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1 Introduction

Let Lq := Lq(Rd), 1 ≤ q < ∞, be the space of all q-integrable functions on Rd with norm denoted

by ∥·∥q. Define the Fourier transform f̂ of an integrable function f on Rd by f̂(ξ) =
∫
Rd f(x)e

−ixξdx
and understand the Fourier transform of a tempered distribution as usual. The Bessel potential
operator Jγ of positive order γ,

Ĵγf(ξ) := (1 + |ξ|2)−γ/2f̂(ξ), f ∈ L2, (1.1)

is well-studied in Harmonic Analysis [5,12]. The Bessel potential Jγ , 0 < γ < d, is a singular
integral operator,

Jγf(x) =

∫
Rd

Gγ(x− y)f(y)dy, f ∈ L2, (1.2)

whose convolution kernel Gγ has singularity of order d−γ near the origin and fast decay at infinity,

sup
x∈Rd

|x|d−γ(1 + |x|)N |Gγ(x)| < ∞ for all N ≥ 1. (1.3)

Denote the identity operator by I. The spectrum σ2(Jγ) of the Bessel potential Jγ on the Hilbert
space L2 is the unit interval [0, 1] by (1.1), and for any complex number λ not in the spectrum
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σ2(Jγ), the resolvent operator (λI − Jγ)
−1 can be written as λ−1I − T for some singular integral

operator T whose convolution kernel has the same singularity near the origin and decay at infinity
as the kernel Gγ of the Bessel potential Jγ has. In this paper, we consider a non-commutative
extension of the above result about the resolvent operator (λI − Jγ)

−1 associated with the Bessel
potential Jγ .

For a kernel function K on Rd × Rd, let rK be the minimal radially decreasing function that
dominates the off-diagonal decay of the kernel K,

rK(z) := sup
|x−y|≥|z|

|K(x, y)|, (1.4)

and define its modified modulus of continuity by

ωδ(K)(x, y) :=

{
sup|x′|,|y′|≤δ |K(x+ x′, y + y′)−K(x, y)| if |x− y| ≥ 4δ,

0 otherwise.
(1.5)

Denote by χE the characteristic function on a set E, by B(ϵ) the ball of radius ϵ > 0 centered at
the origin, and by pβ(x, y) = (1 + |x− y|)β the polynomial weight of order β > 0. Operators to be
discussed in this paper are of the form λI − T , where λ ∈ C and T are integral operators

Tf(x) :=

∫
Rd

KT (x, y)f(y)dy (1.6)

with kernels KT satisfying

sup
ϵ>0

(1 + ϵ−α)
(
∥χB(ϵ)rKT pβ

∥1 + sup
0<δ≤1

δ−α∥χB(ϵ)rωδ(KT )pβ
∥1
)
< ∞ (1.7)

for some α ∈ (0, 1] and β > 0. The requirement (1.7) for the kernelKT is equivalent to the existence
of a positive constant C such that∫

B(ϵ)

rKT pβ
(z)dz ≤ Cϵα,

∫
Rd

rKT pβ
(z)dz ≤ C,

and ∫
B(ϵ)

ωδ(KT )pβ
(z)dz ≤ Cϵαδα,

∫
Rd

rωδ(KT )pβ
(z)dz ≤ Cδα

for all 0 < ϵ, δ ≤ 1. So measured in L1-norm, kernels satisfying (1.7) could be thought to have
singularity of order α at the origin, decay of order β at infinity, and Hölder continuity of order
α. We remark that the kernel Gγ , 0 < γ < d, of the Bessel potential Jγ satisfies (1.7) with
0 < α < min(1, γ/2) and β > 0.

Let ID1,pβ ,α contain all operators of the form λI−T , where λ ∈ C and T are integral operators
whose kernels satisfy (1.7). A subalgebra A of another Banach algebra B is said to be inverse-
closed if A ∈ A and A has an inverse A−1 in B, then A−1 ∈ A [6,9,13]. In this paper, we show
that ID1,pβ ,α is an inverse-closed Banach subalgebra of B(L2), the Banach algebra of all bounded
operators on L2, see Theorem 1 for general results. In other words, if A = λI−T for some nonzero
complex number λ and integral operator T with kernel satisfying (1.7), and if A has bounded
inverse on L2, then A−1 = λ−1I − T̃ for some integral operator T̃ whose kernel satisfies (1.7) too.

The inverse-closed subalgebra was first studied for periodic functions with absolutely convergent
Fourier series [19]. The inverse-closed property (Wiener’s lemma) has been established for various
infinite matrices and integral (pseudo-differential) operators, and it has numerous applications in
numerical analysis, time-frequency analysis, and sampling theory. We refer the reader to [2,4,6–9,
13–16,18] and references therein for extensive literature on the subject.

In this paper, the capital letter C denotes an absolute constant which may be different at each
occurrence.
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2 Main theorem

In this section, we extend the inverse-closedness of ID1,pβ ,α mentioned in the introduction to more
general class of operators on weighted function spaces, see Theorem 1.

A positive continuous function u on Rd ×Rd is said to be a weight if it is symmetric, diagonal-
normalized and slow-varying,

u(x, y) = u(y, x) for all x, y ∈ Rd, (2.1)

u(x, y) ≥ 1 and u(x, x) = 1 for all x, y ∈ Rd, (2.2)

and

Cu := sup
x,y∈Rd

sup
|x′|,|y′|≤1

u(x+ x′, y + y′)

u(x, y)
< ∞. (2.3)

A weight u on Rd×Rd is said to be p-radially-submultiplicative, 1 ≤ p ≤ ∞, if there exists another
weight v on Rd × Rd such that

u(x, y) ≤ u(x, z)v(z, y) + v(x, z)u(z, y) for all x, y, z ∈ Rd (2.4)

and
∥rv/u∥p/(p−1) < ∞. (2.5)

We call the weight v satisfying (2.4) and (2.5) a companion weight of the p-radially-submultiplicative
weight u, c.f. [13,15]. The polynomial weights pβ(x, y) = (1 + |x − y|)β with β > d(p − 1)/p and
(sub)exponential weights eD,δ(x, y) = exp(D|x − y|δ) with D > 0 and δ ∈ (0, 1) are p-radially-
submultiplicative.

