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Abstract

In this part, we shall characterize completely convergence and in-
crement of the cascade algorithm in Besov spaces and Triebel-Lizorkin
spaces by joint spectral radius on certain finitely dimensional space,
give a new proof of moment conditions for the initial distribution and
the refinable distribution in the cascade algorithm, establish close re-
lationship between regularity of the refinable distribution and conver-
gence and boundedness of the cascade algorithm, and apply the char-
acterization to the existence of compactly supported solutions of non-
homogeneous refinement equations. From our results, we see that the
initial and the refinable distribution of the cascade algorithm satisfy
less moment conditions for the boundedness of the cascade algorithm
than for the convergence of the cascade algorithm, and for 0 < p < 1
than for p > 1. It is observed that the convergence and boundedness
of the cascade algorithm are equivalent to each other under certain
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restriction on the indices of regularity of function space and the rate
of convergence of the cascade algorithm, and certain assumptions on
the refinable distribution.

AMS Subject Classification 42C15, 40A30, 46E35, 39B12

This paper is continuation of [S1]. We shall use the same notations as in
Part I. This part is organized as follows. In Section 4, p-norm joint spectral
radius on a finitely dimensional space is used to interpret the estimate of
I|1P(fo, H)(E) H?:o H(2E)||» in Theorem 1.1 (Theorems 4.1 and 4.2). From
Theorem 4.1, we see that the p-norm joint spectral radius is perfect to char-
acterize convergence of the cascade algorithm. The moment conditions are
also discussed in Section 4. In Theorem 4.3, we show that the initial f,
and the refinable distribution ¢ need to satisfy some moment conditions for
the convergence and boundedness of the cascade algorithm. Generally they
satisfy less moment conditions for the boundedness of the cascade algorithm
than for the convergence of the cascade algorithm, and for 0 < p < 1 than for
p > 1. The proof of moment conditions which the initial f; and the refinable
distribution ¢ satisfy is different with the direct proof in [J1] for L? and in
[JJS] for Sobolev spaces H' with nonnegative integer [.

In Section 5, we shall discuss the close relationship between regularity of
the refinable distribution ¢ and convergence and boundedness of the cascade
algorithm. In Theorem 5.1, we give an explicit characterization to regular-
ity of refinable distributions in X, and in B}, by using some estimate on
|P(H)(&) [T5— H(27€)||5. For appropriate initial fo, we prove the conver-
gence and boundedness of the cascade algorithm under some assumption on
regularity of the refinable distribution ¢ (Theorem 5.2 and Corollary 5.3).
Under the stable assumption on ¢, which means that the integer translates
of ¢ are stable, and certain assumption on regularity of ¢, we show that
the necessary conditions on the initial fy in Theorems 2.1 and 4.3 are also
sufficient for p > 1, but the assertion above is not true for 0 < p < 1 in
general (Corollary 5.4 and the remark there). To our surprise, convergence
and boundedness of the cascade algorithm are equivalent to each other un-
der certain restriction on the indices o and  and certain assumptions on ¢
(Corollary 5.5). For instance, let fo(0) = 1 and ¢, f, € H*. Assume that



is not a nonnegative integer and the integer translates of ¢ are stable. Then
fr converges to ¢ in H® if and only if f; is bounded in H®. In the proof of
Theorem 5.2, Lemma 5.6 plays an important role.

The last section is devoted to discuss the convergence of fo + 32 V¥ fy,
in Besov spaces and Triebel-Lizorkin spaces, and the existence of compactly
supported solutions of the following nonhomogeneous refinement equation

¢ =T+ fo

in Besov spaces and Triebel-Lizorkin spaces. The limit distribution fy +
>, 7*fi is a solution of the nonhomogeneous refinement equation above
when it converges in some sense. The nonhomogeneous refinement equa-
tion above arises in the construction of wavelets on bounded domain, multi-
wavelets and biorthogonal wavelets on non-uniform meshes. In almost prac-
tical case of nonhomogeneous refinement equation, ~ satisfies |y| < 1. This
is also our inspiration to consider the rate of increment of the cascade algo-
rithm.

4 Joint Spectral Radius and Moment Condi-
tions

In this section, we shall use p-norm joint spectral radius to characterize
convergence and boundedness of the cascade algorithm, and show that the
initial distribution f; and the refinable distribution ¢ in the cascade algorithm
satisfy some moment conditions.

