NON-UNIFORM AVERAGE SAMPLING AND
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ABSTRACT. The problem of reconstructing a function f from a

set of non-uniformly distributed, weighted-average sampled val-

ues { [ f(2)¢,;(x)dx : j € J} is studied in the context of shift-
Rd

invariant subspaces of L?(IR?) generated by p-frames. The special
but important case where the weighted-average sampled values are
of the form { [ f(z)¢(- —z;)dz : j € J} is also studied. Fast
R4

approximation-projection iterative reconstruction algorithms are
developed. The performance of the algorithms are analyzed when
the data is corrupted by noise. Estimates are derived for the con-
vergence rates of the algorithms in terms of the sampling density,
the generators of the shift-invariant space and the sampling func-
tionals (¢, ).

1. INTRODUCTION

The reconstruction of a function f on IR? from its samples {f(z;) :
j € J}, where J is a countable index set, is a common task in many
applications in signal or image processing. The sampling set X = {x; :
€ J} is often non-uniform and prevents the use of standard methods
from Fourier analysis. For example, the loss of data packets during
transmission through Internet or from satellites can be viewed as a non-
uniform sampling/reconstruction problem. In geophysical exploration,
the earth’s magnetic field is measured by a combination of airborn,
fast moving acquisition devices, as well as scattered stationary devices
resulting in highly non-uniform sampling patterns, and a huge data
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set. The goal is to reconstruct the magnetic field and use it to reveal
geological features.

In the sampling and reconstruction problem, the function f is usually
assumed to belong to a shift-invariant space of the form

(1.1)
VP(®) = Z Z crdi(- — k)0 ci=(cp) € O(ZY),i=1,...,1 3,

=1 ICEZd

where ® = (¢1,---,¢,) is called the generator of V. lf r =1,d = 1,
p =2, and ¢(z) = Smﬁ—m), then V2(¢) is the classical space of band-

limited functions oftenmused as a model in sampling theory (see for
example [9, 16, 22, 29, 32] and the references therein). However, since
band-limited functions are analytic, they have infinite support, thus
local errors may propagate, and the reconstruction algorithms can be
computationally inefficient. Moreover, many applied problems impose
different a priori constraints on the type of functions. For this reason
the sampling and reconstruction problems have been investigated in
spline subspaces [8, 19, 27], wavelet subspaces [6, 10, 13, 12, 18, 20, 21,
30, 31, 33], and general shift-invariant spaces [2, 3, 4, 7, 28].

1.1. Weighted average sampling in shift-invariant space. The
assumption that the sample values {f(z;) : j € J} can be measured
exactly is not always valid. To take into account the characteristics of
the acquisition devices, a weighted average value in the neighborhood
of z; is assumed. This means that the sampled data is of the form

(12) e, = [ H@) T s,

where || gt Yz; = 1. Each function ¢, reflects the characteristic of the
sampling device used to measure the average sampling value of f in
the neighborhood of x;.

One of the goals of a sampling theory is to find conditions on the
sampling set X = {z; : j € J} such that a small change in the function
f produces a small change in the sample values {g,, : j € J} and such
that f can be reconstructed from {g,, : j € J} exactly and in a stable
way. Equivalently, we must find conditions on X such that

1/p

(1.3) ol < | D Lo D] < Cpllfllins

z;€X
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where g, are defined by (1.2), and where ¢, and C,, are positive con-
stants independent of f. Another important goal in sampling theory is
to find fast algorithms for reconstructing the function f from its sample
values.

