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1 Introduction

Fix a real-valued sequence ¢ = {c(n)}>_, with cocy # 0 and X0 c(n) =
2. Define an operator T, associated with the sequence ¢ on the space of
compactly supported distributions by

T.f = E_:OC(n)f(Q - —n). (1.1)

For any given compactly supported nonzero distribution f; as an initial,
define

fe=Tefr—1, k=1 (1.2)

inductively. The iterative scheme above is called as cascade algorithm.

Let ¢ be the normalized solution of such a refinement equation

¢ = 2_:00(”)(/5(2 L), (1.3)

which means ¢ is a compactly supported distribution, and satisfies (1.3) and
$(0) = 1 (The proofs of the existence and uniqueness of the normalized
solution of the refinement equation (1.3) can be found in [D] or [CDM]).
Hereafter the Fourier transform f of an integrable function f is defined by

f&) = |1, fa)e

and the one of a compactly supported distribution is understood by usual
interpretation. The compactly supported distribution ¢ above is called re-
finable distribution.

Obviously ¢ is invariant under the operator T, i.e.,

Tc¢ = ¢

In particular any compactly supported distribution invariant under 7, can
be written as C'¢ for some constant C'.

By taking Fourier transform at both sides of (1.3), we have

) = () (1.4



and hence i
=[[HE@7Od2 ") =] HE2
j=1 j=1

by using (1.4) for k times and letting & tend to infinity, where trigonometrical
polynomial H (&), symbol of the refinement equation (1.3), is defined by

1
S 7zn§ 1
5 nzjo : (1.5)
Similarly by taking Fourier transform at both sides of (1.1), we obtain
" g k
fe(€) = H(3) H 279€) x fo(27%¢). (1.6)

Thus f;, converges to fo( )é uniformly on any compact set of the complex
plane. Hence f, = TFfy,k > 1 converges to fo(0)¢ in distributional cases.
So fr may be thought as certain approximation of the normalized solution
¢ of the refinement equation (1.3) if fo(0) # 0. At almost all practical
applications, the convergence in distributional sense is not good enough. For
instance, in the application to computer graphic we are interested in the
bounded solution of the refinement equation (1.3) and uniform convergence
of fx,k > 1. Unfortunely for a function space X it is not always true that
fr converges in X even if the initial fy € X and the refinable distribution
»e X.

Example 1 Let X = L1 < p < oo, the sequence ¢; = {c;(n)} be
defined by
1, n=0,1,6,T,
ci(n) =4 =1, n=3,4,
0, otherwise,

and the initial fy be

1—z|, ze[-1,1],
0, otherwise,

fo() :{

where LP denotes the space of all p-integrable functions. Then f; does not
converge in X (see [CDM], [J1]).



Generally let X be a linear topological space with continuous embedding
to the space of all tempered distributions. Most familiar examples of the
space X are LP with 1 < p < oo, Sobolev spaces H®, Besov spaces By,
and Triebel-Lizorkin spaces I (The precise definitions of Besov spaces and
Triebel-Lizorkin spaces will be defined later). The problem about conver-
gence and boundedness of the cascade algorithm may be proposed as the
following:

Problem. Let X be an appropriate function space and let fr,k > 1 be
as in (1.2). Does fy converge in X and is fy, bounded in X ? How fast does
fr converge in X when fi converges in X and how big does f; increase when
fr is not bounded in X ?

For the cascade algorithm, there is a much large literature about its con-
vergence in various spaces (for instance [J1] for LP,1 < p < oo, [GMW],

[CDM] as well as [St] for L?, [LLS], [Sh] and [GL] for L? of the matrix cas-
cade algorithm with a general dilation matrix, and [JJL] for Sobolev spaces).

In this paper, we shall consider the rate of convergence and increment of
the cascade algorithm in Besov spaces and Triebel-Lizorkin spaces. To state
our results, we introduce some definitions and notations.

For —o0o < a < 00,0 < p,q < oo, Triebel-Lizorkin space F', is the set of
tempered distribution f such that its quasi-norm ||f||zo, defined by

9155, = 12O 70) ], + (2| (e 7)),

is finite, and Besov space By, is the set of tempered distribution f such that
its quasi-norm || f||ps defined by

£, = [ (@70) ], + (2] (¥ 70) )™

is finite, where ||f|l, = (fR |f(z)[Pdz)"/?, fV denotes the inverse Fourier
transform of f and {¥,®} are Schwartz functions such that



e U is supported in [—47m, —7] U [7, 47| and ® is supported in [—27, 27].

~ ~

¢ DO+ L U2 =1, VEER.

The topologies of F*, and B, are induced by the quasi-norms || - ||re, and
|- || 32, respectively. The Bessel potential spaces W) = F},,1 < p < 00,1 >0

defined by
L ={f. f.f,---, fOeL?}

and Sobolev spaces H* = By'y, —00 < a < oo defined by

H = {f; | f = = ( fi, IF©F(L+ [€)*d)'”” < o0}

are two special and very practical function spaces. The reader can refer to
[T] for properties of Besov spaces and Triebel-Lizorkin spaces.

