Behaviour of an Oscillatory Singular Integral on Weighted Local Hardy Spaces

Li-Yuan Chen
Department of Economics, Hangzhou University
Hangzhou, Zhejiang 310028, P. R. China
and
Qiyu Sun ${ }^{1}$
Center for Mathematical Sciences, Zhejiang University
Hangzhou, Zhejiang 310027, P. R. China.
Abstract The boundedness on weighted local Hardy spaces $h_{w}^{1, p}$ of the oscillatory singular integral

$$
T f(x)=\int_{R^{n}} e^{i Q(x, y)} K(x, y) f(y) d y
$$

is considered when $Q(x, y)=P(x-y)$ for some real-valued polynomial P with its degree not less than two. Also a sufficient and necessary condition on polynomial Q on $R^{n} \times R^{n}$ such that T maps $h_{w}^{1, p}$ to weighted integrable function spaces L_{w}^{1} is found.
AMS subject classification (1990): 42B20
Key words: Oscillatory singular integral, Weighted local Hardy spaces, Muckenhoupt weight, Calderon-Zygmund kernel

[^0]
1. Introduction and Results

We say that a local integrable function K on $R^{n} \times R^{n} \backslash\left\{(x, x), x \in R^{n}\right\}$ is a kernel of Calderon-Zygmund type if $|K(x, y)| \leq C|x-y|^{-n}$ and $\left|\frac{\partial}{\partial x} K(x, y)\right|+\left|\frac{\partial}{\partial y} K(x, y)\right| \leq$ $C|x-y|^{-n-1}$ for all $x \neq y$. For a kernel K of Calderon-Zygmund type and a realvalued polynomial Q on $R^{n} \times R^{n}$, define an oscillatory singular integral T considered later by

$$
\begin{equation*}
T f(x)=\int_{R^{n}} e^{i Q(x, y)} K(x, y) f(y) d y \tag{1}
\end{equation*}
$$

The above oscillatory singular integral T arises in Fourier analysis on lower dimensional variations and has various applications such as Radon transform, Hilbert transform etc. The boundedness of the operator T on various spaces such as unweighted and weighted p-integrable function spaces for $1<p<\infty$, weak integrable function space $\mathrm{w}-L^{1}$, unweighted and weighted Hardy spaces are considered in [1], [4]-[8]. Especially they emphasize the connection between the oscillatory singular integral T and the following truncated Calderon-Zygmund operator \tilde{T} defined by

$$
\begin{equation*}
\tilde{T} f(x)=\int_{R^{n}} K(x, y) \phi(|x-y|) f(y) d y \tag{2}
\end{equation*}
$$

where K is a kernel of Calderon-Zygmund type and ϕ is a fixed nonnegative smooth function satisfying $\phi(t)=1$ on $\left[0, \frac{1}{2}\right]$ and $\phi(t)=0$ on $[2, \infty)$.

In this paper, we will consider the behaviour of the oscillatory singualr integral T on weighted local Hardy spaces $h_{w}^{1, p}$. To this end, we introduce some notations and definitions.

We say that w is a Muckenhoupt A_{p} weight if

$$
\frac{1}{|B|} \int_{B} w(x) d x\left(\frac{1}{|B|} \int_{B} w(x)^{-\frac{1}{p-1}} d x\right)^{p-1} \leq C
$$

holds for all balls B when $1<p<\infty$ and

$$
M w(x) \leq C w(x)
$$

holds for all $x \in R^{n}$ when $p=1$, where constant C independent of the balls B when $1<p<\infty$ and independent of $x \in R^{n}$ when $p=1$. Hereafter M denotes the Hardy-Littlewood maximal operator defined by

$$
M f(x)=\sup _{x \in B} \frac{1}{|B|} \int_{B}|f(y)| d y
$$

as usual where the supremum is taken over all balls B containing x.
Definition 1. Let $1<p<\infty$. A function a is called an atom of weighted local Hardy spaces $h_{w}^{1, p}$ if there exists a ball B such that supp $a \subset B,\|a\|_{p, w} \leq w(B)^{\frac{1}{p-1}}$ and either
(i) $\quad r(B)<1$ and $\int a(x) d x=0$
(ii) $r(B) \geq 1$.

Hereafter B is called the supporting ball of $h_{w}^{1, p}$ atom a, we denote $\|f\|_{p, w}=$ $\left(\int|f(x)|^{p} w(x) d x\right)^{\frac{1}{p}}$ for $1 \leq p<\infty, w(B)=\int_{B} w(x) d x$ and $r(B)$ denotes the radius of B. Also let $L_{w}^{p}=\left\{f:\|f\|_{p, w}<\infty\right\}$ be the weighted p-integrable function spaces for $1 \leq p<\infty$. For simplity we use $|B|$ instead of $w(B)$ and L^{p} instead of L_{w}^{p} when $w \equiv 1$.

Definition 2. Let $w \in A_{1}$ and $1<p<\infty$. The weighted local Hardy spaces $h_{w}^{1, p}$ is the set of all tempered distributions f which can be written as

$$
\begin{equation*}
f=\sum_{j \in Z} \lambda_{j} a_{j} \tag{3}
\end{equation*}
$$

for a family of $h_{w}^{1, p}$ atoms a_{j} and a sequences $\left\{\lambda_{j}\right\}$ with $\sum_{j \in Z}\left|\lambda_{j}\right|<\infty$.
Obviously $h_{w}^{1, p}$ is a Banach spaces for every $1<p<\infty$ under the norm

$$
\|f\|_{h_{w}^{1, p}}=\inf \left(\sum_{j \in Z}\left|\lambda_{j}\right|\right),
$$

where the infimum is taken over all possible representation (3) of f. For simplity we use $h^{1, p}$ instead of $h_{w}^{1, p}$ when $w \equiv 1$. The local Hardy space $h^{1,2}$ was introduced by Goldberg [3] who used the local square function to define it and proved the equivalence with the above definition of $h^{1,2}$. In comparison with the weighted Hardy spaces [11], the only difference between them is that the vanishing moment condition on atoms in $h_{w}^{1, p}$ is deleted when the radius of its supporting ball B is larger than one. On the other hand, $h_{w}^{1, p}$ is an subspace of L_{w}^{1}, and furthermore a proper subspace of L_{w}^{1} in general.