4.1 Joint Spectral Radius

For N = 0, we have H = 1. Thus the condition about H in Theorem 1.1 is
easy to be checked. So in this subsection, we always assume that N > 1.

Denote the space of all sequences with finite length by lo(Z7). For d €
lo(Z), define its Fourier series by

F(d)(§) = > d(n)e™™

nez,
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and its quasi-norm by

ldll, = 1E@I; = (X [dn)l?)".

nez,

For the sequence ¢ = {e(n)}Y_, with ¥ ¢(n) = 2 and cocy # 0, define
corresponding subdivision operator S. on lo(ZZ) by

Sed(n) = Z c(n —2n")d(n'). (4.1)

Then
F(Scd)(§) = 2H(§F(d)(2€).

For a trigonometrical polynomial P (), define an operator P(V) on ly(Z7)
by
F(P(V)d)() = P(F(d)(&), VY del(Z). (4.2)

For example, P(V) is the shift operator when P(£) = e **¢ and the difference
operator when P(£) =1 — e %, By computation, we have

k—1

P(fo, H)(E) 1_1 H(2¢) = 27FF(P(fy, H)(V)SE6)(€).
and
1P (fo, H HH2J 12 = 27%||P(fo, H)(V)SE6]|,

where 6 € [((Z) is deﬁned by 6(0) =1 and 6(n) = 0 for n # 0.

Define operators B, e = 0,1 on lo(ZZ) by

F(B.)(€) = H(ﬁ)p(d)(g)e—iew + H(g + W)F(d)(g m)em €/ (4.3)

Recall that H(§) = 1 SN ¢(n)e ™. Then
B : Iy N Z) — 1N Z), e=0,1,

where 1)Y ' (ZZ) denotes the space of all sequence {d(n)} € lo(Z) with d(n) =
0Oifn<Oorn>N —1.



For any trigonometrical polynomial R # 0, let V(R) be the space of
all sequences d € ly(Z) such that F(d)(£)/R(§) is still a trigonometrical
polynomial. Obviously V(R) is an ideal of [y(ZZ) under convolution, which
means d; € V(R) and dy € ly(Z) implies d; x dy € V(R). Furthermore

B : V(P(fo,H)) — V(P(fo,H)), €=0,1,
and
Be :VN_I(P(f07H)) —>VN_1(P(f07H))7 620717
by definitions of P(fy, H) and V(P(fy, H)), where

VN=UP(fo, H)) = V(P(fo, H)) N IJ'(Z).

For simplicity we identify the space I} ~'(Z) with Euclidean space R,
VN=1(P(fo, H)) with a subspace of R", and the restriction of operators B,
on lév’l(Z) with N x N matrices B .. By computation, we have

N-1

VN—l(P(fO,H)) = {(Uo, e UN_p) € ]RN, Z v;(j + l)le—ijgo —0,

Jj=0

V0 <1< min(C(H, &), k(fo, &) — 1} (4.4)

and
Bewar = (2 = +€) . e=0,1 (4.5)
Define N x N matrices B, e = 0,1 by
B, = (e(2i—j+ 6))ogi,jgm1’ (4.6)
where N = N — deg P(fy, H) and
~ 1 N-1 _ 2min(n(fo,0),§(H,0))P(fO H)(f)
H(¢) = é(n)e ™ = H () x -
6 =752 ) ©) P(fo, H)(26)

For operators T, : V — V,e = 0,1 on a finitely dimensional space V,
define its p-norm joint spectral radius p,(Ty |y, Th |v) by

pp(To by, Ty ) =inf (Y |T,T, T, v )7 (4.7)

k>1
T g e{0,1}1<5<k
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It can be check that

pp(Bo,mat |VN*1(P(f0,H))7Bl,mat |VN*1(P(f0,H))) = Pp(éo, 31) (4-8)

By standard method on joint spectral radius (see [J1] and [MS]), we have

Theorem 4.1 Let Beynar, Be,e = 0,1 and S, P(fo, H)(V), VY "Y(P(fo, H))

and pp(BO,mat |VN*1(P(f0,H))7 Bl,mat |VN*1(P(f0,H)))7 pp(B(), Bl) be as (41)—(48)
Then the following statements are equivalent to each other.