In this paper, we always set X7 = B or F} with —0o < o < 00 and
0<p,qg<oo.

For a compactly supported distribution f, define its characteristic trigono-
metrical polynomial P(f)(§) by

PAE) = TI (e7—emoy e (L.7)

606(77“71—]

where #(f, &) is the maximal integer such that DLf (& + 2nm) = 0 holds for
all 0 <1 < k(f,&) — 1 and all integers n with £ + 2nm # 0. Observe that
there is only finite {, € (—m, 7] such that x(f,&) > 1. Then the product at
the right hand side of (1.7) is well-defined.

For the symbol H (&) of the refinement equation (1.3), define its charac-
teristic trigonometrical polynomial P(H)(§) by

P = [ (¢ - ere)ne (1.8

506(77“71—]

where ((H, &) is the maximal integer such that (%)C(H@) is a factor

of H(&). It is proved in [R] (see also [JW] and [CS]) that
P(H)(&) = P(6)(§)- (1.9)



Define characteristic trigonometrical polynomial of the cascade algorithm by

P(f[], H) (6) = H (eii5 — 677:50)min(g(Ha§0)a’ﬁ(f0:§0))_ (110)

606(771—77@

Obviously P(fy, H) is just a maximal common factor of P(fy) and P(H).

For —oco < 3 < o0, set

A(B, fu, X) = 27| fr. — co|x,

where

C:{ fo(0), 8>0,
0, B <0.

It is reasonable to use A(f3, fi, X) to measure convergence and boundedness
of the cascade algorithm. In particular, A(3, fz, X) with 3 > 0 can be inter-
preted as the rate of convergence of the cascade algorithm, and A(f3, fi, X)
with 3 < 0 as the rate of increment of the cascade algorithm. Recall that ¢
is invariant under the operator 7,. So we shall assume that f3(0) = 0 when
£ > 0 if unspecified.

For a trigonometrical polynomial P(§) = ¥,cz dne ™, define a quasi-
norm ||P||3,0 < p < oo by |P[l; = (Lnez dal?) /7

In this paper, we shall prove the following characterization of convergence
and boundedness of the cascade algorithm in Fourier domain. The charac-
terization by using joint spectral radius on a finitely dimensional space, the
close relationship between convergence and boundedness of the cascade al-
gorithm and the regularity of the corresponding refinable distribution, and
the application to the existence of compactly supported solutions of nonho-
mogeneous refinement equations in Besov spaces and Triebel-Lizorkin spaces
will be given in Part II.

Theorem 1.1 Let0 < p,q < 0o, —00 < a, # < 00 and let fo, ¢ and P(fo, H)
be defined as above. Suppose that the compactly supported distribution fo €
X2 satisfies fo(0) =0 if 8 > 0. Then we have

p.q

6



(1) limy, .o A(B, fr, X,) = 0 if and only if

D'fo(0)=0, Y0<~y<p (1.11)
and
k—1
lim (et FHI=1/Pk| Py, H) (&) [T HO)|I; = 0. (1.12)

(2) Suppose that Dﬁfg(O) = 0 if 8 is a positive integer. Then A(B, fr, X,,)
is bounded if and only if D7 f3(0) = 0 holds for all 0 < v < (3 and

S5 1-U0k  p(1, B1)(E) T HEIE)I

§=0
18 bounded.

(3) Suppose that (3 is a positive integer and DP fo(0) # 0. Then A(3, f, X5
is bounded if and only if ¢ € X8 D7 fo(0) = 0 holds for all0 < v < 3

Pa
and kol
et HHLDE| P fo, H)(€) [T H2E);
7=0
18 bounded.

Example 1 (continued) By computation, we have

1 i : :
H(E) = 1= e )
and P(fy, H)(¢) = (e7% — 1). Hence there exists a constant C' such that
k=1 k=1 ) k=1
2 PO T H@ O, < [IP(fo, H)(E) [T H2O), < 27"C|l [T H2);,
=0 =0 =0

where H(¢) =1 — e % + ¢ %€ = (1 4+ ¢ %) /(1 + ¢ 7). By computation, we
get

k—1 _2k: 5 —2k+1i§ 2k+1_2

~ I+e™“ % +e ;
l I H(27¢) = — E : —il€
j=0 (2¢) = l+e € fe2ic =0 e



where
le3%, 0<1<2k—1,

l—1€3%Z, 0<1<2k—1,
0, | —2€3%Z, 0 <1<2k—1,
Qoks1_g_y, 28 <[ <KL 9,

a; =

Thus o
(4/3)17 (2" =)' < || TT HZO) |l < 27 (2" —1)'/7.
5=0
Hence for 1 < p < oo, fi converges in XY, with a < 0, is bounded in L?, but
does not converge in L? by Theorem 1.1.