For 1 ≤ q < ∞, a positive locally integrable function w on Rd is said to be a Muckenhoupt
Aq-weight if

sup
Q

( 1

|Q|

∫
Q

w(x)dx
)( 1

|Q|

∫
Q

w(x)−1/(q−1)dx
)q−1

< ∞

when 1 < q < ∞, and if

sup
Q

( 1

|Q|

∫
Q

w(y)dy
)(

sup
x∈Q

1

w(x)

)
< ∞

when q = 1, where the supremum is taken on all cubes Q in Rd [5]. Denote by Lq
w := Lq

w(Rd), the
space of all measurable functions f on Rd with finite norm ∥f∥q,w := (

∫
Rd |f(x)|qw(x)dx)1/q < ∞,

and let B(Lq
w) be the Banach algebra of all bounded linear operators on Lq

w. We remark that for
any 1 ≤ q < ∞ and Muckenhoupt Aq-weight w, the Bessel potential Jγ is a bounded operator on
Lq
w and hence Jγ ∈ B(Lq

w) by (1.3).
For 1 ≤ p < ∞, 0 < α ≤ 1, and a p-radially-submultiplicative weight u on Rd × Rd, let Dp,u,α

contain all integral operators Tf(x) :=
∫
Rd KT (x, y)f(y)dy with finite norm

∥T∥Dp,u,α := sup
ϵ>0

(1 + ϵ−α)
(
∥rKTuχB(ϵ)∥p + sup

0<δ≤1
δ−α∥rωδ(KT )uχB(ϵ)∥p

)
< ∞. (2.6)

c.f. (1.7) with p = 1 and u = pβ . The family Dp,u,α of integral operators just defined above is a
Banach subalgebra of B(Lq

w) for all 1 ≤ q < ∞ and Muckenhoupt Aq-weights w, see Propositions
1 and 2.

For 1 ≤ p < ∞, 0 < α ≤ 1, and a p-radially-submultiplicative weight u on Rd × Rd, let

IDp,u,α :=
{
λI + T : λ ∈ C and T ∈ Dp,u,α

}
(2.7)

with
∥λI + T∥IDp,u,α := |λ|+ ∥T∥Dp,u,α . (2.8)

Then IDp,u,α is the unital Banach algebra containing Dp,u,α. Furthermore, we show that it is an
inverse-closed Banach subalgebra of B(Lq

w) for any 1 ≤ q < ∞ and Muckenhoupt Aq-weight w.
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Theorem 1 Let 1 ≤ p < ∞, 0 < α ≤ 1, and let u be a p-radially-submultiplicative weight with
companion weight v. Set vτ (x, y) = v(x, y)χB(τ)(x− y) for τ > 0. If there exist positive constants
D ∈ (0,∞) and θ ∈ (0, 1) such that

inf
τ≥1

(
∥rvτ ∥1 + t∥(1− χB(τ))rv/u∥p/(p−1)

)
≤ Dtθ for all t ≥ 1, (2.9)

then IDp,u,α is an inverse-closed Banach subalgebra of B(Lq
w) for any 1 ≤ q < ∞ and Muckenhoupt

Aq-weight w.

The p-radially-submultiplicative polynomial weights pβ(x, y) = (1+|x−y|)β with β > d(p−1)/p
and 1 ≤ p < ∞ satisfy (2.9), since in this case there exists an absolute constant C such that

inf
τ≥1

(
∥rvτ ∥1 + t∥(1− χB(τ))rv/u∥p/(p−1)

)
≤ C inf

τ≥1
(τd + tτ−β+d(p−1)/p) = Ctd/(β+d/p), t ≥ 1.

The p-radially-submultiplicative (sub)exponential weights eD,δ(x, y) = exp(D|x− y|δ) with D > 0
and δ ∈ (0, 1) satisfy (2.9) too, because

inf
τ≥1

(
∥rvτ ∥1 + t∥(1− χB(τ))rv/u∥p/(p−1)

)
≤ C inf

τ≥1

(
τd exp(D(2δ − 1)τ δ) + t

(∫ ∞

τ

exp(D(2δ − 2)p/(p− 1)sδ)sd−1ds
)(p−1)/p)

≤ C inf
τ≥1

(
τd exp(D(2δ − 1)τ δ) + t exp(D(2δ − 2)τ δ)τd

)
≤ Ct2

δ−1(ln t)d/δ, t ≥ 1,

where C is an absolute constant. Then we conclude from Theorem 1 that for every β > 0, ID1,pβ ,α

is an inverse-closed Banach subalgebra of B(Lq
w) for any 1 ≤ q < ∞ and Muckenhoupt Aq-weight

w, which is highlighted in the introduction.

Denote by σq,w(T ) the spectrum of a bounded operator T on Lq
w. By Theorem 1, the spectrum

of an operator S ∈ IDp,u,α on Lq
w is independent on 1 ≤ q < ∞ and Muckenhoupt Aq-weights w,

c.f. [3].

Corollary 1 Let p, u, α be as in Theorem 1, and let S ∈ IDp,u,α. Then

σq,w(S) = σq′,w′(S) (2.10)

for all 1 ≤ q, q′ < ∞, Muckenhoupt Aq-weights w and Muckenhoupt Aq′-weights w′.

Applying the above corollary to the Bessel potential Jγ gives that σq,w(Jγ) = [0, 1] for all
1 ≤ q < ∞ and Muckenhoupt Aq-weights w. The inclusion σq,w(Jγ) ⊂ [0, 1] follows directly from
the kernel estimate of the operator λ−1I − (λI − Jγ)

−1 for λ ̸∈ [0, 1], while the other inclusion
[0, 1] ⊂ σq,w(Jγ) for arbitrary 1 ≤ q < ∞ and Muckenhoupt Aq-weights w could be new to the
best of the authors’ knowledge.

