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Abstract. In this paper, we consider the time-frequency localization of the
generator of a principal shift-invariant space on the real line which has addi-
tional shift-invariance. We prove that if a principal shift-invariant space on
the real line is translation-invariant then any of its orthonormal (or Riesz) gen-
erators is non-integrable. However, for any n ≥ 2, there exist principal shift-
invariant spaces on the real line that are also 1

n
Z-invariant with an integrable

orthonormal (or a Riesz) generator φ, but φ satisfies
∫
R |φ(x)|2|x|1+εdx = ∞

for any ε > 0 and its Fourier transform φ̂ cannot decay as fast as (1 + |ξ|)−r

for any r > 1
2
. Examples are constructed to demonstrate that the above decay

properties for the orthormal generator in the time domain and in the frequency
domain are optimal.

1. Introduction and Main Results

In this paper, a principal shift-invariant space on the real line is a shift-invariant
space V2(φ) generated by a function φ ∈ L2 := L2(R),

V2(φ) :=
{ ∑

k∈Z
c(k)φ(· − k)

∣∣ c := (c(k))k∈Z ∈ `2 := `2(Z)
}

, (1.1)

such that {φ(· − k)| k ∈ Z} is a Riesz basis for V2(φ), i.e., there exist positive
constants A and B such that

A‖c‖`2 ≤
∥∥∥

∑

k∈Z
c(k)φ(· − k)

∥∥∥
2
≤ B‖c‖`2 for all c := (c(k))k∈Z ∈ `2. (1.2)

The function φ is called the generator of the principal shift-invariant space V2(φ),
and it is called the orthonormal generator if {φ(· − k)| k ∈ Z} is an orthonormal
basis for V2(φ), i.e., (1.2) holds for A = B = 1. Principal shift-invariant spaces have
been widely used in approximation theory, numerical analysis, sampling theory and
wavelet theory (see e.g., [AG01, AST05, Bow00, CS07, UB00] and the references
therein).
The classical models of principal shift-invariant spaces on the real line are the
Paley-Wiener space PW also known as the space of bandlimited functions (the
set of all square-integrable functions bandlimited to [−1/2, 1/2]) and the spline
space Sn−1

n (the set of all (n − 1)-differentiable square-integrable functions whose
restriction on any integer interval [k, k + 1] coincides with a polynomial of degree
at most n). More precisely, the Paley-Wiener space PW is the shift-invariant
space generated by the sinc function sinc(x) = sin πx

πx , i.e. PW = V2(sinc) and
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the spline space Sn−1
n is generated by the B-spline βn, i.e. Sn−1

n = V2(βn) where
β0 is the characteristic function on [0, 1) and βn, n ≥ 2, are defined iteratively by
βn(t) =

∫
R βn−1(t− τ)β0(τ)dτ .

Now we consider principal shift-invariant spaces that are invariant under additional
set of translates other than Z. The shift-invariant spaces with additional invariance
have been used in the study of wavelet analysis and sampling theory [Web00, CS03,
HL09], and have been completely characterized in [ACHKM10] for L2(R) and in
[ACP09] for L2(Rn). For a subspace V of L2(R), let

τ(V ) :=
{

t ∈ R
∣∣ f(· − t) belong to V for all f ∈ V

}
. (1.3)

For any closed subspace V of L2, one may verify that τ(V ) is a closed additive
subgroup of R, and hence τ(V ) is either {0}, or R, or αZ for some α > 0. It can be
shown that [ACHKM10] for a principal shift-invariant space V2(φ) on the real line

τ(V2(φ)) = R or τ(V2(φ)) =
1
n
Z for some n ∈ N. (1.4)

We say that a shift-invariant space V on the real line has additional invariance if
τ(V ) ) Z. It is well-known that the Paley-Wiener space PW are invariant under
all translations. Thus,

τ(PW ) = R.

A closed subspace V of L2 with τ(V ) = R is usually known as a translation-invariant
space. The fact that the space of bandlimited functions PW is translation-invariant
(τ(PW ) = R) makes it useful for modeling signals and images. However, it is known
that any function φ that generates a Riesz basis for PW has slow spatial-decay in
the sense that φ /∈ L1(R), e.g., sinc(x) = sin πx

πx . This slow spatial-decay property
for the generator of principal shift-invariant spaces V2(φ) that are also translation-
invariant is not unique to the space of bandlimited functions PW. In fact, in this
paper, we first show that the generator φ of any translation-invariant principal
shift-invariant space V2(φ) on the real line is not integrable.