When the sampling set is uniform, the weighted-average sampling
and reconstruction problem has been studied in [26] for the particular
case where the functionals in (1.2) are of the form 1., = ¢ (- — ;) (i.e.,
a single device 1) is used to obtain all the measurements), the sampling
is critical (i.e., no oversampling), and in (1.1) p=2,r =1, and d = 1.
The case of uniform sampling with multiple devices have been studied
by Sun and Zhou [23], under the assumption that

J o

Define the Fourier transform f of an integrable function f by f(£) =
[ f(7)e™™¢dr. For non-uniform sampling, Grochenig [17] proved that
if |41 —x;] < 6 < V/2/2, then any band-limited function f with
supp (f) C [—%, %] is uniquely determined from its averages (f,x,),
provided that (1.4) holds. He also showed that f can be reconstructed
by iterative algorithms. Sun and Zhou [24] also studied average sam-
pling under the assumption (1.4), and v, (- + x;) even and nonde-
creasing on [0,%]. They gave density conditions on X under which
[ satisfies (1.3) and derived frame algorithms for the reconstruction.
They also gave bounds on the error of reconstruction when a non-band-
limited function is reconstructed by the frame algorithms. In [25], Sun
and Zhou showed that if the maximal gap between consecutive sam-
pling points is smaller than a characteristic length, then a function in
a spline subspace is uniquely determined from local averages obtained
from averaging functions satisfying (1.4). For p = 2 and r = 1 in
(1.1), Aldroubi gave conditions on the density of X and the diameter
of the support of the sampling functionals 1,, under which a function f
can be reconstructed by iterative approzimation-projection algorithms
(A-P algorithms for short) [1]. In [1], estimates were also derived for
the convergence rates of the A-P algorithms in terms of the generating
function ¢ and the diameter of the support of the functionals ;. It
should be noted that A-P algorithms are not frame algorithms and do
not require knowledge of the frames associated with {1,; : z; € X}.
A-P algorithms are robust, their convergence is geometric, and they
perform optimally even if the samples are corrupted by noise [1, 2, 4].

In this paper, we will consider the sampling problem in V?(®), where

{¢s(-—5): j€ Z%i=1,...,r}is a p-frame for V?(®), i.e., there
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exists a positive constant A (depending on ® and p) such that

(1.5)
Al < 3| ([ s@at=nas) _,

L <A, e V@),

We also assume throughout this paper (see the notation in Section 2)
that:

(1.6) ®=(dr,... ) € WIH, ie, g e W(ILY),i=1,... 1

Under these conditions, the space V?(®) in (1.1) is well defined, and it
is a closed linear subspace of LP(IR") (see Theorem 1 in [5]). For this
case, the well-posedness sampling condition (1.3) can then be written
as

1/p

L7 elfl < | Do [Fved" | <ClfllL  feVP(®),

z;€X

which is similar to a frame condition. However, the set {1, : z; €
X} does not necessarily form a frame for V?(®) since the functions
Yy, ©; € X, are not necessarily in V?(®). The sampling theory in
such spaces is new, since all previous results consider spaces in which
r = 1 (single generator), and assume {¢(- — j) : j € Z%} to be
a Riesz basis, instead of a (possibly redundant) frame. Moreover for
average sampling in shift-invariant spaces, only the case p = 2 has been
considered so far [1].

In this work, we prove that a function f € V?(®) can be recon-
structed from its average samples by an iterative A-P algorithm, pro-
vided that the sampling set X satisfies a density condition that de-
pends on ® and the set {1, : x; € X} (Section 3.1). Our results treat
the case of averaging functions in which the only requirement is that
supp ,; is compact for each z; € X (Theorem 3.2). But we also treat
the important case where ¢,, = ¥(- — z;) for each z; € X (Theorem
3.1). However, for this case, we do not assume that v has compact
support. In Section 3.2, we prove that the A-P algorithms converge
even if the samples are corrupted by noise, and that the reconstruc-
tion result is optimal in some sense (Theorem 3.3). In Section 3.3, we
present estimates for the rate of convergence of the A-P algorithms of
Theorems 3.1 and 3.2 in term of the generator ® and the sampling
functions {1;; : x; € X}. The proofs of the results are collected in
Section 4.



IRREGULAR AVERAGE SAMPLING 5

2. NOTATIONS AND PRELIMINARIES

For the sampling problem we need to impose regularity requirements
on the space VP(®). Wiener amalgam spaces are useful in this context
and they are defined as follows: A measurable function f belongs to
W(LP), 1 < p < oo, if it satisfies

1/p
(21) Wl = | D esssup{|f(z+ k)" : 2 €[0,1]} ] < oo

kez*
If p = oo, a measurable function f belongs to W (L) if it satisfies

(2:2)  Ifllwe) = sup {ess sup{|f(z + k)| : 2 € [0,1]"}} < o0.
kez?

