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Abstract

In this note, we show that any localized average sampler could not be a stable sampler for L2, but that there is a
localized determining sampler for L2.

Résumé

Dans cet article, nous démontrons que tout échantillonneur moyen localisé ne peut pas être un échantillonneur
stable pour L2, mais quun échantillonneur déterminant localisé existe pour L2.

1. Introduction

A goal at the heart of digital signal processing is to reconstruct continuous time signals from their
available samples. The usual assumption in such problems is that the samples are ideal. For instance, in
the classical band-limited model, it is well known from the Whittaker-Shannon sampling theorem that any
continuous time signal f(t) ∈ L2 bandlimited to [−Ω,Ω] is uniquely determined and can be reconstructed
in a stable way by a set of uniformly-spaced samples f(kT ), k ∈ Z, taken T seconds apart with T ≤ π/Ω:

f(t) =
∑
k∈Z

f(kT )
sinπ(t/T − k)
πt/T − k
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([2,8]). Here L2 is the Hilbert space of all square-integrable functions on the real line with the standard
L2 inner product 〈·, ·〉 and norm ‖ · ‖2.

Unfortunately, in practice, ideal sampling is impossible to implement. A more accurate model considers
that the samples are obtained by a set of values of inner product between the continuous-time signal and
the sampling functionals. More precisely, given a Hilbert space H with inner product 〈·, ·〉H of time signals,
the sample yγ at the location γ ∈ Γ is obtained by taking the inner product between a time signal f
and the sampling functional ψγ at the location γ, i.e., yγ = 〈f, ψγ〉H . We call Ψ = {ψγ}γ∈Γ the average
sampler. In the above setup, the sampling procedure on H via the average sampler Ψ can be interpreted
as a linear operator

S : H 3 f 7−→ {〈f, ψγ〉H}γ∈Γ ∈ `2(Γ), (1.1)

and the reconstruction procedure as finding the left inverse of the linear operator S. Here `2(Γ) is the
space of all square-summable sequences on Γ with norm ‖ · ‖`2(Γ) (or ‖ · ‖2 for short). We say that an
average sampler Ψ on H is a determining sampler if the sampling operator S in (1.1) is one-to-one, i.e.,
the only time signal f ∈ H, that satisfies 〈f, ψγ〉H = 0 for all γ ∈ Γ, is the zero signal ([3]). Similarly we
say that an average sampler Ψ on H is a stable sampler if the sampling operator S in (1.1) has bounded
left-inverse, i.e., there exist positive constants A and B such that A〈f, f〉 ≤

∑
γ∈Γ |〈f, ψγ〉H |2 ≤ B〈f, f〉

for all f ∈ H ([3]).
Determining and stable samplers have been studied for signals in shift-invariant spaces ([1,3,9]) and for

signals with finite rate of innovation ([4,6,7]). In this paper, we consider the average sampling problem
in the space L2, particularly, the existence of localized determining samplers for L2 (Theorem 1) and
the nonexistence of localized stable samplers for L2 (Theorem 5). Here we say that an average sampler
Ψ = {ψγ}γ∈Γ is localized if Γ is a relatively-separated subset of R, i.e.,

sup
x∈R

∑
γ∈Γ

χγ+[0,1)(x) <∞,

and if there exists a function g in the Wiener amalgam space W := {f |
∑
k∈Z supx∈k+[0,1) |f(x)| < ∞}

such that
|ψγ(x)| ≤ g(x− γ) for all x ∈ R and γ ∈ Γ,

where χE is the characteristic function on a set E. The reasons for considering the localized sampler
Ψ = {ψγ}γ∈Γ are two-fold: 1) each index γ ∈ Γ means that there is an acquisition device located at that
position, and hence it is reasonable to assume that there are finitely many such devices in any unit interval
and the distribution of those devices is almost time-invariant, which in turn implies that the index set Γ is
relatively-separated; 2) the sampling functional ψγ reflects the characteristic of the acquisition device at
the location γ, and hence it should be essentially supported in a neighborhood of the sampling location γ,
while the dominance of the sampling functional ψγ by the γ-shift of a function h in the Wiener amalgam
space is a reasonable description of such a phenomenon ([6]).

2. Determining sampler for L2

Theorem 1 There is a localized determining sampler for L2.

To prove Theorem 1, we will use the following modification of a result in [5, page 2103].
Lemma 2 Let 0 < D < 1 and Γ be the set of all integers contained in ∪∞n=1[an, bn), where the sequences
{an}∞n=1 and {bn}∞n=1 satisfy the conditions 1 ≤ an < bn < an+1 < bn+1 for all n ≥ 1, and limn→∞ an =

2



limn→∞ bn = limn→∞ bn − an = +∞, limn→∞
bn

an
= 1 and

∑∞
n=1

(
bn−an

an

)2

= +∞. If F is an analytic
function of exponential type πD, bounded on the real line, and F (γ) = 0 for all γ ∈ Γ, then F is the zero
function.

Now we start to prove Theorem 1.