Theorem 1.1. Let φ ∈ L2 and {φ(·−k)| k ∈ Z} be a Riesz basis for its generating
space V2(φ). If V2(φ) is translation-invariant then φ 6∈ L1 := L1(R).

The slow spatial-decay of the generators of shift-invariant spaces that are also
translation-invariant is a disadvantage for the numerical implementation of some
analysis and processing algorithms.
On the other hand, Riesz bases for the spline spaces Sn−1

n = V2(βn) can be gener-
ated by the compactly supported B-spline functions βn. This is one of the reasons
that spline spaces are often used in signal and image processing algorithms as well as
in numerical analysis. Moreover, the B-spline functions βn are also well localized in
frequency domain, since β̂n(ξ) = O(|ξ|−n−1). However, the spaces Sn−1

n = V2(βn)
have no invariance other than by integer shifts. In fact, it can be shown that any
principle shift-invariant space V2(φ) generated by a compactly supported function
φ cannot have any invariance other than by integer shifts [HL09, ACHKM10].
One way to circumvent some of the problems is to seek principle shift-invariant
spaces V2(φ) that are close to being translation invariant, with a generator φ which
is well localized in both space and frequency domains, i.e., φ and φ̂ are well localized.
Specifically, we ask whether we can find a shift-invariant space V (φ) such that V (φ)
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is also 1
nZ invariant for some 2 ≤ n ∈ N, and such that φ and φ̂ are well localized. It

turns out that it is possible to construct functions φ that are well-localized in time
and frequency domains, that generate shift-invariant spaces V2(φ) that are also 1

nZ
invariant. However, there are uncertainty and Balian-Low type obstructions, as
will be described below. Specifically, the classical uncertainty principle tells us that
there is a lower limit on the simultaneous time-frequency localization of functions
as shown by

Theorem (Uncertainty Principle). For any function f ∈ L2(R), we have

||f ||22 ≤ 4π||xf(x)||2||ξf̂(ξ)||2, (1.5)

and the equality holds only if
f(x) = ce−sx2

for s > 0 and c ∈ R.

If we impose more conditions, the time-frequency localization deteriorates even fur-
ther (see e.g., [BCGP03, BCPS06, BHW95, CP07, Gau09, GH04, GHHK02, HP06]
and the references therein). For example, if the Gabor system {EmTng}m,n∈Z =
{e2πimxg(x + n)}m,n∈Z of a function g is a Riesz basis for L2(R), we will have the
following Balian-Low theorem:

Theorem (Balian-Low). Let g ∈ L2(R). If {EmTng} is a Riesz basis for L2(R),
then ( ∫ ∞

−∞
|xg(x)|2dx

)( ∫ ∞

−∞
|ξĝ(ξ)|2

)
dξ = ∞.

The Balian-Low theorem implies that if function g generates a Gabor Riesz basis,
then it is not possible for the functions g and ĝ to be simultaneously well-localized.
In particular

|g(x)| < c

|x|r , |ĝ(ξ)| < c

|ξ|r
cannot hold simultaneously with r > 3/2.

1.1. Balian-Low type results for shift-invariant spaces. For the case of a
shift-invariant space V2(φ) which is also 1

nZ invariant for some 2 ≤ n ∈ N, we
obtain the following surprising result:

Theorem 1.2. If φ ∈ L2 has the property that {φ(· − k)| k ∈ Z} is a Riesz basis
for its generating space V2(φ), and that V2(φ) is 1

nZ-invariant for some n ≥ 2, then
for any ε > 0, we have ∫

R
|φ(x)|2|x|1+εdx = +∞. (1.6)

Remark 1.

(i) Theorem 1.2 is a Balian-Low type result. If we choose ε = 1 in (1.6) of The-
orem 1.2, we get

∫
R |xφ(x)|2dx = +∞. It should be noted that in the Balian-

Low Theorem
∫∞
−∞ |xg(x)|2dx can be finite, while in the case of Theorem

1.2
∫
R |xφ(x)|2dx is always infinite. For the case ∆p =

∫
R |φ(x)|2|x|pdx, the
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theorem above should be comparable to the (1,∞) version of the Balian-
Low Theorem ([BCPS06], [Gau09]).

