t — 2.

Notice that

4
dtgl

It follows that £g,(¢) < 0 on [1/2,(2+ /2 — v/3)/4]. On the other hand, g»(1/2) =
1/2> 0 and

d
(t) = (=8t + 8t — 1) go(t), %gg(t) = 168t* — 176t + 35.

92((2+ V2 — V3)/4) < g5(5/8) = —53/64 < 0.

Therefore there exists ¢, € [1/2, (2+v/2 — v/3)/4] such that go(t) > 0 on [1/2, %] and
g2(t) < 0on [ty, (2+ v/2 — /3)/4]. Observe that —8t> +8t — 1 = — cos 2 > 0. Thus
H;3(€) increases on [5m/12, 2 arccos v/o] and decreases on [2 arccos v/ty, 7/2]. Hence

Hs(€) > min{Hs(57/12), Hy(m/2)} = H3(57/12) > (v/3/2)%.

Thus we have proved the third inequality of (7). O

For N > 1, let

Rn(&) = <COS2N 5 + sin?V g>1 9)

Clearly Ry is a m-periodic function and

iin(€) = cos™ R (€)

(see (4)). Note that Ry(§) < h(£)2N. Therefore, by Lemma 1 and the strict
monotonicity of h(§), h(§)h(2€), h(§)h(2€)h(4€) on their respective intervals, we have
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Lemma 2. Let Ry be defined as above and let ¢ = (4/3)". Then for any 0 < 6 < I,
there exists 0 < r =r(0) < 1 such that

Ry(§) <q, £e(-5, 5]+ L
Ry (&) Ry (26) < ¢?, £ (-5, -5 UG B +rZ
Ry(§)Ry(2)Ry(46) < ¢, €€ (-5, -33) U (35, 5]) + 7Z
and
Ry(€) < Vg, £€[-T+46, -0 +nZ
Ry(§)Ry(26) < rV¢?, (e (-5, -3 —0UlZ+6,%]) +Z

Ry(&)Rn(26)Ry(48) < r?Ng?, €€ (-3, -33)u (33, 3]) + nZ.

In particular, r can be chosen as
mas {3(1(5-2)) > (2) (5 +2) 7 (5" (m(5)) "}

Define
L) ={j: 15 <k, 2€ € Uneg[-m/4,7/4] + mr}
and let i(£) be the cardinality of the set Ix(§).

Lemma 3. Let Ry be defined as above and let ¢ = (4/3)N. Then there erists a
positive constant Cy such that for any k> 1

HRN 27¢) < Cyrg # @ gk (10)

j=1
where ro = r(m/24) is defined in Lemma 2.

Proof. The idea of proof was used in [7]. It is clear that the assertion in Lemma
3 holds for £ = 1,2,3 if Cy is chosen large enough. We assume that (10) holds for
all k£ <l with [ > 3. For k = [, we distinguish five cases.

(i) If 2 € [-n/4,7/4] + 7Z, then i(§) = ix—1(2§) + 1. Write

[ 2x(2'6) = R (26) ]| Ax(2/(26))

Thus (10) holds by using Lemma 2 and the induction hypothesis.

(il) If 2¢ or —2¢ € (w/4,7/3] + 7Z, then ix(§) = ix_1(2£). Again the induction
hypothesis together with Lemma 2 implies (10).

(iii) If 26 or —2& € (n/3,37/8) + 7Z, then iy (&) = iy o(4€). It suffices to write

B

-2

H Ry (27€) = Ry(2) Ry (46) | | B (27(49))

7j=1
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and then to apply Lemma 2 and the induction hypothesis.
(iv) If 2¢€ or —2¢ € [37/8,5m/12] + wZ, then ix(£) < ix_2(4€) + 1. By using the

induction hypothesis and Lemma 2, we have
k
HRN(2J'§) < PN [CNTN ik,2(4§)qk72]
7=1

< CNTNik(g)qk.

(v) If2¢ or —2¢ € (57 /12,7/2] + wZ, then i (&) < i 3(8¢) + 2. Hence

k k—3
[[B~(2¢) = Rv(2)Ry(4)Ry(3¢) [ ] Bn(27(8¢))
Jj=1 j=1

< NP CNTNik_g(Sf)qk—?)]
< C'NTNik(f)qk_

Let k > 2. For (e, ,¢) € {0,1}*, let

Q(Gla T aék) = {Z 6 — €i+1}

and ¢g(ey,- -+, €;) be the cardinality of the set Q(e1, - ,€x). For 0 < g <k —1, let

Gq,k = {(617 T 7616) € {07 l}k : Q(ela' e ,Gk) = Q}'

Then, for any (e;, - ,€e;) € Gy there exist unique integers 1 < i3 < ip < ... <
iq < k — 1 such that ¢;, = ¢;,41 for all 1 < s < ¢. On the other hand, given any
€, € {0,1} and integers 1 < i) < iy < ... < i, < k—1, we may find one and only one
(€1,...,€x) € Gy such that €;, =¢; 1 for any 1 < s < ¢g. Therefore, the cardinality
of Gy is 2('“;1) forany 0 < ¢ <k —1.

Lemma 4. Let k > 2, € [0,7) and let ir,(§) and q(e, ... ,€;) be defined as above.
Write £/m = Zle €27 +mn with 0 <n <27% and ¢; € {0,1} for 1 <i < k. Then
k(&) > qler, - &) — 1.