In this case W (L) coincides with L>(IR?).

Endowed with this norm, W (L?) becomes a Banach space [14, 15].
The subspace of continuous functions Wy (L?) = W (C, LP) C W (LP) is
a closed subspace of W(LP) and thus also a Banach space [14, 15]. We
have the following inclusions between the various spaces:

(2.3)  Wo(LP) € Wo(L?) € W(L) € LYR’), 1<p<q< oo
The following convolution relations hold for 1 < p < oo [4]:
(i) If f € LP(IR") and g € W(L'), then f x g € W(L?) and

(2.4) 1S = gHW(LP) < O fllz» ||9||W(L1) :
(i) If ¢ = (cx) € (Z") and ¢ € W(L'), then Y. cpo(- —k) €
kez?
W (L) and
(2.5) | 32 el =B, < lello Nl
kez*

(iii) If f € LP(IR*) and g € W (L"), then the sequence d = (d;) defined
by dy = [ f(x)g(x — k)dx, k € Z%, belongs to (7(Z*) and
Rd

(2.6) ller < W Fllzo gl -

2.1. Shift invariant spaces. In addition to the requirement that the
generator ® of VP?(®) satisfies (1.5) and (1.6), we also require ¢;, i =
1,--+,r, to be continuous. Thus, together, the requirements are that
® satisfies (1.5) and belongs to Wy(L)™ (here Wo(L)™ denotes the
Cartesian product Wy(L') x - - x Wy (L") of 7 copies of Wy(L')). With
these requirements, it is well known that the space V?(®) is a space of
continuous LP-functions, and we have the following properties [4, 5]:
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(i) The space V?(®) is a closed linear subspace of LP(IR?), and there
exists a positive constant B (depending on ® and p) such that

27) B 'flw < _inf > e < Bl fle Ve V(®),
f=2im dix'e T
where ¢; ¥ ¢; = D, o pa Cipdi(- — k) and ¢; = (cix) € w(zZ%).
(ii) The space VP?(®) is a closed linear subspace of Wy (L), and we
have the norm equivalence || f||,, 2 [|flyy(10)-

(iii) There exists ¢y,...,¢, € Wo(L') N VP(®) such that for every

feVvr(®),
(2.8)
F=22 2 ol =inoi-=5) =3 3 (f:0i- = il = j).

Hence the operator P defined by

(29 Pf=>_> (f. (- —iNeil-—j), [fe€L(RY,

=1 jegd

is a bounded projection from LP(IR?) onto VP?(®).
(iv) If X = {x; : j € J} is separated, i.e., inf; |x; — x| > 0, then

1/p

(2.10) SIf@)P ) <Clfll, forall feVP(Q).

Tj eX

3. MAIN RESULTS

We will assume throughout that the sampling set X is separated,
and that the sampling functionals ¢, satisfy the following properties:

(i) sup; [|[¥g; lwzry < oo;

(i) [pa o, = 1.

3.1. Fast approximation-projection iterative reconstruction al-
gorithms. Fast approximation-projection (A-P) iterative algorithms
for the reconstruction of functions from their samples have been in-
troduced by Feichtinger and Grochenig for the case of band-limited
functions [16]. These schemes have been extended by Aldroubi and
Feichtinger to general shift-invariant spaces [2]. In this paper, we will
develop the theory of fast A-P iterative reconstruction schemes for the
case of average sampling. First, we need to introduce the notion of
~v-density useful in this regard.
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Definition 3.1. A set X = {z;:j € J} is yp-dense in IR? if
(3.1) IR = U; B, (z) for every v > o,
where B, (z;) are balls centered at z;, and with radius ~.

This definition implies that the distance of any sampling point to its
next neighbor is at most 2vy. Thus strictly speaking, v, is the inverse
of a density, i.e., if vy increases, the number of points per unit cube
decreases.