(ii) If we do not require other invariances besides integer shifts, then we can find
V2(φ) such that {φ(· − k) : k ∈ Z} is an orthonormal basis for V and such
that φ decays exponentially in both time and frequency. In particular for
such a φ it is obvious that

( ∫∞
−∞ |x|α|g(x)|2dx

)( ∫∞
−∞ |ξ|β |ĝ(ξ)|2dξ

)
< ∞,

where α, β > 0 are any positive real numbers.

There is also a decay restriction in the Fourier domain. Specifically, the Fourier
transform of an integrable generator φ of a principal shift-invariant space which
is 1

nZ-invariant for some integer n ≥ 2 cannot decay faster than |ξ|−1/2−ε for any
ε > 0.

Theorem 1.3. Let 2 ≤ n ∈ N. Let φ ∈ L1∩L2 have the property that {φ(·−k)| k ∈
Z} is a Riesz basis for its generating space V2(φ), and that V2(φ) is 1

nZ-invariant,
then for any ε > 0,

sup
ξ∈R

|φ̂(ξ)||ξ|1/2+ε = +∞. (1.7)

We conclude from Theorem 1.3 that there is an obstruction to pointwise frequency
(non)-localization property.

Remark 2. The conclusion of Theorem 1.3 remains valid if we weaken the condition
that φ ∈ L1 ∩ L2 to φ ∈ L2 and φ̂ is continuous.

1.2. Optimality of the Balian-Low type results. Now, we show the optimality
of the results of Theorems 1.2 and 1.3.

The optimality of Theorem 1.2 is obvious since the φ = sinc function generates a
translation invariant space and

∫
R |φ(x)|2|x|1−εdx < ∞ for any 0 < ε < 1.

The following result shows that (1.7) in Theorem 1.3 is sharp and that for any
2 ≤ n ∈ N there exists a generator φ ∈ L1 ∩L2 (that depends on n) for V2(φ) such
that φ̂ decays like |ξ|−1/2. This is done by constructing time-frequency localized
generators φ that achieve the desired properties:

Theorem 1.4. For each integer n ≥ 2, there exists a function φ ∈ L1 ∩ L2 (and
hence φ̂ is continuous) which depends on n, such that {φ(· − k)| k ∈ Z} is an
orthonormal basis for its generating space V2(φ), V2(φ) is 1

nZ-invariant, and

∫

R
|φ(x)|2(1 + |x|)1−εdx < ∞, (1.8)

sup
ξ∈R

|φ̂(ξ)||ξ|1/2 < +∞. (1.9)

Remark 3.

(i) Note that by giving up the translation invariance and only allowing 1/n
invariance as in Theorem 1.4, we are able to have an L1 generator, while
this is not possible for translation invariance as shown in Theorem 1.1.

(ii) Note that Theorem 1.4 shows the optimality of both Theorems 1.2 and 1.3
simultaneously.
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We turn our attention to the integral measure of time-frequency localization for
generators of 1

nZ-invariant spaces. Unlike what was proven for the translation-
invariant case in Theorem 1.1, we prove that by sacrificing a little frequency local-
ization, it is possible for generators of such spaces to be in L1, even when satisfying
the optimality condition (1.8).

Theorem 1.5. For any 2 ≤ n ∈ N, ε > 0, γ ≥ 0, δ > 0, 1 ≤ q < ∞ with
1 + δ − q/2 < 1/(2γ), there exists φ ∈ L2 (that depends on ε, δ, q, γ, n) such that
{φ(· − k)| k ∈ Z} is an orthonormal basis for its generating space V2(φ), V2(φ) is
1
nZ-invariant and φ satisfies the following conditions:

(1)
∫
R |φ(x)|2(1 + |x|)1−εdx < ∞,

(2)
∫
R |φ(x)|(1 + |x|)γdx < ∞,

(3)
∫
R |φ̂(ξ)|q(1 + |ξ|)δdξ < ∞.

Remark 4.

(i) Note that the orthonormal generator φ = sinc for the Paley-Wiener space
PW satisfies the first and third localization properties in Theorem 1.5.
However, the sinc function does not satisfies the second time localization in-
equality. In fact no function φ generating a shift-invariant space V2(φ) that
is also translation invariant can satisfy the second inequality of Theorem
1.5, as is shown in Theorem 1.1. Thus by relaxing translation invariance to
1
nZ invariance we are able to get better time localization in the sense of the
second localization inequality above. For this however, we needed to trade
off some frequency localization by allowing infinite support in frequency.

