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Abstract
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algorithm in a Banach space without stable assumption on the initial (Theorem

2.7). Then we apply the previous result on the convergence to characterize com-

pactly supported refinable distributions in fractional Sobolev spaces and Hölder

continuous spaces (Theorems 3.1, 3.8, and 3.9). Finally we apply the above

characterization to choose appropriate initial to guarantee the convergence of
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1 Introduction

Let X be a linear topological space of tempered distributions on Rd, and let D denote

the space of all compactly supported C∞ functions on Rd. We say that X has continu-

ous translates if for any y ∈ Rd, the shift map τy : f 7−→ f(·−y) is a continuous map on

X, that X has continuous dilation if for any a > 0, the dilation map Da : f 7−→ f(a·) is

a continuous map on X, and that X has continuous D-multiplication if for any h ∈ D,

the multiplication map Mh : f 7−→ hf is a continuous map on X.

Take a normed linear space X of tempered distributions having continuous trans-

lates and dilation, and fix a family of N ×N matrix c(j), j ∈ Zd, having finite support,

i.e., c(j) = 0 for all but finitely many j ∈ Zd. Define a cascade operator T on XN by

TF :=
∑

j∈Zd

c(j)F (2 · −j) for all F ∈ XN . (1.1)

Here and hereafter, the N Cartesian product of a linear topological space X with

usual topology is denoted by XN , sometimes still by X if not confusing. The sequence

(c(j))j∈Zd in (1.1) and the trigonometric polynomial H(ξ) := 2−d ∑
j∈Zd c(j)e−ijξ are

known as the mask and the symbol of the cascade operator T respectively. Define a

cascade algorithm with initial F0 ∈ X
N by

Fn := TFn−1, n ≥ 1. (1.2)

The cascade algorithm was first introduced to compute the refinable distribution,

the fixed point of the cascade operator T , in the same way the power method computes

an eigenvector of a matrix. The convergence of a cascade algorithm in some function

spaces is important for some applications such as in plotting a refinable function, and

in numerical computation ([3, 4, 7, 8]). There is a long list of publications on the

convergence of a cascade algorithm in different function spaces (see for instance [11]

for Lp spaces, [13] for Sobolev space, and [21] for one-dimensional Triebel-Lizorkin

spaces and Besov spaces).

Let `0 denote the space of all sequences on Zd having finite support, define the

shift-invariant space generated by the initial F0 by

S0(F0) :=
{ ∑

j∈Zd

d(j)TF0(· − j) : (d(j))j∈Zd ∈ `N0
}
,

and write

H(2n−1ξ) · · ·H(ξ) =: 2−nd
∑

j∈Zd

cn(j)e−ijξ, n ≥ 1. (1.3)
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By direct computation, we have

Fn =
∑

j∈Zd

cn(j)F0(2
n · −j), n ≥ 1. (1.4)

Thus the dilated cascade sequence Fn(2−n·), n ≥ 0, is in the shift-invariant space

S0(F0)
N . So we may discuss the convergence problem of a cascade algorithm within

the theory of shift-invariant spaces.

Define the Fourier transform f̂ of an integrable function f by f̂(ξ) :=
∫
Rd f(x)e−ixξdx

and the one of a tempered distribution as usual. For any vector-valued tempered dis-

tribution F = (f1, . . . , fN)T with continuous Fourier transform, we say that F has, or

f1, . . . , fN have, stable shifts if there exist ki(ξ0) ∈ Zd, 1 ≤ i ≤ N , for any ξ0 ∈ Rd such

that the N ×N matrix (F̂ (ξ0 + 2ki(ξ0)π))1≤i≤N is of full rank. Let Lp, 1 ≤ p ≤ ∞, be

the usual spaces of all p-integrable functions on Rd with usual Lp norm ‖ · ‖p, and let

`p, 1 ≤ p ≤ ∞, be the usual space of all p-summable sequences with norm ‖ · ‖`p. By

(1.4), for any 1 ≤ p ≤ ∞ and any compactly supported Lp function F0 having stable

shifts, there exists a positive constant C such that for all n ≥ 1,

C−1‖(cn(j))j∈Zd‖`p ≤ 2n/p‖Fn‖p = ‖Fn(2−n·)‖p ≤ C‖(cn(j))j∈Zd‖`p (1.5)

(see Proposition A.4 in Appendix A or [15]). So under the assumption that the initial F0

has stable shifts and belongs to certain function space, we may reduce the convergence

of the cascade algorithm Fn, n ≥ 1, in some function spaces, such as fractional Sobolev

spaces and Hölder continuous spaces, to the asymptotic behavior of a quantity related

to the mask (c(j))j∈Zd.

In this paper, we consider the convergence of cascade algorithm in Banach spaces

without stable assumption on the initial (Theorem 2.7), and apply our results on the

convergence to study smoothness of refinable distributions, and to choose appropriate

initial to guarantee convergence of the cascade algorithm with that initial. In fact, the

applications mentioned above are our initial motivations to consider the convergence

of cascade algorithm in Banach space without stable assumption on the initial, while

convergence of cascade algorithm in Lp space with stable assumption on the initial have

been considered in a lot of literatures on that topic (see [11] and references therein).

Let Ψ be a nonzero compactly supported distribution satisfying the refinement

equation

Ψ =
∑

j∈Zd

c(j)Ψ(2 · −j). (1.6)

The compactly supported distribution Ψ in (1.6) is called a refinable distribution, and

the sequence (c(j))j∈Zd in (1.6) is known as the mask of the refinement equation (1.6).
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For the smoothness of a refinable distribution, there are many different ways to discuss

it, and publications on that topic (see for instance, [5, 6, 8, 9, 12, 18, 19, 25] for Sobolev

spaces L2,γ , [2, 14, 16] for Lipschitz spaces and Lp spaces, and [17] for Besov spaces

and Triebel-Lizorkin spaces).

Denote the usual convolution between a Schwartz function h and a tempered distri-

bution f by h∗f , and for any Schwartz function h, set hn := 2ndh(2n·), n ≥ 1. Clearly,

for the refinable distribution Ψ in (1.6), TΨ = Ψ, and for any Schwartz function h,

hn ∗Ψ = T n(h ∗Ψ). (1.7)

By Proposition A.3 in Appendix A, for any f ∈ Lp, 1 ≤ p <∞, we have

lim
n→∞

‖hn ∗ f‖p = 0 for all h ∈ D with ĥ(0) = 0, (1.8)

and conversely, if h ∗ f ∈ Lp for any h ∈ D and if there exist positive constants C and

δ for any h ∈ D with ĥ(0) = 0 such that

‖hn ∗ f‖p ≤ C2−nδ for all n ≥ 1, (1.9)

then f ∈ Lp. Obviously (1.9) implies (1.8). Surprisingly, by (1.7) and Lemma 3.3,

for the refinable distribution Ψ in (1.6), if (1.8) is satisfied, then (1.9) holds for some

positive constants C and δ. Thus we may characterize the refinable distribution Ψ in

Lp, 1 ≤ p <∞, completely by the asymptotic behavior of hn ∗Ψ as n tends to infinity.

Thus, the problem whether the refinable distribution Ψ in (1.6) belongs to Lp or not is

closely related to the convergence in Lp of a cascade algorithm with the initial h ∗ Ψ,

where h ∈ D satisfies ĥ(0) = 0. Actually, the above reduction also holds for many

function spaces used to measure smoothness such as the fractional Sobolev spaces and

Hölder continuous spaces discussed in this paper.

For the refinable function Ψ ∈ Lp in (1.6), either the matrix (Ψ̂(2jπ))j∈Zd is not of

full rank, or Ψ̂(0) 6= 0 and the inner products between Ψ̂(0) and Ψ̂(2jπ), j ∈ Zd\{0},

always equal zero. Hence, for any compactly supported refinable function Ψ in Lp, 1 ≤

p < ∞, and any h ∈ D with ĥ(0) = 0, h ∗ Ψ always have unstable shifts. Thus we

cannot use the estimate (1.5) directly to characterize whether refinable distribution

belongs to Lp,γ or not. This is our initial motivation to consider the convergence of

cascade algorithm without stable assumption on the initial.