(1) limy, oo 20 VPE|P(fo, H)(€) TT=g H(2E)]l;, = 0.
(2) 20Xk P(fy, H)(V)Sk6|, tends to zero as k tends to infinity.

ap—1)k
(3) Supyeyv-1(p(s i iol=t 27 F Ze ctoapi<i<k |Beymat - - Bepmart|lP con-
verges to zero.

(4) Pp(Bomat [vy-1(p(fo,m))> Brmat [vN-1(p(fo,m))) = py(Bo, By) < 27o+1/p,

Theorem 4.2 Let Bejnar, Be,e = 0,1 and S., P(fo, H)(V), VY "Y(P(fo, H))

and pp(BO,mat |VN*1(P(f0,H))7 Bl,mat |VN*1(P(f0,H)))7 pp(B(), Bl) be as (41)—(48)
Then the following three statements are equivalent to each other.

(1) 2H=YPk|| P(fo, H)(E) TIEZ5 H(27€) (|3 is bounded.
(2) 20Xk P(fo, H)(V)SE6]|, is bounded.

(3) There exists a constant C' independent of k > 1 such that

sup olap—1)k Z ||Be1,mat e 'Bekz,matU“p <C.
veVN=1(P(fo,H)),|[v]lp=1 e €{0,1},1<)<k
Furthermore

Po(Bomat [vx-111(go, 1) Brmat v-1ago,my) = pp(Bo, Br) < 270717

if 2R || P(fo, H)(€) TIiZg H(29€) I3 is bounded.
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4.2 Moment Conditions

We say that a compactly supported distribution f satisfies moment condi-
tions of order 1,1 > 0 if

D'f(2nm) =0, Y0<j<Il-1, ne Z\{0}. (4.9)

Obviously any compactly supported distribution satisfies moment conditions
of order 0 and I < k(f,0).

Fora € R and 0 < p < oo, let m(a, p) be the minimal nonnegative integer
strictly larger than min(o, v +1 — 1/p) and m(a, p) be the one larger than
min(o,« + 1 — 1/p). Obviously m(a,p) > m(«,p), and m(«,p) = m(a,p)
only if min(a, o + 1 — 1/p) is not a nonnegative integer.

Theorem 4.3 Let p,q,«, 3, fr be as in Theorem 1.1. Then we have

(1) If limy_.oo A(B, fr, XJ,) = 0, then fo satisfies moment conditions of
order m(a + (3,p).

(2) If A(B, fr, X)) is bounded, then fy satisfies moment conditions of order
m(a+ 0,p),

(3) If € X}, then ¢ satisfies moment conditions of order m(c, p).

(4) If ¢ € By ., then ¢ satisfies moment conditions of order m(c, p).

By Theorem 4.3, we obtain the following result which is proved by Jia
([J1]) for @« = 0 and 1 < p < oo, and Jia, Jiang and Lee ([JJL]) for all
nonnegative integer o and p = 2.

Corollary 4.4 Let 1 <p < o0, —00 < a < 00, and let fi be as in (1.2) and
fo(0) # 0. If fi. converges in F,, then fo and ¢ satisfy moment conditions
of order m(«a, p).

By taking § = 0,0 < o« € ZZ, and 1 < p < o0,¢q = 2 in Theorem
4.3, we see that the initial distribution f; and the refinable distribution ¢
satisfy moment conditions of order v + 1 when convergence of the cascade
algorithm is considered, but the initial distribution f, only satisfies moment
conditions of order av when we only need to establish boundedness of the
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cascade algorithm. The assertions in Theorem 4.3 can not be improved in
general.

Example 2. Define B-spline B; of order [ + 1 by convolution of the
characteristic function on [0, 1] for [ times,

By = Xjo,1) * Xjo,) %+ - * X[o,) (I times).
Then B;,l > 1 are refinable functions, belong to By, for all « <1 /p+1—1

when 0 < p < 1 and only satisfy moment conditions of order /.

Example 3.  Let fo(z) = cosmrxp,j(z) and the sequence {c(n)},_,
be defined by ¢(0) = ¢(1) = 1. Then f; only satisfies moment conditions
of order 0 and ¢ = xpo,;) € L™ satisfies the refinement equation ¢(z) =
#(2x) + ¢(22 — 1). On the other hand we have

2k 1

| fi(@)| = | T2 fola)| < Z |fo(2%z = n)| < xpo()-
Hence fi,k > 1 is bounded in L? for all 1 < p < oc.