(ii) We do not know what happens for the case ε = 0.

(iii) Using Lemmas 2.5, 2.6 and 2.7, Theorem 1.5 can be shown to be valid for
other norms and other weights.

2. Proofs

2.1. Proof of Theorem 1.1. To prove Theorem 1.1, we recall a characteriza-
tion for the Riesz (orthonormal) basis property (see e.g., [DDR94]) and for the
translation-invariance property (see [ACHKM10]).

Proposition 2.1. Let φ ∈ L2. Then

(i) {φ(· − k)| k ∈ Z} is a Riesz basis for its generating space V2(φ) if and only
if

m ≤
∑

k∈Z
|φ̂(ξ + k)|2 ≤ M for almost all ξ ∈ R

where m and M are positive constants, and
(ii) {φ(· − k)| k ∈ Z} is an orthonormal basis for its generating space V2(φ) if

and only if
∑

k∈Z
|φ̂(ξ + k)|2 = 1 for almost all ξ ∈ R.

For shift-invariant spaces that are also translation invariant, the following proposi-
tion is a special case of a general result in [ACHKM10].
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Proposition 2.2. Let φ ∈ L2 with the property that {φ(· − k)| k ∈ Z} is a Riesz
basis for its generating space V2(φ). Then V2(φ) is translation-invariant if and only
if for almost all ξ ∈ R,

φ̂(ξ)φ̂(ξ + k) = 0 for all 0 6= k ∈ Z.

Now we start to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose on the contrary that there exists a principal shift-
invariant space V2(φ) on the real line such that V2(φ) is translation-invariant and
the generator φ is integrable. Let

O :=
{
ξ ∈ R| φ̂(ξ) 6= 0

}
.

Since φ ∈ L1 by assumption, φ̂ is continuous, and hence O is an open set. From
Proposition 2.2 it follows that the Lebesgue measure of the set (O+ j)∩ (O+ k) is
zero for all j 6= k ∈ Z. This together with the fact that O is an open set gives that

(O + j) ∩ (O + k) = ∅ for all j 6= k ∈ Z. (2.1)

Recall that R is connected and that any connected set is not a union of nonempty
disjoint open sets. Thus {O+ k|k ∈ Z} is not an open covering of the real line, i.e.,
R\(∪k∈Z(O + k)) 6= ∅, which in turn implies the existence of a real number ξ0 ∈ R
with the property that

φ̂(ξ0 + k) = 0 for all k ∈ Z. (2.2)

As φ̂ is uniformly continuous by the assumption that φ ∈ L1, for any ε > 0 there
exists δ > 0 such that

|φ̂(ξ + k)− φ̂(ξ0 + k)| < ε for all |ξ − ξ0| < δ and k ∈ Z. (2.3)

By (2.1), for any ξ ∈ R there exists an integer l(ξ) such that
∑

k∈Z
|φ̂(ξ + k)|2 = |φ̂(ξ + l(ξ))|2. (2.4)

Combining (2.2), (2.3) and (2.4) yields
∑

k∈Z
|φ̂(ξ + k)|2 < ε2 whenever |ξ − ξ0| < δ. (2.5)

Since ε > 0 can be chosen to be arbitrarily small, the last inequality contradicts
the Riesz basis property that there exists m > 0 such that m ≤ ∑

k∈Z |φ̂(ξ + k)|2
for almost all ξ ∈ R. ¤

2.2. Proof of Theorem 1.2. We need a characterization of 1
nZ-invariance, which

is a special case of a more general result in [ACHKM10].

Proposition 2.3. ([ACHKM10]) Let n ≥ 2 be an integer, and φ ∈ L2 with the
property that {φ(·−k)| k ∈ Z} is a Riesz basis for its generating space V2(φ). Then
V2(φ) is 1

nZ-invariant if and only if for almost all ξ ∈ R, one and only one of the
following vectors

Φm(ξ) := (· · · , φ̂(ξ + m− n), φ̂(ξ + m), φ̂(ξ + m + n), · · · ), 0 ≤ m ≤ n− 1, (2.6)

is nonzero.
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Proof of Theorem 1.2. Suppose on the contrary that∫

