Behaviour of an Oscillatory Singular Integral on Weighted Local Hardy Spaces

Li-Yuan Chen
Department of Economics, Hangzhou University
Hangzhou, Zhejiang 310028, P. R. China

and

Qiyu Sun¹ Center for Mathematical Sciences, Zhejiang University Hangzhou, Zhejiang 310027, P. R. China.

Abstract The boundedness on weighted local Hardy spaces $h_w^{1,p}$ of the oscillatory singular integral

$$Tf(x) = \int_{\mathbb{R}^n} e^{iQ(x,y)} K(x,y) f(y) dy$$

is considered when Q(x,y) = P(x-y) for some real-valued polynomial P with its degree not less than two. Also a sufficient and necessary condition on polynomial Q on $\mathbb{R}^n \times \mathbb{R}^n$ such that T maps $h_w^{1,p}$ to weighted integrable function spaces L_w^1 is found.

AMS subject classification (1990): 42B20

Key words: Oscillatory singular integral, Weighted local Hardy spaces, Muckenhoupt weight, Calderon-Zygmund kernel

¹This author is partially supported by National Sciences Foundation of China and Zhejiang Provincial Sciences Foundation of China

1. Introduction and Results

We say that a local integrable function K on $R^n \times R^n \setminus \{(x, x), x \in R^n\}$ is a kernel of Calderon-Zygmund type if $|K(x, y)| \leq C|x-y|^{-n}$ and $|\frac{\partial}{\partial x}K(x, y)| + |\frac{\partial}{\partial y}K(x, y)| \leq C|x-y|^{-n-1}$ for all $x \neq y$. For a kernel K of Calderon-Zygmund type and a real-valued polynomial Q on $R^n \times R^n$, define an oscillatory singular integral T considered later by

$$Tf(x) = \int_{\mathbb{R}^n} e^{iQ(x,y)} K(x,y) f(y) dy. \tag{1}$$

The above oscillatory singular integral T arises in Fourier analysis on lower dimensional variations and has various applications such as Radon transform, Hilbert transform etc. The boundedness of the operator T on various spaces such as unweighted and weighted p-integrable function spaces for $1 , weak integrable function space w-<math>L^1$, unweighted and weighted Hardy spaces are considered in [1], [4]–[8]. Especially they emphasize the connection between the oscillatory singular integral T and the following truncated Calderon-Zygmund operator \tilde{T} defined by

$$\tilde{T}f(x) = \int_{\mathbb{R}^n} K(x, y)\phi(|x - y|)f(y)dy,$$
(2)

where K is a kernel of Calderon-Zygmund type and ϕ is a fixed nonnegative smooth function satisfying $\phi(t) = 1$ on $[0, \frac{1}{2}]$ and $\phi(t) = 0$ on $[2, \infty)$.

In this paper, we will consider the behaviour of the oscillatory singualr integral T on weighted local Hardy spaces $h_w^{1,p}$. To this end, we introduce some notations and definitions.

We say that w is a Muckenhoupt A_p weight if

$$\frac{1}{|B|} \int_{B} w(x) dx \left(\frac{1}{|B|} \int_{B} w(x)^{-\frac{1}{p-1}} dx \right)^{p-1} \le C$$

holds for all balls B when 1 and

$$Mw(x) \leq Cw(x)$$

holds for all $x \in \mathbb{R}^n$ when p = 1, where constant C independent of the balls B when $1 and independent of <math>x \in \mathbb{R}^n$ when p = 1. Hereafter M denotes the Hardy-Littlewood maximal operator defined by

$$Mf(x) = \sup_{x \in B} \frac{1}{|B|} \int_{B} |f(y)| dy$$

as usual where the supremum is taken over all balls B containing x.

Definition 1. Let 1 . A function <math>a is called an atom of weighted local Hardy spaces $h_w^{1,p}$ if there exists a ball B such that $\operatorname{supp} a \subset B$, $||a||_{p,w} \leq w(B)^{\frac{1}{p-1}}$ and either

(i)
$$r(B) < 1$$
 and $\int a(x)dx = 0$

Ωĭ

(ii)
$$r(B) \ge 1$$
.

Hereafter B is called the supporting ball of $h_w^{1,p}$ atom a, we denote $||f||_{p,w} = (\int |f(x)|^p w(x) \ dx)^{\frac{1}{p}}$ for $1 \leq p < \infty$, $w(B) = \int_B w(x) dx$ and r(B) denotes the radius of B. Also let $L_w^p = \{f : ||f||_{p,w} < \infty\}$ be the weighted p-integrable function spaces for $1 \leq p < \infty$. For simplity we use |B| instead of w(B) and L^p instead of L_w^p when $w \equiv 1$.

Definition 2. Let $w \in A_1$ and $1 . The weighted local Hardy spaces <math>h_w^{1,p}$ is the set of all tempered distributions f which can be written as

$$f = \sum_{j \in Z} \lambda_j a_j \tag{3}$$

for a family of $h_w^{1,p}$ atoms a_j and a sequences $\{\lambda_j\}$ with $\sum_{j\in Z} |\lambda_j| < \infty$.

Obviously $h_w^{1,p}$ is a Banach spaces for every 1 under the norm

$$||f||_{h_w^{1,p}} = \inf(\sum_{j \in Z} |\lambda_j|),$$

where the infimum is taken over all possible representation (3) of f. For simplity we use $h^{1,p}$ instead of $h_w^{1,p}$ when $w \equiv 1$. The local Hardy space $h^{1,2}$ was introduced by Goldberg [3] who used the local square function to define it and proved the equivalence with the above definition of $h^{1,2}$. In comparison with the weighted Hardy spaces [11], the only difference between them is that the vanishing moment condition on atoms in $h_w^{1,p}$ is deleted when the radius of its supporting ball B is larger than one. On the other hand, $h_w^{1,p}$ is an subspace of L_w^1 , and furthermore a proper subspace of L_w^1 in general.

In Section 2, we will consider the boundedness of osciallatory singular integral T on $h_w^{1,p}$ for Muckenhoupt A_1 weight w when Q(x,y) = P(x-y) for some real-valued polynomial P with P(0) = 0 and its degree $\deg(P) \geq 2$. Precisely we have proved the following result:

Theorem 1. Let $w \in A_1, 1 and <math>K$ be a kernel of Calderon-Zygmund type. Assume Q(x,y) = P(x-y) for some real-valued polynomial P with P(0) = 0 and its degree $\deg(P) \geq 2$. Then $\tilde{T} - T$, the difference between the corresponding oscillatory singular integral T and the corresponding truncated Calderon-Zygmund operator \tilde{T} , is bounded on weighted local Hardy space $h_w^{1,p}$.

Denote the weighted Hardy space by H_w^1 for $w \in A_1$ [11]. Therefore $H_w^1 \subset h_w^{1,2} \subset L_w^1$. We say that an oscillatory singular integral T is of convolution type if

$$Tf(x) = \int e^{iP(x-y)} \tilde{K}(x-y) f(y) dy$$

for some real-valued polynomial P and a local integrable function \tilde{K} on $R^n \setminus \{0\}$ such that $\tilde{K}(x-y)$ is a kernel of Calderon-Zygmund type. Recall that the conclusion $f \in H^1_w$ and $f, R_j f \in L^1_w$ are equivalent, where R_j $(1 \leq j \leq n)$ denote Riesz transforms as usual. Observe that R_j maps H^1_w to H^1_w for every $w \in A_1$ and $R_j T = T R_j$ when the oscillatory singular integral T is of convolution type. Also observe that \tilde{T} maps H^1_w to L^1_w by the Calderon-Zygmund theory. Therefore T maps H^1_w to H^1_w by Theorem 1 when \tilde{T} is a bounded operator on L^2 , $w \in A_1$, $\deg(P) \geq 2$ and the oscillatory singular integral T is of convolution type, which is the case considered by Pan and Hu in [5].