Observe that

k
T H @9l < C27(sup [H()])"
j=0 teR

Then by Theorem 1.1 we have

Corollary 1.2 Let 0 < p,q < 00, —00 < v < 00. Then we have

(1) ]]j fr is bounded in X, then fi converges to fo(0)¢ in Xi’q for all
o < a.

(2) If fr converges to fg(())qﬁ in X, and fo € Xg"'q for some o' > «, then
there exists 6 > 0 such that f converges to fo(0)¢ in X;j;‘s :

(3) If fo € Xpg and a < —1—=Inysup, g |H(E)|. Then fi always converges
to fo(0)¢ in X&,.

Hence boundedness of the cascade algorithm in a Besov space or a Triebel-
Lizorkin space implies convergence of the cascade algorithm in Besov spaces
or Triebel-Lizorkin spaces with lower index of regularity, and convergence of
the cascade algorithm in a Besov space or a Triebel-Lizorkin space implies
convergence of the cascade algorithm in Besov spaces or Triebel-Lizorkin
spaces with little higher index of regularity provided that the initial is regular
enough. By Corollary 1.2. we also see that the cascade algorithm always
converges when the index of regularity of Besov spaces and Triebel-Lizorkin

8



spaces is sufficiently small. Of course convergence of the cascade algorithm
in such a function space is better than the one in distributional sense, though
it seems still not good enough for practical application.

The paper is organized as follows. In Section 2, some necessary conditions
on the initial fy and the refinable distribution ¢ of the cascade algorithm, and
on the rate of increment of the term || P(fo, H)(€) [Tj_o H(27€)||; are given
(Theorems 2.1 and 2.2). From Theorem 2.1, we see that certain regularity
of the refinable distribution ¢ is always necessary for us to study conver-
gence and boundedness of the cascade algorithm even if f; tends to zero in

distributional sense. This result is still new even for X;"q = [P.

In Section 3, we prove some sufficient conditions to the convergence and
boundedness of the cascade algorithm (Theorem 3.1) and give the proof of
Theorem 1.1. The main ideas to prove Theorem 3.1 are the estimates of
Py(fr) and Qo(fx) in Lemma 3.2 and the identities

{ Qu(fr) = THQo(fr—1)), 1<k,
Qi(fi) = TFQi—r(fo)), 1>k,

where @, > 0 and P, are projection operators of a multiresolution (see
Lemma 3.2 for precise statement).

2 Necessary Conditions

In this section, we shall give some necessary conditions to the convergence
and boundedness of the cascade algorithm. In particular, we shall prove the
following results.

Theorem 2.1 Let p,q,«, 3, fo be as in Theorem 1.1. Suppose that fg(O) =0
if 8> 0. Then we have

(1) If limg o A(B, fi, X2) = 0, then ¢ € X4F and

D' fy(0)=0, Y0<~<g. (2.1)



(2) If A(B, fr, X, ,) is bounded, then ¢ € X;:oﬂ and
Dfo(0)=0, VO0<y<g. (2.2)

(3) If A(B, fr, X5,) is bounded, (8 is a positive integer and Dﬁfg(O) # 0,

p

then ¢ € X;‘;g.

Theorem 2.2 Let p,q,, B3, fo, P(fo, H) be as in Theorem 1.1. Suppose that
fo(0) =0 if > 0. Then we have

(1) If limy oo A(B, f5, X2,) = 0, then

k—
lim latBHL=L/Pk| P(fy, H)(E) HIH(QJ{)H; = 0. (2.3)
—00 =0

2) If A(B, fr, X2,) is bounded, then there exists a constant C' independent
Py
of k > 1 such that
k—1 ,
1P (fo, H)(€) [T H(2E)|; < C2-(#o1=tmk, (2.4)

Jj=0

Remark. The second assertion in Theorem 2.1 can not be improved in
general. For example, ¢ = 6(-) —6(- — 1) +6(- — 2) is the normalized solution
of the refinement equation

¢ =20(2-) = 2¢(2- —1) +2¢(2- —2),

where 6(-) is the delta distribution. Obviously ¢ € By/2~" and ¢ ¢ BL/P~!
for any 0 < ¢ < co. By choosing the initial fo = xp0,11(®) — X[o11(z — 3), we
obtain

fr(x) = 2'“)([0,27;@](:5) — 2’“)([243,24@“}(:6) + 2'“)([0,24@](:6 -1)
—2kX[27k,27k+1}(1‘ - 1) + 2kX[0’27k}(1‘ - 2) - 2kX[27k’27k+1](5L' - 2)

and

||fk||B;,/qp,1 < C||2kX[o,2—k}(l")—2kX[2—k,2—k+1](l")||B;{qza—1

10



< Clixpy() = xp(@ — 1)||Bl/p—1

— e 27)2 v g\ 1/q
+C(22 1/p— lqu( (2~ é‘)g k; ) ) Hp)l/

< CHX[O,H(”U)“B;{;H + (Eg—(l/p—l)qu({f,(ng) X %) H )1/q
1=0

k
< C+0(3 271 < o
=0

where the last inequality follows from the fact that there exists a constant
Ck for any K > 0 such that

(B (1= )2/() ()] < Cr2 (1427 2 ) K

Hence A(0, fg, By/P~') is bounded.