R
|φ(x)|2(1 + |x|)1+εdx < ∞. (2.7)

Then φ ∈ L1, which implies that φ̂ is a uniformly continuous function. Let Om =
{ξ ∈ R| Φm(ξ) 6= 0}, 0 ≤ m ≤ n− 1, where Φm is defined as in (2.6). Since

Om =
⋃

k∈Z
{ξ ∈ R| φ̂(ξ + m + kn) 6= 0},

then Om, 0 ≤ m ≤ n− 1 are open sets, and

Om + m = O0 and Om + nk = Om for all 0 ≤ m ≤ n− 1 and k ∈ Z. (2.8)

Moreover, the intersection between the sets Om with different m have zero Lebesgue
measure (hence are empty sets) by Proposition 2.3. Therefore {Om|0 ≤ m ≤ n−1}
is not an open covering of the real line R, which implies that the existence of a real
number ξ0 ∈ R with the property that

φ̂(ξ0 + k) = 0 for all k ∈ Z. (2.9)

Let N ≥ 1 be a sufficiently large integer, δ = N−1−ε/2, and h be a smooth function
supported on [−2, 2] and satisfy 0 ≤ h ≤ 1, and h(x) = 1 when x ∈ [−1, 1]. Define
φN (x) = h(x/N)φ(x). Then we obtain that

( 1
2δ

∫ δ

−δ

∑

k∈Z
|(φ̂− φ̂N )(ξ0 + ξ + k)|2dξ

)1/2

≤
( 1

2δ

∫

R
|(φ̂− φ̂N )(ξ)|2dξ

)1/2

=
( 1

2δ

∫

R
|φ(x)− φN (x)|2dx

)1/2

≤ N−ε/4
(∫

R
|φ(x)|2(1 + |x|)1+εdx

)1/2

, (2.10)

and
( 1

2δ

∫ δ

−δ

∑

k∈Z
|φ̂N (ξ0 + ξ + k)− φ̂N (ξ0 + k)|2dξ

)1/2

=
( 1

2δ

∫ δ

−δ

∑

k∈Z

∣∣∣
∫ ξ

0

φ̂′N (ξ0 + ξ′ + k)dξ′
∣∣∣
2

dξ
)1/2

≤
( 1

2δ

∫ δ

−δ

ξ

∫ ξ

0

∑

k∈Z

∣∣∣φ̂′N (ξ0 + ξ′ + k)
∣∣∣
2

dξ′dξ
)1/2

≤
( 1

2δ

∫ δ

−δ

ξ

∫ ξ

0

∑

k∈Z

∣∣∣
∫

R
N2|ĥ′(Nη)||φ̂(ξ0 + ξ′ + k − η)|dη

∣∣∣
2

dξ′dξ
)1/2

≤
(N3

2δ
‖ĥ′‖1

∫ δ

−δ

ξ

∫ ξ

0

∫

R
|ĥ′(Nη)|

( ∑

k∈Z
|φ̂(ξ0 + ξ′ + k − η)|2

)
dηdξ′dξ

)1/2

≤ N−ε/2‖ĥ′‖1
(
ess sup ξ∈R

∑

k∈Z
|φ̂(ξ + k)|2

)1/2

, (2.11)

where φ̂N (ξ) = N
∫
R ĥ(Nη)φ̂(ξ−η)dη is used to obtain the second inequality, while

the third inequality is obtained by letting |ĥ′(Nη)| = |ĥ′(Nη)|1/2|ĥ′(Nη)|1/2 and
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using Hölder inequality. Also we have that
∑

k∈Z
|φ̂N (ξ0 + k)|2 =

∑

k∈Z

∣∣∣
∫

R
e−2πi(ξ0+k)xφ(x)(1− h(x/N))dx

∣∣∣
2

≤
∫ 1

0

( ∑

l∈Z
|φ(x + l)||1− h((x + l)/N)|

)2

dx

≤
∫ 1

0

( ∑

l∈Z
|φ(x + l)|2(1 + |x + l|)1+ε

)