In Theorem 1, the bound constant of the operator $T - \tilde{T}$ is dependent on the sum of absolute values of the coefficients in P. It is easy to prove that

$$\int_{\lambda^{-1/3} \ge |x| \ge 2} \left| \int_{|x-y| \ge 2} e^{i\lambda(x-y)^2} \frac{1}{x-y} dy \right| dx = \frac{1}{3} \ln \lambda^{-1} + O(1) \to +\infty,$$

as $\lambda \to 0$, where O(1) denotes a term bounded by a constant independent of $0 < \lambda < 1$. Therefore the bound constants of the operators $T - \tilde{T}$ corresponding to $K(x,y) = (x-y)^{-1}$ in (1) and $P(x) = \lambda x^2$ tends to infinity as $\lambda \to 0$. The author believe that the fundamental reason why this phenomenon happens to local Hardy space and does not happen to p-integable spaces is that local Hardy space has not good dilation invariance.

In Section 3, we will consider the behaviour of the oscillatory singular integral T defined by (1) for general polynomial Q on $\mathbb{R}^n \times \mathbb{R}^n$. First the oscillatory singular integral T defined by

$$Tf(x) = \int \frac{e^{ixy}}{x - y} f(y) dy$$

does not map $h^{1,p}$ to L^1 for all $1 (see Example 1). Generally the oscillatory factor would damage the vanishing moment on <math>h_w^{1,p}$ atom which plays an important role. Also the oscillatory factor $Q(x+x_0,y+y_0)$ is completely different from Q(x,y) in the sense of damaging the vanishing moment. These make us to consider the sufficient and necessary condition on polynomials Q on $R^n \times R^n$ under which the corresponding oscillatory singular integral T maps $h_w^{1,p}$ to L_w^1 .

Theorem 2. Let $1 and <math>w \in A_1$. Assume that Q is a real-valued polynomial on $R^n \times R^n$ which cannot be written as $R_1(x) + R_2(y)$ for some polynomials R_1 and R_2 , and K is a kernel of Calderon-Zygmund type with $|K(x,y)| \ge C|x-y|^{-n}$ for all 0 < |x-y| < 1. If the corresponding oscillatory singular integral T defined by (1) is bounded on L_w^p , then the following statements are equivalent to each other: 1) T maps $h_w^{1,p}$ to L_w^1 ;

 $2) \sum_{1 \leq j \leq \log\left(\min(1,A(x_0))\right)^{-1}} w\left(B(x_0,2^jr)\right) 2^{-jn} \min(1,B(x_0)) \leq Cw\left(B(x_0,r)\right)$ holds for all $0 < r < 1, x_0 \in R^n$ and a constant C independent of r and x_0 but dependent of Q, where $A(x_0) = \sum_{\alpha \neq 0, \beta \neq 0} |a_{\alpha\beta}(x_0)| r^{|\alpha|+|\beta|}, B(x_0) = \sum_{\beta \neq 0} |a_{0\beta}(x_0)| r^{|\beta|},$ and $a_{\alpha\beta}(x_0)$ be the coefficient of $Q(x+x_0,y+y_0)$, i.e., $Q(x+x_0,y+y_0) = \sum_{\alpha} \sum_{\beta} a_{\alpha\beta}(x_0) x^{\alpha} y^{\beta}.$

The condition 2) in Theorem 2 seems not very computable. In Section 4, we will give some remarks on condition 2) in Theorem 2 and give a condition on \tilde{T} for which \tilde{T} , hence T, is bounded on $h_{w}^{1,p}$. We prove that

Theorem 2'. Let $p, w, Q, T, a_{\alpha\beta}(x_0)$ be the same as Theorem 2. Furthermore we assume that the weight w satisfies

$$C^{-1}w(y) \le w(x) \le Cw(y)$$

for all $|x-y| \le 1$, $|x| \ge C$ and some constant C. Therefore the following statements are equivalent to each other:

- 1) T maps $h_w^{1,p}$ to L_w^1 ;
- 2) $\sum_{\beta\neq 0} |a_{0\beta}(x_0)|^{\frac{1}{|\beta|}} \leq C \sum_{\alpha\neq 0, \beta\neq 0} |a_{\alpha\beta}(x_0)|^{\frac{1}{|\alpha|+|\beta|}}$ holds for all $x_0 \in \mathbb{R}^n$ and some constant C independent of x, where $a_{\alpha\beta}(x_0)$ is defined as in Theorem 2.

2. Semi-convolution Type

In this section, we will give the proof of Theorem 1.

Write

$$(T - \tilde{T})f(x) = \int (e^{iP(x-y)} - 1)K(x,y)\phi(|x-y|)f(y)dy$$
$$+ \int e^{iP(x-y)}K(x,y)(1-\phi)(|x-y|)f(y)dy$$
$$= T_1f(x) + T_2f(x).$$

Observe that the kernel of T_1 satisfies

$$|(e^{iP(x-y)} - 1)K(x,y)\phi(|x-y|)| \le C|x-y|^{1-n}\chi_{|x-y| \le 2}.$$

Therefore the proof of Theorem 1 reduces to

Theorem 3. Let $1 and <math>w \in A_1$. Assume that a local integrable function K on $R^n \times R^n \setminus \{(x,x); x \in R^n\}$ satisfies $|K(x,y)| \leq C|x-y|^{\alpha-n}\chi_{|x-y|\leq 2}$ for some constant C > 0 and $0 < \alpha < n$. Then the operator T_1 defined by

$$T_1 f(x) = \int_{\mathbb{R}^n} K(x, y) f(y) dy$$

is bounded on $h_w^{1,p}$.

Theorem 4. Let $1 and <math>w \in A_1$. Assume that P is a non-zero real-valued polynomial with its degree $\deg(P) \geq 2$ and K is a kernel of Calderon-Zygmund type with $\sup K \cap \{(x,y) : |x-y| \leq 1\} = \emptyset$. Then the operator T_2 defined by

$$T_2 f(x) = \int_{\mathbb{R}^n} e^{iP(x-y)} K(x,y) f(y) dy$$

is bounded on $h_w^{1,p}$.

Proof of Theorem 3. Obsverve that T_1 is a linear operator. Hence it sufficies to prove

$$||T_1 a||_{h^{1,p}} \le C \tag{4}$$

for every $h_w^{1,p}$ atom a and some constant C independent of a. Denote the supporting ball of a by B which has radius r = r(B) and center x_0 . Observe that

$$\operatorname{supp} T_1 a \subset B(x_0, r+2).$$

Hereafter B(z, s) denotes the ball with its center $z \in \mathbb{R}^n$ and its radius s > 0 and tB denotes the ball with the same center as the one of B and radius t times the one of B for t > 0. First we know

$$||T_1 a||_{p,w} \le C ||M a||_{p,w} \le C ||a||_{p,w} \le C w(B(x_0,r))^{\frac{1}{p}-1}$$

where M denotes the Hardy-Littlewood maximal operator as usual and the second inequality follows from the L^p_w boundedness of M provided $1 and <math>w \in A_p \subset A_1$. Therefore $C^{-1}T_1a$ is an $h^{1,p}_w$ atom when $r \geq 1$ and (4) holds when the supporting ball B of a having radius $r \geq 1$. Thus the matter reduces to proving (4) when the supporting ball B of a has its radius r < 1. Write

$$T_1 a = (T_1 a) \chi_{2B} + \sum_{k_0 \ge k \ge 2} (T_1 a) \chi_{2^{k+1} B \setminus 2^k B}$$
$$= \sum_{1 \le k \le k_0} T_1^k a,$$

where k_0 is an integer satisfying $2^{k_0} < r + 2 \le 2^{k_0 + 1}$. Observe that