2.1 Proof of Theorem 2.1

To prove Theorem 2.1, we need a multiplier theorem and a characterization
of Besov spaces and Triebel-Lizorkin spaces by using projection operators
Q1,1 > 0 and Py of a multiresolution in [MS]. The advantage to use projection

operators Pyf and Q,f,1 > 0 instead of (®(-)f())" and (¥(27%)f(-))", k>0
is that @Q;f,] > 0 and P,f are also compactly supported if f is and their
supports are contained in a fixed compact set independent of [ > 0.

Lemma 2.3 Ifm is a smooth function with supp m C (—m, ) and [ satisfies
supp f C [—=m /2,7 /2], then there ezists a constant C' independent of f such
that

1) llp < ClIf Nl

Proof. By the assumption on m and f, we have
=Y m“(n)e " f().
neZ

Hence

= > m'(n)f(z—n)

ne#

11



and A | |
[(mf)V ||, < C(S |mY (n)|min@D)/ mint.1)

neZ

|fllp < ClIflp-
)

To state the characterization of Besov spaces and Triebel-Lizorkin spaces
by projection operators of appropriate multiresolution in [MS], we need the
concept of a multiresolution (see [D]). A multiresolution is a family of closed
subspaces {V;}ez of L? such that

a) MiezV; = {0} and Uiz V] is dense in L?;
b) ic Vi, VIeZ;

c¢) There exists a function ®* in Vj such that {2/2&M“(2!. —k): k € Z}
is an orthonormal basis of V; for all [ € ZZ.

Here we say that {®MY(. — k), k € Z} is orthonormal if

Mul Mul(,. _ 1, k=0,
/]Rq> () DM (1 k)dx_{o, L 20

The function ®M“! in c) is called a scaling function of the multiresolution.
For [ > 0, denote the orthogonal complement of V; in V;;; by W;,. Then
there exists mother wavelet W% € W, such that {220 (2!. —k); k € Z}
is an orthonormal basis of W;. It is well known that for any 7 > 0 there
exists a scaling function ®* and a mother wavelet UM“ of a multireso-
lution such that they are orthonormal, compactly supported and belong to
Holder class C7. Here we denote the Holder space with Holder exponent 7
by C7. In particular we only need to choose Daubechies’ scaling functions
and corresponding mother wavelets with their parameter sufficiently large
(see [D]).

In this paper, we always use the scaling function ®"* and mother wavelet
UMul which are orthonormal, compactly supported and in Holder class C™
with 7 sufficiently large. For such scaling function ®* and mother wavelet
UMul - define projection operators P, and Q;,1 > 0 by

Pif(x) =2" 3 (f, @M (2" —n))@"(2'z —n) (2.5)

neZ

12



and

Quf (x) =2 > (f, oM 2t —n) )T (2 — n), (2.6)

neX

where (f,g) = [r £(£)3(€)d¢ when f(£)§(€) is integrable.

Lemma 2.4 ([MS]) Let 0 < p,q < 00,—00 < «a < +00, and let P, and
Q1,1 > 0 be as in (2.5) and (2.6). Assume that @M gMul ¢ CT 7 >
la] + 1 4+ max(1,1/p,1/q), and that f is compactly supported distribution.
Then f € F, if and only if

1Pofllp + 11032 291 Quf 194l < oo,

1>0

and f € By, if and only if

1Pof[lp + (3 2| Quf 1[5 < oo.

1>0

Lemma 2.5 ([MS]) Let 0 < p,q < 00,—00 < o < 400, and let Q1 >
0 be defined as in Lemma 2.4. Then for the normalized solution ¢ of the
refinement equation (1.3), the following statements are equivalent to each
other.

(i) ¢ € Fy,.
(ii) ¢ € By,
(idi) limy_oo 2| Quf ||, = 0.
(iv) There ezist constants C and 0 < r < 1 independent of | > 0 such that

2Qufll, < Crl, Y I1>0.

Proof of Theorem 2.1. Let Iy be the minimal positive integer such
that D" f,(0) # 0. Then

~ lo f
foe) = 22Oty oetorny ¢ g, (2.7)

lo!

13



Thus by (1.6) and (2.7), we obtain

I@OAD T, = [(®060) % J;Eg_;)))v“p
IOyt (o)), + 0208,k — o

By definitions of Besov spaces and Triebel-Lizorkin spaces, we have

I(

KHY)

S, < ez,

Hence
9 =Bk 0, k— o0

and [y > 3 if hmm A(B, fr, X2,) =0, and 270~k is bounded and I, >
if A(B3, fx, X;,) is bounded. ThlS proves (2.1) and (2.2).