The technique developed here to study the convergence of cascade algorithm in-

cludes the decomposition of compactly supported distributions in [1], the shift-invariant

sequence space in [23], and the fact TNF0(2
−n·) ∈ S0(F0)

N observed at the beginning
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of this section. The technique can be outlined as follows. In [1], for any compactly

supported distributions f1, . . . , fN , we provide the following decomposition

(f1, . . . , fN)T =
M∑

i=1

∑

j∈Zd

di(j)ψi(· − j) (1.10)

where the seqeunces (di(j))j∈Zd, 1 ≤ i ≤ M , have finite support, and where the com-

pactly supported distributions ψ1, · · · , ψM have stable shifts, and have almost the same

regularity as the one of f1, . . . , fN (see Lemma 2.5 or [1] for detail). Moreover, the shift-

invariant sequence space containing (di(j))j∈Zd, 1 ≤ i ≤ M , is the dependent ideal in

[23]. Combining the decomposition (1.10) and the theory of shift-invariant spaces with

a generator having stable shifts, we can study the convergence of a cascade algorithm

in a function space without stable assumption on its initial (Theorem 2.7).

In order to study the smoothness of refinable distributions, we need the precise

definitions of two commonly used function spaces to measure smoothness. Let 4 =
∑d

i=1
∂2

∂x2
i

be the usual Laplacian. For any real number γ and 1 < p < ∞, let Lp,γ,

which is known as a fractional Sobolev space or Bessel potential space, be the space of

all tempered distributions f for which

‖f‖Lp,γ := ‖(1−4)γ/2f‖p =
∥∥∥
(
f̂(1 + | · |2)γ/2

)∨∥∥∥
p

is finite. Here and hereafter, f∨ is the inverse Fourier transform of a tempered distri-

bution f . For the fractional Sobolev space Lp,γ, 1 < p <∞, we have Lp,0 = Lp,

Lp,γ2 ⊂ Lp,γ1 (1.11)

for any γ1 < γ2,

Lp,γ3 =
{
f : Dκf ∈ Lp for all κ ∈ Zd

+ with |κ| ≤ γ3

}
(1.12)

for any nonnegative integer γ3, and there exists a positive constant C for any integer

k ≥ −γ/2 such that

‖(1−4)−kg‖p ≤ C‖g‖Lp,γ (1.13)

for all g ∈ Lp,γ ([24]).

Take a nonnegative real number α, and let α0 be the greatest integer less than

or equal to α, and set δ = α − α0. Let Cα, which is known as a Hölder continuous

space, be the space of all continuous functions f on Rd such that f has continuous and

bounded k-th derivative Dκf for any κ ∈ Zd
+ with |κ| ≤ α0, and

‖f‖Cα :=
∑

|κ|≤α0

‖Dκf‖∞ +
∑

|κ|=α0

sup
x1 6=x2

|Dκf(x1)−Dκf(x2)|

|x1 − x2|δ
<∞.
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Then (Cα, ‖ · ‖Cα) is a Banach space for any α ≥ 0. For any nonnegative real number

α, let V Cα be the space of all Cα functions f satisfying

lim
ε→0

sup
0<|x1−x2|≤ε

|Dκf(x1)−Dκf(x1)|

|x1 − x2|δ
= 0 for all κ with |κ| = α0,

where α = α0 + δ and 0 ≤ δ < 1. Obviously, Cα+ε ⊂ V Cα ⊂ Cα for any positive ε.

The paper is organized as follows. Section 2 is devoted to the study of convergence

of a cascade algorithm in Banach spaces. In Section 3, we apply the results about

the convergence of a cascade algorithm in Section 2 to the study of smoothness of

refinable distributions. In particular, we choose appropriate stable shift-triples, and

use asymptotic behavior of a quantity related to the mask and an ideal related to

Ψ to characterize whether the refinable distribution Ψ belongs to one of the following

function spaces Lp,γ, Cα and V Cα (Theorems 3.1, 3.8 and 3.9, and Remark 3.4). Under

additional assumption that the refinable distribution Ψ has linear independent shifts,

the characterization in Theorem 3.1 is simplified and is stated in Theorem 3.5 and

Corollary 3.6. Similar results to Theorem 3.5 and Corollary 3.6 are established in

[6, 9, 12, 25] for γ ≥ 0, and our assertion for γ < 0 is still new. As an application

of Theorem 3.1, we show that a cascade algorithm always converges when the initial

is appropriately chosen in Section 4 (Theorems 4.2 and 4.3). In the appendix A,

some properties of the function spaces Lp,γ, 1 < p < ∞, are given. Those properties

are crucial to establish a general result about the convergence of a cascade algorithm

in Section 2, and our characterization of the smoothness of refinable distributions in

Section 3 as well.

2 Convergence of Cascade Sequence

In order to study the convergence of cascade algorithm in Banach spaces, we intro-

duce two new concepts: bound shift-triple and stable shift-triple, in Section 2.1. The

bounded shift-triple and stable shift-triple can be thought as a natural link between

continuous and discrete system in a shift-invariant space. In Section 2.1, we give some

examples of bounded and stable shift-triples (Examples 2.1 – 2.4). Those examples

of bounded and stable shift-triples will be used later in the study of smoothness of

refinable distributions. In Section 2.2, we recall the decomposition of compactly sup-

ported distribution in [1], and the dependent ideal in [23], and also introduce a new

shift-invariant sequence space ir(F ) used later to study the smoothness of refinable

distribution (Theorems 3.1 and 3.5), and to choose appropriate initial to guarantee
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the convergence of cascade algorithm (Theorems 4.2 and 4.3). The main result of this

section, Theorem 2.7, is stated and proved in Section 2.3.

2.1 Bounded Shift-Triple and Stable Shift-Triple

Let `P be the space of all sequences (d(j))j∈Zd on Zd with polynomial increase, i.e.,

|d(j)| ≤ P (j) for all j ∈ Zd and some polynomial P . For normed linear spaces (X1, ‖ ·

‖X1
) and (X2, ‖ · ‖X2

) of tempered distributions, and a normed linear space (Y, ‖ · ‖Y )

of sequences with polynomial increase, the triple (X1, X2, Y ) is said to be a bounded

shift-triple if the following conditions hold:

•
∑

j∈Zd d(j)f(· − j) ∈ X1 for any f ∈ X2 and (d(j))j∈Zd ∈ Y , and

• for any f ∈ X2 there exists a positive constant C such that

∥∥∥
∑

j∈Zd

d(j)f(· − j)
∥∥∥

X1

≤ C‖(d(j))j∈Zd‖Y for all (d(j))j∈Zd ∈ Y. (2.1)

We say that the triple (X1, X2, Y ) is a stable shift-triple if the following conditions hold:

• (X1, X2, Y ) is a bounded shift-triple, and

• for any fi ∈ X2, 1 ≤ i ≤ N , with F = (f1, . . . , fN)T having continuous Fourier

transform and stable shifts, there exists a positive constant C such that for all

(d(j))j∈Zd ∈ Y N ,

∥∥∥
∑

j∈Zd

d(j)TF (· − j)
∥∥∥

X1

≥ C‖(d(j))j∈Zd‖Y N . (2.2)

Here and hereafter, for a normed linear space (X, ‖ · ‖X), we set ‖x‖XN =
∑N

i=1 ‖xi‖X

for x = (x1, . . . , xN )T ∈ XN , and also use ‖x‖X instead of ‖x‖XN for x ∈ XN if not

confusing.

Example 2.1 For 1 ≤ p ≤ ∞, let Lp be the space of all measurable functions f

for which ‖f‖Lp := ‖
∑

j∈Zd |f(x + j)|‖Lp([0,1]d) < ∞. Obviously Lp ⊂ Lp, and any

compactly supported Lp function belongs to Lp. By the definition of Lp and Lp, it is

easy to check that both Lp and Lp have continuous translates and D-multiplication.

Furthermore the triple (Lp,Lp, `p), 1 ≤ p ≤ ∞, is a stable shift-triple ([15]).

7



Example 2.2 For any compact set K of Rd, denote the space of all Lp,γ distributions

with support in K by Lp,γ(K). By Proposition A.1 in Appendix A, Lp,γ has continuous

translates and D-multiplication for any p ∈ [1,∞) and γ ∈ R. By Proposition A.4 in

Appendix A, the triple (Lp,γ, Lp,γ(K), `p) is a stable shift-triple for any 1 < p <∞ and

−∞ < γ <∞.