In Section 2, we will consider the boundedness of osciallatory singular integral T on $h_{w}^{1, p}$ for Muckenhoupt A_{1} weight w when $Q(x, y)=P(x-y)$ for some real-valued polynomial P with $P(0)=0$ and its $\operatorname{degree} \operatorname{deg}(P) \geq 2$. Precisely we have proved the following result:

Theorem 1. Let $w \in A_{1}, 1<p<\infty$ and K be a kernel of Calderon-Zygmund type. Assume $Q(x, y)=P(x-y)$ for some real-valued polynomial P with $P(0)=0$ and its degree $\operatorname{deg}(P) \geq 2$. Then $\tilde{T}-T$, the difference between the corresponding oscillatory singular integral T and the corresponding truncated Calderon-Zygmund operator \tilde{T}, is bounded on weighted local Hardy space $h_{w}^{1, p}$.

Denote the weighted Hardy space by H_{w}^{1} for $w \in A_{1}[11]$. Therefore $H_{w}^{1} \subset h_{w}^{1,2} \subset$ L_{w}^{1}. We say that an oscillatory singular integral T is of convolution type if

$$
T f(x)=\int e^{i P(x-y)} \tilde{K}(x-y) f(y) d y
$$

for some real-valued polynomial P and a local integrable function \tilde{K} on $R^{n} \backslash\{0\}$ such that $\tilde{K}(x-y)$ is a kernel of Calderon-Zygmund type. Recall that the conclusion $f \in H_{w}^{1}$ and $f, R_{j} f \in L_{w}^{1}$ are equivalent, where $R_{j}(1 \leq j \leq n)$ denote Riesz transforms as usual. Observe that R_{j} maps H_{w}^{1} to H_{w}^{1} for every $w \in A_{1}$ and $R_{j} T=T R_{j}$ when the oscillatory singular integral T is of convolution type. Also observe that \tilde{T} maps H_{w}^{1} to L_{w}^{1} by the Calderon-Zygmund theory. Therefore T maps H_{w}^{1} to H_{w}^{1} by Theorem 1 when \tilde{T} is a bounded operator on $L^{2}, w \in A_{1}$, $\operatorname{deg}(P) \geq 2$ and the oscillatory singular integral T is of convolution type, which is the case considered by Pan and Hu in [5].

In Theorem 1, the bound constant of the operator $T-\tilde{T}$ is dependent on the sum of absolute values of the coefficients in P. It is easy to prove that

$$
\int_{\lambda^{-1 / 3} \geq|x| \geq 2}\left|\int_{|x-y| \geq 2} e^{i \lambda(x-y)^{2}} \frac{1}{x-y} d y\right| d x=\frac{1}{3} \ln \lambda^{-1}+O(1) \rightarrow+\infty
$$

as $\lambda \rightarrow 0$, where $O(1)$ denotes a term bounded by a constant independent of $0<\lambda<1$. Therefore the bound constants of the operators $T-\tilde{T}$ corresponding to $K(x, y)=(x-y)^{-1}$ in (1) and $P(x)=\lambda x^{2}$ tends to infinity as $\lambda \rightarrow 0$. The author believe that the fundamental reason why this phenomenon happens to local Hardy space and does not happen to p-integable spaces is that local Hardy space has not good dilation invariance.

In Section 3, we will consider the behaviour of the oscillatory singular integral T defined by (1) for general polynomial Q on $R^{n} \times R^{n}$. First the oscillatory singular integral T defined by

$$
T f(x)=\int \frac{e^{i x y}}{x-y} f(y) d y
$$

does not map $h^{1, p}$ to L^{1} for all $1<p<\infty$ (see Example 1). Generally the oscillatory factor would damage the vanishing moment on $h_{w}^{1, p}$ atom which plays an important role. Also the oscillatory factor $Q\left(x+x_{0}, y+y_{0}\right)$ is completely different from $Q(x, y)$ in the sense of damaging the vanishing moment. These make us to consider the sufficient and necessary condition on polynomials Q on $R^{n} \times R^{n}$ under which the corresponding oscillatory singular integral T maps $h_{w}^{1, p}$ to L_{w}^{1}.

Theorem 2. Let $1<p<\infty$ and $w \in A_{1}$. Assume that Q is a real-valued polynomial on $R^{n} \times R^{n}$ which cannot be written as $R_{1}(x)+R_{2}(y)$ for some polynomials R_{1} and R_{2}, and K is a kernel of Calderon-Zygmund type with $|K(x, y)| \geq C|x-y|^{-n}$ for all $0<|x-y|<1$. If the corresponding oscillatory singular integral T defined by (1) is bounded on L_{w}^{p}, then the following statements are equivalent to each other: 1) T maps $h_{w}^{1, p}$ to L_{w}^{1};
2) $\sum_{\left.1 \leq j \leq \log \left(\min \left(1, A\left(x_{0}\right)\right)\right)^{-1} w\left(B\left(x_{0}, 2^{j} r\right)\right) 2^{-j n} \min \left(1, B\left(x_{0}\right)\right) \leq C w\left(B\left(x_{0}, r\right)\right), ~\right) ~}$
holds for all $0<r<1, x_{0} \in R^{n}$ and a constant C independent of r and x_{0} but dependent of Q, where $A\left(x_{0}\right)=\sum_{\alpha \neq 0, \beta \neq 0}\left|a_{\alpha \beta}\left(x_{0}\right)\right| r^{|\alpha|+|\beta|}, B\left(x_{0}\right)=\sum_{\beta \neq 0}\left|a_{0 \beta}\left(x_{0}\right)\right| r^{|\beta|}$, and $a_{\alpha \beta}\left(x_{0}\right)$ be the coefficient of $Q\left(x+x_{0}, y+y_{0}\right)$, i.e., $Q\left(x+x_{0}, y+y_{0}\right)=$ $\sum_{\alpha} \sum_{\beta} a_{\alpha \beta}\left(x_{0}\right) x^{\alpha} y^{\beta}$.