To prove that ¢ € X;‘:{ﬁ under the assumption limy .., A(3, fi, X;';) = 0,
we introduce auxiliary functions G' and G'; which satisfy

e (G and Gy are Schwartz functions,

e G(6),G1(&) >0
e G and G4 are supported in (—dm, —7| U [, 47),

o Yz G(27) =1, ¥V € € R\{0},
e G1(€) =1 on the support of G.
Then for any K € Z

2eFMN(GL2TE) frer () llp < A, fir, Xp) = 0, 1= 00

by the assumption. Let K > 1 be an integer chosen that |f0( &)| and ()]
are bounded below from zero on [-2~* %7, —2"%7] U [2 K7, 27K+ 1], The
existence of such an integer K follows from the facts that d) and fo are analytic
functions and ¢(0) = 1. Set

m(€) = G(E)p(275€)/ fo(277¢).

14



Then m is a Schwartz function with supp m C (—4r,—n| U |7, 47) and
furthermore

G(27'€)3(€) = m(27'€)G1(27€) firx (9).

By Lemma 2.3, we have
2CDN(G27)0()) Iy < C2(G 2T frex ()l — 0, 1= oo

Let @;,l > 0 be the projection operators in Lemma 2.4. Then by usual

estimate, we get
2 NQull, — 0, 11— o0

and furthermore by Lemma 2.5 there exist constants C' and 0 < r < 1 such
that
2D Qugll, < O,

Hence ¢ € X;‘;ﬁ and the second assertion is proved.
The assertion ¢ € Xl‘j‘,jf under the assumption that A(S, fi, X)) is

bounded can be proved by the same procedure used above. We omit the
detail here.

Now we start to prove that ¢ € Xsz;ﬁ under the assumptions that

A(B, fr, X,,) is bounded, 3 is a positive integer and D?f,(0) # 0. By (1.6)
and (2.2), we have

_ 99274 Dfo(0) 55

2% fy(€) o g8 o), koo
Hence )
IGO0 - ZBO a0, — 0, koo
and )
b)) - 2RO g0, 0, ko

for all [ > 0. Thus

~

H@CYBD I, + 11 29| (B (2 )d() ),

1>0

15



C+ O[22 (B (2 ) (P[],

1>0

C+C Jim (2| (B2 )00,

IN

IN

L -

. . agl| (T (o—l \oBk f Vigy1/q
C+CL1£201}E§0H(§2 CIwE)27 ()DL
C +sup 27| fill gy, < C

E>1 '

IN

IN

1 [0 _ (63
in the case X' = F , and

~

1@, + (ZZ 2D (B (2 1)) | |2)

. . agl|| (T (o=l \oBk 7 Viiay1/
< C+OL1LH;O,}£§O(§2"II(\P(2 D27 () 115

< C+Csup2”™||fillss,
k>1
: _ +
in the case X', = By . Hence ¢ € ngﬂ by Lemma 2.4. &

2.2 Invariant Ideal and Proof of Theorem 2.2

To prove Theorem 2.2, we need a sampling theorem, stability lemma and
result about invariant ideal of trigonometrical polynomials.

Lemma 2.6 Let 0 < p < oo. If f is a compactly supported distribution with
its Fourier transform supported in [—7m/2,7/2], then there exists a constant
C' such that
_ 1/p 1/p
(@) <l < (X 1rmPr) "

neZ ne#4

(2.8)

The lemma above is called sampling theorem (see [T]).

‘We say that the integer translates of a tempered distribution f is stable
if f is continuous and Ny (f) = 0 , where

NR(H)={¢€R, f(¢+2nm)=0, VnelZ (2.9)

16



Lemma 2.7 Let f be a Schwartz function with its Fourier transform being
compactly supported. Assume that the integer translates of f are stable. Then
there exists a constant C' such that

(1)) < IS dm)f(a—n)l, < 0( X 1dm)p)"". (210

neZ nex4 neEX

The stability lemma above can be proved under weak assumption on f
(see [JM] and references therein). For the perfection of this paper, we include
a new proof.

Proof. By Lemma 2.6, it suffices to prove that

Ko—1 l

2 ldm)lP<C led(S)f(fOH—S)l”

ne#4 =0 t€Z scZ

where K is a positive integer such that supp f C [— Ko7 /2, Ko7 /2]. Observe

that
l

> d(s)f (- +1- s)e = d()F(f,1)(€),

teEX sEX

where d(£) = Y e d(s)e ¢ and
P(£,0(€) = 3 F(€+ 2ms)e(eramt/io,

SEZ

Then it suffices to prove that for any & € [—m, 7| there exists 0 <[ < Ky — 1
such that F(f,1)(&) # 0.