$$w(B(x_0, 2^k r)) \le (2^k r)^n \inf_{x \in B(x_0, r)} M w(x) \le C(2^k r)^n \inf_{x \in B(x_0, r)} w(x)$$

$$< C2^{kn} w(B(x_0, r))$$
(5)

and

$$\int_{B} w(x)dx \left(\int_{B} w^{-\frac{1}{p-1}}(x)dx \right)^{p-1} \le C|B|^{p} \tag{6}$$

for every $w \in A_1$. Therefore we have

$$||T_1^1 a||_{p,w} \le Cr^{\alpha} ||Ma||_{p,w} \le Cw(B)^{\frac{1}{p}-1} r^{\alpha}$$

$$||T_1^k a||_{p,w} \le C(2^k r)^{\alpha-n} ||a||_1 w (2^{k+1} B)^{\frac{1}{p}}$$

$$\le C(2^k r)^{\alpha-n} ||a||_{p,w} \left(\int_B w^{-\frac{1}{p-1}} (x) dx \right)^{\frac{p-1}{p}} w (2^{k+2} B)^{\frac{1}{p}}$$

$$\le C(2^k r)^{\alpha} w (2^{k+2} B)^{\frac{1}{p}-1}.$$

where third inequality follows from (5) and (6). On the other hand, for every $f \in L_w^p$ supported in $B' = B(x_0, s)$ for some s < 1, we can write

$$f = (f - c(f)h_{B'}) + c(f)(h_{B'} - h_{2B'}) + \cdots + c(f)(h_{2^{k_0}B'} - h_{2^{k_0+1}B'}) + c(f)h_{2^{k_0+1}B'},$$

where $c(f) = \int f(x)dx$, k_0 is chosen such that $2^{k_0}s \geq 1 > 2^{k_0-1}s$, $h_{2^kB'} = c_k \chi_{2^{k+1}B'\setminus 2^kB'}$, χ_E denotes the characteristic function of the set E and c_k is chosen such that $\int h_{2^kB'}(x)dx = 1$. Therefore we get

$$||f||_{h_w^{1,p}} \le C||f||_{p,w} w(B(x_0,s))^{1-\frac{1}{p}} + C|\int f(x)dx|w(B(x_0,s))s^{-n}\log s^{-1}.$$
 (7)

Observe that supp $T_1^k a \subset B(x_0, 2^{k+2}r)$. Therefore

$$\begin{split} &\|T_{1}a\|_{h_{w}^{1,p}} \leq \sum_{k\geq 1, 2^{k}r\leq 2} \|T_{1}^{k}a\|_{h_{w}^{1,p}} \\ &\leq C \sum_{k\geq 1, 2^{k}r\leq 2} (2^{k}r)^{\alpha} + \sum_{k\geq 1, 2^{k}r\leq 2} \|T_{1}^{k}a\|_{1} w(B(x_{0}, 2^{k+2}r))(2^{k}r)^{-n} \log(2^{k}r)^{-1} \\ &\leq C + C \sum_{k\geq 1, 2^{k}r\leq 2} (2^{k}r)^{\alpha} (w(2^{k+2}B))^{\frac{1}{p}} \\ &\qquad (\int_{2^{k+2}B} w^{-\frac{1}{p-1}}(x)dx)^{\frac{p-1}{p}} (2^{k}r)^{-n} \log(2^{k}r)^{-1} \\ &\leq C + C \sum_{k\geq 1, 2^{k}r\leq 2} (2^{k}r)^{\alpha} \log(2^{k}r)^{-1} \leq C, \end{split}$$

and (4) holds true■

To prove theorem 4, we will use the following lemmas.

Lemma 1. Let Q, K and T_2 be the same as in Theorem 4. Then T_2 is bounded on L^p_w provided $1 and <math>w \in A_p$.

Proof of Lemma 1. Lemma 1 is proved by Liu and Zhang [6]. For completeness of this paper, we give the sketch of their proof here. Define

$$T_j^2 f(x) = \int e^{iP(x-y)} K(x,y) \varphi_j(|x-y|) f(y) dy$$
 (8)

for $j \geq 1$, where φ_j are smooth functions satisfying $\varphi_j(t) = \varphi(2^{-j}t)(j \geq 1)$ and $\sum_{j>1} \varphi(2^{-j}t) = 1$ on $(1,\infty)$. Therefore we can write

$$T_2 f = \sum_{j \ge 1} T_j^2 f.$$

Obviously we have

$$||T_i^2 f||_{p,w} \le C||Mf||_{p,w} \le C||f||_{p,w} \tag{9}$$

for $1 and <math>w \in A_p$. On the other hand, we have

$$||T_j^2||_2 \le C2^{-\epsilon j} ||f||_2 \tag{10}$$

for some $\epsilon > 0$ independent of f c.f. [8]. Recall that there exists $p - 1 > \delta > 0$ for every $w \in A_p$ and $1 such that <math>w^{1+\delta} \in A_{p-\delta}$ [2]. Therefore by Marcinkiewicz real interpolation theorem [9] between (9) and (10), we get

$$||T_i^2 f||_{p,w} \le C2^{-\epsilon j} ||f||_{p,w}$$

for some C and ϵ independent of f and $j \geq 1$, and

$$||T_2 f||_{p,w} \le \sum_{j>1} ||T_j^2 f||_{p,w} \le C ||f||_{p,w}.$$

Lemma 1 is proved■

Lemma 2. Let $Q(x,y) = \sum_{\alpha} \sum_{\beta} a_{\alpha\beta} x^{\alpha} y^{\beta}$ be a real-valued polynomial. Define

$$S_k f(x) = \int_B e^{iQ(x,y)} f(y) dy \chi_{2^k B}(x),$$

for $k \geq 1$, where B is a ball with its center zero and its radius r = r(B). Therefore there exist constants C and $\epsilon > 0$ independent of k and f for every $1 < p, q < \infty$ such that

$$||S_k f||_p \le C(1+g(r,k))^{-\epsilon} |2^k r|^{\frac{n}{p}} r^{n(\frac{q-1}{q})} ||f||_q$$

where we denote $g(r,k) = \sum_{\alpha \neq 0, \beta \neq 0} |a_{\alpha\beta}| (2^k r)^{|\alpha|} r^{|\beta|}$.

Proof of Lemma 2. Obviously we have

$$||S_k f||_1 \le C(2^k r)^n ||f||_1 \le C|2^k r|^n r^{n(\frac{q-1}{q})} ||f||_q$$
(12)

and

$$||S_k f||_{\infty} \le C||f||_1 \le Cr^{n(\frac{q-1}{q})}||f||_q.$$
(13)

On the other hand, we have

$$||S_{k}f||_{2}^{2}$$

$$\leq (2^{k}r)^{n} \int \int f(y)\overline{f(y')}dydy' \int e^{i\left(Q(2^{k}rx,y)-Q(2^{k}rx,y')\right)}\psi(x)dx$$

$$\leq C(2^{k}r)^{n}||f||_{q}^{2} \left(\int_{|y|\leq r} \int_{|y'|\leq r} dydy'|\int e^{i\left(Q(2^{k}rx,y)-Q(2^{k}rx,y')\right)}\psi(x)dx|^{\frac{q}{q-1}}\right)^{\frac{q-1}{q}}$$

$$\leq C(2^{k}r)^{n}r^{\frac{2n(q-1)}{q}}||f||_{q}^{2}$$

$$\left(\int_{|y|\leq 1,|y'|\leq 1} \left(1+\sum_{\alpha\neq 0}|\sum_{\beta}a_{\alpha\beta}r^{|\beta|}(y^{\beta}-y'^{\beta})|(2^{k}r)^{|\alpha|}\right)^{-\epsilon_{1}}dydy'\right)^{\frac{q-1}{q}}$$