Proof of Theorem 4.3 Write

PUo S -
) = gcmm o Py, BYE

Then H(0) = 1 and there exists a constant C' such that

k—1
CH TT H@ o)l < 2F im0 P, H H H(2IQ)|; < C| H H2O)|:.
j=0

For any trigonometrical polynomial R(£) with its degree at most 2%, by
Holder inequality for p > 1 and IP(ZZ) C I'(Z) for 0 < p < 1, we obtain

[R(0)] < C2m=OI=VPE|R(g)]. (4.10)
Thus by H(0) = 1 and applying the estimate (4.10) to Hf;& H(27¢), we get

k—1
1 < C2ma.x(0,1—1/p)k|| H H(2J€)||;

j=0
k—1
< Cgk(min(C(H,O)ﬁ(fo,0))+maX(0,1—1/p))||p(f0,H)(g) H H(2j§)||;.
j=0



Hence by Theorem 1.1, we have

min(¢(H, 0), £(fo,0)) + max(0,1 —1/p) —a—B—1+1/p >0
when limy, ., A(B, fi, Xj,) = 0, and

min(¢(H,0), k(f5,0)) + max(0,1 —1/p) —a—F—-1+1/p>0

when A(S, fi, X;,) is bounded. This proves the first and second assertion
by the definition of (fy,0).

By definitions of Besov spaces and Triebel-Lizorkin spaces,
Tim 2% ((27)3()) ", = 0

if ¢ € X2, and 25(|(F(2*-)¢(-))"||, is bounded if ¢ € BZ.,. Thus by the
procedure used in the proof of Theorem 3.1, we get

k—1
Jim 2K () (€) [T H@E); =0
—00 Jj=0

if ¢ € X, and 20k || P(H) (&) TTHZ5 H(27€) |5 is bounded if ¢ € By
Hence the third and fourth assertion can be proved by the same procedure

used above. #

5 Regularity and Cascade Algorithm

In this section, we shall characterize regularity of refinable distributions (The-
orem 5.1), and establish some relationship between regularity of the refin-
able distribution and convergence and boundedness of the cascade algorithm
(Theorem 5.2).

5.1 Regularity of Refinable Distribution

For the regularity of refinable distributions, there are a lot of papers on this
topics (for instance [CDM], [DL] for Holder spaces, [J1] and [LW] for LP
and LP-Lipschitz spaces, [E], [V1], [J2] and [RS] for Sobolev spaces, [MS]
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and [V2] for Besov spaces and Triebel-Lizorkin spaces). In [MS], regular-
ity of refinable distributions ¢ in X' is characterized by the behavior of
|R(€) TT5=g H(27€)]]s, where R belongs to an ideal of trigonometrical poly-
nomials. In this subsection, we shall show that the ideal in [MS] can be cho-
sen as the minimal ideal of trigonometrical polynomials containing P(H)(&).
Precisely we have

Theorem 5.1 Let 0 < p,q < 00, —00 < a < 00 and let ¢ be the normalized
solution of the refinement equation (1.3). Then

(1) ¢ € X7, if and only if

2R lim || P(H)(€) kl:[lH 2O, =0. (5.1)
—00 §=0

(2) ¢ € By, if and only if there exists a constant C' independent of k > 1

such that
k-1

1P()(€) [T H(2PQ)Il, < Camleri=t/pk, (5.2)

j=0

Proof of Theorem 5.1. By definitions of Besov spaces and Triebel-
Lizorkin spaces, we have

lim 20112k || (F(275)$ ()|, = 0

k—o0

if ¢ € X7, and there exists a constant C' independent on k > 1 such that

=1k || (F(275. ) (-)) V|, < C

if € By . Then (5.1) and (5.2) follow from (1.9) and the proof of Theorem
3.1.