Example 2.3 For any compact set K of Rd, denote the space of all Cα and V Cα

functions with support in K by Cα(K) and V Cα(K) respectively. By usual pro-

cedure, it can be proved that Cα and V Cα, α ≥ 0, have continuous translates and

D-multiplication, and that the triples (Cα, Cα(K), `∞) and (V Cα, V Cα(K), `∞) are

bounded shift-triples for any α ≥ 0. Moreover, the triples (Cα, Cα(K), `∞) and

(V Cα, V Cα(K), `∞) can be proved to be stable shift-triples for any α ≥ 0 and compact

set K by using the same procedure as in the proof of Proposition A.4 in Appendix A.

Example 2.4 For −∞ < α < ∞, let wα(x) = (1 + |x|)α, Lp
wα

be the space of all

functions f with ‖f‖Lp
wα

= ‖fwα‖p < ∞, and let `pwα
be the space of all sequences

{c(j)}j∈Z with ‖{c(j)}j∈Z‖`p
wα

= ‖{c(j)wα(j)}j∈Z‖`p <∞. It is easy to check that Lp
wα

has continuous translates and D-multiplication. Using Lemma A.6 in the appendix, we

can show that the triple (Lp
wα
, Lp

w|α|+1
(K), `pwα

) is a stable shift-triple for any p ∈ [1,∞),

α ∈ R and compact set K.

Let (X1, X2, Y ) be a bounded shift-triple. From the definition of bounded shift-

triples, we see that for any linear subspace X ′
2 and Y ′ of X2 and Y , (X1, X

′
2, Y

′) is also

a bounded shift-triple. This together with examples of bounded shift-triples would

lead to many useful bounded shift-triples. However, (X1, X
′
2, Y

′) may not be a stable

shift-triple even if (X1, X2, Y ) is. For instance, for p ∈ (1,∞), set X1 = Lp, X2 =

Lp(K), Y = `p and Y ′ = `1. Then (X1, X2, Y ) is a stable shift-triple, but (X1, X2, Y
′)

is a unstable shift-triple.

2.2 Shift-Invariant Sequence Space

For any compactly supported distributions F = (f1, . . . , fN)T , we say that F has, or

f1, . . . , fN have, linearly independent shifts if the semi-convolution map (d(j))j∈Zd 7−→
∑

j∈Zd d(j)TF (· − j) is one-to-one, where d(j) ∈ CN for all j ∈ Zd. We remark that

any compactly supported distribution with linear independent shifts has stable shifts.

In [1], we provide a decomposition of finite many compactly supported distributions.
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Lemma 2.5 ([1]) Let f1, . . . , fN be finitely many compactly supported distributions.

Then there exist compactly supported distributions ψi and sequences Di = (di(j))j∈Zd ∈

`N0 , 1 ≤ i ≤ M , such that

(R1) ψ1, . . . , ψM have linearly independent shifts;

(R2) ψ1, . . . , ψM , are finite linear combinations hkfs(· − j), where hk ∈ D and j ∈ Zd,

i.e., ψi =
∑N

s=1

∑
k,j ci,s,k,jhkfs(· − j) for finitely many hk ∈ D, j ∈ Zd, and some

coefficients ci,s,k,j;

(R3) (f1, . . . , fN)T =
∑M

i=1

∑
j∈Zd di(j)ψi(· − j).

We say that a linear space I of sequences on Zd is shift-invariant if (d(j − k))j∈Zd ∈

I for all (d(j))j∈Zd ∈ I and k ∈ Zd. A shift-invariant linear subspace of `N0 is said to be

an ideal of `N0 , or an ideal for short. A subset E of an ideal I is said to be its generator

if I is the minimal ideal containing all elements in E . For a compactly supported

distribution F , there are many compactly supported distributions ψ1, . . . , ψM , and

many sequences Di ∈ `N0 , 1 ≤ i ≤ M , such that (R1), (R2), (R3) in Lemma 2.5 hold.

However, the minimal ideal containing Di, 1 ≤ i ≤ M , in Lemma 2.5 is unique (see

[23] for the proof), which is said to be the dependent ideal of F , and to be denoted by

i(F ) in [23]. For any sequence (d(j))j∈Zd ∈ i(F ), it is proved in [23] that there exists

h ∈ D such that the sequence (d(j))j∈Zd is the same as the sampling sequence of h ∗F

on Zd, i.e., d(j) = h ∗ F (j) for all j ∈ Zd. Actually,

i(F ) =
{(
h ∗ F (j)

)
j∈Zd

: h ∈ D
}
. (2.3)

For any nonnegative integer r, denote the space of all functions h in D satisfying

ĥ(ξ) = O(|ξ|r) as ξ → 0 by Dr. For a compactly supported distribution F and a

nonnegative integer r, define

ir(F ) :=
{(
h ∗ F (j)

)
j∈Zd

: h ∈ Dr

}
. (2.4)

Obviously ir(F ) is an ideal of `N0 for any r ≥ 0, and

ir(F ) ⊂ i0(F ) = i(F ) for all r ≥ 0. (2.5)

Recall that for a compactly supported continuous function F , the family of vectors

(F (x+ j))j∈Zd, x ∈ [0, 1]d, is a generator of the dependent ideal i(F ) ([23]). Therefore,

i(h ∗ F ) ⊂ ir(F ) for all h ∈ Dr, (2.6)
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and

ir(F ) = ∪h∈Dr
i(h ∗ F ). (2.7)

For any D = (d(j))j∈Zd ∈ `P , define corresponding Fourier series by F(D)(ξ) :=
∑

j∈Zd d(j)e−ijξ. Then F(D) is a 2π-periodic distribution for any D ∈ `P .

Lemma 2.6 Let r ≥ 0, and F be a vector-valued compactly supported distribution.

Assume that there is a vector-valued trigonometric polynomial v(ξ) such that

v(ξ)T F̂ (ξ + 2jπ) = O(|ξ|r) as ξ → 0 for all j ∈ Zd\{0}, (2.8)

and

v(0)T F̂ (0) 6= 0. (2.9)

Then

ir(F ) =
{
D ∈ i(F ) : v(ξ)TF(D)(ξ) = O(|ξ|r) as ξ → 0

}
.

Proof. For any h ∈ D, by (2.8) and Taylor expansion, there exist positive con-

stants C1, C2 independent of ξ and j such that

∣∣∣ĥ(ξ + 2jπ)v(ξ)T F̂ (ξ + 2jπ)
∣∣∣ ≤ C1

∑

|κ|=r

|Dκ(ĥvT F̂ )(tξ,jξ + 2jπ)| |ξ|r

≤ C2(1 + |j|)−d−1|ξ|r for all |ξ| ≤ 1 and j ∈ Zd\{0},

where 0 ≤ tξ,j ≤ 1, and where we have used the assumption on v and the fact that

h∗F ∈ D to obtain the last inequality. Therefore, for any h ∈ D there exists a positive

constant C such that

∣∣∣
∑

j∈Zd\{0}

ĥ(ξ + 2jπ)v(ξ)T F̂ (ξ + 2jπ)
∣∣∣ ≤ C|ξ|r for all |ξ| ≤ 1.

This together with (2.3), (2.9) and the Poisson formula

∑

j∈Zd

f(j)e−ijξ =
∑

j∈Zd

f̂(ξ + 2jπ) for all f ∈ D

lead to the assertion. 2

2.3 Convergence of Cascade Algorithm

Theorem 2.7 Let (c(j))j∈Zd and T be the sequence and the cascade operator in (1.1)

respectively, (cn(j))j∈Zd, n ≥ 1, be the sequences in (1.3), F ∈ X2 and {(di(j))j∈Zd :
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1 ≤ i ≤ M} be a generator of i(F ). Assume that (X1, ‖ · ‖X1
) and (X2, ‖ · ‖X2

) be

normed linear spaces of tempered distributions having continuous translates and D-

multiplication, and that (Y, ‖ · ‖Y ) be a normed linear space of sequences that satisfies

`0 ⊂ Y ⊂ `P and has continuous shifts, i.e., there exists a positive constant Ck for any

k ∈ Zd such that

‖(y(j − k))j∈Zd‖Y ≤ Ck‖(y(j))j∈Zd‖Y for all (y(j))j∈Zd ∈ Y. (2.10)

Then we have

(i) There exists a positive constant C0 independent of n such that

‖T nF (2−n·)‖X1
≤ C0

M∑

i=1

∥∥∥
( ∑

j′∈Zd

cn(j − j ′)di(j
′)

)
j∈Zd

∥∥∥
Y N

for all n ≥ 1

(2.11)

if (X1, X2, Y ) is a bounded shift-triple.