A special but important case for average sampling is when the sam-
pling functions ¢, are obtained by translation of a single function
Y. Thus, ¥, = ¥(- — x;) and the weighted samples are of the form
9e; = (f,¥(- — x;)) . For this case, the iterative algorithm that we de-
velop uses a quasi-reconstruction operator Ax , in the iteration scheme.
To define this operator, we start from a partition of unity {3;},cs de-
fined as follows:

Definition 3.2. A bounded uniform partition of unity (BUPU) asso-
ciated with {B,(x;)};es is a set of functions {f;};c,s that satisfy
(1) 0< B, < 1,Vj € J;
(2) supp f§; C B, (z); and
(3) Xjes B =1.
The operator Ax , is then defined by

(32)  Axaf =3 Sl =z =D (F+00)()8;,

where ,(-) = —z(%), and where ¢} (x) = t,(—z). Obviously the

quasi-reconstruction operator Ax , f does not belong to the space V?(®).
However, we can use this operator in an A-P iterative scheme to recon-

struct the exact function f € VP(®) as follows:

Theorem 3.1. Let ® be in Wy(LY)"), let 1 be a function in W (L)
such that fRd Y =1, and let P be a bounded projection from LP onto
VP(®). Then there exists a density v = y(®,) > 0 and ag > 0 such
that any f € VP(®) can be recovered from its weighted average samples
{{(fs¢a(- —xj)) : j € J} on any y-dense set X = {x; : j € J} and for
any 0 < a < ag, by the following A-P iterative algorithm:

fl = PAX,af
(3'3) { fn+1 — PAX,a(f - fn) + fn '

In this case, the iterate f, converges to [ uniformly, and also in the
W (LP)-norm and the LP-norm. Moreover, the convergence is geomet-
ric, that is,

1f = fallo < W = Fallw ey < Cra” If = fillwn
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for some o = a(vy,a,®,v) < 1 and C; < co.

Theorem 3.1 treats the case of a single averaging function ¢, shifted
to the points {z;} for obtaining the measurements (f, ¢, (- — z;)). In
practice, this is the situation when a single measuring device is used to
obtain the discrete data. For this case, v, is what is called the impulse
response of the measuring device. More generally, we can allow the
averaging function 1, to depend on the point x;. Thus, the averag-
ing functions can be described by the infinite vector Ux = (¢4, )jes.
For this case, and under some uniformity on the size of the averaging
functions ¢, we can recover the function f exactly by using the quasi
reconstruction operator

(3.4) Ax f= ZJ.GJ (f,%a;)B;
in the following A-P iterative algorithm:

Theorem 3.2. Let @ be in WO(LI)(T), P be a bounded projection from
L? onto VP(®), and let the averaging sampling functionals 1,, € W (L")
satisfy fRd Vy; =1 and fRd ‘1/)%‘ < M, where M > 0 is independent of
x;. Then there exists a density v = v(®, M) > 0 and ay = ao(P, M) >
0 such that if X = {x;: j € J} is separated and y-dense in IR®, and
if the average sampling functionals 1y, satisfy supp ¢, C z; +[—a, a]?
for some 0 < a < ag, then any f € VP(®) can be recovered from its
weighted average samples {(f,Vy;) : j € J} by the following iterative
algorithm:

(3.5) {fl =PAx]

fn-l—l = PAX(f - fn) + fn .

In this case, the iterate f, converges to f uniformly, and also in the
W (LP)-norm and the LP-norm. Moreover, the convergence is geomet-
ric, that is,

1f = fallpe <M1 = fn“W(LP) < Cia||f - fl“W(LP)
for some o = a(y,a,P, M) < 1 and C; < c0.

Remark 3.1. Theorems 3.1 and 3.2 require bounded projections from
L? onto VP(®). Bounded projections on closed subspaces of Banach
spaces do not always exist. However, in the context of the shift-
invariant space VP(®) described in Theorems 3.1 and 3.2, Remark 2
in [5, p. 7] assures us that we can always find a bounded projector P
from L? onto V?(®) for any p with 1 < p < oo (see (2.9)). Since the
same operator P in (2.9) works simultaneously for all L?, 1 < p < oo,
we call it a universal projector. In addition, this universal projector
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can be implemented using filtering algorithms, i.e., simple convolutions
that are easily implementable with fast algorithms.