×
( ∑

l∈Z
(1− h((x + l)/N))2(1 + |x + l|)−1−ε

)
dx

≤ 2
( ∞∑

l=N

|l|−1−ε
)
×

( ∫

R
|φ(x)|2(1 + |x|)1+εdx

)
, (2.12)

where the first equality follows from (2.9). Combining (2.10), (2.11) and (2.12)
with Proposition 2.1 gives

m ≤ ess inf ξ∈R
( ∑

k∈Z
|φ̂(ξ + k)|2)1/2

≤
( 1

2δ

∫ δ

−δ

∑

k∈Z
|φ̂(ξ0 + ξ + k)|2dξ

)1/2

≤
( 1

2δ

∫ δ

−δ

∑

k∈Z

∣∣φ̂N (ξ0 + ξ + k)− φ̂N (ξ0 + k)|2dξ
)1/2

+
( ∑

k∈Z
|φ̂N (ξ0 + k)|2

)1/2

+
( 1

2δ

∫ δ

−δ

∑

k∈Z
|(φ̂− φ̂N )(ξ0 + ξ + k)|2dξ

)1/2

≤ CN−ε/4 → 0 as N →∞, (2.13)

which is a contradiction. ¤

2.3. Proof of Theorem 1.3.

Proof. Note that φ ∈ L1 implies that φ̂ is uniformly continuous. Now, suppose on
the contrary that

|φ̂(ξ)| ≤ C(1 + |ξ|)−1/2−ε (2.14)

for some positive constants C and ε > 0. This together with the continuity of
the function φ̂ implies that Gφ(ξ) =

∑
k∈Z |φ̂(ξ + k)|2 is a continuous function.

Therefore there exists a positive constant m such that

Gφ(ξ) ≥ m for all ξ ∈ R (2.15)

by Proposition 2.1 and the continuity of the function Gφ. Using the argument in
the proof of Theorem 1.2, we can find a real number ξ0 ∈ R such that φ̂(ξ0 +k) = 0
for all k ∈ Z, which implies that Gφ(ξ0) = 0. This contradicts (2.15). ¤
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2.4. Proof of Theorem 1.4. To prove Theorems 1.4 and 1.5, we construct a
family of principal shift-invariant spaces on the real line which are 1

nZ-invariant for
a given integer n ≥ 2. Let g be an infinitely-differentiable function that satisfies
g(x) = 0 when x ≤ 0, g(x) = 1 when x ≥ 1, and (g(x))2 + (g(1 − x))2 = 1 when
0 ≤ x ≤ 1. For positive numbers α, β > 0 and a natural number n ≥ 2, define
ψα,β,n with the help of the Fourier transform by

ψ̂α,β,n(ξ) = h0(ξ) +
∞∑

j=1

βj−1∑

l=0

(βj)−1/2hj(ξ − n(γj + l))

+
∞∑

j=1

βj−1∑

l=0

(βj)−1/2hj(−ξ − n(γj + l)), (2.16)

where βj = d2jβe (the smallest integer larger than or equal to 2jβ), γj =
∑j−1

k=0 βk,
g0(x) = g(x + 1)g(−x + 1), g1(x) = g(x + 1)g(−2αx + 1), and

hj(ξ) =
{

g0(2ξ/(1− 2−α)) if j = 0,
g1(2jα(2ξ − 1 + 2−jα)/(2α − 1)) if j ≥ 1.

(2.17)

The functions ψ̂α,β,n(ξ) with α = 1, β = 2 and n = 2 and hi(ξ), 0 ≤ i ≤ 3, with
α = 1 are plotted in Figure 1.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−40 −30 −20 −10 0 10 20 30 40 50

Figure 1. The functions hi, 0 ≤ i ≤ 3 with α = 1 on the top, and
the function ψ̂α,β,n with α = 1, β = 2 and n = 2 on the bottom.
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Lemma 2.4. For α, β > 0 and an integer n ≥ 2, let ψα,β,n be defined as in (2.16).
Then ψα,β,n is an orthonormal generator of its generating space V2(ψα,β,n) and the
principal shift-invariant space V2(ψα,β,n) is 1

nZ-invariant.

Proof. As each hj , for j ≥ 0, is supported in (−1/2, 1/2) by construction,

|ψ̂α,β,n(ξ)|2 = |h0(ξ)|2 +
∞∑

j=1

βj−1∑

l=0

(βj)−1|hj(ξ − n(γj + l))|2

+
∞∑

j=1

βj−1∑

l=0

(βj)−1|hj(−ξ − n(γj + l))|2,

which implies that

∑

k∈Z
|ψ̂α,β,n(ξ + k)|2 =

∑

k∈Z
|h0(ξ + k)|2 +

∞∑

j=1

∑

k∈Z

(|hj(ξ + k)|2 + |hj(−ξ + k)|2)

= |h0(ξ)|2 +
∞∑

j=1

|hj(ξ)|2 +
∞∑

j=1

|hj(−ξ)|2 (2.18)

for any ξ ∈ (−1/2, 1/2). Set

H(ξ) := |h0(ξ)|2 +
∞∑

j=1

|hj(ξ)|2 +
∞∑

j=1

|hj(−ξ)|2.