The condition 2) in Theorem 2 seems not very computable. In Section 4, we will give some remarks on condition 2) in Theorem 2 and give a condition on \tilde{T} for which \tilde{T}, hence T, is bounded on $h_{w}^{1, p}$. We prove that

Theorem 2'. Let $p, w, Q, T, a_{\alpha \beta}\left(x_{0}\right)$ be the same as Theorem 2. Furthermore we assume that the weight w satisfies

$$
C^{-1} w(y) \leq w(x) \leq C w(y)
$$

for all $|x-y| \leq 1,|x| \geq C$ and some constant C. Therefore the following statements are equivalent to each other:

1) $T \operatorname{maps} h_{w}^{1, p}$ to L_{w}^{1};
2) $\sum_{\beta \neq 0}\left|a_{0 \beta}\left(x_{0}\right)\right|^{\frac{1}{|\beta|}} \leq C \sum_{\alpha \neq 0, \beta \neq 0}\left|a_{\alpha \beta}\left(x_{0}\right)\right|^{\frac{1}{|\alpha|+|\beta|}}$ holds for all $x_{0} \in R^{n}$ and some constant C independent of x, where $a_{\alpha \beta}\left(x_{0}\right)$ is defined as in Theorem 2.

2. Semi-convolution Type

In this section, we will give the proof of Theorem 1.
Write

$$
\begin{aligned}
(T-\tilde{T}) f(x)= & \int\left(e^{i P(x-y)}-1\right) K(x, y) \phi(|x-y|) f(y) d y \\
& +\int e^{i P(x-y)} K(x, y)(1-\phi)(|x-y|) f(y) d y \\
= & T_{1} f(x)+T_{2} f(x)
\end{aligned}
$$

Observe that the kernel of T_{1} satisfies

$$
\left|\left(e^{i P(x-y)}-1\right) K(x, y) \phi(|x-y|)\right| \leq C|x-y|^{1-n} \chi_{|x-y| \leq 2}
$$

Therefore the proof of Theorem 1 reduces to
Theorem 3. Let $1<p<\infty$ and $w \in A_{1}$. Assume that a local integrable function K on $R^{n} \times R^{n} \backslash\left\{(x, x) ; x \in R^{n}\right\}$ satisfies $|K(x, y)| \leq C|x-y|^{\alpha-n} \chi_{|x-y| \leq 2}$ for some constant $C>0$ and $0<\alpha<n$. Then the operator T_{1} defined by

$$
T_{1} f(x)=\int_{R^{n}} K(x, y) f(y) d y
$$

is bounded on $h_{w}^{1, p}$.
Theorem 4. Let $1<p<\infty$ and $w \in A_{1}$. Assume that P is a non-zero real-valued polynomial with its degree $\operatorname{deg}(P) \geq 2$ and K is a kernel of Calderon-Zygmund type with supp $K \cap\{(x, y):|x-y| \leq 1\}=\emptyset$. Then the operator T_{2} defined by

$$
T_{2} f(x)=\int_{R^{n}} e^{i P(x-y)} K(x, y) f(y) d y
$$

is bounded on $h_{w}^{1, p}$.
Proof of Theorem 3. Obsverve that T_{1} is a linear operator. Hence it sufficies to prove

$$
\begin{equation*}
\left\|T_{1} a\right\|_{h_{w}^{1, p}} \leq C \tag{4}
\end{equation*}
$$

for every $h_{w}^{1, p}$ atom a and some constant C independent of a. Denote the supporting ball of a by B which has radius $r=r(B)$ and center x_{0}. Observe that

$$
\operatorname{supp} T_{1} a \subset B\left(x_{0}, r+2\right) .
$$

Hereafter $B(z, s)$ denotes the ball with its center $z \in R^{n}$ and its radius $s>0$ and $t B$ denotes the ball with the same center as the one of B and radius t times the one of B for $t>0$. First we know

$$
\left\|T_{1} a\right\|_{p, w} \leq C\|M a\|_{p, w} \leq C\|a\|_{p, w} \leq C w\left(B\left(x_{0}, r\right)\right)^{\frac{1}{p}-1},
$$

where M denotes the Hardy-Littlewood maximal operator as usual and the second inequality follows from the L_{w}^{p} boundedness of M provided $1<p<\infty$ and $w \in$ $A_{p} \subset A_{1}$. Therefore $C^{-1} T_{1} a$ is an $h_{w}^{1, p}$ atom when $r \geq 1$ and (4) holds when the supporting ball B of a having radius $r \geq 1$. Thus the matter reduces to proving (4) when the supporting ball B of a has its radius $r<1$. Write

$$
\begin{aligned}
T_{1} a & =\left(T_{1} a\right) \chi_{2 B}+\sum_{k_{0} \geq k \geq 2}\left(T_{1} a\right) \chi_{2^{k+1} B \backslash 2^{k} B} \\
& =\sum_{1 \leq k \leq k_{0}} T_{1}^{k} a,
\end{aligned}
$$

where k_{0} is an integer satisfying $2^{k_{0}}<r+2 \leq 2^{k_{0}+1}$. Observe that

$$
\begin{align*}
w\left(B\left(x_{0}, 2^{k} r\right)\right) & \leq\left(2^{k} r\right)^{n} \inf _{x \in B\left(x_{0}, r\right)} M w(x) \leq C\left(2^{k} r\right)^{n} \inf _{x \in B\left(x_{0}, r\right)} w(x) \tag{5}\\
& \leq C 2^{k n} w\left(B\left(x_{o}, r\right)\right)
\end{align*}
$$

and

$$
\begin{equation*}
\int_{B} w(x) d x\left(\int_{B} w^{-\frac{1}{p-1}}(x) d x\right)^{p-1} \leq C|B|^{p} \tag{6}
\end{equation*}
$$

for every $w \in A_{1}$. Therefore we have

$$
\left\|T_{1}^{1} a\right\|_{p, w} \leq C r^{\alpha}\|M a\|_{p, w} \leq C w(B)^{\frac{1}{p}-1} r^{\alpha}
$$