Now we prove that ¢ € X under the assumption (5.1). Write

P(H)(2§)
H({) = 2C(H’0)P(H)(§)H(€)'
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Then H(0) =1, H(r) # 0 and

P(H)E) TT H@E) =270 () (24e) T] A2

Furthermore there exists a constant C' such that

¢ H H(2E)|; < ||P(H)(2") H H(2E) |5 < ) H H(2)])

Thus limy,_o, 200 SHOFI=YRk|| TIA8 F(27€)[|% = 0 by (5.1) and furthermore
by Theorem 4.1 there exist constants C' and 0 < r < 1 independent of & > 1

such that
k-1
| I H(27e)||; < G2~ SH0+=1/pkyk
j=0

Let ¢z be the normalized solution of the refinement equation (1.3) with
symbol H. Then

IF @™ )85l = ()5 1_1 A7)l

< C2(1—1/p)k:|| H g(gjg)n; < 02 (a=C(H 0k k
j=0

Hence ¢ € By S, Observe that

36 = C%ég@),

where C' is a constant. Then ¢ € B, and ¢ € X/ by Lemma 2.5.

Similarly we can prove that 2(a—C(HO0+1-1/p)k|) Hk_l H( 27¢)||* is bounded,
¢5 € By, and hence ¢ € By under the assumptlon (5.2). &
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5.2 Convergence and Boundedness of Cascade Algo-
rithm

For —oo < 8 < oo, we say that the initial distribution fy is adaptable to
convergence of the cascade algorithm with rate (3 if

{ K(fo, &) > C(H, &), VY & € (=, 7]\{0},
’%(foa 0) > min(a + ﬁa C(Ha 0) o 1)7
D'Fy(0) =0, VO<y<4,

and that the initial distribution fy is adaptable to boundedness of the cascade
algorithm with rate [ if

{ k(fo, &) > C(H, &), V& € (—m, m]\{0},
K(fo, 0) > min(a + 3,((H,0)),
D'Fy(0)=0, YO0<vy<0p,

where A()
R‘{ﬁ,() 5<o.

Obviously the adaptability of convergence and boundedness of the cascade
algorithm with rate [ is equivalent when o + 3 and 3 are not nonnegative
integers. Define

F,=T'F), k>1 (5.3)

Then .
_ fk_f0(0)¢7 5207
ﬂ_{ﬁn 5<0.

In this subsection, we shall prove the following result about convergence
and boundedness of the cascade algorithm under the initial is chosen good
enough.

Theorem 5.2 Let 0 < p,q < 00, —00 < a, < 00, and let ¢ be the normal-
ized solution of the refinement equation (1.3) and Fy,k > 1 be as in (5.3).

Assume that fo € X', is compactly supported. Then we have

(1) If ¢ € Xsz;’ﬁ and fo is adaptable to convergence of the cascade algorithm
with rate 3, then limy ., A(8, Fy, X)) = 0.
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(2) If ¢ € Xl‘j‘,;rﬂ and fq 1s adaptable to boundedness of the cascade algorithm
with rate (3, then A(B, Fy, X;,) is bounded.

(3) If ¢ € X;"joﬁ and fy is adaptable to convergence of the cascade algorithm
with rate 3, then A(8, Fy, X)) is bounded.

By Theorems 2.1 and 5.2, we have

Corollary 5.3 Let p,q,a, ¢ be as in Theorem 5.2 and Fj,k > 1 be as in
(5.3). Assume that 3 > 0 and fy is adaptable to convergence of the cascade
algorithm with rate 3 and satisfies Fy Z 0. Then ¢ € X;‘;ﬂ if and only iof
limk_)oo A(ﬁ, Fk, X;,q) =0.

By Theorems 2.1, 5.1 and 5.2, and the fact that ((H,&) = 0 holds for
all & € (—m, 7]\{0} if the integer translates of the normalized solution ¢ are
stable, we have

Corollary 5.4 Let > 0 and 1 < p < co. Assume that the integer trans-
lates of ¢ € Xﬂ'ﬁ are stable and that fo € X, is a compactly supported

distribution with fo(0) = 1. Then we have

(1) 2°%|| fr — ¢llxg, converges to zero if and only if D fy(0) = D$(0)
holds for all 0 < v < B and fy satisfies moment conditions of order
m(a + B, p).

(2) 2°%|| fr — ¢llxg, is bounded if and only if D" fo(0) = D'¢(0) holds for
all 0 < v < B and fy satisfies moment conditions of order m(a+ (3,p).