3.2. Reconstruction in presence of noise. In practice, the sampled
data is often corrupted by noise. Moreover, the assumption that the
function f belongs to some specific space VP(®) is often an idealization.
Thus, it is important to know whether the A-P algorithms (3.3) and
(3.5) still converge under non-ideal circumstances. To investigate these
situations, we only assume that the data f' = {f}: j € J} belongs to
7, but we do not assume that f' = {f; : j € J} are local averages of
a function f € VP(®). For this case we use the initialization

(3.6) fi=PQx{f]} =P (Z f;-ﬁj> €V (®),

jeJ
where {3; : j € J} is the BUPU in Definition (3.2). Algorithm (3.3)
becomes

(3.7) for1 =1+ (I—=PAx,)fas
and algorithm (3.5) becomes

(3.8) fot1=fi+ (I=PAx)f.
We have:

Theorem 3.3. Under the same assumptions as in Theorem 3.1, the
algorithm (3.7), with the initialization (3.6), converges to a function
foo € VP(®) which satisfies P(Ax 4 foo—Qx{f}}) = 0. Correspondingly,
under the assumptions of Theorem 3.2, algorithm (3.8) converges to a

function fy € VP(®) which satisfies P(Ax foo — Qx{fj}) = 0.

3.3. Convergence rate. When both ® and ¢ satisfy additional reg-
ularity conditions, an estimate of the convergence rate a in Theorem
3.1 in terms of the v-density, a, ®, and ¢ is given by:

Theorem 3.4. Assume that ® and v satisfy the conditions of Theorem
3.1, and that |V¢;| € W(L') for every i = 1,...,r, and |[¢]l1, =
Jpe [0 @)[t[7dt < 0o for some 0 < n < 1. Then the convergence rate o
in Theorem 3.1 satisfies

o < BIP|, (3% max (|91l + (6 + Da"l[u]],

d d
(01429 max ohwiun + 3 s [1V6 o) )

where B is the upper bound constant in (2.7).
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We have a corresponding result for the situation in Theorem 3.2.

Theorem 3.5. Assume that ® and Vx = (¢;); € J satisfy the con-
ditions of Theorem 3.2, and that |V ¢;| € W (L) for everyi=1,...,r.
Then the convergence rate o in Theorem 3.2 satisfies

(39)  a<3BP|,, (v+ME +1a) max ||Vl

where B is the upper bound constant in (2.7) and M is the upper bound
in Theorem 3.2.

Remark 3.2. The above estimates allow us to find sufficient density
conditions and size conditions on the averaging functions for the A-P
iterative algorithms to be convergent, as well as the convergence rates.

4. PROOFS

4.1. Proof of Theorem 3.1. To prove Theorem 3.1, we need to intro-
duce the quasi-interpolant Qx of the sampled values g|x of a function
g € Wy(LP). Given a bounded uniform partition of unity {3; : j € J}
associated with a separated sampling set X as in Definition (3.2), we
define a quasi-interpolant Qx ¢ on sequences by

Qxc= Z ¢;iBj -
jer
If f e Wy(LP), we write
Qx =Y flx;)B
jer
for the quasi-interpolant of the sequence ¢; = f(z;). We will need the

following property of the quasi-interpolant Qx:

Lemma 4.1. Let X be any sampling set with v-density v(X), {f; :
j € J} be a BUPU associated with X (see Definition 3.2), and let
o € Wo(L"). Then there exists a constant C = C(v,d) such that for

any f =5, (- — k), we have
1Qx flle < N1Qx Ffllwzsy < COvsd) llell 1oy Vo= (a) € (Z),

where the constant C(v,d) < ([2v+4]%+1) does not depend explicitly
on the sampling set X, or the partition of unity in Definition (3.2).
Here [t] denotes the smallest integer greater than or equal to t.