and

$$
\begin{aligned}
\left\|T_{1}^{k} a\right\|_{p, w} & \leq C\left(2^{k} r\right)^{\alpha-n}\|a\|_{1} w\left(2^{k+1} B\right)^{\frac{1}{p}} \\
& \leq C\left(2^{k} r\right)^{\alpha-n}\|a\|_{p, w}\left(\int_{B} w^{-\frac{1}{p^{-1}}}(x) d x\right)^{\frac{p-1}{p}} w\left(2^{k+2} B\right)^{\frac{1}{p}} \\
& \leq C\left(2^{k} r\right)^{\alpha} w\left(2^{k+2} B\right)^{\frac{1}{p}-1}
\end{aligned}
$$

where third inequality follows from (5) and (6). On the other hand, for every $f \in L_{w}^{p}$ supported in $B^{\prime}=B\left(x_{0}, s\right)$ for some $s<1$, we can write

$$
\begin{aligned}
f= & \left(f-c(f) h_{B^{\prime}}\right)+c(f)\left(h_{B^{\prime}}-h_{2 B^{\prime}}\right)+\cdots \\
& +c(f)\left(h_{2^{k_{0}} B^{\prime}}-h_{2^{k_{0}+1} B^{\prime}}\right)+c(f) h_{2^{k_{0}+1} B^{\prime}}
\end{aligned}
$$

where $c(f)=\int f(x) d x, k_{0}$ is chosen such that $2^{k_{0}} s \geq 1>2^{k_{0}-1} s, h_{2^{k} B^{\prime}}=c_{k}$ $\chi_{2^{k+1} B^{\prime} \backslash 2^{k} B^{\prime}}, \chi_{E}$ denotes the characteristic function of the set E and c_{k} is chosen such that $\int h_{2^{k} B^{\prime}}(x) d x=1$. Therefore we get

$$
\begin{equation*}
\|f\|_{h_{w}^{1, p}} \leq C\|f\|_{p, w} w\left(B\left(x_{0}, s\right)\right)^{1-\frac{1}{p}}+C\left|\int f(x) d x\right| w\left(B\left(x_{0}, s\right)\right) s^{-n} \log s^{-1} . \tag{7}
\end{equation*}
$$

Observe that supp $T_{1}^{k} a \subset B\left(x_{0}, 2^{k+2} r\right)$. Therefore

$$
\begin{aligned}
& \left\|T_{1} a\right\|_{h_{w}^{1, p}} \leq \sum_{k \geq 1,2^{k} r \leq 2}\left\|T_{1}^{k} a\right\|_{h_{w}^{1, p}} \\
& \quad \leq C \sum_{k \geq 1,2^{k} r \leq 2}\left(2^{k} r\right)^{\alpha}+\sum_{k \geq 1,2^{k} r \leq 2}\left\|T_{1}^{k} a\right\|_{1} w\left(B\left(x_{0}, 2^{k+2} r\right)\right)\left(2^{k} r\right)^{-n} \log \left(2^{k} r\right)^{-1} \\
& \leq C+C \sum_{k \geq 1,2^{k} r \leq 2}\left(2^{k} r\right)^{\alpha}\left(w\left(2^{k+2} B\right)\right)^{\frac{1}{p}} \\
& \quad\left(\int_{2^{k+2} B} w^{-\frac{1}{p-1}}(x) d x\right)^{\frac{p-1}{p}}\left(2^{k} r\right)^{-n} \log \left(2^{k} r\right)^{-1} \\
& \leq C+C \sum_{k \geq 1,2^{k} r \leq 2}\left(2^{k} r\right)^{\alpha} \log \left(2^{k} r\right)^{-1} \leq C
\end{aligned}
$$

and (4) holds true
To prove theorem 4, we will use the following lemmas.
Lemma 1. Let Q, K and T_{2} be the same as in Theorem 4. Then T_{2} is bounded on L_{w}^{p} provided $1<p<\infty$ and $w \in A_{p}$.

Proof of Lemma 1. Lemma 1 is proved by Liu and Zhang [6]. For completeness of this paper, we give the sketch of their proof here. Define

$$
\begin{equation*}
T_{j}^{2} f(x)=\int e^{i P(x-y)} K(x, y) \varphi_{j}(|x-y|) f(y) d y \tag{8}
\end{equation*}
$$

for $j \geq 1$, where φ_{j} are smooth functions satisfying $\varphi_{j}(t)=\varphi\left(2^{-j} t\right)(j \geq 1)$ and $\sum_{j \geq 1} \varphi\left(2^{-j} t\right)=1$ on $(1, \infty)$. Therefore we can write

$$
T_{2} f=\sum_{j \geq 1} T_{j}^{2} f
$$

Obviously we have

$$
\begin{equation*}
\left\|T_{j}^{2} f\right\|_{p, w} \leq C\|M f\|_{p, w} \leq C\|f\|_{p, w} \tag{9}
\end{equation*}
$$

for $1<p<\infty$ and $w \in A_{p}$. On the other hand, we have

$$
\begin{equation*}
\left\|T_{j}^{2}\right\|_{2} \leq C 2^{-\epsilon j}\|f\|_{2} \tag{10}
\end{equation*}
$$

for some $\epsilon>0$ independent of f c.f. [8]. Recall that there exists $p-1>\delta>0$ for every $w \in A_{p}$ and $1<p<\infty$ such that $w^{1+\delta} \in A_{p-\delta}$ [2]. Therefore by Marcinkiewicz real interpolation theorem [9] between (9) and (10), we get

$$
\left\|T_{j}^{2} f\right\|_{p, w} \leq C 2^{-\epsilon j}\|f\|_{p, w}
$$

for some C and ϵ independent of f and $j \geq 1$, and

$$
\left\|T_{2} f\right\|_{p, w} \leq \sum_{j \geq 1}\left\|T_{j}^{2} f\right\|_{p, w} \leq C\|f\|_{p, w}
$$