(ii) There exists a positive constant C1 independent of n such that

‖T nF (2−n·)‖X1
≥ C1

M∑

i=1

∥∥∥
( ∑

j′∈Zd

cn(j−j ′)di(j
′)

)
j∈Zd

∥∥∥
Y N

for all n ≥ 1 (2.12)

if (X1, X2, Y ) is a stable shift-triple.

Proof. Let Di = (di(j))j∈Zd ∈ i(F ), 1 ≤ i ≤ M , and compactly supported distrib-

utions ψi, 1 ≤ i ≤M , be as in Lemma 2.5. Then ψ1, . . . , ψM have stable shifts by (R1)

in Lemma 2.5, and belong to X2 by (R2) in Lemma 2.5 and by the assumptions that

F ∈ X2 and that X2 has continuous translates and D-multiplication. Still by Lemma

2.5,

F =
M∑

i=1

∑

j∈Zd

di(j)ψi(· − j).

This together with (1.4) lead to

T nF (2−n·) =
M∑

i=1

∑

j,j′∈Zd

cn(j − j ′)di(j
′)ψi(· − j).

Therefore, there exist positive constants C0 and C1 independent of n such that

‖T nF (2−n·)‖X1
≤ C0

M∑

i=1

∥∥∥
( ∑

j′∈Zd

cn(j ′)di(j − j ′)
)

j∈Zd

∥∥∥
Y N

for all n ≥ 1 (2.13)

11



if (X1, X2, Y ) is a bounded shift-triple, and

‖T nF (2−n·)‖X1
≥ C1

M∑

i=1

∥∥∥
( ∑

j′∈Zd

cn(j ′)di(j − j ′)
)

j∈Zd

∥∥∥
Y N

for all n ≥ 1 (2.14)

if (X1, X2, Y ) is a stable shift-triple, where we have used the assumption that `0 ⊂ Y

in (2.13) and (2.14). By (2.13) and (2.14), it suffices to prove that, for two generators

{(di,1(j))j∈Zd, 1 ≤ i ≤M1} and {(di,2(j))j∈Zd, 1 ≤ i ≤M2} of the dependent ideal i(F ),

there exists a positive constant C such that

M1∑

i=1

∥∥∥
( ∑

j′∈Zd

y(j ′)Tdi,1(j − j ′)
)

j∈Zd

∥∥∥
Y
≤ C

M2∑

i=1

∥∥∥
( ∑

j′∈Zd

y(j ′)Tdi,2(j − j ′)
)

j∈Zd

∥∥∥
Y

(2.15)

for all (y(j))j∈Zd ∈ `N0 . By the definition of a generator of an ideal, there exist sequences

(gii′(k))k∈Zd ∈ `0, 1 ≤ i ≤M1, 1 ≤ i′ ≤M2, such that

di,1(j) =
M2∑

i′=1

∑

k∈Zd

gii′(k)di′,2(j − k) for all j ∈ Zd and 1 ≤ i ≤M1. (2.16)

Combining (2.10) and (2.16) leads to

M1∑

i=1

∥∥∥
( ∑

j′∈Zd

y(j ′)Tdi,1(j − j ′)
)

j∈Zd

∥∥∥
Y

≤
M1∑

i=1

M2∑

i′=1

∑

k∈Zd

|gii′(k)| ×
∥∥∥
( ∑

j′∈Zd

y(j ′)Tdi′,2(j − j ′ − k)
)

j∈Zd

∥∥∥
Y

≤
M1∑

i=1

M2∑

i′=1

∑

k∈Zd

Ck|gii′(k)| ×
∥∥∥
( ∑

j′∈Zd

y(j ′)Tdi′,2(j − j ′)
)

j∈Zd

∥∥∥
Y

≤ C
M2∑

i′=1

∥∥∥
( ∑

j′∈Zd

y(j ′)Tdi′,2(j − j ′)
)

j∈Zd

∥∥∥
Y
,

where we have used (gii′(k))k∈Zd ∈ `0 to obtain the last inequality. This proves (2.15),

and completes the proof of Theorem 2.7. 2

3 Smoothness of Refinable Distributions

This section is devoted to the characterization of refinable distributions in fractional

Sobolev spaces and Hölder continuous spaces.
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Theorem 3.1 Let 1 < p <∞, −∞ < γ < r <∞, (cn(j))j∈Zd, n ≥ 1, be the sequences

in (1.3), and Ψ be the refinable distribution in (1.6). Then Ψ ∈ Lp,γ if and only if

lim
n→∞

2nγ−nd/p
( ∑

j∈Zd

∣∣∣
∑

j′∈Zd

cn(j ′)d(j − j ′)
∣∣∣
p)1/p

= 0 (3.1)

for all (d(j))j∈Zd ∈ ir(Ψ).

The proof of Theorem 3.1 in turn depends on the following two lemmas.

Lemma 3.2 Let p, γ, r, (cn(j))j∈Zd and Ψ be as in Theorem 3.1. Then (3.1) holds for

any Ψ ∈ Lp,γ. Conversely, if there exist positive constant δ independent of n such that

2nγ−nd/p+δn
( ∑

j∈Zd

∣∣∣
∑

j′∈Zd

cn(j ′)d(j − j ′)
∣∣∣
p)1/p

, n ≥ 1, (3.2)

is a bounded sequence for any (d(j))j∈Zd ∈ ir(Ψ), then Ψ ∈ Lp,γ.

Proof. At first we prove (3.1) under the assumption that Ψ ∈ Lp,γ. By Proposi-

tion A.3, for any h ∈ Dr with r > γ, we have

lim
n→∞

2nγ‖hn ∗Ψ‖p = 0. (3.3)

This together with (1.7) leads to

lim
n→∞

2n(γ−d/p)‖T n(h ∗Ψ)(2−n·)‖p = lim
n→∞

2nγ‖hn ∗Ψ‖p = 0. (3.4)

Recall that (Lp, Lp(K), `p) is a stable shift-triple for any 1 < p < ∞ and any com-

pact set K of Rd by Proposition A.8, and that h ∗ Ψ ∈ D. Thus, for any generator

{(ds(j))j∈Zd : 1 ≤ s ≤M} of i(h ∗Ψ), by Theorem 2.7 there exists a positive constant

C independent of n such that

C−1‖T n(h ∗Ψ)(2−n·)‖p ≤
M∑

s=1

∥∥∥
( ∑

j′∈Zd

cn(j − j ′)ds(j
′)

)
j∈Zd

∥∥∥
`p

≤ C‖T n(h ∗Ψ)(2−n·)‖p for all n ≥ 1. (3.5)

For any D = (d(j))j∈Zd ∈ i(h ∗ Ψ) and any h ∈ Dr with r > γ, it follows from (3.4)

and (3.5) that

lim
n→∞

2n(γ−d/p)
∥∥∥
( ∑

j′∈Zd

cn(j − j ′)d(j ′)
)

j∈Zd

∥∥∥
`p

= 0. (3.6)

Then combining (2.7) and (3.6) leads to (3.1).
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Next we prove Ψ ∈ Lp,γ under the assumption (3.2). By (2.6), (3.2) and (3.5), there

exists a positive constant C for any h ∈ Dr with r > γ such that

‖T n(h ∗Ψ)(2−n·)‖p ≤ C2−(γ−d/p+δ)n.

This together with (1.7) imply that ‖hn ∗ Ψ‖p ≤ C2−nγ−nδ. Thus Ψ ∈ Lp,γ by Propo-

sition A.3. 2

Lemma 3.3 Let −∞ < β < ∞, 1 ≤ p ≤ ∞, (cn(j))j∈Zd be as in (1.3), and let I be

an ideal of `N0 . Then the following two statements are equivalent:

(i) limn→∞ 2nβ
∥∥∥
( ∑

j′∈Zd cn(j ′)d(j − j ′)
)

j∈Zd

∥∥∥
`p

= 0 for any (d(j))j∈Zd ∈ I.