To prove the above lemma, we need the following lemma from [2, 4].

Lemma 4.2. Let p € Wy(L') and let f =Y, cxp(- — k), where ¢ =
(ck) € °(Z%). Then
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(i) the oscillation (or modulus of continuity)

osc, (f)(x) = sup [f(z +y) — f(z)]

ly|<vy

belongs to W (LP);
(ii) the oscillation osc,(p) satisfies

(4.1) lloscy (@)l 21y < C' (v d) lellwwry
where C'(7y,d) < [2vy + 4]%, and
Joser(@Mlhyiuy = 0 a5 70,
(iii) the oscillation osc,(f) satisfies
12) oy (Dl < el losey (DDlygey  for all € 7

In particular, |loscy(f)|ly sy — 0 asy — 0.

Proof of Lemma 4.1. Let f =", cxp(- — k), where ¢ = (ci) € (P(Z%).
From (2.5), we have f € W(LP) and

7(@) = Qx @) = |£(@) = 3 1)) By
miZm—ZﬂmmM
< 3110~ ) By
ggmMM%@
< oot ) () 5 ) = o 1))

From this pointwise estimate and Lemma 4.2, we get that
(4.3)  If = Qx fllwwry < Nosey (Nl ey < llelle llosey (@)l zry -
Thus using (2.5), (4.1) and (4.3), we obtain

1Qx fllwsy < I1F = Qx fllwey + 1 lw iz

(4.4) < (R2y+ 49"+ D llelly lellwe -
O

For the proof of Theorem 3.1, we will also need the following lemma.
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Lemma 4.3. Let ¢ € L'(IRY) such that [ ¢(x)dz = 1, and define
Vo() = a"4)(-/a), where a > 0 is any poszl'z%f;ve real number. Then for
every ¢ € W (L"),
16 =& il =0 as a—0".

Proof. We will estimate the W(L')-norm of ¢* = ¢ — ¢ % ¢)}. Since
[ W(z)dez =1 and 1, (2) = a %“p(x/a), we have

¢(@) = 6(a) = 0+ 0i(w) = [ (0la) = oo+ )0 (1) .
Therefore

| (@)]

IN

| 1ota) = ot + llvalo)

- /| /| 6(2) — (a + 1)][halt)
(4.5) = z) + Ir(z

By direct computations, we have

Ibllway = 3 sup /|t>l|¢<x>—¢(m+t>||¢a<t>|dt

k}EZd .Z'Ek)-l—[(],l)d

IN

S (Lt s ot o) o

d
k}EZd CEEk-I—[O,l) CEEk-I—[O,l)

/t|>1 (||¢||W Ly + Z sup x+t)|)|1/)a( )|dt

rezd z€k+[0,1)¢

IN

IN

(2ol [ (ol

t]>1

4o = 0+l [ )l

t|>a~"

and

IN

11|z

/t D sup [0(x) = ¢+ 1)|[a(t)|dt

|§1 kezd CEEk—I—[O,I)d

IN

/t|<1z sup — oscyy (¢) () [va(t)|dt

kezd CEEk-I—[O,I)d

(47) -/ _ lose(@)lhwion (01t =
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By Lemma 4.2, for any € > 0, there exists dy > 0 such that
lloscs (@) |lw 1y <€ V6 <do.
Write

(48) I= (/t|§60+/%S'tgl)||osct|(¢)||W(L1)|1/)a(t)|dt — I, + L.

Then
GSG/ a(®)]dt < el
[t|<do

and

o< [ fosc@)winlalo)li
1>[t]>d0

< Josci(@lway [ ul)lds

|s|>do/a
— 0 asa—0".

By (4.8), I — 0 as a — 0. Combining (4.5), (4.6) and (4.7), we have
||90a||W(L1) S ||[1||W(L1) —+ ||[2||W(L1) —0 as a— 0+.
U

Lemma 4.4. Let P be a bounded projection from LP(IR®) onto VP(®).
Then there exist 9 > 0 and ag > 0 such that for every separated -
dense set X with v < v and for every positive a < ag, the operator
[-P Ax, is a contraction on VP(®) .