Lemma 1 is proved
Lemma 2. Let $Q(x, y)=\sum_{\alpha} \sum_{\beta} a_{\alpha \beta} x^{\alpha} y^{\beta}$ be a real-valued polynomial. Define

$$
S_{k} f(x)=\int_{B} e^{i Q(x, y)} f(y) d y \chi_{2^{k} B}(x),
$$

for $k \geq 1$, where B is a ball with its center zero and its radius $r=r(B)$. Therefore there exist constants C and $\epsilon>0$ independent of k and f for every $1<p, q<\infty$ such that

$$
\left\|S_{k} f\right\|_{p} \leq C(1+g(r, k))^{-\epsilon}\left|2^{k} r\right|^{\frac{n}{p}} r^{n\left(\frac{q-1}{q}\right)}\|f\|_{q}
$$

where we denote $g(r, k)=\sum_{\alpha \neq 0, \beta \neq 0}\left|a_{\alpha \beta}\right|\left(2^{k} r\right)^{|\alpha|} r^{|\beta|}$.
Proof of Lemma 2. Obviously we have

$$
\begin{equation*}
\left\|S_{k} f\right\|_{1} \leq C\left(2^{k} r\right)^{n}\|f\|_{1} \leq C\left|2^{k} r\right|^{n} r^{n\left(\frac{q-1}{q}\right)}\|f\|_{q} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|S_{k} f\right\|_{\infty} \leq C\|f\|_{1} \leq C r^{n\left(\frac{q-1}{q}\right)}\|f\|_{q} \tag{13}
\end{equation*}
$$

On the other hand, we have

$$
\begin{align*}
&\left\|S_{k} f\right\|_{2}^{2} \\
& \leq\left(2^{k} r\right)^{n} \iint f(y) \overline{f\left(y^{\prime}\right)} d y d y^{\prime} \int e^{i\left(Q\left(2^{k} r x, y\right)-Q\left(2^{k} r x, y^{\prime}\right)\right)} \psi(x) d x \\
& \leq C\left(2^{k} r\right)^{n}\|f\|_{q}^{2}\left(\int_{|y| \leq r} \int_{\left|y^{\prime}\right| \leq r} d y d y^{\prime}\left|\int e^{i\left(Q\left(2^{k} r x, y\right)-Q\left(2^{k} r x, y^{\prime}\right)\right)} \psi(x) d x\right|^{\frac{q}{q-1}}\right)^{\frac{q-1}{q}} \\
& \leq C\left(2^{k} r\right)^{n} r^{\frac{2 n(q-1)}{q}}\|f\|_{q}^{2} \\
&\left(\int_{|y| \leq 1,\left|y^{\prime}\right| \leq 1}\left(1+\sum_{\alpha \neq 0}\left|\sum_{\beta} a_{\alpha \beta} r^{|\beta|}\left(y^{\beta}-y^{\prime \beta}\right)\right|\left(2^{k} r\right)^{|\alpha|}\right)^{-\epsilon_{1}} d y d y^{\prime}\right)^{\frac{q-1}{q}} \\
& \leq C\left(2^{k} r\right)^{n} r^{\frac{2 n(q-1)}{q}}\|f\|_{q}^{2} \\
& \quad\left(\int_{|y| \leq 1}\left(1+\sum_{\alpha \neq 0}\left(\left|\sum_{\beta \neq 0} a_{\alpha \beta} r^{|\beta|} y^{\beta}\right|+\sum_{\beta \neq 0} r^{|\beta|}\left|a_{\alpha \beta}\right|\right)\left(2^{k} r\right)^{|\alpha|}\right)^{-\epsilon_{2}} d y\right)^{\frac{q-1}{q}} \\
& \leq C\left(2^{k} r\right)^{n} r^{\frac{2 n(q-1)}{q}}(1+g(r, k))^{-\epsilon}\|f\|_{q}^{2}, \tag{14}
\end{align*}
$$

where ψ is a positive smooth function satisfying $\psi(x)=1$ on $\{x:|x| \leq 1\}$ and $\psi(x)=0$ on $\{x:|x| \geq 2\}, \epsilon_{1}, \epsilon_{2}$ and ϵ are sufficient small constants independent of f, r and k, and the third inequality follows the following estimate of of Van de Corput type(see [8] for example),

$$
\int_{|y| \leq 1}(1+|Q(y)|)^{-\epsilon} d y \leq C\left(1+\sum_{\alpha}\left|q_{\alpha}\right|\right)^{\epsilon_{1}}
$$

holds for some constant $C, \epsilon, \epsilon_{1}$ dependent of the degree of Q only, where $Q(y)=$ $\sum_{\alpha} q_{\alpha} y^{\alpha}$.

Therefore Lemma 2 follows from the Marcinkiewicz real interpolation theorem [9] between (12), (13) and (14)

Proof of Theorem 4. Recall that T_{2} is a linear operator. Therefore it sufficies to prove

$$
\begin{equation*}
\left\|T_{2} a\right\|_{h_{w}^{1, p}} \leq C \tag{15}
\end{equation*}
$$

for every $h_{w}^{1, p}$ atom a and some constant C independent of a. We divide two cases to prove (15).

Case 1. The supporting ball B of a has its radius $r=r(B)>1$.
Write

$$
\begin{aligned}
T_{2} a & =\left(T_{2} a\right) \chi_{2 B}+\sum_{k=1}^{\infty}\left(T_{2} a\right) \chi_{2^{k+1} B \backslash 2^{k} B} \\
& =f_{0}+\sum_{k=1}^{\infty} f_{k} .
\end{aligned}
$$

Recall that $\operatorname{supp} f_{0} \subset 2 B, T_{2}$ is boundedon L_{w}^{p} for every $1<p<\infty$ and $w \in A_{p}$ by Lemma 1. Therefore we get

$$
\begin{equation*}
\left\|f_{0}\right\|_{p, w} \leq\left\|T_{2} a\right\|_{p, w} \leq C\|a\|_{p, w} \leq C w(B)^{\frac{1}{p}-1} \tag{16}
\end{equation*}
$$