3 Proofs

We start this section from some elementary properties for operators in IDp,u,α. We then show that
IDp,u,α is a Banach algebra in the second subsection, and establish a crucial paracompact estimate
for the fourth power of an operator in IDp,u,α in the third subsection. We devote the last subsection
to the proof of Theorem 1.
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3.1 Elementary properties for operators in IDp,u,α

In this subsection, we provide some elementary properties for operators in IDp,u,α.

Proposition 1 Let 1 ≤ p < ∞, 0 < α ≤ 1, and let u be a weight on Rd × Rd. Then the following
conclusions hold.

(i) ∥S∥IDp,u,α′ ≤ ∥S∥IDp,u,α for all S ∈ IDp,u,α and 0 < α′ ≤ α.
(ii) ∥S∥IDp̃,ũ,α ≤ C∥S∥IDp,u,α for all S ∈ IDp,u,α, provided that 1 ≤ p̃ ≤ p and ∥rũ/u∥pp̃/(p−p̃) < ∞.
(iii) An operator S in IDp,u,α and its adjoint S∗ have the same norm in IDp,u,α, i.e., ∥S∗∥IDp,u,α =

∥S∥IDp,u,α for all S ∈ IDp,u,α.
(iv) ∥Sf∥q,w ≤ C∥S∥IDp,u,α∥f∥q,w for all S ∈ IDp,u,α and f ∈ Lq

w, provided that 1 ≤ q < ∞, w is a
Muckenhoupt Aq-weight, and ∥ru−1∥p/(p−1) < ∞.

Proof The first three conclusions follow from the definition of IDp,u,α, while the last conclusion
holds because rKT is radially decreasing and integrable on Rd for any integral operator T ∈ Dp,u,α

with kernel KT [5].

3.2 Composition of two operators in IDp,u,α

In this subsection, we show that composition S1S2 of two operators S1, S2 in IDp,u,α still belongs
to IDp,u,α.

Proposition 2 Let 1 ≤ p < ∞, 0 < α ≤ 1, and let u be p-radially-submultiplicative. Then

∥S1S2∥IDp,u,α ≤ C∥S1∥IDp,u,α∥S2∥IDp,u,α for all S1, S2 ∈ IDp,u,α. (3.1)

Proof Take S1, S2 ∈ IDp,u,α. Write Si = λiI + Ti for some λi ∈ C and Ti ∈ Dp,u,α for i = 1, 2.
Then ∥Si∥IDp,u,α = |λi|+ ∥Ti∥Dp,u,α for i = 1, 2, and

∥S1S2∥IDp,u,α = |λ1λ2|+ ∥λ2T1 + λ1T2 + T1T2∥Dp,u,α

≤ |λ1||λ2|+ |λ1| ∥T2∥Dp,u,α + |λ2| ∥T1∥Dp,u,α + ∥T1T2∥Dp,u,α .

Therefore the proof of (3.1) reduces to showing

∥T1T2∥Dp,u,α ≤ C∥T1∥Dp,u,α∥T2∥Dp,u,α for all T1, T2 ∈ Dp,u,α. (3.2)

Let T := T1T2 be the composition of integral operators T1 and T2. Denote by K1,K2,K the
kernels of operators T1, T2 ∈ Dp,u,α and their composition T respectively. Observe that kernels
K,K1,K2 are related by

K(x, y) =

∫
Rd

K1(x, z)K2(z, y)dz. (3.3)

Let v be the companion weight of the p-radially-submultiplicative weight u. Then we have the
following pointwise estimate for rKu:

(rKu(z))
p ≤ sup

|z1−z2|≥|z|

(∫
Rd

|(K1u)(z1, z3)| |(K2u)(z3, z2)| (3.4)

×
(
(v/u)(z3, z2) + (v/u)(z1, z3)

)
dz3

)p

≤ sup
|z1−z2|≥|z|

(∫
Rd

|(K1u)(z1, z3)|p|(K2u)(z3, z2)|pdz3
)

×
(
∥(v/u)(·, z2)∥p/(p−1) + ∥(v/u)(z1, ·)∥p/(p−1)

)p
≤ C sup

|z1−z2|≥|z|

(∫
|z1−z3|≥|z1−z2|/2

+

∫
|z2−z3|≥|z1−z2|/2

)
|rK1u(z1 − z3)|p|rK2u(z3 − z2)|pdz3

≤ C∥rK2u∥pp(rK1u(z/2))
p + C∥rK1u∥pp(rK2u(z/2))

p,
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where the first inequality follows from (3.3) and the p-radially-submultiplicative property for the
weight u, the third inequality holds by the assumption rv/u ∈ Lp/(p−1), and the last inequality is
true by the radially decreasing property for radial functions rK1u and rK2u. Thus

∥χB(ϵ)rKu∥p ≤ C∥rK2u∥p∥χB(ϵ/2)rK1u∥p + C∥rK1u∥p∥χB(ϵ/2)rK2u∥p
≤ C∥T1∥Dp,u,α∥T2∥Dp,u,α min(1, ϵα) for all ϵ > 0. (3.5)

By (3.3), we have that

ωδ(K)(x, y) ≤ sup
|x′|,|y′|≤δ

∫
Rd

|K1(x+ x′, z)||K2(z, y + y′)−K2(z, y)|dz

+ sup
|x′|,|y′|≤δ

∫
Rd

|K1(x+ x′, z)−K1(x, z)||K2(z, y)|dz (3.6)

for all x, y ∈ Rd with |x−y| ≥ 4δ. Similar to the argument used to establish the first two inequalities
in (3.4), we obtain from (3.6) and the p-radially-submultiplicative property of the weight u that