Proof. Let f =3 > ciwdi(- — k) € VP(®). We have

If =PAxafllp, = IIf —PQxf+PQxf—PAxafllp
IPf=PQx fllp +PQx f =P Axafll
IPllop (I f = Qx flle + 1Qx f = Qx(f * ¥l 1»)-

Using (4.3) and the upper bound inequality of (2.7), the first term
of the last inequality in (4.9) can be estimated as follows:

(4.10)
|7 = Qx Pl < I F = Q Fllwian < B mase loscs (90l 110

<
(4.9) <

The second term ||Qx f — Qx(f = ¢?)]|,, can be estimated as follows.
Write ¢ = ¢ — ¢; * ¢} for i = 1,... ,r. Since each ¢; € Wy(L') and
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¢ € L', (2.4) implies that p? € Wy(L'). Noting that Qx f — Qx(f *
V) = Qx (D0, Dok il (- — k)), and using Lemma 4.1, we obtain

lQx £ = Qu(F * ¥l < HQx(iZw?('—’“”HW(m
i=1 k

IN

Cv,d) ) lcilles 108 lw e -
i=1

Hence by (2.7),
(411)  [|Qx f = Qx(f * ¥o)ll o < Cv, DB fl] o max [|97 vy 1) -

1<i<r

By combining (4.9), (4.10) and (4.11), we get
1 F=Paxafls < 1Pl Gua lose, (6 e

(4.12) (12 + 417+ 1) max 1oy ) B 1l

Let € > 0 be any positive real number. Using Lemma 4.2 (ii), we
may choose 7o so small so that maxi<i<, [loscy ()l < €/2 for
all v < 7. Then by Lemma 4.3, we may choose ag so small that
(270 +4]%+ 1) maxi <<, 16§ lyyr(1) < €/2 for all @ < ag. Therefore, we
can choose vy and ag so that for any v < vy and a < ay, we have

(4.13) || f = PAxafllp < Bel[Pllo, [, forall f e VP(P).
To get a contraction, we choose Be ||P[[,, < 1. O

Proof of Theorem 3.1. Let e, = f — f, be the error after n iterations
of Algorithm (3.3). Then the sequence e,, satisfies the recursion

En+1 = f - fn+1
- f_fn_PAX,a(f_fn)
(4.14) — (=P Axa)en.

Using Lemma 4.4, we may choose 7y and ag so small that || I —P Ax ,||op =
a < 1. Therefore by (4.14) we obtain

(4.15) lentall < llenl| Lo

and
lenllzr < @™ el -
Thus ||e,||;» — 0 as n — oo. Since for V?(®), the W (LP)-norm and the

LP-norm are equivalent, the inequality above also holds in the W (LP)-
norm and the proof is completed. O
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4.2. Proof of Theorem 3.2. To prove Theorem 3.2, we only need to
modify the proof of Lemma 4.4 and prove that I — P Ay is a contraction
on VP(®).

Proof. Let f =3 > cixdi(- — k) € VP(®). We have

If =PAxfll, = IIf —PQxf+PQxf—PAx fll
IPf—PQx fllp + IPQx f —PAx fll»
IPllop (I f = Qx fllps + [1Qx f = Ax fll10)-

The second term ||Qx f — Ax f]|;, of the last inequality can be esti-
mated as follows: Write f; = >, cix¢i(- — k) for i = 1,--- ,r. Clearly,
fi € VP(®) fori=1,---,r,and f =", fi. For each f;, we have the
following pointwise estimate:

<
(4.16) <

(Qx fi = Ax fi)@)| = | D (filwg) = (fistoa,)) B ()

J

= 2 ([ vt - 5@ 50

J

< 30 [ 1) = £ ()] (o)

IN

S oscu(£)wy) [ o (6)] des (o)

IN

MZOSCa(fi)(%')ﬁj(x)

(4.17) MZ (Z lcik| 0sca (i) (x5 — k) By ().