On the other hand we have

$$
\begin{aligned}
\left|f_{k}(x)\right| & \leq C 2^{-k(n+1)} r^{-n}\|a\|_{1}+C 2^{-k n} r^{-n}\left|\int e^{i P(x-y)} a(y) d y\right| \\
& =I_{k}(x)+I I_{k}(x)
\end{aligned}
$$

on $2^{k+1} B \backslash 2^{k} B$ for $k \geq 1$. For $w \in A_{1}$, there exist constants $p_{0}>1$ and C for every $q>0$ such that

$$
\begin{equation*}
\left(|B|^{-1} \int_{B} w(x)^{p_{0}} d x\right)^{\frac{1}{p_{0}}} \leq C|B|^{-1} \int_{B} w(x) d x \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(|B|^{-1} \int_{B} w(x)^{-q p_{0}} d x\right)^{\frac{1}{p_{0}}} \leq C|B|^{-1} \int_{B} w(x)^{-q} d x \tag{18}
\end{equation*}
$$

by reverse Hölder inequality [2]. Write $P(x-y)=\sum a_{\alpha \beta} x^{\alpha} y^{\beta}$. Thus $a_{\alpha \beta} \not \equiv 0$ for $\alpha \neq 0, \beta \neq 0$ by our assumption $\operatorname{deg}(P) \geq 2$. Recall that $\operatorname{supp} f_{k} \subset 2^{k+1} B$ and $\operatorname{supp} a \subset B$. Therefore we get

$$
\begin{align*}
\left\|I_{k}\right\|_{p, w} & \leq C 2^{-k(n+1)} r^{-n}\|a\|_{1} w\left(2^{k+1} B\right)^{\frac{1}{p}} \\
& \leq C 2^{-k(n+1)} r^{-n}\|a\|_{p, w}\left(\int_{B} w(x)^{-\frac{1}{p-1}} d x\right)^{\frac{1}{p-1}} w\left(2^{k+1} B\right)^{\frac{1}{p}} \tag{19}\\
& \leq C 2^{-k} w\left(2^{k+1} B\right)^{\frac{1}{p}-1}
\end{align*}
$$

by (5) and (6), and we also get

$$
\begin{align*}
\left\|I I_{k}\right\|_{p, w} & \leq C 2^{-k n} r^{-n}\left(\int_{2^{k+1} B} w(x)^{p_{0}} d x\right)^{\frac{1}{p_{0}}}\left(\int_{2^{k+1} B}\left|\int e^{i P(x-y)} a(y) d y\right|^{\frac{p p_{0}}{p_{0}-1}} d x\right)^{\frac{p_{0}-1}{p_{p}}} \\
& \leq C 2^{-k n} r^{-n} w\left(2^{k+1} B\right)^{\frac{1}{p}} r^{\frac{n(q-1)}{q}}\|a\|_{q}(1+g(r, k))^{-\epsilon} \\
& \leq C(1+g(r, k))^{-\epsilon} w\left(2^{k+1} B\right)^{\frac{1}{p}-1}, \tag{20}
\end{align*}
$$

where $g(r, k)=\sum_{\alpha \neq 0, \beta \neq 0}\left|a_{\alpha \beta}\right|\left(2^{k} r\right)^{|\alpha|} r^{|\beta|}, q=\frac{p p_{0}}{p+p_{0}-1}<p$, the second inequality follows from (17) and Lemma 2 (in fact we use $\frac{p p_{0}}{p_{0}-1}$ as the p in Lemma 2), and the third one from the Hölder inequality

$$
\|a\|_{q} \leq\|a\|_{p, w}\left(\int_{B} w(x)^{-\frac{q}{p-q}} d x\right)^{\frac{p-q}{p q}}
$$

and (18). Recall that $r \geq 1$ and $a_{\alpha \beta} \not \equiv 0$ for $\alpha \neq 0, \beta \neq 0$. Combining (19) and (20), we get

$$
\begin{aligned}
\left\|T_{2} a\right\|_{h_{w}^{1, p}} & \leq\left\|f_{0}\right\|_{p, w} w(B)^{1-\frac{1}{p}}+\sum_{k \geq 1}\left\|f_{k}\right\|_{p, w} w\left(2^{k+1} B\right)^{1-\frac{1}{p}} \\
& \leq C+C \sum_{k \geq 1} g(r, k)^{-\epsilon} \leq C+C \sum_{k \geq 1} 2^{-k \epsilon} \leq C
\end{aligned}
$$

and (15) holds in Case 1.
Case 2. The supporting ball B of a has its radius $r=r(B)<1$.
Write

$$
T_{2} f=\sum_{j \geq 1} T_{2}^{j} f
$$

as in the proof of Lemma 1. Recall that $\int a(y) d y=0$ by the definition of $h_{w}^{1, p}$ atom. Therefore we have

$$
\begin{align*}
\left|T_{2}^{j} a(x)\right| & \leq \int\left|K(x, y) \phi(|x-y|)-K\left(x, x_{0}\right) \phi\left(\left|x-x_{0}\right|\right)\right||a(y)| d y \\
& +\left|K\left(x, x_{0}\right)\right|\left|\phi\left(\left|x-x_{0}\right|\right) \int\right| e^{i P(x-y)}-e^{i P\left(x-x_{0}\right)} \| a(y) \mid d y \tag{21}\\
& \leq C 2^{-j(n+1)} r\|a\|_{1}+C 2^{-j n} \sum_{\alpha} \sum_{\beta \neq 0}\left|a_{\alpha \beta}\right| 2^{j|\alpha|} r^{|\beta|}\|a\|_{1}
\end{align*}
$$

where x_{0} is the centre of B and

$$
\begin{align*}
\left\|T_{2}^{j} a\right\|_{p, w} \leq & C 2^{-j(n+1)} r\|a\|_{1} w\left(B\left(x_{0}, 2^{j}\right)\right)^{\frac{1}{p}} \\
& +2^{-j n} \sum_{\alpha} \sum_{\beta \neq 0}\left|a_{\alpha \beta}\right| 2^{j|\alpha|} r^{|\beta|}\|a\|_{1} w\left(B\left(x_{0}, 2^{j}\right)\right)^{\frac{1}{p}} \tag{22}\\
\leq & C\left(2^{-j} r+\sum_{\alpha} \sum_{\beta \neq 0}\left|a_{\alpha \beta}\right| 2^{j|\alpha|} r^{|\beta|}\right) w\left(B\left(x_{0}, 2^{j}\right)\right)^{\frac{1}{p}-1} .
\end{align*}
$$