$$\leq C(2^{k}r)^{n}r^{\frac{2n(q-1)}{q}}||f||_{q}^{2}$$

$$\left(\int_{|y|\leq 1} \left(1+\sum_{\alpha\neq 0}(|\sum_{\beta\neq 0}a_{\alpha\beta}r^{|\beta|}y^{\beta}|+\sum_{\beta\neq 0}r^{|\beta|}|a_{\alpha\beta}|)(2^{k}r)^{|\alpha|}\right)^{-\epsilon_{2}}dy\right)^{\frac{q-1}{q}}$$

$$\leq C(2^{k}r)^{n}r^{\frac{2n(q-1)}{q}}(1+g(r,k))^{-\epsilon}||f||_{q}^{2},$$

$$(14)$$

where ψ is a positive smooth function satisfying $\psi(x) = 1$ on $\{x : |x| \leq 1\}$ and $\psi(x) = 0$ on $\{x : |x| \geq 2\}$, ϵ_1 , ϵ_2 and ϵ are sufficient small constants independent of f, r and k, and the third inequality follows the following estimate of Van de Corput type (see [8] for example),

$$\int_{|y| \le 1} (1 + |Q(y)|)^{-\epsilon} dy \le C(1 + \sum_{\alpha} |q_{\alpha}|)^{\epsilon_1}$$

holds for some constant C, ϵ, ϵ_1 dependent of the degree of Q only, where $Q(y) = \sum_{\alpha} q_{\alpha} y^{\alpha}$.

Therefore Lemma 2 follows from the Marcinkiewicz real interpolation theorem [9] between (12), (13) and (14)

Proof of Theorem 4. Recall that T_2 is a linear operator. Therefore it sufficies to prove

$$||T_2 a||_{h^{1,p}} \le C \tag{15}$$

for every $h_w^{1,p}$ atom a and some constant C independent of a. We divide two cases to prove (15).

Case 1. The supporting ball B of a has its radius r = r(B) > 1. Write

$$T_2 a = (T_2 a) \chi_{2B} + \sum_{k=1}^{\infty} (T_2 a) \chi_{2^{k+1} B \setminus 2^k B}$$
$$= f_0 + \sum_{k=1}^{\infty} f_k.$$

Recall that supp $f_0 \subset 2B$, T_2 is boundedon L_w^p for every $1 and <math>w \in A_p$ by Lemma 1. Therefore we get

$$||f_0||_{p,w} \le ||T_2 a||_{p,w} \le C||a||_{p,w} \le Cw(B)^{\frac{1}{p}-1}.$$
 (16)

On the other hand we have

$$|f_k(x)| \le C2^{-k(n+1)}r^{-n}||a||_1 + C2^{-kn}r^{-n}|\int e^{iP(x-y)}a(y)dy|$$

= $I_k(x) + II_k(x)$

on $2^{k+1}B \setminus 2^k B$ for $k \geq 1$. For $w \in A_1$, there exist constants $p_0 > 1$ and C for every q > 0 such that

$$(|B|^{-1} \int_{B} w(x)^{p_0} dx)^{\frac{1}{p_0}} \le C|B|^{-1} \int_{B} w(x) dx \tag{17}$$

$$(|B|^{-1} \int_{B} w(x)^{-qp_0} dx)^{\frac{1}{p_0}} \le C|B|^{-1} \int_{B} w(x)^{-q} dx, \tag{18}$$

by reverse Hölder inequality [2]. Write $P(x-y) = \sum a_{\alpha\beta}x^{\alpha}y^{\beta}$. Thus $a_{\alpha\beta} \not\equiv 0$ for $\alpha \neq 0, \ \beta \neq 0$ by our assumption $\deg(P) \geq 2$. Recall that $\operatorname{supp} f_k \subset 2^{k+1}B$ and $\operatorname{supp} a \subset B$. Therefore we get

$$||I_{k}||_{p,w} \leq C2^{-k(n+1)}r^{-n}||a||_{1}w(2^{k+1}B)^{\frac{1}{p}}$$

$$\leq C2^{-k(n+1)}r^{-n}||a||_{p,w}\left(\int_{B}w(x)^{-\frac{1}{p-1}}dx\right)^{\frac{1}{p-1}}w(2^{k+1}B)^{\frac{1}{p}}$$

$$\leq C2^{-k}w(2^{k+1}B)^{\frac{1}{p}-1}$$
(19)

by (5) and (6), and we also get

$$||II_{k}||_{p,w} \leq C2^{-kn}r^{-n} \left(\int_{2^{k+1}B} w(x)^{p_{0}} dx \right)^{\frac{1}{p p_{0}}} \left(\int_{2^{k+1}B} |\int e^{iP(x-y)} a(y) dy|^{\frac{p p_{0}}{p_{0}-1}} dx \right)^{\frac{p_{0}-1}{p p_{0}}}$$

$$\leq C2^{-kn}r^{-n}w(2^{k+1}B)^{\frac{1}{p}}r^{\frac{n(q-1)}{q}} ||a||_{q} (1+g(r,k))^{-\epsilon}$$

$$\leq C(1+g(r,k))^{-\epsilon}w(2^{k+1}B)^{\frac{1}{p}-1},$$

$$(20)$$

where $g(r,k) = \sum_{\alpha \neq 0, \beta \neq 0} |a_{\alpha\beta}| (2^k r)^{|\alpha|} r^{|\beta|}$, $q = \frac{pp_0}{p+p_0-1} < p$, the second inequality follows from (17) and Lemma 2 (in fact we use $\frac{pp_0}{p_0-1}$ as the p in Lemma 2), and the third one from the Hölder inequality

$$||a||_q \le ||a||_{p,w} \left(\int_B w(x)^{-\frac{q}{p-q}} dx \right)^{\frac{p-q}{pq}}$$

and (18). Recall that $r \geq 1$ and $a_{\alpha\beta} \not\equiv 0$ for $\alpha \neq 0, \beta \neq 0$. Combining (19) and (20), we get

$$||T_2 a||_{h_w^{1,p}} \le ||f_0||_{p,w} w(B)^{1-\frac{1}{p}} + \sum_{k\ge 1} ||f_k||_{p,w} w(2^{k+1}B)^{1-\frac{1}{p}}$$
$$\le C + C \sum_{k>1} g(r,k)^{-\epsilon} \le C + C \sum_{k>1} 2^{-k\epsilon} \le C$$

and (15) holds in Case 1.

Case 2. The supporting ball B of a has its radius r=r(B)<1. Write

$$T_2 f = \sum_{i>1} T_2^j f$$

as in the proof of Lemma 1. Recall that $\int a(y)dy = 0$ by the definition of $h_w^{1,p}$ atom. Therefore we have

$$|T_{2}^{j}a(x)| \leq \int |K(x,y)\phi(|x-y|) - K(x,x_{0})\phi(|x-x_{0}|) |a(y)|dy$$

$$+|K(x,x_{0})||\phi(|x-x_{0}|) \int |e^{iP(x-y)} - e^{iP(x-x_{0})}||a(y)|dy \qquad (21)$$

$$\leq C2^{-j(n+1)}r||a||_{1} + C2^{-jn} \sum_{\alpha} \sum_{\beta \neq 0} |a_{\alpha\beta}|2^{j|\alpha|}r^{|\beta|}||a||_{1},$$

where x_0 is the centre of B and

$$||T_{2}^{j}a||_{p,w} \leq C2^{-j(n+1)}r||a||_{1}w(B(x_{0}, 2^{j}))^{\frac{1}{p}} + 2^{-jn}\sum_{\alpha}\sum_{\beta\neq 0}|a_{\alpha\beta}|2^{j|\alpha|}r^{|\beta|}||a||_{1}w(B(x_{0}, 2^{j}))^{\frac{1}{p}}$$