(rωδ(K)u(z))
p ≤ C sup

|z1−z2|≥max(|z|,4δ),
|x′|,|y′|≤δ

∫
Rd

|(K1u)(z1 + x′, z3)|p

×|K2(z3, z2 + y′)−K2(z3, z2)|p(u(z3, z2))pdz3

+C sup
|z1−z2|≥max(|z|,4δ)

|x′|,|y′|≤δ

∫
Rd

|(K2u)(z3, z2)|p

×|K1(z1 + x′, z3)−K1(z1, z3)|p(u(z1, z3))pdz3
=: I1(z) + I2(z). (3.7)

Thus for |z| ≥ 4δ,

I1(z) ≤ C sup
|z1−z2|≥|z|
|x′|,|y′|≤δ

∫
Rd

(rK1u(z1 + x′ − z3))
p
(
(rωδ(K2)u(z3 − z2))

p
(
1− χB(4δ)(z3 − z2)

)
+(rK2u(z3 − z2 − y′))pχB(4δ)(z3 − z2) + (rK2u(z3 − z2))

pχB(4δ)(z3 − z2)
)
dz3(

by the definitions of ωδ(K2)u, rK2u, and rωδ(K2)u

)
≤ C sup

|z1−z2|≥|z|
|x′′|≤2δ

(∫
|z1−z3|≥2|z1−z2|/3

+

∫
|z2−z3|≥|z1−z2|/3

)
(rK1u(z1 + x′′ − z3))

p

×
(
(rωδ(K2)u(z3 − z2))

p + (rK2u(z3 − z2))
pχB(5δ)(z3 − z2)

)
dz3(

by changing variable and splitting Rd into two domains
)

≤ C∥rωδ(K2)u∥
p
p(rK1u(z/6))

p + C∥rK1u∥pp(rωδ(K2)u(z/3))
p

+C∥χB(5δ)rK2u∥pp(rK1u(z/6))
p + C(rK2u(z/3))

p

×
(

sup
|z1−z2|≥|z|,|x′′|≤2δ

∫
|z2−z3|≤5δ

(rK1u(z1 + x′′ − z3))
pdz3

)
(
because rK1u, rK2u and rωδ(K2)u are radially decreasing functions

)
≤ C∥T2∥pDp,u,α

δαp(rK1u(z/6))
p + C∥T1∥pDp,u,α

(rωδ(K2)u(z/6))
p

+C∥T1∥pDp,u,α
δαp(rK2u(z/6))

p, (3.8)

where the last inequality follows from the following estimate:∫
|z−z0|≤5δ

(rK1u(z))
pdz≤

∫
Ω(z0)

(rK1u(z))
pdz + (rK1u(z1))

p
(
|{z : |z − z0| ≤ 5δ}| − |Ω(z0)|

)
≤
∫
|z|≤5δ

(rK1u(z))
pdz for all z0 ∈ Rd, (3.9)
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where z1 ∈ Rd with |z1| = 5δ, Ω(z0) = {z : |z− z0| ≤ 5δ and |z| ≤ 5δ} and |Ω(z0)| is the Lebesgue
measure of the set Ω(z0). The inequalities in the above estimate hold due to the radially decreasing
property of the function rK1u. Applying similar argument used to establish (3.8), we obtain that

I2(z) ≤ C∥T1∥pDp,u,α
δαp(rK2u(z/6))

p + C∥T2∥pDp,u,α
(rωδ(K1)u(z/6))

p

+C∥T2∥pDp,u,α
δαp(rK1u(z/6))

p for all z ∈ Rd with |z| ≥ 4δ. (3.10)

Substituting (3.8) and (3.10) into (3.7) and then using the radially decreasing property of the
function rKiu, rωδ(Ki)u, i = 1, 2, we obtain the following pointwise estimate of rωδ(K)u for all z ∈ Rd:

rωδ(K)u(z) ≤ C∥T1∥Dp,u,αδ
αrK2u(z/6) + C∥T2∥Dp,u,αδ

αrK1u(z/6)

+C∥T2∥Dp,u,αrωδ(K1)u(z/6) + C∥T1∥Dp,u,αrωδ(K2)u(z/6). (3.11)

Integrating both sides of the above estimate (3.11) yields

∥χB(ϵ)rωδ(K)u∥p ≤ C∥T1∥Dp,u,α∥T2∥Dp,u,αδ
α min(1, ϵα) (3.12)

for all δ ∈ (0, 1) and ϵ ∈ (0,∞). Combining (3.5) and (3.12) proves (3.2), and hence the desired
conclusion (3.1).

3.3 Paracompact estimates for operators in IDp,u,α

By Proposition 2, the composition of four operators in IDp,u,α still lives in IDp,u,α. In this subsec-
tion, we establish a paracompact estimate for the fourth power of an operator in IDp,u,α.

Proposition 3 Let 1 ≤ p < ∞, 0 < α ≤ 1, and let u be a p-radially-submultiplicative weight on
Rd × Rd satisfying (2.9) for some θ ∈ (0, 1) and D ∈ (0,∞). Then

∥S4∥IDp,u,α ≤ C∥S∥4−θ̃
IDp,u,α

∥S∥θ̃B2 for all S ∈ IDp,u,α, (3.13)

where θ̃ = α(1−θ)
α+d(1−θ) .

For 1 ≤ p < ∞, 0 < α ≤ 1 and a weight u on Rd × Rd, let D0
p,u,α contain all integral operators

T with
∥T∥D0

p,u,α
:= sup

ϵ>0
(1 + ϵ−α)∥rKTuχB(ϵ)∥p < ∞, (3.14)

where KT is the kernel of the integral operator T . Comparing with integral operators in Dp,u,α

and D0
p,u,α, we see that their kernels have singularity of same order at the origin and decay of same

order at infinity. On the other hand, we also observe that modulus of kernels of integral operators
in Dp,u,α have certain singularity at the origin and decay at infinity, while there is no restriction
on modulus of kernels of integral operators in D0

p,u,α. Thus

Dp,u,α ⊂ D0
p,u,α. (3.15)

To prove Proposition 3, we need the following result about composition of three integral oper-
ators with the first and last operators belonging to Dp,u,α and the middle integral operator living
in D0

p,u,α, a superset of Dp,u,α by (3.15).