(ii) There exist positive constants C and δ independent of n for any (d(j))j∈Zd ∈ I

such that

∥∥∥
( ∑

j′∈Zd

cn(j ′)d(j − j ′)
)

j∈Zd

∥∥∥
`p
≤ C2−nβ−nδ for all n ≥ 1.

We shall use the same method as in [17] to give a proof of Lemma 3.3.

Proof. Obviously (ii) implies (i). Then it suffices to prove (ii) under the assump-

tion (i). Let {Ds = (ds(j))j∈Zd : 1 ≤ s ≤ M} be a generator of I. Such a generator

exists since every ideal of `N0 is finite generated ([23]). Let E = {0, 1}d, and let K0 be

a finite set of Zd chosen so that

ds(j) = 0 for all j 6∈ K0 and 1 ≤ s ≤M, (3.7)

and

c(2i− j + ε) = 0 for all i 6∈ K0, j ∈ K0 and ε ∈ E . (3.8)

Such a finite set K0 exists since the sequence (c(j))j∈Zd has finite support. For any

ε ∈ E , define

Bε =
(
c(2i− j + ε)

)
i,j∈K0

.

For any finite set K ⊂ Zd, denote the space of all sequences supported in K by `(K).

Then Ds ∈ `(K0)
N , 1 ≤ s ≤ M , by (3.7), and Bε, ε ∈ E , is a linear transform from

`(K0)
N to `(K0)

N by (3.8). Let V be the minimal linear subspace of `(K0)
N such that

Ds ∈ V for all 1 ≤ s ≤ M , and BεV ⊂ V for all ε ∈ E . Then the restrictions of the

matrices Bε, ε ∈ E , on V are well-defined. By direct computation, and using (3.7) and

(3.8), ∥∥∥
( ∑

j′∈Zd

cn(j − j ′)d(j ′)
)∥∥∥

`p
=

( ∑

ε1,...,εn∈E

‖Bε1 · · ·Bεn
D‖p

)1/p
(3.9)
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for 1 ≤ p <∞, and
∥∥∥
( ∑

j′∈Zd

cn(j − j ′)d(j ′)
)∥∥∥

`∞
= sup

ε1,...,εn∈E
‖Bε1 · · ·Bεn

D‖ (3.10)

for p = ∞, where D = (d(j))j∈Zd ∈ V . Then by (3.9), (3.10), Lemma 4 in [17] and the

assumption (i), there exists an integer n0 such that

2n0β
( ∑

ε1,...,εn0
∈E

‖Bε1 · · ·Bεn0
u‖p

)1/p
≤

1

2
‖u‖ for all u ∈ V (3.11)

if 1 ≤ p <∞, and

2n0β sup
ε1,...,εn0

∈E
‖Bε1 · · ·Bεn0

u‖ ≤
1

2
‖u‖ for all u ∈ V (3.12)

if p = ∞. For any n ≥ n0, write n = kn0 +m for some integers 0 < m ≤ n0 and k ≥ 0.

Then for any 1 ≤ p <∞, it follows from (3.9) and (3.11) that

2npβ
∥∥∥
( ∑

j′∈Zd

cn(j − j ′)ds(j
′)

)
j∈Zd

∥∥∥
p

`p
= 2npβ

∑

ε1,...,εn∈E

‖Bε1 · · ·Bεn
Ds‖

p

≤ 2(n−n0)pβ−p
∑

εn0+1,···,εn∈E

‖Bεn0+1
· · ·Bεn

Ds‖
p ≤ · · ·

≤ 2−kp+mpβ
∑

εkn0+1,···,εn∈E

‖Bεkn0+1
· · ·Bεn

Ds‖
p ≤ C2−pn/n0, (3.13)

and, similarly for p = ∞ it follows from (3.10) and (3.12) that

2nβ
∥∥∥
( ∑

j′∈Zd

cn(j − j ′)ds(j
′)

)
j∈Zd

∥∥∥
`∞
≤ C2−n/n0. (3.14)

Then by letting δ = 1/n0, (ii) follows from (3.13) and (3.14). 2

Remark 3.4 Let 1 ≤ p ≤ ∞, and Bε, ε ∈ E , and V be as in the proof of Lemma 3.3.

Define joint spectral radius of Bε, ε ∈ E , on the linear space V by

ρp(Bε, V ) :=





lim infn→∞

( ∑
ε1,...,εn∈E ‖Bε1 · · ·Bεn

|V ‖
p
)1/(np)

if p ∈ [1,∞)

lim infn→∞

(
supε1,...,εn∈E ‖Bε1 · · ·Bεn

|V ‖
)1/n

if p = ∞,

where ‖A |V ‖ is a norm of the operator A restricted to V . By usual procedure used in

the theory of joint spectral radius (see [17] for instance),

ρp(Bε, V ) = inf
n≥1

( ∑

ε1,...,εn∈E

‖Bε1 · · ·Bεn
|V ‖p

)1/(np)

= inf
n≥1

(
sup

u∈V,‖u‖∗=1

∑

ε1,...,εn∈E

‖Bε1 · · ·Bεn
u‖p

∗

)1/(np)
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for 1 ≤ p <∞, and

ρ∞(Bε, V ) = inf
n≥1

(
sup

u∈V,‖u‖∗=1
sup

ε1,...,εn∈E
‖Bε1 · · ·Bεn

u‖∗
)1/n

,

where ‖u‖∗ is a norm on V . By the proof of Lemma 3.3, we can interpreted the

condition (i) in Lemma 3.3 as

ρp(Bε, V ) < 2−β. (3.15)

By Theorem 3.1, we have the following characterization of refinable distributions

in Lp,γ under the linear independence assumption.

Theorem 3.5 Let p, γ, (cn(j))j∈Zd and Ψ be as in Theorem 3.1. Assume that N = 1,

Ψ has linearly independent shifts and satisfies Ψ̂(0) 6= 0. Then Ψ ∈ Lp,γ if and only if

lim
n→∞

2nγ−nd/p
( ∑

j∈Zd

∣∣∣
∑

j′∈Zd

cn(j ′)d(j − j ′)
∣∣∣
p)1/p

= 0

for all sequence D = (d(j))j∈Zd ∈ `N0 with F(D)(ξ) = O(|ξ|γ1) as ξ → 0, where γ1 is

the smallest nonnegative integer strictly larger than γ.

By Theorem 3.5 and Remark 3.4, we can use the joint spectral radius on an explicit

linear space of sequences to characterize all scale-valued refinable distributions in Lp,γ

under the additional assumption that they have linearly independent shifts.

Corollary 3.6 Let p, γ, γ1,Ψ be as in Theorem 3.5, and let Bε, ε ∈ E and K0 be as in

Remark 3.4 with I = iγ1
(Ψ). Assume that N = 1, Ψ has linearly independent shifts

and satisfies Ψ̂(0) 6= 0. Then Ψ ∈ Lp,γ if and only if ρp(Bε, V ) < 2−γ+d/p, where

V =
{
(d(j))j∈Zd ∈ `(K0) :

∑

j∈K0

d(j)p(j) = 0 for all p ∈ Πγ

}

and Πγ is the set of all polynomials with their degrees less than γ.

By Theorem 3.1, the proof of Theorem 3.5 reduces to

iγ1
(Ψ) =

{
D ∈ `0 : F(D)(ξ) = O(|ξ|γ1) as ξ → 0

}
. (3.16)

Recall that i(F ) = `N0 if F has compact support and linearly independent shifts (see

[23]). Then by Lemma 2.6, the equality in (3.16) in turn depends on the following

result about moment conditions of refinable distributions, which was given in [10].

16



Proposition 3.7 Let N = 1, and Ψ be the compactly supported distribution in (1.6)

with Ψ̂(0) 6= 0. Assume that Ψ ∈ Lp,γ for some 1 < p < ∞ and γ ≥ 0. Then

DκΨ(2jπ) = 0 for all j ∈ Zd\{0} and |κ| ≤ γ.