Remark By letting 3 =0, 1 < p < oo and ¢ = 2 in Corollary 5.4, we
see that under the stable assumption on ¢ and the assumptions fy, ¢ € X,
the necessary conditions in Theorems 2.1 and 4.3 are also sufficient, which
is proved by Jia ([J1]) for « = 0 and 1 < p < oo and by Jia, Jiang and Lee
([JJL]) for all nonnegative integers o and p = 2. In general, the necessary

conditions in Theorems 2.1 and 4.3 are not sufficient for 0 < p < 1.

Example 2 (continued) Let0<p<1,0<¢g<ooand oy =1—1+9,
where max(0,1/p —2) < 6 < min(1,1/p —1). Then m(ay,p) =1 — 1 and
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B, € X, Let fo € X, be any nonzero compactly supported distribution

with fy(0) = 1 and only satisfies moment conditions of order [ — 1. Then
P(fo, H)(&) = (e % — 1)L, By computation, there exists a constant C' such
that

k—1 k—1 )
1P(fo, H)(€) TT H@)lp = 27™[|(e7 ¢ =1)"=" T] (14e7¢)|5 > C27¢=1/mk,
j=0 Jj=0

Hence f; does not converge to ¢ in X't by Theorem 1.1.

By Corollary 5.4, and the fact that m(a + 3,p) = m(a+ 5,p) > a+ g if
p > 1 and o+ 3 is not a nonnegative integer, we have

Corollary 5.5 Let 1 < p < oo, # > 0 be not a positive integer and o + (3
be not a nonnegative integer. Assume that fo € X', is compactly supported

with fo(0) = 1 and the integer translates of ¢ € Xaé”g are stable. Then
20k | fr, — ¢llxg, converges to zero if and only if 20k | fr, — ¢l xg, is bounded.

To prove Theorem 5.2, we need the following lemma.

Lemma 5.6 Let R() be a trigonometrical polynomial with R(0) = 1. Then
we have

(1) Suppose that oo < 0 and limy_o 207 /PF|| TI*Z0 R(27€)|7 = 0. Then
1 _ e—i2ke k=l

lim 2(e—t/mk|—— % __ = < [[ RO, =0.
e .
J=0

k—o00 1—e

(2) Suppose that o < 0 and 20~ /PFk| [T320 R(27¢)||2

||p 15 bounded. Then
2(e-1/p)k| H?;& R(29¢) x (1 — e*mg)/(l — e’i5)||; is bounded.

(8) Suppose that there exist constants C' and 0 < r < 1 such that

k—1
27 [ RO, < O,

§=0

Then 27F/7|| TT5Z5 R(27€) x (1 — =€) /(1 — e~®)|| is bounded.
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Proof. Let ¥; and ®;,] > 0 be 27-periodic functions which satisfy the
following conditions.

e For any v > 0 there exists a constant C, independent of [ > 0 such
that
[DYE(&)] + DT ®i(€)] < C,27,

e supp ¥; C [-27 w27 Ix]u2 ', 27 ] and supp ®; C [-27 "7, 27 7],
o s Wi(€) + @4 (€) = 1 for all [y > 0.

Set Ry, (€) = T2 R(27€), ry = 207 H/PR|| TIF_| R(27€)||; and p, = min(p, 1).
Then

1— e 2

|—=R,
k 1 €—i2k§ . 1/ps 1—€_i2k£ .
< (ZEE 9= Re@l) " + 100 &) 5 RulO)];
: r\ ey L/ 1 — e-i?t
< ¢ (Hl_i’“-@ VYl Rl©l (5.4)
=0

By the construction of ®; and ¥;,l > 0, there exists a constant C' such
that

—z2’“+1§

2T
[ e () Bu(§)de] < C(1+ 2 )
and
2w i .
I/0 e MW(E)(1 = eT) T Ry (€)dE| < C(1 427 n)T TP 0 < T < R

Hence I
||q)k(£)mRk(£)H; < C2k/r (5.5)
and
(1)1 = e ) Re(O)]I})?
= (W& = e ) Ri(&)Re 12O I;)"
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Ynez Lmez(L+27 [m — 24 ) PRy (n) [P x

-1
< C (supmez Sem(1+27m — 21+1n|),1,1/p)p | ot
ez Yomez(1+ 27 \m =2 ) PRy, 1 (n)P,  0<p<1
< Ol tkegelng (5.6)

where Y,.c Re(n)e ™ = Ry (€). Hence the assertions follow from (5.4)-
(5.6) and the assumptions.