Suppose to the contrary that there exists &, € [—m, 7| such that

Then

S f(&o+2ml 4+ 2nKps) =0, V0 << Ky—1.

SEXL
By the stable assumption on f, there is sq € Z such that f(fo + 2s¢m) # 0.
Let 0 <[ < Kj —1 be the unique integer such that (I — sy)/K, is an integer.
Then by the construction of Ky we have

S f(€o + 27l + 27K ps) = f(Eo + 2s0m) # 0,

SEXL

17



which is a contradiction. &

For —o0 < v < 00,0 < p < o0 and trigonometrical polynomial H with
H(0) =1, let Vy(H,~,p) be the set of all trigonometrical polynomials P(¢)
such that

k—1
lim 2% PE) TT HR O, =0,
7=0

and let V;(H,,p) be the set of all trigonometrical polynomials P(£) such

that 27%||P(€) H;?;é H(27E)||s is bounded. Define operators B.(H),e = 0,1

on the space of trigonometrical polynomials by

_ 8 8 it g § e/

B.(H)P(&) _H(§)P(§)e +H(§+7T)P(§+7T)6 , €=0,1.
(2.11)

Lemma 2.8 Let —00 < 7 < 00,0 < p < 00 and let Vy(H,v,p) and V1 (H, v, p)
be defined as above. Then Vo(H,~,p) and Vi(H,~,p) are ideal of the ring
of trigonometrical polynomials, and are invariant under operators By(H)
and By(H). Furthermore P(H) € Vo(H,~v,p) if Vo(H,v,p) # {0} and
P(H) S Vl(va)/vp) ifVl(H,’y,p) 7A {0}

Proof. It is easy to check that Vy(H,~,p) and V;(H,~,p) are ideal of
the ring of all trigonometrical polynomials, and invariant under By(H) and
By (H). Hence it remains to prove that P(H) € Vy(H, v, p) (resp. Vi(H, 7, p))

if Vo(H,v,p) # {0} (resp. Vi(H,v,p) # {0} ).

Let P, be a nonzero trigonometrical polynomial in Vy(H,~, p), and let
MC(P,, P(H)) be amaximal common factor of Py and P(H). Then it suffices
to prove that MC(Py, P(H))(§) € Vo(H,,D).

Write
Py(€) = MC(Py, P(H))(€) P (€)
and
MC(P, P(H))(2§) -

1O = gamrmnictm, P

18



where a(Py, P(H)) is the maximal integer such that (e~ — 1)*(P0-PU1) jg 5
factor of MC(FPy, P(H))(§). Then Py # 0, H(0) = 1 and any common factor
between P(H) and P, is a constant. By computation, we have

H (27¢) = 2 FFoPI) Py () MC(Py, P >>(2’“£>ﬁlﬁ<2jg)

Thus Py € Vo(H, v —a(Py, P(H))) by the fact that there exists a constant, C'

such that

C Y Ro(€) ﬁoff@js)n; < | Bo(&)MC(Py, P(H))(2%) ﬁomzfs)n;;

< CR(E) [T HEE)3-

J=0

Observe that

MC(Py, PN () T] HEZE) = 2 Pr i e(py, p(I)) 5 ] H(2'6)

j=0 Jj=0
Then MC(Py, P(H))(§) € Vo(H,~,p) reduces to
1€ Vo(H, v — a(Py, P(H)), p). (2.12)
~ Now we start to prove (2.13). First we show that for any § € R with
Py(&) = 0 there exists [p > 1 and €; € {0,1},1 < j <, such that
Be,(H)Be,(H) -+~ Ba, (H)Po(&0) # 0.

Suppose to the contrary that there exists & € R such that ]50(50) =0 and

B, (H)Beo,(H) -~ By (H)Py(&) =0, Ve e {01}, 1<j<l  (213)

Let ¢ be the normalized solution of the refinement equation (1. 3) with cor-
responding symbol H(€). Then it can be proved that & ¢ N]R( ) under the
assumption Py(£y) = 0 and any common factor of Py and P(H) is a constant.
Furthermore there exists an integer [y such that & + 2wly # 0 and

55(50 + 2lpm) # 0. (2.14)
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By computation, we have

~ !
Bo()(21€)/6(6) [[
= Y By(H)- B, ()BT 9T (2.15)

eje{071}71SjSl+1

Thus )
Py(277 (& + 20pw)) =0, VI>1.

by (2.14)-(2.16), and Py = 0, which is a contradiction. This proves that there
exists trigonometrical polynomials Py, Py, - - -, Px, € Vo(H,v—a(Py, P(H)), p)
such that all roots of any nonzero common factor of ﬁj, 0 <j < K is not
on the real line.