Observe that

$$
\begin{aligned}
\left|T_{2}^{j} a(x)\right| \leq & C 2^{-j(n+1)} r\|a\|_{1} \chi_{\left|x-x_{0}\right| \leq C 2^{j}}(x) \\
& +\left|K\left(x, x_{0}\right)\left\|\phi\left(x, x_{0}\right)\right\| \int e^{i P\left(x-x_{0}-y\right)} a\left(y+x_{0}\right) d y\right| \\
\leq I_{1} & +I_{2} .
\end{aligned}
$$

By same argument as in (19) we get

$$
\left\|I_{1}\right\|_{p, w} \leq C 2^{-j} r w\left(B\left(x_{0}, 2^{j}\right)\right)^{\frac{1}{p}-1} .
$$

On the other hand we get

$$
\begin{aligned}
\left\|I_{2}\right\|_{p, w} \leq & C 2^{-j n}\left(\int_{|x| \leq C 2^{j}}\left|\int e^{i P\left(x-x_{0}-y\right)} a\left(y+x_{0}\right) d y\right|^{p} w\left(x+x_{0}\right) d x\right)^{\frac{1}{p}} \\
\leq & C 2^{-j n}\left(\int_{|x| \leq C 2^{j}}\left|\int e^{i P\left(x-x_{0}-y\right)} a\left(y+x_{0}\right) d y\right|^{\frac{p p_{0}}{p_{0}-1}} d x\right)^{\frac{p_{0}-1}{p p_{0}}} \\
& \left(\int_{|x| \leq C 2^{j}} w\left(x+x_{0}\right)^{p_{0}} d x\right)^{\frac{1}{p_{p}}} \\
\leq & \left.C\left(1+\sum_{\alpha \neq 0, \beta \neq 0}\left|a_{\alpha \beta}\right| 2^{j|\alpha|} r^{|\beta|}\right)^{-\epsilon}\right) w\left(B\left(x_{0}, 2^{j}\right)\right)^{\frac{1}{p}-1}
\end{aligned}
$$

where the last inequality follows from Lemma 2 and (17). This proves

$$
\begin{equation*}
\left\|T_{2}^{j} a\right\|_{p, w} \leq C\left(2^{-j} r+\left(1+\sum_{\alpha \neq 0, \beta \neq 0}\left|a_{\alpha \beta}\right| 2^{j|\alpha|} r^{|\beta|}\right)^{-\epsilon}\right) w\left(B\left(x_{0}, 2^{j}\right)\right)^{\frac{1}{p}-1} \tag{23}
\end{equation*}
$$

Recall that $\operatorname{supp} T_{2}^{j} a \subset B\left(x_{0}, 2^{j+1}\right)$. Therefore by (21) and (23) we have

$$
\begin{aligned}
\left\|T_{2} a\right\|_{h_{w}^{1, p}} \leq & C \sum_{j \geq 1} 2^{-j} r \\
& C \sum_{j \geq 1} \min \left(\sum_{\alpha} \sum_{\beta \neq 0}\left|a_{\alpha \beta}\right| 2^{j|\alpha|} r^{|\beta|},\left(1+\sum_{\alpha \neq 0, \beta \neq 0}\left|a_{\alpha \beta}\right| 2^{j|\alpha|} r^{|\beta|}\right)^{-\epsilon}\right) .
\end{aligned}
$$

Let j_{0} be the least positive integer such that

$$
\begin{equation*}
\sum_{\alpha \neq 0, \beta \neq 0}\left|a_{\alpha \beta}\right| 2^{j|\alpha|} r|\beta| \geq 1 \tag{24}
\end{equation*}
$$

Then $j_{0} \leq C \log r^{-1}$. Let $\left(\alpha_{0}, \beta_{0}\right)$ be the index satisfying $\left|a_{\alpha_{0} \beta_{0}}\right| 2^{j\left|\alpha_{0}\right|} r^{\left|\beta_{0}\right|} \geq$ $\left|a_{\alpha \beta}\right| 2^{j|\alpha|} r{ }^{|\beta|}$ for all $\alpha \neq 0, \beta \neq 0$. Therefore we have

$$
\begin{aligned}
\left\|T_{2} a\right\|_{h_{w}^{1, p}} \leq & C+C \sum_{1 \leq j \leq j_{0}} \sum_{\alpha} \sum_{\beta \neq 0}\left|a_{\alpha \beta}\right| 2^{j|\alpha|} r^{|\beta|}+C \sum_{j \geq j_{0}}\left(\left|a_{\alpha_{0} \beta_{0}}\right| 2^{j\left|\alpha_{0}\right|} r^{\left|\beta_{0}\right|}\right)^{-\epsilon} \\
\leq & C+C \sum_{\alpha \neq 0, \beta \neq 0}\left|a_{\alpha \beta}\right| 2^{j_{0}|\alpha|} r^{|\beta|} \\
& +C j_{0} \sum_{\beta \neq 0}\left|a_{0 \beta}\right| r^{\beta}+C\left(\left|a_{\alpha_{0} \beta_{0}}\right| 2^{-j_{0}\left|\alpha_{0}\right|} r^{\left|\beta_{0}\right|}\right)^{-\epsilon} \\
\leq & C
\end{aligned}
$$

and (15) holds in Case 2. Theorem 4 is proved

3. Non-convolution Type

We begin with an example of polynomial Q on $R^{n} \times R^{n}$ and a kernel K of Calderon-Zygmund type in one spatial dimension, for which the corresponding oscillatory singular integral does not map $h^{1, p}$ to L^{1} for every $1<p<\infty$.