Lemma 1 Let 1 ≤ p < ∞, 0 < α ≤ 1, and u be p-radially-submultiplicative. Then

∥T1T2T3∥Dp,u,α ≤ C∥T1∥Dp,u,α∥T2∥D0
p,u,α

∥T3∥Dp,u,α (3.16)

for all T1, T3 ∈ Dp,u,α and T2 ∈ D0
p,u,α.
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Proof Take T1, T3 ∈ Dp,u,α and T2 ∈ D0
p,u,α. Denote kernels of integral operators T1, T2, T3, T1T2,

T2T3, T1T2T3 by K1, K2, K3, K12, K23 and K respectively. Then

K12(x, y) =

∫
Rd

K1(x, z)K2(z, y)dz, K23(x, y) =

∫
Rd

K2(x, z)K3(z, y)dz (3.17)

and

K(x, y) =

∫
Rd

∫
Rd

K1(x, z1)K2(z1, z2)K3(z2, y)dz1dz2

=

∫
Rd

K1(x, z)K23(z, y)dz =

∫
Rd

K12(x, z)K3(z, y)dz. (3.18)

By (3.4),

rK12u(z) ≤ C∥rK1u∥prK2u(z/2) + C∥rK2u∥prK1u(z/2). (3.19)

Applying (3.4) with kernels K1 and K2 replaced by K2 and K3 respectively, we obtain

rK23u(z) ≤ C∥rK2u∥prK3u(z/2) + C∥rK3u∥prK2u(z/2). (3.20)

Integrating both sides of (3.19) and (3.20) yields

∥rK12u∥p ≤ C∥rK1u∥p∥rK2u∥p and ∥rK23u∥p ≤ C∥rK2u∥p∥rK3u∥p. (3.21)

Applying (3.4) again with kernels K2 replaced by K23, and then using (3.18), (3.20) and (3.21),
we get the following pointwise estimate for rKu:

rKu(z) ≤ C∥rK1u∥prK23u(z/2) + C∥rK23u∥prK1u(z/2)

≤ C∥rK2u∥p∥rK3u∥prK1u(z/4) + C∥rK1u∥p∥rK3u∥prK2u(z/4)

+C∥rK1u∥p∥rK2u∥prK3u(z/4), z ∈ Rd. (3.22)

Therefore

∥χB(ϵ)rKu∥p ≤ C∥T1∥Dp,u,α∥T2∥D0
p,u,α

∥T3∥Dp,u,α min(1, ϵα) for all ϵ > 0. (3.23)

By (3.18),

ωδ(K)(x, y) ≤ sup
|x′|,|y′|≤δ

∣∣∣ ∫
Rd

K12(x+ x′, z)
(
K3(z, y + y′)−K3(z, y)

)
dz

∣∣∣
+ sup

|x′|≤δ

∣∣∣ ∫
Rd

(
K1(x+ x′, z)−K1(x, z)

)
K23(z, y)dz

∣∣∣
=: I1,δ(x, y) + I2,δ(x, y) (3.24)

for all x, y ∈ Rd with |x− y| ≥ 4δ. Then for z ∈ Rd with |z| ≥ 4δ,

sup
|z1−z2|≥|z|

I1,δ(z1, z2)u(z1, z2)

≤ C∥T3∥Dp,u,αδ
αrK12u(z/6) + C∥T1T2∥D0

p,u,α
rωδ(K3)u(z/6)

+C∥T1T2∥D0
p,u,α

δαrK3u(z/6)

≤ C∥T2∥D0
p,u,α

∥T3∥Dp,u,αδ
αrK1u(z/12) + C∥T1∥Dp,u,α∥T3∥Dp,u,αδ

αrK2u(z/12)

+C∥T1∥Dp,u,α∥T2∥D0
p,u,α

δαrK3u(z/12) + C∥T1∥Dp,u,α∥T2∥D0
p,u,α

rωδ(K3)u(z/12), (3.25)
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where the first inequality is obtained from (3.8) with T1 and T2 replaced by T1T2 and T3 respectively,
and the second inequality follows from (3.19). Similar to (3.25), we get

sup
|z1−z2|≥|z|

I2,δ(z1, z2)u(z1, z2)

≤ C∥T2∥D0
p,u,α

∥T3∥Dp,u,αδ
αrK1u(z/12) + C∥T1∥Dp,u,α∥T3∥Dp,u,αδ

αrK2u(z/12)

+C∥T1∥Dp,u,α∥T2∥D0
p,u,α

δαrK3u(z/12) + C∥T2∥D0
p,u,α

∥T3∥Dp,u,αrωδ(K1)u(z/12) (3.26)

for all z ∈ Rd with |z| ≥ 4δ. Combining (3.24), (3.25) and (3.26) yields the following pointwise
estimate for the radial function rωδ(K)u:

rωδ(K)u(z)≤C∥T2∥D0
p,u,α

∥T3∥Dp,u,αδ
αrK1u(z/12) + C∥T1∥Dp,u,α∥T3∥Dp,u,αδ

αrK2u(z/12)

+C∥T1∥Dp,u,α∥T2∥D0
p,u,α

δαrK3u(z/12) + C∥T2∥D0
p,u,α

∥T3∥Dp,u,αrωδ(K1)u(z/12)

+C∥T1∥Dp,u,α∥T2∥D0
p,u,α

rωδ(K3)u(z/12), z ∈ Rd. (3.27)

Integrating the above estimate for rωδ(K)u at both sides leads to

∥χB(ϵ)rωδ(K)u∥p ≤ C∥T1∥Dp,u,α∥T2∥D0
p,u,α

∥T3∥Dp,u,αδ
α min(1, ϵα) (3.28)

for all δ ∈ (0, 1) and ϵ ∈ (0,∞). The desired conclusion (3.16) then follows from (3.23) and (3.28).