For any α ≥ 0 and f ∈ Cα, define

ωα(f, t) = sup
0<|x1−x2|<t

∑

|κ|=α0

|Dκf(x1)−Dκf(x2)|

|x1 − x2|δ
,

where α = α0 + δ and 0 ≤ δ < 1. Then ωα(f, t) is a bounded function of t for any

f ∈ Cα, and limt→0 ωα(f, t) = 0 for any f ∈ V Cα. By Taylor expansion, there exists a

positive constant C independent of n for any h ∈ Dr with r > α and any compactly

supported f ∈ Cα such that

‖hn ∗ f‖∞ ≤ C2−nαωα(f, 2−n) for all n ≥ 1,

where hn = 2ndh(2n·), n ≥ 0. Therefore, the sequence 2nα‖hn∗f‖∞, n ≥ 1, is a bounded

sequence if f ∈ Cα and h ∈ Dr with r > α, and the sequence 2nα‖hn ∗ f‖∞, n ≥ 1,

converges to zero if f ∈ V Cα and h ∈ Dr with r > α. Recall that (Cα, Cα(K), `∞)

and (V Cα, V Cα(K), `∞) are stable shift-triples for any compact set K and α ≥ 0 (see

Example 2.3). Then by using the same procedure as in the proof of Theorem 3.1, we

obtain the following result about refinable distributions in Cα and V Cα.

Theorem 3.8 Let α ≥ 0, r be the smallest integer strictly larger than α, and Ψ be the

refinable function in (1.6). If Ψ ∈ Cα, then for any (d(j))j∈Zd ∈ ir(Ψ), there exists a

positive constant C such that

2nα sup
j∈Zd

|
∑

j′∈Zd

cn(j ′)d(j − j ′)| ≤ C for all n ≥ 1.

Theorem 3.9 Let α ≥ 0, r be the smallest integer strictly larger than α, and Ψ be the

refinable function in (1.6). Then Ψ ∈ V Cα if and only if

lim
n→∞

2nα sup
j∈Zd

∣∣∣
∑

j′∈Zd

cn(j ′)d(j − j ′)
∣∣∣ = 0 for all (d(j))j∈Zd ∈ ir(Ψ).

4 Initial of Cascade Algorithm

In this section, we discuss the problem how to choose the initial appropriately such that

the cascade algorithm always converges. First by Theorems 2.7 and 3.1, Propositions

A.2 and A.4, we have the following result.
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Corollary 4.1 Let 1 < p < ∞, γ ≥ 0,Ψ ∈ Lp,γ be the refinable function in (1.6). If

the initial G is so chosen that G is a compactly supported Lp,β function, and satisfies

i(G) ⊂ iγ1
(Ψ), (4.1)

then the cascade algorithm T nG converges in Lp,β with rate γ −max(0, β), i.e.,

lim
n→∞

2n(γ−max(0,β))‖T nG‖Lp,β = 0, (4.2)

where β ∈ R, and γ1 be the smallest nonnegative integer strictly larger than γ.

We emphasize that β in Corollary 4.1 can be chosen that β ≥ γ or β ≤ 0. So

the essential condition for the convergence of a cascade algorithm is the one about the

dependent ideal of the initial. For N = 1, we may use Lemma 2.6 and Proposition 3.7

to simplify the dependent ideal condition (4.1) on the initial G.

Theorem 4.2 Let N = 1, Ψ and G be compactly supported distributions. Assume that

Ψ satisfies the refinement equation (1.6), Ψ̂(0) 6= 0 and Ψ ∈ Lp,γ for some 1 < p <∞

and γ ≥ 0, and that G ∈ Lp, i(G) ⊂ i(Ψ) and

DκG(2jπ) = 0 for all |κ| ≤ γ and j ∈ Zd.

Then limn→∞ 2nγ‖T nG‖p = 0.

Proof. Obviously it suffices to prove (4.1). From Lemma 2.6 and Proposition 3.7,

we have

iγ1
(Ψ) =

{
D ∈ i(Ψ) : F(D)(ξ) = O(|ξ|γ1) as ξ → 0

}
. (4.3)

Thus, by (4.3) and the assumption i(G) ⊂ i(Ψ), the proof of (4.1) reduces to proving

∑

j∈Zd

d(j)e−ijξ = O(|ξ|γ1) as ξ → 0 for all (d(j))j∈Zd ∈ i(G). (4.4)

Let (d(j))j∈Zd be any sequence in i(G). Then there exists h1 ∈ D by (2.3) such that

d(j) = (h1 ∗G)(j) for all j ∈ Zd. By using the same procedure in the proof of Lemma

2.6, we obtain

∑

j∈Zd

ĥ1(ξ + 2jπ)Ĝ(ξ + 2jπ) = O(|ξ|γ1) as ξ → 0. (4.5)

Hence,

∑

j∈Zd

d(j)e−ijξ =
∑

j∈Zd

ĥ1(ξ + 2jπ)Ĝ(ξ + 2jπ) = O(|ξ|γ1) as ξ → 0
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by (4.5) and the Poisson formula. This proves (4.4). 2

As we know, the refinable function in (1.6) is a fixed point of the cascade operator

T . When the initial g is chosen appropriately, TNg converges to the limit Ψ in Lp norm

very fast.

Theorem 4.3 Let γ ≥ 0, 1 < p < ∞ and N = 1. Assume that Ψ ∈ Lp,γ satisfies the

refinement equation (1.6) and Ψ̂(0) = 1. Let g be a compactly supported Lp function

that satisfies the following three conditions:

(i) Dκĝ(2jπ) = 0 for all j ∈ Zd\{0} and κ ∈ Zd
+ with |κ| ≤ γ, and ĝ(0) = 1.

(ii) Ψ̂− ĝ = O(| · |γ) near the origin.

(iii) i(g) ⊂ i(Ψ).

Then there exists a positive constant C such that

‖T ng − Ψ‖p ≤ C2−nγ for all n ≥ 1.

Proof. Set Gγ = g − Ψ −
∑

|α|=γ aαD
αΨ if γ is a nonnegative integer, and set

Gγ = g−Ψ otherwise, where the coefficients aα with α ∈ Zd
+ and |α| = γ are chosen so

that Ĝγ = O(| · |γ+1) near the origin. The existence and uniqueness of those coefficients

follow from (ii), Ψ̂(0) = 1 and the fact that Ψ̂ and ĝ are analytic functions. Then,

Gγ ∈ Lp since g ∈ Lp and Ψ ∈ Lp,γ for some γ ≥ 0. Moreover, DκGγ(2jπ) = 0 for all

j ∈ Zd and κ ∈ Zd
+ with |κ| ≤ γ because of Proposition 3.7 and the assumptions on ĝ,

and the assertion i(Gγ) ⊂ i(Ψ) follows from the assumption (iii) and the observation

i(DαΨ) ⊂ i(Ψ), which is obvious by (2.3). So Gγ satisfies the required conditions in

Theorem 4.2. Therefore there exists a positive constant C by Theorem 4.2 such that

‖T nGγ‖p ≤ C2−nγ for all n ≥ 1. (4.6)

By direct computation,

T ng −Ψ = T nGγ (4.7)

if γ is not a nonnegative integer, and

T ng − Ψ = T nGγ + 2−nγ
∑

|α|=γ

aαD
αΨ (4.8)

if γ is a nonnegative integer. Hence combining (4.6), (4.7) and (4.8) leads to the desired

assertion. 2
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A Properties of Fractional Sobolev Spaces

In this appendix, we give some basic properties of the fractional Sobolev space Lp,γ.

Proposition A.1 Let 1 < p < ∞ and −∞ < γ < ∞. Then Lp,γ has continuous

translates and D-multiplication.

Proof. From the definition of the space Lp,γ, we have ‖f(· − y)‖Lp,γ = ‖f‖Lp,γ .

Hence Lp,γ, 1 < p <∞, has continuous translates.