By the procedure used in the proof of Theorem 4.1, we obtain the equiv-

alence of the following two statements for any trigonometrical polynomial R
with R(0) = 1.

o limy_,, 202~ 1/Pk|| H?ﬂ R(27¢)[]; =0.

e There exist constants C' and 0 < r < 1 such that

k
2 1/mk | TT R(2O)||; < Cr*.

=1

Then by using Lemma 5.6 for several times, we have

Corollary 5.7 Let ag be a nonnegative integer and let R(§) be a trigono-
metrical polynomial with R(0) = 1. Then we have

(1) Suppose that o < —cg and limy,_o, 20 YPF|| TT5_) R(29€)||s = 0. Then

k —i20¢
lim 2(@+eoti=1/p)k)| 11 (1 te

k—o0 j=1 2

) R(2€)|; = 0.

(2) Suppose that o« < —ag and 20~ YPR|| TTF_ R(29€) || is bounded. Then

p

k —427
g(e+aotl—1/p)k)) 11 (1 e
2

j=1

)R],

18 bounded.
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(3) Suppose that o < —ay and limy_.o 2Pk TTV_, R(29€)||5 = 0. Then

1 + i€

2(a+a0+1 l/p)k“ H
2

j=1

)OHR(27E)])
18 bounded.

Proof of Theorem 5.2 By Theorem 5.1, it suffices to prove the asser-
tion under additional assumption x(fy,0) < ((H,0). Write

PH)(2¢) o

H(f) = QC(H’O)P(H) (6) (f)
Then o )
P(H)() 1:[ H(ng) — kaC(H,O)P 1:[ 215 (5.7)
and
P H)E) 1_11 He
9=kr(fo0) p( £, H)( 1:[ C(HO) K00 f1(27€). (5.8)

Hence the assertions follow from (5.7), (5.8), Theorems 4.3 and 5.1, Corollary
5.7 and the assumptions. &

6 Application to Nonhomogeneous Refinement
Equation

In this section, we shall consider the compactly supported solution of such a
nonhomogeneous refinement equation

= 2_:0 c(n)p(2x —n) + fo(z), (6.1)

17



with v # 0 and _; ¢(n) = 2 in Besov spaces and Triebel-Lizorkin spaces.

The nonhomogeneous refinement equation appears in the construction of
wavelets on bounded domain, multiwavelets and biorthogonal wavelets on
non-uniform meshes (see [CDD], [CES], [GHM], [Me], [S2] for instance). The
existence of compactly supported solutions of the nonhomogeneous refine-
ment equation (6.1) is well-studied (see [DH], [JJS], [StZ] and [S2]).

It is easy to be checked that fo + 33°, 7% fx is a solution of the non-
homogeneous refinement equation (6.1) when 33°, 7% f, converges in some
sense. In [S2], the author showed the convergence of fo + Y32, 7" fx in

L*? = Fy,a > 0 under the assumption that 0 < |y| < 1 and

k—1
et =k 4| T H); < O
j=0

holds for some constant C' and 0 < r < 1. A characterization of convergence
of X%, ¥*fr in L” with 1 < p < oo is given in [StZ]. In this section, we
first characterize the convergence of 372, 7" f in Besov spaces and Triebel-

Lizorkin spaces by using the characterization of convergence of the cascade
algorithm.

Theorem 6.1 Let 0 < p,q < 00, —00 < a < 00, v # 0 and fo € X, be

compactly supported and pp(Bo, Bl) be as in Theorem 4.1. Then the following
three statements are equivalent to each other.

(1) %2, 7 fi converges in X7,

(2) Nimny oo 20T VPRy ¥ P(fo, H)(€) TT=g H(2E)Il; = 0 and D'fo(0) =
0 holds for all 0 <1 <1Iny|yl|.

(3) pp(Bo, By) < 27 *t/2|y| "1 and D' f5(0) = 0 holds for all 0 < I < In, |7|.

Proof. The equivalence of the second statement and the third one in
Theorem 6.1 follows from Theorem 4.1.

From (1) it follows that limy .o [v]*]|fil|xs, = 0. Hence (2) holds by
Theorem 1.1. This proves that (1) implies (2).