To prove Proposition 3, we also need the following paracompact estimate for the composition
of two integral operators in Dp,u,α.

Lemma 2 Let 1 ≤ p < ∞, 0 < α ≤ 1, and let u be a p-radially-submultiplicative weight with
companion weight v satisfying (2.9) for some θ ∈ (0, 1) and D ∈ (0,∞). Then

∥T1T2∥D0
p,u,α

≤ C∥T1∥Dp,u,α∥T2∥Dp,u,α

(( ∥T1∥B2

∥T1∥Dp,u,α

)θ̃

+
( ∥T2∥B2

∥T2∥Dp,u,α

)θ̃)
(3.29)

for all T1, T2 ∈ Dp,u,α, where θ̃ = α(1−θ)
α+d(1−θ) .

Proof Without loss of generality, we assume that

∥T1∥B2 ≤ ∥T1∥Dp,u,α and ∥T2∥B2 ≤ ∥T2∥Dp,u,α (3.30)

as otherwise the conclusion (3.29) follows from Proposition 2 and the trivial inequality ∥T1T2∥D0
p,u,α

≤
∥T1T2∥Dp,u,α . Denote by K1,K2 and K̃ kernels of T1, T2 and T1T2 respectively. Then those three
kernels are related by

K̃(x, y) =

∫
Rd

K1(x, z)K2(z, y)dz.

This together with the p-radially-submultiplicative property of the weight u implies that

|(K̃u)(x, y)| ≤
∫
Rd

|(K1u)(x, z)||(K2v)(z, y)|dz +
∫
Rd

|(K1v)(x, z)||(K2u)(z, y)|dz, (3.31)

where v is the companion weight of u.

Let ϵ0 = (
∥T2∥B2

∥T2∥Dp,u,α
)

1−θ
α+d(1−θ) ∈ (0, 1], and τ ≥ 1 be so chosen that

∥rvτ ∥1 + (ϵ0)
−α/(1−θ)∥(1− χB(τ))rv/u∥p/(p−1) ≤ D(ϵ0)

−αθ/(1−θ), (3.32)

where vτ (x, y) = v(x, y)χB(τ)(x− y). The existence of such a positive number τ ≥ 1 follows from

(2.9). For x, y ∈ Rd with |x− y| ≥ 4ϵ0,

|K2(x, y)| ≤ ωϵ0(K2)(x, y) + ϵ−2d
0

∣∣∣ ∫
|x′|,|y′|≤ϵ0

K2(x+ x′, y + y′)dx′dy′
∣∣∣

≤ ωϵ0(K2)(x, y) + ϵ
−3d/2
0 ∥T2χB(ϵ0)(· − y)∥2 ≤ ωϵ0(K2)(x, y) + ϵ−d

0 ∥T2∥B2 (3.33)
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c.f. [14, Lemma 3.10]. Thus∫
Rd

|(K1u)(x, z)||(K2v)(z, y)|dz

≤
(∫

|z−y|<4ϵ0

+

∫
|z−y|≥τ

)
|(K1u)(x, z)||(K2v)(z, y)|dz

+

∫
4ϵ0≤|z−y|≤τ

|(K1u)(x, z)|ωϵ0(K2)(z, y)v(z, y)dz

+ϵ−d
0 ∥T2∥B2

∫
4ϵ0≤|z−y|≤τ

|(K1u)(x, z)|v(z, y)dz

=: I1(x, y) + I2,τ (x, y) + I3,τ (x, y) + I4,τ (x, y). (3.34)

Notice that

sup
|z1−z2|≥|z|

I1(z1, z2) ≤ C sup
|z1−z2|≥|z|

(( ∫
|z1−z3|≥|z1−z2|/2

+

∫
|z2−z3|≥|z1−z2|/2

)
|(K1u)(z1, z3)|p|(K2u)(z3, z2)|pχB(4ϵ0)(z3 − z2)dz3

)1/p

≤ CrK1u(z/2)∥χB(4ϵ0)rK2u∥p + CrK2u(z/2)

× sup
|z1−z2|≥|z|

(∫
|z3−z2|≤4ϵ0

|rK1u(z1 − z3)|pdz3
)1/p

≤ C(ϵ0)
α
(
∥T2∥Dp,u,αrK1u(z/2) + ∥T1∥Dp,u,αrK2u(z/2)

)
, (3.35)

where the last inequality follows from (3.9). Similarly,

sup
|z1−z2|≥|z|

I2,τ (z1, z2)

≤ C∥(1− χB(τ))rv/u∥p/(p−1)

(
∥T2∥Dp,u,αrK1u(z/2) + ∥T1∥Dp,u,αrK2u(z/2)

)
≤ C(ϵ0)

α
(
∥T2∥Dp,u,αrK1u(z/2) + ∥T1∥Dp,u,αrK2u(z/2)

)
(3.36)

by (3.32) and the radially decreasing property for functions rKu and rωδ(K)u,

sup
|z1−z2|≥|z|

I3,τ (z1, z2) ≤ C sup
|z1−z2|≥|z|

(∫
Rd

|(K1u)(z1, z3)|p|(ωϵ0(K2)u)(z3, z2)|pdz3
)1/p

≤ C∥T1∥Dp,u,αrωϵ0 (K2)u(z/2) + C(ϵ0)
α∥T2∥Dp,u,αrK1u(z/2), (3.37)

and

sup
|z1−z2|≥|z|

I4,τ (z1, z2) ≤ ϵ−d
0 ∥T2∥B2 sup

|z1−z2|≥|z|

(( ∫
|z1−z3|≥|z|/2

+

∫
|z1−z3|≤|z|/2

)
|(K1u)(z1, z3)|vτ (z3, z2)dz3

)
≤ Cϵ−d

0 ∥T2∥B2∥rvτ ∥1 rK1u(z/2) + Cϵ−d
0 ∥T2∥B2∥χB(|z|/2)rK1u∥prvτ (z/2)