$$\leq C(2^{-j}r + \sum_{\alpha}\sum_{\beta\neq 0}|a_{\alpha\beta}|2^{j|\alpha|}r^{|\beta|})w(B(x_{0}, 2^{j}))^{\frac{1}{p}-1}.$$

$$(22)$$

Observe that

$$|T_2^j a(x)| \le C 2^{-j(n+1)} r ||a||_1 \chi_{|x-x_0| \le C 2^j}(x)$$

$$+ |K(x,x_0)||\phi(x,x_0)|| \int e^{iP(x-x_0-y)} a(y+x_0) dy|$$

$$\le I_1 + I_2.$$

By same argument as in (19) we get

$$||I_1||_{p,w} \le C2^{-j} rw (B(x_0, 2^j))^{\frac{1}{p}-1}.$$

On the other hand we get

$$||I_{2}||_{p,w} \leq C2^{-jn} \left(\int_{|x| \leq C2^{j}} |\int e^{iP(x-x_{0}-y)} a(y+x_{0}) dy|^{p} w(x+x_{0}) dx \right)^{\frac{1}{p}}$$

$$\leq C2^{-jn} \left(\int_{|x| \leq C2^{j}} |\int e^{iP(x-x_{0}-y)} a(y+x_{0}) dy|^{\frac{pp_{0}}{p_{0}-1}} dx \right)^{\frac{p_{0}-1}{pp_{0}}}$$

$$\left(\int_{|x| \leq C2^{j}} w(x+x_{0})^{p_{0}} dx \right)^{\frac{1}{pp_{0}}}$$

$$\leq C\left(1+\sum_{\alpha \neq 0, \beta \neq 0} |a_{\alpha\beta}| 2^{j|\alpha|} r^{|\beta|}\right)^{-\epsilon} w(B(x_{0}, 2^{j}))^{\frac{1}{p}-1},$$

where the last inequality follows from Lemma 2 and (17). This proves

$$||T_2^j a||_{p,w} \le C \left(2^{-j} r + \left(1 + \sum_{\alpha \ne 0, \beta \ne 0} |a_{\alpha\beta}| 2^{j|\alpha|} r^{|\beta|}\right)^{-\epsilon}\right) w \left(B(x_0, 2^j)\right)^{\frac{1}{p} - 1}.$$
 (23)

Recall that supp $T_2^j a \subset B(x_0, 2^{j+1})$. Therefore by (21) and (23) we have

$$||T_{2}a||_{h_{w}^{1,p}} \leq C \sum_{j\geq 1} 2^{-j} r$$

$$C \sum_{j\geq 1} \min(\sum_{\alpha} \sum_{\beta \neq 0} |a_{\alpha\beta}| 2^{j|\alpha|} r^{|\beta|}, (1 + \sum_{\alpha \neq 0, \beta \neq 0} |a_{\alpha\beta}| 2^{j|\alpha|} r^{|\beta|})^{-\epsilon}).$$

Let j_0 be the least positive integer such that

$$\sum_{\alpha \neq 0, \beta \neq 0} |a_{\alpha\beta}| 2^{j|\alpha|} r^{|\beta|} \ge 1. \tag{24}$$

Then $j_0 \leq C \log r^{-1}$. Let (α_0, β_0) be the index satisfying $|a_{\alpha_0\beta_0}|2^{j|\alpha_0|}r^{|\beta_0|} \geq |a_{\alpha\beta}|2^{j|\alpha|}r^{|\beta|}$ for all $\alpha \neq 0, \beta \neq 0$. Therefore we have

$$||T_{2}a||_{h_{w}^{1,p}} \leq C + C \sum_{1 \leq j \leq j_{0}} \sum_{\alpha} \sum_{\beta \neq 0} |a_{\alpha\beta}| 2^{j|\alpha|} r^{|\beta|} + C \sum_{j \geq j_{0}} (|a_{\alpha_{0}\beta_{0}}| 2^{j|\alpha_{0}|} r^{|\beta_{0}|})^{-\epsilon}$$

$$\leq C + C \sum_{\alpha \neq 0, \beta \neq 0} |a_{\alpha\beta}| 2^{j_{0}|\alpha|} r^{|\beta|}$$

$$+ C j_{0} \sum_{\beta \neq 0} |a_{0\beta}| r^{\beta} + C (|a_{\alpha_{0}\beta_{0}}| 2^{-j_{0}|\alpha_{0}|} r^{|\beta_{0}|})^{-\epsilon}$$

$$\leq C$$

and (15) holds in Case 2. Theorem 4 is proved

3. Non-convolution Type

We begin with an example of polynomial Q on $\mathbb{R}^n \times \mathbb{R}^n$ and a kernel K of Calderon-Zygmund type in one spatial dimension, for which the corresponding oscillatory singular integral does not map $h^{1,p}$ to L^1 for every 1 .

Example 1. Let n=1, $K(x-y)=\frac{1}{x-y}$ and Q(x,y)=xy. Then the oscillatory singular integral T defined by

$$Tf(x) = \int_{R} \frac{e^{ixy}}{x - y} f(y) dy$$

does not map $h^{1,p}$ to L^1 for every 1 .

In particular, for $f_r(y) = r^{-1}e^{i\pi r^{-1}y}\chi_{[\pi r^{-1}-r,\pi r^{-1}+r]}(y)$ (0 < r < 1/2), the $h^{1,p}$ norm $||f_r||_{h^{1,p}} \le C$ holds for some constant C independent of 0 < r < 1/2. On the other hand, we have

$$||Tf_r||_1 \ge r^{-1} \int_{2r}^1 |\int_{-r}^r \frac{e^{ixy}}{x - y} dy | dx$$

$$\ge r^{-1} \int_{2r}^1 |\int_{-r}^r \frac{1}{x - y} dy | dx - 2r^{-1} \int_{2r}^1 \int_{-r}^r |y| dy dx$$

$$\ge \int_{2r}^1 \frac{1}{|x|} dx - 1 = \log(2r)^{-1} - 1 \to \infty \quad (r \to 0).$$

This show that T does not map $h^{1,p}$ to L^1 boundedly.

Proof of Theorem 2. At first we prove $2) \Longrightarrow 1$). Obviously it suffices to proving

$$||T_{x_0}a||_{L^1_{\tau(x_0)y}} \le C \tag{25}$$

for every $h_w^{1,p}$ atoms a with its supporting ball B having center zero and radius r = r(B), where we define

$$T_{x_0}f(x) = \int_{\mathbb{R}^n} e^{iQ(x+x_0,y+x_0)} K(x+x_0,y+x_0) f(y) dy$$

and $\tau(x_0)w(\cdot) = w(\cdot + x_0)$. Hereafter the big letter C denotes a constant independent of x_0 and 0 < r < 1, but would be different at different occurances. We divide two cases to prove (25).

Case 1. $r = r(B) \ge 1$

As in the proof of Theorem 4, write

$$T_{x_0}a = f_0 + \sum_{k=1}^{\infty} f_k.$$

Therefore we have

$$||f_0||_{1,\tau(x_0)w} \le ||T_{x_0}a||_{p,\tau(x_0)w} (\tau(x_0)w)(2B)^{\frac{p-1}{p}} \le C$$

$$||f_k||_{1,\tau(x_0)w} \le ||f_k||_{p,\tau(x_0)w} (\tau(x_0)w)(2^{k+1}B)^{\frac{p-1}{p}}$$

$$\le C(2^{-k} + (1 + g_{x_0}(r,k))^{-\epsilon}),$$

where $g_{x_0}(r,k) = \sum_{\alpha \neq 0, \beta \neq 0} |a_{\alpha\beta}(x_0)| (2^k r)^{|\alpha|} r^{|\beta|}$ and constants $C, \epsilon > 0$ are independent of k and a. We say index $\gamma = (\gamma_1, ..., \gamma_n) \geq \delta = (\delta_1, ..., \delta_n)$ if $\gamma_i \geq \delta_i$ for all $1 \leq i \leq n$. Observe that $a_{\alpha\beta}(x_0) = a_{\alpha\beta}(0)$ for all index pairs (α, β) and $x_0 \in \mathbb{R}^n$ for which there does not exist index pairs (γ, δ) such that $a_{\gamma\delta}(0) \neq 0$, $(\gamma, \delta) \neq (\alpha, \beta), \gamma \geq \alpha$ and $\delta \geq \beta$. Therefore $g_{x_0}(r, k) \geq C2^{ks}$ holds for some constants C and s independent of x_0 and k provided $r \geq 1$. This shows that

$$||T_{x_0}a||_{1,w} \le \sum_{k\ge 0} ||f_k||_{1,w} \le C + C \sum_{k\ge 1} 2^{-ks\epsilon} \le C$$

and (25) holds in Case 1.