Let P be a maximal common factor of PJ,O < j < K;. Then P €
Vo(H,~v — a(Py, P(H)),p) by the fact that Vo(H,y — a(Py, P(H)),p) is an
ideal of the ring of trigonometrical polynomials. Observe that Fourier coeffi-
cients of P~1(€) decay exponentially, in the other words, there exist positive
constants C' and ¢ such that

|/ zan d€| < 0676\n|

Then
9(y—a(Po,P(H))) ol H H 2¢) < C'2(r—a(Po,P(H)))k | P(€) H H(27€)|5 — 0
j=0

as k tends to co. Hence 1 € Vo(H, v — a(Py, P(H)),p) and (2.13) is proved.

By the same procedure as above, we can prove that P(H) € V;(H,~,p)
when V;(H,v,p) # {0}. &

Proof of Theorem 2.2. By the definition of P(f;)({), there exists
compactly supported fy € X;"q’”(fo’o) such that the integer translates of f,

are stable, fy(2ly7) # 0 for some nonzero integer ly, and

; P(fo)(€) 7
fO(g) (Zg)n(fo’

20
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Let W be a Schwartz function such that its Fourier transform is compactly

supported, 0 ¢ supp ¥ and the integer translates of (U ()fo( )(-)ro0yv
are stable. Then by (1.6), Lemma 2.7 and definitions of Besov spaces and
Triebel-Lizorkin spaces, we have

k-1
THUDHIP(fo)(€) TT H(ZO)II;
=0
< Cg(a+ﬁ+1—1/p)kH (@()};()() (RO p (£, HH (29) ) H

p

< 02(a+ﬁ)k”(@(ka,)fk(,))vnp < CA(B, fr, p,q).

Thus P(fo) € Vo(H, 20701717 p) when limg o0 A(B, fr, Xg,) = 0, and
P(fy) € Vi(H, 2a+ﬂ+1 17 p) when A(B, fi, is bounded. Hence The-
orem 2.2 follows from Lemma 2.8. #

Pq)

3  Sufficient Conditions

In this section, we shall prove some sufficient conditions to the convergence
and boundedness of the cascade algorithm (Theorem 3.1), and give the proof
of Theorem 1.1.

Theorem 3.1 Let p,q,«, 3, P(fo, H) and fy be as in Theorem 1.1. Assume
that

D'fs(0) =0, V0O<y<§B

Then we have

(1) If
lim latBHI=1/nk| | p(fo, H HH 2/9)|lz =0,
then limy oo A(B, fr, Xp,) = 0.

(2) T2tV Py, H)(E) T4 H(2€)||3 is bounded, then A(B, fi

18 bounded.
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For a moment, we assume that Theorem 3.1 hold and start to prove
Theorem 1.1.

Proof of Theorem 1.1. Obviously the first and second assertion fol-
lows from Theorems 2.1, 2.2 and 3.1. Now we prove the third assertion.
Set

) 57
fo=fo— %?(O)D%.
Then fo € X2,
. T
n(©) = ine) - 2B i)
and D7j5(0) =0, 0<~< f. Define fp = Tofx_r = T*fo, k> 1 Then
\:
e = fe 27”%D g(;(o)D%
and

A(B, fies Xgt) < CA(B, fis Xgt) + Cllgllyass.

Hence by Theorem 3.1 it suffices to prove

P(fo, H)(€) = P(fo, H)(€) (3.1)
under the assumption fy # 0. Observe that for any integer £ > 0 and & € R,
D foléo) = D'l&s) =0, VO <<k
holds if and only if
D fo(&) = D'6(&) =0, VO<y<k
is true. Then (3.1) follows from (1.9) and (1.10). &
To prove Theorem 3.1, we need some lemmas.

Lemma 3.2 Let p,q,« be as in Theorem 1.1 and let Qy, Py be defined as in
Lemma 2.4 with ®™ and ™ € C™ for some sufficiently large 7. Assume
that fo € X, satisfies

D fo(0) =0, Y0<~y<I—1
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for some nonnegative integer ly. Then there exists a constant C independent
of k > 1 such that

1Po(fi)llp + 1Qo(f)ll, < C27%0, k> 1.

Observe that f,k > 1 are supported in some compact set independent,
of k. Then Lemma 3.2 follows from the estimate below.

Lemma 3.3 Let fy,k > 1 be as (1.2). Assume that fo € X, satisfies
D fo(0) =0, VO<k<Ily—1

for some nonnegative integer ly. Then there exists a constant C' independent
of k > 0 such that X
|f(&)] < 270 (1 4 [¢])°. (3.2)

Proof. First we prove that there exists a constant C independent of
¢ € R such that

[fo(€)] < Clef (1 + [g])=oommin@i=t/e), (3-3)

For a moment, we assume that (3.3) hold and start to prove the estimate
(3.2). Obviously we have

| I:IIH(TJS)I < Cmin(2"7, (1+[¢])"), (3.4)

where B = In; sup, g [H(¢)[- Thus by (1.6), (3.3) and (3.4), we obtain

| f1(§)

= IHH 0(277¢)]

02 Holg[o(L + 27 gy~ min (287, (14 1¢])7)

C2 (1 + [¢])lo+, €] < 2"
C2k(atmin(0,1-1/p)+B) |¢| ~emin(0,1-1/p) = |¢| > ok

IN

IN

< 027kl0(1+ |€|)l0+B+|a+min(0,171/p)\‘

This proves

(3.2) if (3.3) holds. Now we divide two cases p > land 0 < p < 1
to prove (3.3).
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Case 1. p>1.