For nonnegative integer γ, the assertion about continuous D-multiplication of the

fractional Sobolev space Lp,γ follows easily from (1.12). For general real number γ, we

need use the classical multiplier theorem in [20]. Set mη,γ(ξ) = (1 + |ξ + η|2)γ/2(1 +

|ξ|2)−γ/2 for any η ∈ Rd, and let

Σt(α) =
{
(α1, . . . , αt) :

t∑

i=1

αi = α and 0 6= αi ∈ Zd
+ for all 1 ≤ i ≤ t

}
(A.1)

for any α ∈ Zd
+. By direct computation,

|Dαmη,γ(ξ)|

≤ C
∑

1≤t≤|α|

|mη,γ−2t(ξ)|
∑

(α1 ,...,αt)∈Σt(α)

t∏

i=1

|Dαimη,2(ξ)|

≤ C
∑

1≤t≤|α|

|mη,γ(ξ)|
∑

(α1,...,αt)∈Σt(α)

t∏

i=1

( ∑

βi≤αi

(1 + |ξ + η|)−|αi|+|βi|(1 + |ξ|)−|βi|
)

≤ C(1 + |η|)|γ|+|α|(1 + |ξ|)−|α|.

Therefore, mη,γ is an Lp multiplier by classical multiplier theorem for any 1 < p < ∞

([20, p. 96]). Moreover there exists a positive constant C independent of η such that

‖(mη,γ f̂)∨‖p ≤ C(1 + |η|)|γ|+d‖f‖p for all f ∈ Lp and η ∈ Rd. (A.2)

Recall that ĥf = ĥ ∗ f̂ . This together with (A.2) leads to

‖hf‖Lp,γ ≤ C
∫

Rd
|ĥ(η)| ×

∥∥∥
(
mη,γ f̂(1 + | · |2)γ/2

)∨∥∥∥
p
dη

≤ C
∫

Rd
|ĥ(η)|(1 + |η|)|γ|+|d|dη × ‖f‖Lp,γ <∞

for any h ∈ D. Hence Lp,γ has continuous D-multiplication. 2

Proposition A.2 Let −∞ < γ < ∞, λ ≥ 1 and 1 < p < ∞. Therefore, there exists

a positive constant independent of λ such that

‖f(λ·)‖Lp,γ ≤ Cλmax(0,γ)−d/p‖f‖Lp,γ for all f ∈ Lp,γ.
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Proof. Set mλ,γ(ξ) = (1 + λ2|ξ|2)γ/2(1 + |ξ|2)−γ/2. Recall that for any α ∈ Zd
+

there exists a positive constant Cα such that |Dα(1 + |ξ|2)−1| ≤ Cα(1 + |ξ|)−2−|α| for

all ξ ∈ Rd. Therefore,

|Dαmλ,2(ξ)| ≤ C1

∑

β≤α

|Dβ(1 + λ2|ξ|2)| × |Dα−β(1 + |ξ|2)−1|

≤ C2

∑

β≤α

λ|β|(1 + λ|ξ|)2−|β|(1 + |ξ|)−2−|α|+|β|

≤





C3λ
2|ξ|−|α| if |ξ| ≥ 1

C3λ
2|ξ|2−|α| if λ−1 ≤ |ξ| ≤ 1

C3λ
|α| if |ξ| ≤ λ−1,

(A.3)

where C1, C2, C3 are positive constants independent of n and ξ. Let Σt(α) be as in

(A.1). By induction,

Dαmλ,γ(ξ) =
∑

1≤t≤|α|

mλ,γ−2t(ξ)
∑

(α1,...,αt)∈Σt(α)

C(α;α1, . . . , αt)
t∏

i=1

Dαimλ,2(ξ) (A.4)

for some coefficients C(α;α1, . . . , αt). Combining (A.3) and (A.4) leads to

|Dαmλ,γ(ξ)| ≤ C1

∑

1≤t≤|α|

|mλ,γ−2t(ξ)|
∑

(α1 ,...,αt)∈Σt(α)

t∏

i=1

|Dαimλ,2(ξ)|

≤





C2λ
γ|ξ|−|α| if |ξ| ≥ 1

C2λ
γ|ξ|γ−|α| if λ−1 ≤ |ξ| ≤ 1

C2λ
|α| if |ξ| ≤ λ−1

≤ C3λ
max(0,γ)|ξ|−|α|, (A.5)

where C1, C2, C3 are positive constants independent of n and ξ. Then, by (A.5) and

the classical multiplier theorem ([20], p. 96),

‖(mλ,γ f̂)∨‖p ≤ Cλmax(0,γ)‖f‖p for all f ∈ Lp and n ≥ 1, (A.6)

where C is a positive constant independent of λ and f . This implies that

‖f‖Lp,γ = λ−d/p‖(λdf̂(λ·)(1 + λ2| · |2)γ/2)∨‖p

≤ Cλ−d/p+max(0,γ)‖(λdf̂(λ·)(1 + | · |2)γ/2)∨‖p

= Cλ−d/p+max(0,γ)‖f(λ−1·)‖Lp,γ for any f ∈ Lp,γ,

where C is a positive constant independent of f and λ. 2
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Proposition A.3 Let 1 < p <∞ and −∞ < γ < r <∞. Then

lim
n→∞

2nγ‖hn ∗ f‖p = 0 (A.7)

for any h ∈ Dr and f ∈ Lp,γ, where hn = 2ndh(2n·), n ≥ 0. Conversely, if

h−1 ∗ f ∈ L
p (A.8)

for any function h−1 ∈ D, and if

2n(γ+δ)‖hn ∗ f‖p, n ≥ 1, (A.9)

is a bounded sequence for some positive constant δ and any h ∈ Dr, then f ∈ Lp,γ.

Proof. For any h ∈ Dr and g ∈ D, set mn,1(ξ) = ĥ(2−nξ)(1 + |ξ|2)−γ/2 and

mn,2(ξ) = ĥ(2−nξ)g(ξ). Let N be a sufficiently large constant chosen later. By direct

computation, for any α ∈ Zd
+ and some positive constants Cα, we have

|Dαĥ(ξ)| ≤




Cα min(1, |ξ|r−|α|) if |ξ| ≤ 1

Cα|ξ|
−N if |ξ| ≥ 1.

Let Cg be a positive constant chosen so that g(ξ) = 0 for all ξ with |ξ| ≥ Cg. Therefore,

for all ξ ∈ Rd and α ∈ Zd
+,

|Dαmn,1(ξ)|

≤ Cα,1

∑

β≤α

2−n|β||(Dβĥ)(2−nξ)|(1 + |ξ|)−γ−|α|+|β|

≤





Cα,22
−nγ|ξ|−|α|

∑
β≤α(2−n|ξ|)−N+|β|−γ if |ξ| ≥ 2n

Cα,22
−nγ|ξ|−|α|

∑
β≤α min(1, (2−n|ξ|)r−|β|)(2−n|ξ|)|β|−γ if 1 ≤ |ξ| ≤ 2n

Cα,2
∑

β≤α 2−n|β| min(1, (2−n|ξ|)r−|β|) if |ξ| ≤ 1

≤ Cα,32
−nγ(1 + |ξ|)−|α|,

and

|Dαmn,2(ξ)| ≤ Cα,4

∑

β≤α

2−n|β||(Dβĥ)(2−nξ)| × |Dα−βg(ξ)|

≤




Cα,5

∑
β≤α 2−n|β| min(1, (2−n|ξ|)r−|β|) if |ξ| ≤ Cg

0 if |ξ| ≥ Cg

≤ Cα,62
−nr(1 + |ξ|)−|α|,
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where Cα,i, 1 ≤ i ≤ 6, are positive constants independent of n and ξ. Thus, by the

classical multiplier theorem ([20]), there exists a positive constant C such that

‖(mn,1f̂)∨‖p ≤ C2−nγ‖f‖p (A.10)

and

‖(mn,2f̂)∨‖p ≤ C2−nr‖f‖p for all f ∈ Lp and n ≥ 0. (A.11)

For any f ∈ Lp,γ and any positive constant ε less than one, we may write

f = f1,ε + f2,ε (A.12)

such that f̂1,ε has compact support and ‖f2,ε‖Lp,γ ≤ ε‖f‖Lp,γ . Let H be a Schwartz

function chosen so that Ĥ has compact support and Ĥ(ξ) = 1 on {ξ : |ξ| ≤ 1},

and set Hδ = δ−dH(δ−1·). Then limδ→0 ‖Hδ ∗ f − f‖Lp,γ = 0 for any f ∈ Lp,γ. So

we need only choose f1,ε = Hδ ∗ f for some sufficiently small positive constant δ. By

letting δ1 be chosen so that f1,ε is supported in |ξ| ≤ δ−1
1 , and using (A.11) with

g(ξ) = (1 + |ξ|2)−γ/2Ĥ(ξ/δ1),

‖hn ∗ f1,ε‖Lp,γ = ‖(mn,2f̂1,ε(1 + | · |2)γ/2)∨‖p ≤ Cε2
−nr‖f‖Lp,γ (A.13)

for some positive constant Cε independent of n. By (A.10), there exists a positive

constant C independent of ε and n such that

‖hn∗f2,ε‖Lp,γ = ‖(mn,1f̂2,ε(1+ | · |2)γ/2)∨‖p ≤ C2−nγ‖f2,ε‖Lp,γ ≤ C2−nγε‖f‖Lp,γ . (A.14)

Recall that ε can be chosen arbitrary small. Then (A.7) follows from (A.12), (A.13)

and (A.14).