Case 2. r = r(B) < 1.

Write

$$T_{x_0}a = f_0 + \sum_{k=1}^{\infty} f_k \tag{26}$$

as in Case 1. As in Case 2 in the proof of Theorem 4, we have

$$||f_0||_{1,\tau(x_0)w} \le C,$$

$$||f_k||_{1,\tau(x_0)w} \le ||f||_{p,\tau(x_0)w} (\tau(x_0)w) (2^{k+1}B)^{\frac{p-1}{p}}$$

$$\le C2^{-k} + C\min(g_{x_0}(r,k) + \sum_{\beta \ne 0} |a_{0\beta}(x_0)|r^{|\beta|}, (1+g_{x_0}(r,k))^{-\varepsilon})$$

$$2^{-kn} (\tau(x_0)w) (2^k B) (\tau(x_0)w) (B)^{-1},$$

where $g_{x_0}(r,k) = \sum_{\alpha \neq 0, \beta \neq 0} |a_{\alpha\beta}(x_0)| (2^k r)^{|\alpha|} r^{|\beta|}$ as in Case 1. Define the first positive integer k such that $g_{x_0}(r,k) \geq 1$ by k_0 if it exists and define $k_0 = 0$ otherwise. Observe that

$$2^k g_{x_0}(r,0) \le g_{x_0}(r,k) \le 2^{Nk} g_{x_0}(r,0)$$

for some positive integer N. Thus we get

$$C_1\log(\min(1,g_{x_0}(r,0)))^{-1} \le k_0 \le C_2\log(\min(1,g_{x_0}(r,0)))^{-1}$$
 (27)

for some constants $C_2 \geq C_1 > 0$ independent of x_0 and r < 1. Therefore

$$||T_{x_0}a||_{1,\tau(x_0)_w} \leq C + C \sum_{k_0 \geq k} g_{x_0}(r,k)^{-\epsilon} + C \sum_{1 \leq k \leq k_0} g_{x_0}(r,k)$$

$$+ C \sum_{1 \leq k \leq k_0} 2^{-kn} (\tau(x_0)w)(2^k B) (\tau(x_0)w)(B)^{-1}$$

$$\min(1, \sum_{\beta \neq 0} |a_{0\beta}(x_0)|r^{|\beta|})$$

$$\leq C + C \min(1, \sum_{\beta \neq 0} |a_{0\beta}(x_0)|r^{|\beta|})$$

$$\sum_{1 \leq k \leq \log(\min(1, g_{x_0}(r,0)))^{-1}} 2^{-kn} (\tau(x_0)w)(2^k B) (\tau(x_0)w)(B)^{-1}$$

$$\leq C < \infty,$$

where the first inequality follows from (5) and the second one from our assumption 2),

$$\sum_{k \le j \le 2k} 2^{-jn} (\tau(x_0)w)(2^j B) \le C \sum_{1 \le j \le k} 2^{-jn} (\tau(x_0)w)(2^j B), \tag{28}$$

(5) and (7). Thus (25) holds in Case 2.

Secondly we prove $1)\Longrightarrow 2$). Let a be an $h_w^{1,p}$ atom with its supporting B having radius r=r(B)<1 and center zero. Write

$$T_{x_0}a = f_0 + \sum_{k=1}^{\infty} f_k$$

where f_k are defined as in (26). Observe that

$$|f_{k}(x)| \ge |K(x+x_{0},x_{0})| \int e^{i\sum_{\beta\neq0} a_{0\beta}(x_{0})y^{\beta}} a(y)dy|$$

$$-|K(x+x_{0},x_{0})| \int \sum_{\alpha\neq0,\beta\neq0} |a_{\alpha\beta}(x_{0})| (2^{k}r)^{|\alpha|} r^{|\beta|} |a(y)| dy$$

$$-\int |K(x+x_{0},x_{0}) - K(x+x_{0},y+x_{0})| |a(y)| dy$$
(29)

on $2^{k+1}B \setminus 2^k B$ for $k \geq 1$. Also we know from (27) that $g_{x_0}(r,0) \geq Cr^N$ and $2^k r \leq 1$ for all $k \leq \epsilon_1 \log \left(\min(1,g_{x_0}(r,0))\right)^{-1}$, where C,N and $0 < \epsilon_1 < 1$ are constants independent of x_0 and r < 1. Recall that (28), (29) and $|K(x+x_0,x_0)| \geq C|x|^{-n}$ for all |x| < 1 and $x_0 \in R^n$ by our assumption. Therefore we get

$$\begin{split} &|\int e^{i\sum_{\beta\neq 0} a_{0\beta}(x_{0})y^{\beta}}a(y)dy| \sum_{1\leq k\leq \log\left(\min\left(1,g_{x_{0}}(r,0)\right)\right)^{-1}} r^{-n}2^{-kn}(\tau(x_{0})w)(2^{k}B) \\ \leq &C\int_{R^{n}} |T_{x_{0}}a(x)|(\tau(x_{0})w)(x)dx \\ &+C\sum_{1\leq k\leq \epsilon_{1}\log\left(\min\left(1,g_{x_{0}}(r,0)\right)\right)^{-1}} \left(2^{-k} + \sum_{\alpha\neq 0,\beta\neq 0} |a_{\alpha\beta}(x_{0})|(2^{k}r)^{|\alpha|}r^{|\beta|}\right) \\ \leq &\|T_{x_{0}}a\|_{1,\tau(x_{0})w} + C \leq C, \end{split}$$

where the first inequality follows from (5), and the last one from our assumption 1). Therefore the matter reduces to

$$\min\left(1, \sum_{\beta \neq 0} |a_{0\beta}(x_0)|r^{|\beta|}\right) \left(\tau(x_0)w\right) (B)^{-1} r^n$$

$$\leq C \sup_{a} \left| \int e^{i \sum_{\beta \neq 0} a_{0\beta}(x_0)y^{\beta}} a(y) dy \right|, \tag{30}$$

where the supremum on a is taken over all function a satisfying supp $a \subset B(0,r)$, $\int a(y)dy = 0$ and $||a||_{p,\tau(x_0)w} \leq (\tau(x_0)w)(B(0,r))^{\frac{1}{p}-1}$. Observe that

$$||a||_{p,\tau(x_0)w} \le (\tau(x_0)w)(B(0,r))^{\frac{1}{p}-1}$$

provided $||a||_{\infty} \leq (\tau(x_0)w)(B(0,r))^{-1}$. Denote

$$\mathcal{R}'_N = \big\{ R(y) = \sum_{\beta \neq 0} a_\beta y^\beta, \ R \ \text{ is real-valued polynomial, } \deg R \leq N \big\}.$$

Therefore the matter reduces to

Lemma 3. Let \mathcal{R}'_N be defined as above. Thus

$$\sup_{a} |\int e^{iR(y)} a(y) dy| \ge C \min(1, ||R||)$$
 (31)

holds for all $R \in \mathcal{R}'_N$ and a constant C independent of R, where the supremum on a is taken over all function a satisfying suppa $\subset B(0,1), \int a(y)dy = 0$ and $||a||_{\infty} \leq 1$, and we define $||R|| = \sum_{\beta \neq 0} |a_{\beta}|$ for all $R \in \mathcal{R}'_N$.