≤ C(ϵ0)
α∥T2∥Dp,u,α

rK1u(z/2)

+C(ϵ0)
α/(1−θ)∥T1∥Dp,u,α∥T2∥Dp,u,α min(1, |z|α)rvτ (z/2). (3.38)

Combining (3.34)–(3.38) leads to the pointwise estimate for the first term on the right hand side
of the inequality (3.31):

sup
|z1−z2|≥|z|

∫
Rd

|(K1u)(z1, z2)||(K2v)(z3, z2)|dz3

≤ C∥T1∥Dp,u,αrωϵ0 (K2)u(z/2) + C(ϵ0)
α(∥T2∥Dp,u,αrK1u(z/2) + ∥T1∥Dp,u,αrK2u(z/2)

)
+C(ϵ0)

α/(1−θ)∥T1∥Dp,u,α∥T2∥Dp,u,α min(1, |z|α)rvτ (z/2). (3.39)
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Observe that for τ ≥ 1 and 1 ≤ p < ∞,

∥rvτ ∥p ≤ C
( ∑

k∈Zd

(
sup

|m−n|≥|k|
m,n∈Zd

rvτ (m,n)
)p)1/p

≤ C
∑
k∈Zd

(
sup

|m−n|≥|k|
m,n∈Zd

rvτ (m,n)
)
≤ C∥rvτ ∥1

by the slow-varying property (2.3) for the companion weight v. This together with (3.32) and (3.39)
proves that ∥∥( sup

|z1−z2|≥|·|

∫
Rd

|(K1u)(z1, z3)||(K2v)(z3, z2)|dz3
)
χB(ϵ)

∥∥
p

≤ C
(
(ϵ0)

α + (ϵ0)
α/(1−θ)∥rvτ ∥p

)
∥T1∥Dp,u,α∥T2∥Dp,u,α min(1, ϵα)

≤ C∥T1∥Dp,u,α∥T2∥1−θ̃
Dp,u,α

∥T2∥θ̃B2 min(1, ϵα). (3.40)

Let ϵ̃0 = (
∥T1∥B2

∥T1∥Dp,u,α
)

1−θ
α+d(1−θ) ∈ (0, 1], and τ̃ ≥ 1 be so chosen that

∥rvτ̃ ∥1 + (ϵ̃0)
−α/(1−θ)∥(1− χB(τ̃))rv/u∥p/(p−1) ≤ D(ϵ̃0)

−αθ/(1−θ).

Applying similar argument to establish (3.40), we have that∥∥( sup
|z1−z2|≥|·|

∫
Rd

|(K1v)(z1, z3)||(K2u)(z3, z2)|dz3
)
χB(ϵ)

∥∥
p

≤ C∥T2∥Dp,u,α∥T1∥1−θ̃
Dp,u,α

∥T1∥θ̃B2 min(1, ϵα). (3.41)

Therefore the desired conclusion (3.29) follows from (3.31), (3.40) and (3.41).

Lemma 3 Let 1 ≤ p < ∞, 0 ≤ α ≤ 1, and u be a p-radially-submultiplicative weight on Rd × Rd.
Take S = λI + T ∈ IDp,u,α for some λ ∈ C and T ∈ Dp,u,α. Then

|λ| ≤ ∥S∥B(Lq
w) (3.42)

for all 1 ≤ q < ∞ and Muckenhoupt Aq-weights w.

Proof We mimic the argument used in [14]. Denote the kernel of the operator T by K. Let ϕ be a
nonzero smooth function supported on [−1/2, 1/2]d and define ϕz(x) = ϕ(x)eizx, z ∈ Rd. Then for
1 = (1, 1, . . . , 1) ∈ Rd,

∥ϕt1∥q,w = ∥ϕ∥q,w, t ∈ R, (3.43)

and
lim

t→+∞
∥Tϕt1∥q,w = 0 (3.44)

because Tϕt1 is dominated by g =
∫
Rd |K(·, y)||ϕ(y)|dy, which belongs to Lq

w by Proposition 1, and

limt→+∞ Tϕt1(x) = 0 for almost all x ∈ Rd, which follows from

|Tϕt1(x)| ≤
∫
Rd

|rK(x− y)||ϕ(y + (dt)−1π1)− ϕ(y)|dy

+

∫
|x−y|≤4/t

(|K(x, y + (dt)−1π1)|+ |K(x, y)|)|ϕ(y + (dt)−1π1)|dy

+

∫
|x−y|≥4/t

ωt−1(K)(x, y)|ϕ(y + (dt)−1π1)|dy

→ 0 as t → +∞ for almost all x ∈ Rd.
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Combining (3.43) and (3.44) leads to

|λ|∥ϕ∥q,w = lim
t→∞

∥Sϕt1∥q,w ≤ ∥S∥B(Lq
w) lim

t→∞
∥ϕt1∥q,w = ∥S∥B(Lq

w)∥ϕ∥q,w.

Hence (3.42) is proved.

We finish this subsection with the proof of Proposition 3.