PROOF. Define Γl, 0 ≤ l ∈ Z, by Γ0 = ∪∞n=1

(
[(1−n−1/2)10n, (1+n−1/2)10n]∩Z

)
, and Γl = ∪∞n=nl

(
[(1+

(2− 2−l+1)n−1/2)10n + 1, (1 + (2− 2−l)n−1/2)10n] ∩ Z
)
, where the integers nl, l ≥ 1, are so chosen that

n−1/210n ≥ 2l+2 for all n ≥ nl. Define Γ = ∪∞l=0Γl. Then Γ is a set of integers and hence a relatively-
separated subset of R.

Let h be a C∞ function supported in [−π/2, π/2] and satisfy

∞∑
l=0

h(x− 2lπ/3) +
∞∑
l=0

h(x+ (2l + 1)π/3) 6= 0 for all x ∈ R. (2.1)

Define the Fourier transform f̂ of an integrable function f by f̂(ξ) =
∫
R
f(x)e−ixξdx, and define Ψ =

{φγ(· − γ)| γ ∈ Γ} with the help of the Fourier transform by

φ̂γ(ξ) =

 h(ξ − lπ/3) if γ ∈ Γl and l ∈ 2Z,

h(ξ + lπ/3) if γ ∈ Γl and l ∈ 2Z + 1.
(2.2)

Here the average sampler Ψ is well-defined because Γl ∩ Γl′ = ∅ for all nonnegative integers l 6= l′. From
the above definition of the average sampler Ψ, we have that |φγ(x)| ≤ |ĥ(x)| for all γ ∈ Γ. This shows
that φγ , γ ∈ Γ, are uniformly dominated by a function in the Wiener amalgam space, and hence Ψ in
(2.2) is a localized sampler.

Now we prove that Ψ in (2.2) is a determining sampler. Take any function f ∈ L2 such that 〈f, φγ(· −
γ)〉 = 0 for all γ ∈ Γ. Define Fl, 0 ≤ l ≤ Z, by

F̂l(ξ) =

 f̂(ξ + lπ/3)h(ξ) if l ∈ 2Z,

f̂(ξ − lπ/3)h(ξ) if l ∈ 2Z + 1.
(2.3)

Then for any 0 ≤ l ∈ Z, F̂l is supported in [−π/2, π/2] and belongs to L1 ∩ L2, and

|Fl(γ)| = 1
2π

∣∣∣ ∞∫
−∞

f̂(ξ)φ̂γ(ξ)eiγξdξ
∣∣∣ = |〈f, φγ(· − γ)〉| = 0 for all γ ∈ Γl.

Then it follows from Lemma 2 that Fl ≡ 0 for all 0 ≤ l ∈ Z. This together with (2.1) and (2.3) yields
f ≡ 0. Therefore Ψ in (2.2) is a localized determining sampler for L2.

Remark 3 The functions φγ , γ ∈ Γ, in the average sampler Ψ constructed in the proof of Theorem 1
are dominated by a function in the Wiener amalgam space, but their derivatives are not. Define Ψ̃ =
{φ̃γ(· − γ)| γ ∈ Γ} by ̂̃

φγ(ξ) = h(ξ) + e−lφ̂γ(ξ) if γ ∈ Γl and l ≥ 0.

Then φ̃γ , γ ∈ Γ, are in a bounded set of the Schwartz class S. Moreover, one may verify that Ψ̃ is a
determining sampler for L2 too.
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Remark 4 One may easily verify that for any relatively-separated subset Γ of R, Ψ = {φγ(·−γ)| γ ∈ Γ}
is not a determining sampler for L2 if all the functions φγ , γ ∈ Γ, are supported in a compact set K, or if
all φ̂γ , γ ∈ Γ, are supported in a compact set Ω. We do not know whether there is a determining sampler
Ψ = {φγ(· − γ)| γ ∈ Γ} such that ‖φγ‖2 = 1 and |φγ(x)| ≤ C exp(−ε|x|) for some positive constants C, ε
and a relatively-separated subset Γ of R.

3. Stable sampler for L2

Theorem 5 Any localized average sampler is not a stable sampler for L2.

PROOF. Take a localized average sampler Ψ = {φγ(· − γ)| γ ∈ Γ}, where Γ is a relatively-separated
subset of R. Assume that h is a function in the Wiener amalgam space W that dominates all φγ , γ ∈ Γ,
i.e., |φγ(x)| ≤ h(x) for all x ∈ R and γ ∈ Γ.

For any R > 1, let gR be a function in L2 such that ‖gR‖2 = 1, gR is supported in [0, 1], and
〈gR, φγ(· − γ)〉 = 0 for all γ ∈ (−R,R) ∩ Γ. The existence of such a function gR follows from the facts
that L2([0, 1]) is an infinite-dimensional space and that (−R,R) ∩ Γ is a finite set. Then

∑
γ∈Γ

|〈gR, φγ(· − γ)〉|2 ≤
∑

γ∈Γ\(−R,R)

( 1∫
0

|gR(x)|2|φγ(x− γ)|dx
)
×

1∫
0

|φγ(x− γ)|dx

≤C‖h‖1
( ∑
γ∈Γ\(−R,R)

sup
x∈[0,1]

|h(x− γ)|
)
→ 0 as R→∞, (3.4)

where C is a positive constant independent of R. This proves that Ψ is not a stable sampler for L2.
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