Proof of Lemma 3. Denote

$$||R||_* = \sup_a |\int R(y)a(y)dy|$$

for all $R \in \mathcal{R}'_N$, where the supremum on a is taken over the same region as in (31). Obviously $||R||_* \geq 0$, $||CR||_* = |C|||R||_*$ and $||R_1 + R_2||_* \leq ||R_1||_* + ||R_2||_*$ for all $R, R_1, R_2 \in \mathcal{R}'_N$ and real number C. Furthermore $||R||_* = 0$ implies $\int R(y)a(y)dy = 0$ for all bounded functions a satisfying supp $a \subset B(0,1)$ and $\int a(y)dy = 0$. Therefore

$$\frac{1}{|B(0,1)|} \int_{B(0,1)} |R(y)|^2 dy = \left(\frac{1}{|B(0,1)|} \int_{B(0,1)} R(y) dy\right)^2,$$

where |B(0,1)| denotes the Lebesgue measure of B(0,1), and R must be a constant. Recall that $R \in \mathcal{R}'_N$. Thus R = 0, and $||R||_* = 0$ implies R = 0. Hence we prove that $||\cdot||_*$ is a norm on \mathcal{R}'_N . By the equivalence of two norms on finite dimensions spaces, we get $||R||_* \geq C_1 ||R||$ for all $R \in \mathcal{R}'_N$ and some constant C_1 .

Observe that

$$|e^{iR(y)} - 1 - iR(y)| \le ||R||^2$$

for all $|y| \leq 1$ by Taylor formula. Hence we get

$$\sup_{a} \left| \int e^{iR(y)} a(y) dy \right| \ge \|R\|_* - \|R\|^2$$

$$\ge C_1 \|R\| - \|R\|^2 \ge \frac{C_1}{2} \|R\|,$$

when ||R|| is chosen sufficient small.

As in the procedure to prove $||R||_* = 0$ holds only for R = 0, we get

$$\sup_{a} \left| \int e^{iR(y)} a(y) dy \right| = 0$$

holds only for R=0, where $R\in\mathcal{R}'_N$ and the supremum on a is taken over all bounded functions a satisfying suppa $\subset B(0,1)$ and $\int a(y)dy=0$. Observe that $\int e^{iR(y)}a(y)dy$ is continuous on $R\in\mathcal{R}'_N$ for all bounded functions a. Therefore the matter reduces to proving that (31) holds for all $R\in\mathcal{R}'_N$ when $\|R\|$ is large enough.

Define

$$R_{B(0,1)} = \frac{1}{|B(0,1)|} \int_{B(0,1)} e^{iR(y)} dy.$$

Therefore by estimates of Van de Corput type [8], we get

$$||R_{B(0,1)}|| \le C||R||^{-\epsilon}$$

holds for all $R \in \mathcal{R}'_N$, where constants C and $\epsilon > 0$ is independent of $R \in \mathcal{R}'_N$. Observe that

$$\int_{B(0,1)} \left(e^{-iR(y)} - \bar{R}_{B(0,1)} \chi_{B(0,1)}(y) \right) dy = 0$$

$$|e^{-iR(y)} - \bar{R}_{B(0,1)}\chi_{B(0,1)}(y)| \le 2.$$

Therefore we get

$$\begin{split} \sup_{a} &| \int e^{iR(y)} a(y) dy | \\ &\geq \frac{1}{2} \int |e^{iR(y)} - R_{B(0,1)} \chi_{B(0,1)}(y)|^2 dy \\ &\geq \frac{1}{2} |B(0,1)| - C||R||^{-2\epsilon} \geq \frac{1}{4} |B(0,1)|, \end{split}$$

provided that ||R|| chosen large enough. Lemma 3 and hence Theorem 2 is proved

Example 1. (revised) Let Q(x,y) = xy. Then $a_{01}(x_0) = x_0, a_{11}(x_0) = 1, a_{10}(x_0) = x_0, a_{00}(x_0) = x_0^2$ and $a_{\alpha\beta}(x_0) = 0$ otherwise. Now the condition 2) in Theorem 2 becomes

$$\min(1, |x_0|r) \int_{x_0-1}^{x_0+1} w(x) \left(1 + \frac{|x-x_0|}{r}\right)^{-1} dx \le C \int_{x_0-r}^{x_0+r} w(x) dx$$

for all $x_0 \in \mathbb{R}^n$, 0 < r < 1. The authors believe that a weight $w \in A_1$ satisfying the the above condition does not exist.

4. Remarks

Observe that $2^k r \leq 1$ when $k \leq \varepsilon_1 \log \left(\min(1, \sum_{\alpha \neq 0, \beta \neq 0} |a_{\alpha\beta}(x_0)| r^{|\alpha| + |\beta|})\right)^{-1}$, where $\varepsilon_1 > 0$ is a constant independent of x_0 and r < 1. Therefore condition 2) in Theorem 2 is equivalent to

$$\min(1, \sum_{\beta \neq 0} |a_{0\beta}(x_0)|r^{|\beta|}) \log(\min(1, \sum_{\alpha \neq 0, \beta \neq 0} |a_{\alpha\beta}(x_0)|r^{|\alpha|+|\beta|})))^{-1} \leq C$$
 (32)

holds for all $x_0 \in \mathbb{R}^n$ and 0 < r < 1, provided $w \in A_1$ and

$$C^{-1}w(y) \le w(x) \le Cw(y) \tag{33}$$

holds for all $|x - y| \le 1, |x| \ge C$ and a constant C.

Example 2. $w(x) = |x|^{\alpha}, -n < \alpha \le 0$ satisfies (33).

Observe that

$$\log\left(\min\left(1, \sum_{\alpha \neq 0, \beta \neq 0} |a_{\alpha\beta}(x_0)| r^{|\alpha| + |\beta|}\right)\right)^{-1}$$

is equivalent to

$$\log\left(\min\left(1, \sum_{\alpha \neq 0, \beta \neq 0} |a_{\alpha\beta}(x_0)|^{\frac{1}{|\alpha| + |\beta|}} r\right)\right)^{-1}.$$
 (34)

Therefore (32) is equivalent to

$$\min(1, |a_{0\beta}(x_0)|r^{|\beta|})\log(\min(1, g(x_0)^{|\beta|}r^{|\beta|}))^{-1} \le C$$
(35)

for all $\beta \neq 0$, where $g(x_0) = \sum_{\alpha \neq 0, \beta \neq 0} |a_{\alpha\beta}(x_0)|^{\frac{1}{|\alpha|+|\beta|}}$. Recall that $a_{\alpha\beta}(x_0) = a_{\alpha\beta}(0) \neq 0$ for all index pair (α, β) for which there does not exist index (γ, δ) satisfying $a_{\gamma\delta}(0) \neq 0, (\gamma, \delta) \neq (\alpha, \beta), \gamma \geq \alpha$ and $\delta \geq \beta$. Thus

$$g(x_0) \ge C_1 \tag{36}$$

for some constant C_1 independent of $x_0 \in \mathbb{R}^n$. Now we can prove

$$|a_{0\beta}(x_0)|^{\frac{1}{|\beta|}} \le Cg(x_0).$$

Conversely there exists a sequence $x_k \in \mathbb{R}^n$ $(k \geq 1)$ such that

$$|a_{0\beta}(x_k)|^{\frac{1}{|\beta|}} \ge kg(x_k) \tag{37}$$

Recall $g(x_k) \geq C_1$ by (36). Hence $|a_{0\beta}(x_k)|^{\frac{1}{|\beta|}} \geq kC_1 > 1$ when k is large enough. Let $r_k = |a_{0\beta}(x_k)|^{-\frac{1}{|\beta|}} < 1$. Then $g(x_k)r_k \leq k^{-1}$ and

$$\min(1, |a_{0\beta}(k)| r_k^{|\beta|}) \log(\min(1, g(x_k)^{|\beta|} r_k^{|\beta|}))^{-1} \ge |\beta| \log k,$$

which contradicts to (35). Therefore we prove

Theorem 5. Let $w \in A_1$ satisfy (33). Then condition 2) in Theorem 2 is equivalent to

$$\sum_{\beta \neq 0} |a_{0\beta}(x)|^{\frac{1}{|\beta|}} \leq C \sum_{\alpha \neq 0, \beta \neq 0} |a_{\alpha\beta}(x_0)|^{\frac{1}{|\alpha| + |\beta|}}$$

holds for all $x \in \mathbb{R}^n$ and some constant C independent of x.