Let ψ−1 and ψ0 be Schwartz functions such that ψ̂−1 is supported in {ξ : |ξ| ≤ 1},

ψ̂0 is supported in {ξ : 1/2 ≤ |ξ| ≤ 2}, and

∞∑

n=−1

ψ̂n ≡ 1 on Rd, (A.15)

where ψn = 2ndψ0(2
n·), n ≥ 0. Let h−1 ∈ D and h0 ∈ Dr be chosen so that ĥ−1(ξ) 6= 0

on {ξ : |ξ| ≤ 2} and ĥ0(ξ) 6= 0 on {ξ : 1/4 ≤ |ξ| ≤ 8}. Define ψn,γ, n ≥ −1, by

ψ̂n,γ = ψ̂n(1 + | · |2)γ/2. By direct computation, for all f ∈ Lp and n ≥ 0, we have

‖ψ−1,γ ∗ f‖p ≤
∥∥∥
(
ψ̂−1(ĥ−1)

−1(1 + | · |2)γ/2
)∨∥∥∥

1
‖h−1 ∗ f‖p ≤ C‖h−1 ∗ f‖p (A.16)

and

‖ψn,γ ∗f‖p ≤
∥∥∥
(
ψ̂0(2

−n·)h0(2
−n·)−1(1+ | · |2)γ/2

)∨∥∥∥
1
‖hn ∗f‖p ≤ C2nγ‖hn ∗f‖p, (A.17)
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where C is a positive constant independent of n and f . Combining (A.8), (A.9), (A.15),

(A.16), and (A.17) leads to

‖f‖Lp,γ ≤ C1

∞∑

n=−1

‖ψn,γ ∗ f‖p ≤ C2

∞∑

n=−1

2−nδ <∞,

where C1 and C2 are positive constants. This proves that f ∈ Lp,γ under the assumption

that (A.8) and (A.9) hold. 2

Proposition A.4 Let 1 < p <∞, −∞ < γ <∞, and let K be a compact set of Rd.

Then (Lp,γ, Lp,γ(K), `p) is a stable shift-triple.

Define the usual Kronecker symbol δ by δst = 1 if s = t and δst = 0 otherwise.

To prove Proposition A.4, we need another definition of the fractional Sobolev space

Lp,γ, which follows easily from the classical Littlewood-Paley theory ([24]), and a result

about functions having stable shifts ([22]).

Lemma A.5 ([24]) Let 1 < p < ∞,−∞ < γ < ∞ and r > |γ| + d. Let ψ−1 ∈ D

and ψ0 ∈ Dr satisfy
∑∞

n=−1 |ψ̂n(ξ)|2 ≥ C0 for all ξ ∈ Rd, where ψn = 2ndψ(2n·), n ≥ 0.

Then there exists a positive constant C such that

C−1‖f‖Lp,γ ≤
∥∥∥
( ∞∑

n=−1

22nγ |ψn ∗ f |
2
)1/2∥∥∥

p
≤ C‖f‖Lp,γ .

Lemma A.6 ([22]) Let φ1, . . . , φM be compactly supported distributions having sta-

ble shifts. Then there exist functions ψs ∈ D, 1 ≤ s ≤ M , and a sequence P =

(ps(j))j∈Zd ∈ `0 such that F(P )(ξ) 6= 0 for all ξ ∈ Rd, and

〈φs, ψt(· − j)〉 = δstp(j) for all j ∈ Zd.

Proof of Proposition A.4. For any f ∈ Lp,γ(K) and any D = (d(j))j∈Zd ∈ `p,

set g =
∑

j∈Zd d(j)f(· − j). Let r, ψ−1 and ψ0 be chosen as in Lemma A.5. Then

ψn ∗ f, n ≥ −1, are supported in a compact set independent of n. This implies that

(
∑∞

n=−1 22nγ|ψn ∗ f |
2)1/2 is compactly supported. Therefore,

‖g‖Lp,γ ≤ C1

∥∥∥
( ∞∑

n=−1

22nγ|ψn ∗ g|
2
)1/2∥∥∥

p

≤ C2

∥∥∥
∑

j∈Zd

|d(j)|
( ∞∑

n=−1

22nγ|ψn ∗ f(· − j)|2
)1/2∥∥∥

p

≤ C3‖D‖`p

∥∥∥
( ∞∑

n=−1

22nγ|ψn ∗ f |
2
)1/2∥∥∥

p

≤ C4‖D‖`p‖f‖Lp,γ ,
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where Ci, i = 1, 2, 3, 4, are positive constants independent of D ∈ `p. This proves that

(Lp,γ, Lp,γ(K), `p) is a bounded shift-triple.

Let f1, . . . , fM ∈ Lp,γ(K) have stable shifts, and Ds = (ds(j))j∈Zd ∈ `p, 1 ≤ s ≤ M .

Then

g =
M∑

s=1

∑

j∈Zd

ds(j)fs(· − j) ∈ Lp,γ (A.18)

because (Lp,γ, Lp,γ(K), `p) is a bounded shift-triple. By Lemma A.6, there exist ψs ∈

D, 1 ≤ s ≤M , and P = (p(j))j∈Zd ∈ `0 such that

〈ψs(· − j), ft〉 = δstp(j) for all 1 ≤ s, t ≤M and j ∈ Zd, (A.19)

and

F(P )(ξ) 6= 0 on ξ ∈ Rd. (A.20)

Let γ̃ be the minimal nonnegative integer larger than or equal to −γ/2. By (A.19),

∑

j′∈Zd

ds(j
′)p(j − j ′) = 〈ψs(· − j), g〉 = 〈(1−4)γ̃ψs(· − j), (1−4)−γ̃g〉. (A.21)

Hence,
( ∑

j∈Zd

∣∣∣
∑

j′∈Zd

ds(j
′)p(j − j ′)

∣∣∣
p)1/p

≤ ‖(1−4)−γ̃g‖p‖(1−4)γ̃ψs‖L∞ <∞, (A.22)

where the last inequality holds because of (1.13) and the fact that (1−4)γ̃f ∈ D for

any f ∈ D. Write (F(P )(ξ))−1 =
∑

j∈Zd r(j)e−ijξ. Then the sequence (r(j))j∈Zd decays

exponentially by (A.20), i.e., there exist positive constants C and δ independent of j

such that

|r(j)| ≤ Ce−δ|j| for all j ∈ Zd. (A.23)

Moreover, from the definition of the sequences (r(j))j∈Zd it follows that

∑

j′∈Zd

r(j − j ′)p(j ′) =





1 if j = 0

0 if j 6= 0.
(A.24)

By (A.23) and the assumption that (ds(j))j∈Zd ∈ `p,

∑

j′,j′′∈Zd

|r(j − j ′)ds(j
′′)p(j ′ − j ′′)| <∞ for all j ∈ Zd and 1 ≤ s ≤M.

This together with (A.24) lead to

∑

j′∈Zd

r(j − j ′)
( ∑

j′′∈Zd

ds(j
′′)p(j ′ − j ′′)

)

=
∑

j′′∈Zd

ds(j
′′)

∑

j′∈Zd

r(j − j ′′ − j ′)p(j ′) = ds(j) (A.25)
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for all j ∈ Zd and 1 ≤ s ≤ M . Hence by (A.22), (A.23) and (A.25), there exists

a positive constant C independent of Ds ∈ `p, 1 ≤ s ≤ M , such that ‖g‖Lp,γ ≥

C
∑M

s=1 ‖Ds‖`p. This proves that (Lp,γ, Lp,γ(K), `p) is a stable shift-triple. 2
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