18



Conversely, there exists 0 < r < 1 such that p,(By, By) < 2-1/Pr|y|~L,
Then

Y I*(|P(fo, H)() kHlH(zjg)“; < 09— (at1=1/p)k k
7=0

holds for some constant C independent of £ > 1. Therefore by Theorem 1.1
and the assumption, A(Iny(r|y|), f, X,) is bounded. Thus |y[*|| fillxs, <
Cr¥ and 322, v f, converges in X', #

Now we give the existence of compactly supported solution of the non-
homogeneous refinement equation (6.1) in Besov spaces and Triebel-Lizorkin
spaces.

Theorem 6.2 Let o, p,q,, fo be as in Theorem 6.1, and let ¢ be the nor-
malized solution of the refinement equation (1.3). Suppose that

D" (fop™")(0) =0 (6.2)
if v >0 and ly = Iny v is a nonnegative integer. Assume that

k—1

lim 2HUPR L R P(fo, H)(€) T] H(27Q)II, = 0.

=0

Then there is a solution of the nonhomogeneous refinement equation (6.1) in
XOé

p.g
Proof. Let g € X, be a compactly supported distribution chosen later.
Set .
Jo=fo+1Teg—g.
Then

ST ARTEfo + fo + 9Ty
k=1

is a solution of the nonhomogeneous refinement equation (6.1) in X if it
converges in X . By Theorem 6.1, it suffices to find such a function g such
that P(fy, H) is a factor of P(fy, H) and satisfies

D'fo(0)=0, 0<1<In,|yl (6.3)
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Obviously it suffices to choose ¢ = 0 when |y| < 1. Now we start to choose
the function ¢ when |y| > 1. Write

X P(fo, H)(§)
9(8) = (ig)mimz(fo,o),cw,o» ().

)

(6.4)

where g € X min(s(fo.0).¢U0)) j5 chosen that

D'Jy(0) =0, YO0<I<In .
Then P(fo, H) is a factor of P(fy, H) by (6.4), (1.10) and

= ; .6 .
fo(&) = fo(€) +7H(3)3(5) — 9(&).
Hence it remains to prove the existence of ¢ such that (6.3) hold. By com-

putation, we can write (6.3) as

-1
_ . s _ [ s s
120300 = D012 S L) D HOD0, 0 <1<l
s=0

(6.5)
Obviously there is unique solution of the linear equation (6.5) if v < —1 or
v > 1 and Iny v is not an integer. If In, v is an integer, then there is unique
solution of the following linear equation

-1
_ N r — l —5 ERS
(1-27"y)D'§(0) = D' fo(0)+27"7 > ( . >Dl H(0)D*g(0), 0 <1< 1Ingl|y|-1.
s=0

(6.6)
By (6.2), the right hand side of (6.5) equals zero for [ = Iny 7 (see Theorem 2.4
in [S2]). So we obtain a solution of (6.5) by setting D'G(0),0 <[ < 1Iny |y|—1
in (6.6) and D'g(0) = 0 for [ = Inyy when Iny 7 is an integer. Therefore for
any |y| > 1 we can find a solution D'g(0),0 < 1 < Iny |7 of the linear equation
(6.5). By (6.4), we see that D'§(0),0 < I < In, || is uniquely determined by
D'§(0),0 <1 <1Iny |y]. On the other hand for any numbers a;,0 < [ < Iny |7
there exists a compactly supported distribution in § € X min(=(/o.0).C(H.0))

such that D'G(0) = a;,0 < [ < Iny |y|. This proves the existence of § such
that (6.3) holds. &
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Remark The condition (6.2) in Theorem 6.2 is the necessary condition
in [S2] such that there exists a compactly supported solution of the nonho-
mogeneous refinement equation. The relationship between regularity of the
solution of the nonhomogeneous refinement equation (6.1) and convergence
of the cascade algorithm seems different to the corresponding one of a re-
finement equation. For example for any Schwartz function g with compact
support, ¢ satisfies the following nonhomogeneous refinement equation,

9(x) = 9(22) + fo()

where fo(z) = g(z) — g(2z). It can be proved that that fy(z) = g(2Fz) —
g(2"'2) and 332, fi converges to g(2z) in X2, only when o < 1/p.
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