Combining with Theorem 2 and 5, we get Thereom 2'.

Example 3. Let $Q(x,y) = (x-y)^2 y$. Then $a_{02}(x_0) = x_0, a_{03}(x_0) = 1, a_{10}(x_0) = x_0, a_{11}(x_0) = -2x_0, a_{12}(x_0) = -2, a_{21}(x_0) = 1$ and $a_{\alpha\beta}(x_0) = 0$ otherwise. Furthermore we have

$$\sum_{\alpha \neq 0, \beta \neq 0} |a_{\alpha\beta}(x_0)|^{\frac{1}{|\alpha| + |\beta|}} = 1 + 2^{\frac{1}{3}} + |2x_0|^{\frac{1}{2}},$$

and

$$\sum_{\beta \neq 0} |a_{0\beta}(x_0)|^{\frac{1}{|\beta|}} = 1 + |x_0|^{\frac{1}{2}}.$$

This shows the condition 2) in Theorem 2' holds for $Q(x,y) = (x-y)^2 y$ in one spatial dimension.

Now we give a condition for which \tilde{T} , hence T, is bounded on $h_w^{1,p}$.

Theorem 6. Let $w \in A_1$ and $1 . Assume that <math>\tilde{T}$ is bounded on L^p_w and furthermore

$$\left| \int_{\mathbb{R}^n} \tilde{T}a(x)dx \right| \le Cw(B(x_0, r))^{-1} r^n (\log r^{-1})^{-1} \tag{38}$$

holds for all $h_w^{1,p}$ atom a with its supporting ball $B(x_0,r)$ having radius r < 1. Then \tilde{T} is bounded on $h_w^{1,p}$.

Proof of Theorem 6. Let a be a $h_w^{1,p}$ atom and $B(x_0,r)$ be its supporting ball with radius r and center x_0 . Observe that $\operatorname{supp} \tilde{T} \subset B(x_0,r+2)$. Therefore

$$\|\tilde{T}a\|_{h_{w}^{1,p}} \le C \|\tilde{T}a\|_{p,w} w(B(x_{0},2r))^{1-\frac{1}{p}} \le C$$

when r > 1. Hence the matter reduces to r(B) < 1.

Let $h_k = c_k \chi_{B(x_0, 2^{k+1}r) \setminus B(x_0, 2^kr)}(x)$ and $d_k = \int_{R^n} (\tilde{T}a)(x) \chi_{R^n \setminus B(x_0, 2^kr)}(x) dx$, where $c_k = \int \chi_{B(x_0, 2^{k+1}r) \setminus B(x_0, 2^kr)}(x) dx$. Write

$$\begin{split} \tilde{T}a = & (\tilde{T}a)\chi_{B(x_0,2r)} + d_1h_1 \\ & + \sum_{1 \leq k \leq k_0} ((\tilde{T}a)\chi_{B(x_0,2^{k+1}r)\backslash B(x_0,2^kr)} - d_kh_k + d_{k+1}h_{k+1}) \\ = & \tilde{f}_0 + \sum_{1 \leq k \leq k_0} \tilde{f}_k \end{split},$$

where k_0 is an integer such that $2^{k_0}r \leq 4 \leq 2^{k_0+1}r$. Obviously $\int_{\mathbb{R}^n} \tilde{f}_k(x)dx = 0$, $\sup_{\tilde{f}_k} \tilde{f}_k(x)dx = 0$, and

$$\|\tilde{f}_k\|_{p,w} \le Cr^{-n}2^{-k}\|a\|_1 w(B(x_0, 2^{k+1}r))^{\frac{1}{p}}$$

$$\le C2^{-k}w(B(x_0, 2^{k+1}))^{\frac{1}{p}-1}$$

for all $k \geq 1$. On the other hand, we have

$$\operatorname{supp} \tilde{f_0} \subset B(x_0, 2r), \|\tilde{f_0}\|_{p, w} \le w(B(x_0, 2r))^{\frac{1}{p} - 1}$$

and

$$|\int \tilde{f}_0(x)dx| = |\int (\tilde{T}a)(x)\chi_{B(x_0,2r)}(x)dx + d_1|$$
$$= |\int (\tilde{T}a)(x)dx| \le Cw(B(x_0,r))^{-1}(\log r^{-1})^{-1}.$$

Therefore we get $||f_0||_{h_w^{1,p}} \leq C$ by (7) and

$$\|\tilde{T}a\|_{h_w^{1,p}} \le \sum_{k>0} \|\tilde{f}_k\|_{h_w^{1,p}} \le C + C \sum_{k>1} 2^{-k} \le C.$$

This proved Theorem 6■

Remark. Let K be a kernel of Calderon-Zygmund type. Define

$$T^*f(x) = \int_{\mathbb{R}^n} K(x, y) f(y) dy$$

Observe that

$$\int_{\mathbb{R}^n} | \int K(x,y) (1-\phi) (|x-y|) a(y) dy | dx \le Cr ||a||_1$$

provided $\int_{\mathbb{R}^n} a(x)dx = 0$. Hence $\int T^*a(x)dx = 0$ implies (38) and \tilde{T} satisfies (38) when T^* is bounded on weighted Hardy space H_w^1 .

REFERENCES

- [1] Chanillo S. and Christ M., Weak (1,1) bounds for oscillatory singular integrals, Duke Math. J., 1987, 55: 141-155.
- [2] Coifman R. R. and Fefferman R., Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 1974, 51: 241-250.
- [3] Goldberg D., A local version of real Hardy spaces, Duke Math. J., 1979,46: 27-42.
- [4] Hu Y., Osciallatory singular integral on weighted Hardy spaces, Studia Math., 1992, 102: 145-156.
- [5] Hu Y. and Pan Y., Boundedness of osciallatory singular integral on Hardy spaces, Ark. Math., 1992, 30: 311-320.
- [6] Liu H. and Zhang Y., Criteron of L^2 -boundedness for a class of oscillatory integrals, Approx. Theory & its Appl., 1991, **7(4)**: 1-5.
- [7] Phong D. H. and Stein E. M., Hilbert transform integrals, singular integrals and Radon transform I, Acta Math., 1986, 157: 99-157.
- [8] Ricci F. and Stein E. M., Harmonic analysis on nilpotent group and singular integral I: oscial-latory integrals, J. Funct. Anal., 1987,73: 179-194.
- [9] Stein E. M., Singular Integrals and Differentiablity Properties of Function, New York, Priceton Univ. Press, 1970.
- [10] Stein E. M. and Wainger S., Problem in harmonic analysis related to curvature, Bull. Amer. Math. Soc., 1978, 84: 1239-1295.
- [11] Strömberg J. O. and Torchinsky A., Weighted Hardy Spaces, Lecture Notes in Math., Vol. 1381. Berlin, Springer-Verlag, 1991.