By Lemma 2.4 and the fact that Q;fy,[ > 0 are supported in a compact
set independent of [ > 0, we obtain fy € Bf',. Thus

1) oMo < 1@V o)) I < I folle..

and

K

19 o)l < 1@ fo() I < C2 follsp.. 120,

Thus R
[fo(§)] < C(L+ €)™

Hence the estimate (3.3) for p > 1 follows from the assumption
D'fo(0)=0, YO<k<I—1
and the fact that fo is an analytic function.
Case 2. p< 1.

By Lemma 2.6, I? C ! for 0 < p < 1 and definitions Besov spaces and
Triebel-Lizorkin spaces, we have

1@C) o)l < €

and R )
1T 2") fo( )l < €27

Therefore by Lemma 2.6, we get

1B() oMo < @O o)) I < C 1@ fo( )Y (n/8)]
< Z|<f> <n/8>|p>1/p<c||<$><> o)l < C
and
)0l < 1FE@)f g>> ||1
< 027 SR fo()) (27 )
< Cpri-n ZZ () fo() (@7l
< OB fo( ), < 20 e,
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where [ > 0. Thus X
fo(&)] < C(1L+ [g)omtt/p

and (3.3) follows from the assumption on fy. This completes the proof of the
estimate (3.3) and Lemma 3.3. &

Proof of Theorem 3.1. Write
Pl H)2)

H(§) = omin(C (.0 (fo.0) P( fo, H)(€) (€)- (3.5)
Then H(0) =1 and
. — k_l .
o kmin(C(H0#(o.0) p( £, [T)(2k€) H P(fo, H)(€) [ H(2’€). (3.6)
Furthermore there exists a constant C' such that
k-1 k-1
CHUTLH@OI < 2Fmnclm0=Go) p(fy H)(E) TT HEE)|;
j=0 Jj=0
k=1
< O IL A@O;. (3.7)
j=0

Define an operator T associated with the trigonometrical polynomial H by

1110 = HG)IE) 55)

Observe that T* f, k > 1 is supported in a compact set independent of k > 1
when f is compactly supported. Then

1T fllp < Cri2” O £], (3.9)

holds for all f € LP supported in a fixed compact set, where o = o —
min(C(H, 0), £(fo, 0)) and ry, = 2 HFH VK| TR0 H(27€) 5.

By the definition of P(fo, H), there exists compactly supported distribu-
tion fp such that

o P f ,H g =
fﬂ(g) = (_ig)rr(lin(zC(H,?))(,Hgfo,O)) fﬂ(g)
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Define the cascade algorithm f;,k > 1 by fx = T f4_1, k > 1. Then

. k o P(fy.H =
© = T HEoO b = e WO, k20

and Dmin(C(L0)AJo.0) £ is finitely linear combination of integer translates of
flc- Thus ~
Fullg, = DD ) a.10)

Hereafter A &~ B means that there exists an absolute constant C' such that
C~'A < B <CA. On the other hand

Uillxg, = [BE) ()l + (Dm0 5 (311)
and . R . .
(28 )fe(-) " llp = (28 fr())" llp- (3.12)
Hence it follows from (3.10)-(3.12) that
I illxs, ~ Il (313

Let @, > 0 be as in Lemma 2.4. Then by computation we obtain
Qu(fr) = T (Qo(fer)), 1<k (3.14)

and ) i
Qu(fr) = THQir(f0)), 1>k (3.15)
Thus in the case X', = F}!, by (3.9), (3.13)-(3.15) and Lemmas 2.4 and 3.2,

we get

Felleg, < Clliilleg, < CIPFl + CICE 2@ f) ),

p,a —

1>0
k-1
< CIRFly +COD 27 2 Qu ) + Il 2l A,
1=0 1>k

k—1 ~ 1/q ~
< 0o H O3 A2t Qo ) 19) 7+ 2 o
=0

k
< C27Ho 4 0o PR ( Y gl Akt ) +COr2 P
=0
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where [ is the minimal nonnegative integer strictly larger than 3, and 6 > 0
is chosen that [y — 3 — 6 > 0. Similarly we have

k
1fillsg, < 2740 4 C2 0K (3 pia o000 00) 0y oy -0k
=0

in the case X', = BJ, . It is easy to check that Sy 2= (lo=6=6)(k=a tends
to zero too as 7y is, and is also bounded as r; is. This completes the proof
of Theorem 3.1. &
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