Proof. For any i € Q(e1,---,€) and i > 2, we have ¢; = €;,1 and
, 3
2i-1¢ = 167 +n'm+mn

with 0 < 7' < 1 and m € Z. Therefore 2°7'¢ € [0,7/4] + 7Z if ¢, = 0 and 2°7'€ €
[—7/4,0]+7Zif ¢; = 1. This implies that i—1 € I(§). Thus i (&) > q(er, - -, ) —1.
|
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Proof of Theorem 1. The upper bound estimate of s,(¥y) will be proved by
a modification of the method used in [2]. (The method is also used in [7]). By (5)
and Ry (21/3) = 22M(1 + 3Y) 7!, we have Uy (27/3) # 0 and

Uy (257 /3) = (14 3Y)F Uy (2n/3) Yk > 1.
This implies that so(¥x) < In(1 +3")/In2.
By the continuity of \/I;N and Ry, for any € > 0 there exists 0 < § < 1 such that
for all £ € [—4, ] we have

Ry (27/3+&)| = |Ry(=21/3 — &) = (1 — )22 (1 +3Y)7

and
U (27/3+€)| > (1= €)[Tn(27/3)] > 0.

This together with (5) implies that for all £ € [—4,d] and k£ > 1,

Uy r/3+6) = [[mn@77/3+277¢) Uy (21/3 + 275¢)

=

<.
Il

1+ 3M)7F(1 —e)F

—~

> C

where C'is a positive constant independent of k. Therefore for 0 < p < ocoand k > 1,

we have

2k+lﬂ./3+1 R 5 R
/ (U (&)PdE > C / U (25 /3 4+ €)PdS > Cod(1 4 3N) FP(1 — €)™
2k—Llm /341 -5

where C'; and (5 are positive constants independent of k. This gives the desired
upper bound estimate of s,(¥y) for 0 < p < oco.
For k > 1 and 2! < |¢] < 2%7, it follows from (5) and Lemma 3 that

Wy (€) |<C’1H|mN —IE)| < Cyle|~ 2NH|R (27(27%¢))| < O33N

where C, Cy and Cj3 are positive constants independent of k. This leads to the desired

lower bound estimate of 5o (Un).
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Let ro = r(n/24). Then for any k¥ > 1 and 0 < p < o0, there exist positive
constants C; (1 <7 < 4) independent of k£ such that

2k

/ Fn@pac=2 [ Buepas
2k—lpj¢| <2k 2k—lg

2k
013kNp/ TgNik(Q_kf)dg
2

<
k=1,
2"' Je]7r+7r N

< 023—kNp Z / TOPQ(Elr",ek)dg

51, €k E{O l}k 2k ]€]7r
<M Y

q=0 g1, €1)=q
< CB3THP(1 4 rgP)E

where we have used (5) and Lemma 3 in the first inequality, Lemma 4 in the second
one, the fact that the cardinality of Gy is 2('“;1) in the last one. Hence we obtain
the desired lower bound estimate of s,(¥y) for 0 < p < co. O

3. REMARKS

From the above proof, we see that ry in the theorem can be chosen to be 0.9787028.

When N is large, s,(¥y) is well approximated by NIn3/In2. Let us compare the

In3

numerical results obtained in [1] for p = 1/2, 1, 4 and the approximation given by N5

(see Table 1). We point out that the differences between the last two columns are
small and that when N > 20 we can use N log, 3 to get rather precise approximation
for s,(¥y).
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Nip=3 p=1 p=4 sNIn3/In2
2 10.677350 | 1.256211 | 1.604344 | 1.584963
3 1 1.561362 | 2.044109 | 2.365870 | 2.377444
4 12370365 | 2.843768 | 3.148599 | 3.169925
5 [ 3.183890 | 3.648646 | 3.940563 | 3.962406
6 | 3.999055 |4.456118 |4.735925 | 4.754888
7 | 4.815040 | 5.264533 | 5.532265 | 5.547369
8 [5.630616 | 6.072947 |6.328326 | 6.339850
9 16.446191 | 6.881125 | 7.123827 | 7.132331
10| 7.260947 | 7.688598 | 7.918627 | 7.924813
11 ] 8.075292 | 8.495600 | 8.712863 | 8.717294
12 ] 8.888817 | 9.301894 | 9.506534 | 9.509775
131 9.701520 | 10.107480 | 10.299921 | 10.302256
141 10.513813 | 10.912358 | 11.093166 | 11.094738
15 ] 11.325284 | 11.716526 | 11.885986 | 11.887218
16 | 12.135933 | 12.519984 | 12.678805 | 12.679700
171 12.946170 | 13.322968 | 13.471625 | 13.472181
18 | 13.755996 | 14.125241 | 14.264159 | 14.264662
19 ] 14.564999 | 14.927039 | 15.056836 | 15.057144

Table 1: Fourier exponent s1,(Vy) = Ls,(Vy) and its approzimation 1N log,3

Let ¥y be the refinable function with corresponding filter (%)N(cosm £/2+
sin? ¢/2) 2. Then Uy (€) = [Wn(€)] and 5,(¥x) = 2s,/2(¥ ). In fact, the original
numerical results in [1] is about the Fourier exponents sp(@N) with p=1,2,4,8 and
N=1,2---19.

For the Daubechies scaling functions ®, there are many papers devoted to the
estimates of s,(®x) (see [1, 6, 7, 9] and references therein). In [7], Lau and Sun

proved that

C In Py (3/4)
—— < 5(Py) — 2N + ————= <
N — 5(2n) + In2 =0
for 0 < p < oo and
In Py (3/4)

o(®y) = 2N —
5o0(Pn) In2
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where C' is a positive constant independent of N and

PN(t):]VX_:I(N+:_1>tS'

s=0

By the idea we used in the proof of the theorem, the term —% in the above lower

estimate can be improved to be —CrY for some 0 < ry < 1.
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