Then H(ξ) is a symmetric function supported on (−1/2, 1/2) and for any ξ ∈
[1− 2−jα, 1− 2−(j+1)α]/2 with j ≥ 0,

H(ξ) = |hj(ξ)|2 + |hj+1(ξ)|2
= |g(−2(j+1)α(2ξ − 1 + 2−jα)/(2α − 1) + 1)|2

+|g(2(j+1)α(2ξ − 1 + 2−(j+1)α)/(2α − 1) + 1)|2
= 1 (2.19)

by the construction of the functions g and hj , j ≥ 0. Therefore H(ξ) = 1 for all
ξ ∈ (−1/2, 1/2), which together with (2.18) implies that

∑

k∈Z
|ψ̂α,β,n(ξ + k)|2 = 1 for all ξ ∈ R\(1/2 + Z). (2.20)

Then ψα,β,n is an orthonormal generator for its generating space V2(ψα,β,n) by
(2.20) and Proposition 2.1.

By (2.16), ψ̂α,β,n is supported on (−1/2, 1/2)+nZ. Then V2(ψα,β,n) is 1
nZ-invariant

by (2.20) and Proposition 2.3. ¤

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let ψα,β,n be as in (2.16) for α, β > 0, and set φ = ψα,β,n.
Then by Lemma 2.4 it suffices to prove (1.9) for the function φ just defined. From
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(2.16) it follows that

|φ̂(ξ)||ξ|1/2 = |ψ̂α,β,n(ξ)||ξ|1/2

≤ sup
{
|h0(ξ)||ξ|1/2, sup

j≥1,0≤l≤βj−1
β
−1/2
j |hj(ξ − n(γj + l))||ξ|1/2,

sup
j≥1,0≤l≤βj−1

β
−1/2
j |hj(−ξ − n(γj + l))||ξ|1/2

}

Note that, from its definition, hj(ξ−n(γj +l)) has support in [n(γj +l), n(γj +l)+1]
and has maximal value 1. Thus the term |hj(ξ − n(γj + l))||ξ|1/2 can be bounded
above by

(
n(γj + l) + 1

)1/2 for all ξ and 0 ≤ l ≤ βj − 1. Thus, it follows from the
last inequality and the relation γj + βj = γj+1 that

|φ̂(ξ)||ξ|1/2 ≤ 1 + C sup
j≥1

(βj)−1/2(γj+1)1/2 < ∞, (2.21)

where C is a positive constant. Hence (1.9) holds. In particular, we can show that

0 < lim sup
|ξ|→∞

|φ̂(ξ)||ξ|1/2 < ∞. (2.22)

This proves the pointwise frequency localization of the theorem. The time local-
ization inequality is a direct consequence of Lemma 2.5 below. The fact that φ is
also in L1 follows from Lemma 2.6 choosing p = 1, γ = 0. ¤

2.5. Proof of Theorem 1.5. Theorem 1.5 is an immediate consequence of the
following three lemmas:

Lemma 2.5. Let ε ∈ (0, 1), α, β > 0, n be an integer with n ≥ 2, and ψα,β,n be
defined as in (2.16). Then

∫

R
|ψα,β,n(x)|2|x|1−εdx < ∞. (2.23)

Lemma 2.6. Let γ ≥ 0, 1 ≤ p < 2, n be an integer with n ≥ 2, and ψα,β,n be defined
as in (2.16) for positive numbers α, β > 0 with β(1/p− 1/2) + α(p− 1− γ)/p > 0.
Then

∫

R
|ψα,β,n(x)|p(1 + |x|)γdx < ∞. (2.24)

Lemma 2.7. Let δ > 0, 1 ≤ q < ∞, n be an integer with n ≥ 2, and ψα,β,n be
defined as in (2.16) for positive numbers α, β > 0 with α > β(1 + δ − q/2). Then