IN

From this pointwise estimate and Lemma 4.1, it follows that

1Qx fi = Ax fill oo < MC(y, d) [[¢ill llosca(di)[lvwp1) -

Thus we conclude that

1Qx f = Ax fllpp < MO(y.d) Y lleillm osca(3) ey
=1

Hence by (2.7),

(4.18) IQx [ = Ax fllpp < MC(v, d)B | f[| » max [losca(di)lly (1) -
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By combining (4.10), (4.16), and (4.18), we get
I =P Ax Fls < 1Pl (oo loscy (6 o
(4.19) M2y + 41+ 1) max losca(6) o, ) B Il

The rest of the proof is similar to the last part of the proof of Lemma
4.4. Let € > 0 be any positive real number. Using Lemma 4.2 (ii), we
may choose 7 so small so that maxi<i<, [[08¢y (i)l 1) < €/2 for

all v < 7. Then we may choose ay so small that M([2y, + 4]¢ +
1) maxi<i<r [|08ca(@4)lyy (1) < €/2 for all @ < ag. Therefore, we can
choose vy and ay so that for any v < vy and a < ag, we have

(4.20) || f = PAx fllpp < Be|[Pllo, I fllp  for all f € VE(®).

To get a contraction, we choose Be ||P||, < 1. O

4.3. Proof of Theorem 3.3.

Proof. By Lemma 4.4, the operator I — P Ax , is a contraction on V?(®).
It follows that the sequence of functions f,, in (3.7) is convergent to a
function fy in V?(®). By taking the limits of both sides of (3.7), and
using (3.6), we get P(Ax 4 foo — Qx{f]}) = 0. The proof of the second
part of Theorem 3.3 is almost identical, except using the contractive
property of the operator I — P Ax on V?(®). O

4.4. Proof of Theorem 3.4.

Proof. Consider ¢ and ¢® as in Lemma 4.3. Assume further that |V¢| €
W (L'). Let us first estimate ||oscs(¢)|lw 1) for 0 < 6 < 1. Note that

¢ +y) —o(x) = /0 y- Vo(r + sy)ds.

Therefore
1
6+ ) — o(a)] < / Y[V (e + sy)lds < Jy| sup [Vo(a + 1)),
0 [t|<|y]

which leads to the following estimate to oscs(¢):

oscs(¢)(x) = sup [p(z +y) — ()]
Y=
< sup [y| sup [Vo(z + )| < dsup [Vo(z +1)].
lyl<s  [t<]yl [t|<o
Thus for every k € Z¢,

sup oscs(@)(z) < sup  dsup|Ve(z+1)[ <4 sup  [Vo(y)l.
z€k+[0,1)4 z€k+[0,1)4  [t|<é yek+[-1,2)4
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Hence,

loscs(@)lwasy = Y sup oscs(@)(x) <6y sup  |Vo(y)l
pezd zek+[0,1)4 kezd yek-+[—1,2)d

(4.21) < 3%y sup [Vé(y)| = 3%[Vellwaw-

kEZd yek+[071)d
Next we estimate the W (L')-norm of ¢* = ¢ — ¢ x1p*. We follow the
proof of Lemma 4.3. By (4.7) and (4.21),

Ihllwey < / BTl 01
= 3Nl |
[t|<1
3[1V9|lwznya / ] (1) .

[t|<a=!

(4.22)

Combining (4.5), (4.6) and (4.22), we obtain the following estimate for
the W (L')-norm of ¢*:

el < (42 olwany [ @l

lt|>a~"

(423) #3119l [

t|<a™

il (o)t

If [ih]]1, := [pa [¥(2)][t[7dt < oo for some 0 < 7 < 1, then by (4.23)

lelweey < @+ 29lllwana[¥llig + 3 NV ellwwya” [,

(4.24) = a"((L+ 29 |llw ) + 3 NIVlllwr)llel .
The desired result in Theorem 3.4 then follows from (4.12), (4.21)
and (4.24). O

4.5. Proof of Theorem 3.5.

Proof. The proof of Theorem 3.5 is a direct consequence of (4.19) and
(4.21). O
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