Proof (Proof of Proposition 3) Take S ∈ IDp,u,α. Write S = λI+T for some λ ∈ C and T ∈ Dp,u,α.
Then

∥S∥B2 ≤ C∥S∥IDp,u,α (3.45)

by Proposition 1, and
|λ| ≤ ∥S∥B2 (3.46)

by (3.42) in Lemma 3. Therefore

∥S4∥IDp,u,α ≤ |λ|4 + 4|λ|3∥T∥Dp,u,α + 6|λ|2∥T 2∥Dp,u,α + 4|λ|∥T 3∥Dp,u,α + ∥T 4∥Dp,u,α

≤ C∥S∥4B2 + C∥S∥3B2∥T∥Dp,u,α + C∥S∥2B2∥T∥2Dp,u,α

+C∥S∥B2∥T∥3Dp,u,α
+ C∥T∥2Dp,u,α

∥T 2∥D0
p,u,α

≤ C∥S∥B2∥S∥3IDp,u,α
+ C∥S∥4−θ̃

IDp,u,α
∥S − λI∥θ̃B2 ≤ C∥S∥θ̃B2∥S∥4−θ̃

IDp,u,α
, (3.47)

where the second inequality follows from (3.46) and Lemma 1, the third inequality holds by (3.45)
and Lemma 2, and the last inequality is true by (3.45) and (3.46). This proves (3.13) and hence
completes the proof.

3.4 Proof of Theorem 1

An operator T ∈ B(Lq
w) is said to have Lq

w-stability if there exists a positive constant A such that

A∥f∥q,w ≤ ∥Tf∥q,w for all f ∈ Lq
w

[1,10,11,17]. To prove Theorem 1, we recall a result in [10] on equivalence among Lq
w-stability of

an operator in Dp,u,α for different exponents 1 ≤ q < ∞ and Muckenhoupt Aq-weights w.

Lemma 4 ([10]) Let 0 < α ≤ 1, λ ∈ C, and let T be an integral operator with its kernel K
satisfying

∥rK∥1 + sup
0<δ≤1

δ−α∥rωδ(K)∥1 + sup
0<δ≤1

δ−α∥rKχ|·|≤δ∥1 < ∞. (3.48)

If the operator λI − T has stability on Lq
w for some 1 ≤ q < ∞ and Muckenhoupt Aq-weight w,

then it has stability on Lq′

w′ for all 1 ≤ q′ < ∞ and Muckenhoupt Aq′-weights w′.

We have all ingredients to prove Theorem 1.

Proof (Proof of Theorem 1) Let 1 ≤ q < ∞, w be a Muckenhoupt Aq-weight, and let S ∈ IDp,u,α

have bounded inverse S̃ ∈ B(Lq
w). Then

∥S̃f∥q,w ≤ ∥S̃∥B(Lq
w)∥f∥q,w (3.49)

and
SS̃f = S̃Sf = f for all f ∈ Lq

w (3.50)

by the definition of the bounded operator S̃ on Lq
w, and

∥Sf∥q,w ≤ ∥S∥B(Lq
w)∥f∥q,w ≤ C∥S∥IDp,u,α∥f∥q,w for all f ∈ Lq

w (3.51)
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by Proposition 1. From (3.49)–(3.51) it follows that S has Lq
w-stability,

∥f∥q,w = ∥S̃Sf∥q,w ≤ ∥S̃∥B(Lq
w)∥Sf∥q,w for all f ∈ Lq

w.

Observe that the kernel of an integral operator in Dp,u,α satisfies (3.48) when the weight u has
the p-radially-submultiplicative property. Therefore the operator S ∈ IDp,u,α has L2-stability by
Lemma 4. So there are positive constants A and B such that

A∥f∥22 ≤ ⟨S∗Sf, f⟩ ≤ B∥f∥22 for all f ∈ L2 (3.52)

by the L2-stability and Proposition 1. Set R = 2
A+BS∗S − I. Then R belongs to IDp,u,α by

Propositions 1 and 2, and

∥R∥B2 ≤ B −A

B +A
< 1 (3.53)

by (3.52). Moreover, there exists an absolute constant C1 by Propositions 2 and 3 such that

∥Rn+1∥IDp,u,α ≤ C1∥R∥IDp,u,α∥Rn∥IDp,u,α (3.54)

and
∥R4n∥IDp,u,α ≤ C1∥Rn∥4−θ̃

IDp,u,α
∥Rn∥θ̃B2 ≤ C1∥Rn∥4−θ̃

IDp,u,α
(∥R∥B2)nθ̃ (3.55)

for all n ≥ 1. Write n =
∑k

j=0 ϵj4
j with ϵj ∈ {0, 1, 2, 3}, 0 ≤ j ≤ k, and k ≥ 0 being so chosen that

ϵk ̸= 0. Applying (3.54) and (3.55) iteratively we obtain that

∥Rn∥IDp,u,α ≤ (C1∥R∥IDp,u,α)
ϵ0∥Rn−ϵ0∥IDp,u,α

≤ (C1∥R∥IDp,u,α)
ϵ0(∥R∥B2)(n−ϵ0)θ̃/4(∥R(n−ϵ0)/4∥IDp,u,α)

4−θ̃

≤ · · ·
≤ (C1∥R∥IDp,u,α)

∑k
j=0 ϵj(4−θ̃)j (∥R∥B2)

∑k
i=1

∑k
j=i ϵj4

j−i(4−θ̃)i−1θ̃

≤ (∥R∥B2)n
(C1∥R∥IDp,u,α

∥R∥B2

)(4−θ̃)nlog4(4−θ̃)

. (3.56)

Combining (3.53) and (3.56) proves the exponential decay property for the operator norm of
Rn ∈ IDp,u,α, i.e., ∥Rn∥IDp,u,α ≤ Crn for some r ∈ (0, 1). This implies that

∞∑
n=0

(−1)nRn ∈ IDp,u,α. (3.57)

Set F := 2
A+B

(∑∞
n=0(−1)nRn

)
S∗. Then

FS =
( ∞∑

n=0

(−1)nRn
)
(I +R) = I, (3.58)

and
F ∈ IDp,u,α (3.59)

(and it is a bounded operator on Lq
w) by (3.57) and Propositions 1 and 2. This together with (3.50)

and (3.58) implies that

(S̃ − F )g = (S̃ − F )SS̃g = (S̃S − FS)S̃g = S̃g − S̃g = 0 for all g ∈ Lq
w. (3.60)

Hence the inverse S̃ of the operator S on Lq
w is equal to F and thus belongs to IDp,u,α by (3.59).
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