∫

R
|ψ̂α,β,n(ξ)|q(1 + |ξ|)δdξ < ∞. (2.25)
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Proof of Lemma 2.5. Taking the inverse Fourier transform of both sides of (2.16)
yields

ψα,β,n(x) =
1− 2−α

2
g∨0

(1− 2−α

2
x
)

+
2α − 1

2

∞∑

j=1

(βj)−1/22−jαg∨1
(2α − 1

2jα+1
x
)

×eπix(1−2−jα)
( βj−1∑

l=0

e2πixn(γj+l)
)

+
2α − 1

2

∞∑

j=1

(βj)−1/22−jα

×g∨1
(− 2α − 1

2jα+1
x
)× e−πix(1−2−jα)

( βj−1∑

l=0

e−2πixn(γj+l)
)
, (2.26)

where g∨0 and g∨1 are the inverse Fourier transforms of the functions g0 and g1

respectively. Since both g0 and g1 are compactly supported and infinitely differen-
tiable, their inverse Fourier transforms g∨0 and g∨1 have polynomial decay at infinity.
In particular

|g∨0 (x)|+ |g∨1 (x)| ≤ C(1 + |x|)−2, x ∈ R

for some positive constant C. Hence

( ∫

R
|ψα,β,n(x)|2(1 + |x|)1−εdx

)1/2

≤
(1− 2−α

2

)(∫

R
|g∨0 (x)|2(1 + |x|)1−εdx

)1/2

+(2α − 1)
∞∑

j=1

(βj)−1/22−jα
( ∫

R

∣∣∣g∨1
(2α − 1

2jα+1
x
)∣∣∣

2( sin βjnπx

sin nπx

)2

(1 + |x|)1−εdx
)1/2

≤ C + C

∞∑

j=1

2−j(β+α+αε)/2
( ∫

R
(1 + 2−jα|x|)−2

( sin βjπx

sin πx

)2

dx
)1/2

= C + C
∞∑

j=1

2−j(β+α+αε)/2
( ∫ 1/2

−1/2

(∑

l∈Z
(1 + 2−jα|x + l|)−2

)( sin βjπx

sin πx

)2

dx
)1/2

≤ C + C

∞∑

j=1

2−j(β/2+αε/2)
( ∫ 1/2

−1/2

( sin βjπx

sin πx

)2

dx
)1/2

≤ C + C

∞∑

j=1

2−j(β+αε)/2
( ∫ 1/2

−1/2

(
min(βj ,

1
2|x| )

)2
dx

)1/2

≤ C + C

∞∑

j=1

2−jαε/2 < ∞, (2.27)

where C is a positive constant which could be different at different occurrences. ¤
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Proof of Lemma 2.6. Similar to the argument in Lemma 2.5 we have
( ∫

R
|ψα,β,n(x)|p(1 + |x|)γdx

)1/p

≤ C + C

∞∑

j=1

2−j(β/2+α(1−(1+γ)/p))
( ∫ 1/2

−1/2

( sin βjπx

sin πx

)p

dx
)1/p

≤
{

C + C
∑∞

j=1 2−j(β(1/p−1/2)+α(p−1−γ)/p) if 1 < p < 2
C + C

∑∞
j=1 j2−j(β/2−γα) if p = 1

< ∞,

from which the lemma follows. ¤

Proof of Lemma 2.7. By (2.16), we have∫

R
|ψ̂α,β,n(ξ)|q(1 + |ξ|)δdξ

=
∫

R
|h0(ξ)|q(1 + |ξ|)δdξ +

∞∑

j=1

βj−1∑

l=0

β
−q/2
j

∫

R
|hj(ξ − n(γj + l))|q(1 + |ξ|)δdξ

+
∞∑

j=1

βj−1∑

l=0

β
−q/2
j

∫

R
|hj(−ξ − n(γj + l))|q(1 + |ξ|)δdξ

≤ C + C

∞∑

j=1

βj−1∑

l=0

2−βj(q/2−δ)

∫

R
|hj(ξ − n(γj + l))|qdξ

+C

∞∑

j=1

βj−1∑

l=0

2−βj(q/2−δ)

∫

R
|hj(−ξ − n(γj + l))|qdξ

≤ C + C
∑

j≥1

2jβ(δ−q/2+1)−αj < ∞, (2.28)

where C is a positive constant which could be different at different occurrences.
Hence the lemma is established. ¤
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