Example 1. Let $n=1, K(x-y)=\frac{1}{x-y}$ and $Q(x, y)=x y$. Then the oscillatory singular integral T defined by

$$
T f(x)=\int_{R} \frac{e^{i x y}}{x-y} f(y) d y
$$

does not map $h^{1, p}$ to L^{1} for every $1<p<\infty$.
In particular, for $f_{r}(y)=r^{-1} e^{i \pi r^{-1} y} \chi_{\left[\pi r^{-1}-r, \pi r^{-1}+r\right]}(y)(0<r<1 / 2)$, the $h^{1, p}$ norm $\left\|f_{r}\right\|_{h^{1, p}} \leq C$ holds for some constant C independent of $0<r<1 / 2$. On the other hand, we have

$$
\begin{aligned}
\left\|T f_{r}\right\|_{1} & \geq r^{-1} \int_{2 r}^{1}\left|\int_{-r}^{r} \frac{e^{i x y}}{x-y} d y\right| d x \\
& \geq r^{-1} \int_{2 r}^{1}\left|\int_{-r}^{r} \frac{1}{x-y} d y\right| d x-2 r^{-1} \int_{2 r}^{1} \int_{-r}^{r}|y| d y d x \\
& \geq \int_{2 r}^{1} \frac{1}{|x|} d x-1=\log (2 r)^{-1}-1 \rightarrow \infty \quad(r \rightarrow 0)
\end{aligned}
$$

This show that T does not map $h^{1, p}$ to L^{1} boundedly.
Proof of Theorem 2. At first we prove 2$) \Longrightarrow 1$). Obviously it suffices to proving

$$
\begin{equation*}
\left\|T_{x_{0}} a\right\|_{L_{\tau\left(x_{0}\right) w}^{1}} \leq C \tag{25}
\end{equation*}
$$

for every $h_{w}^{1, p}$ atoms a with its supporting ball B having center zero and radius $r=r(B)$, where we define

$$
T_{x_{0}} f(x)=\int_{R^{n}} e^{i Q\left(x+x_{0}, y+x_{0}\right)} K\left(x+x_{0}, y+x_{0}\right) f(y) d y
$$

and $\tau\left(x_{0}\right) w(\cdot)=w\left(\cdot+x_{0}\right)$. Hereafter the big letter C denotes a constant independent of x_{0} and $0<r<1$, but would be different at different occurances. We divide two cases to prove (25).

Case 1. $r=r(B) \geq 1$
As in the proof of Theorem 4, write

$$
T_{x_{0}} a=f_{0}+\sum_{k=1}^{\infty} f_{k}
$$

Therefore we have

$$
\begin{aligned}
\left\|f_{0}\right\|_{1, \tau\left(x_{0}\right) w} & \leq\left\|T_{x_{0}} a\right\|_{p, \tau\left(x_{0}\right) w}\left(\tau\left(x_{0}\right) w\right)(2 B)^{\frac{p-1}{p}} \leq C \\
\left\|f_{k}\right\|_{1, \tau\left(x_{0}\right) w} & \leq\left\|f_{k}\right\|_{p, \tau\left(x_{0}\right) w}\left(\tau\left(x_{0}\right) w\right)\left(2^{k+1} B\right)^{\frac{p-1}{p}} \\
& \leq C\left(2^{-k}+\left(1+g_{x_{0}}(r, k)\right)^{-\epsilon}\right)
\end{aligned}
$$

where $g_{x_{0}}(r, k)=\sum_{\alpha \neq 0, \beta \neq 0}\left|a_{\alpha \beta}\left(x_{0}\right)\right|\left(2^{k} r\right)^{|\alpha|} r^{|\beta|}$ and constants $C, \epsilon>0$ are independent of k and a. We say index $\gamma=\left(\gamma_{1}, . ., \gamma_{n}\right) \geq \delta=\left(\delta_{1}, . ., \delta_{n}\right)$ if $\gamma_{i} \geq \delta_{i}$ for all $1 \leq i \leq n$. Observe that $a_{\alpha \beta}\left(x_{0}\right)=a_{\alpha \beta}(0)$ for all index pairs (α, β) and $x_{0} \in R^{n}$ for which there does not exist index pairs (γ, δ) such that $a_{\gamma \delta}(0) \neq 0$, $(\gamma, \delta) \neq(\alpha, \beta), \gamma \geq \alpha$ and $\delta \geq \beta$. Therefore $g_{x_{0}}(r, k) \geq C 2^{k s}$ holds for some constants C and s independent of x_{0} and k provided $r \geq 1$. This shows that

$$
\left\|T_{x_{0}} a\right\|_{1, w} \leq \sum_{k \geq 0}\left\|f_{k}\right\|_{1, w} \leq C+C \sum_{k \geq 1} 2^{-k s \epsilon} \leq C
$$

and (25) holds in Case 1.
Case 2. $r=r(B)<1$.
Write

$$
\begin{equation*}
T_{x_{0}} a=f_{0}+\sum_{k=1}^{\infty} f_{k} \tag{26}
\end{equation*}
$$

as in Case 1. As in Case 2 in the proof of Theorem 4, we have

$$
\left\|f_{0}\right\|_{1, \tau\left(x_{0}\right) w} \leq C
$$

and

$$
\begin{aligned}
\left\|f_{k}\right\|_{1, \tau\left(x_{0}\right) w} \leq & \|f\|_{p, \tau\left(x_{o}\right) w}\left(\tau\left(x_{0}\right) w\right)\left(2^{k+1} B\right)^{\frac{p-1}{p}} \\
& \leq C 2^{-k}+C \min \left(g_{x_{0}}(r, k)+\sum_{\beta \neq 0}\left|a_{0 \beta}\left(x_{0}\right)\right| r^{|\beta|},\left(1+g_{x_{0}}(r, k)\right)^{-\varepsilon}\right) \\
& 2^{-k n}\left(\tau\left(x_{0}\right) w\right)\left(2^{k} B\right)\left(\tau\left(x_{0}\right) w\right)(B)^{-1}
\end{aligned}
$$

where $g_{x_{0}}(r, k)=\sum_{\alpha \neq 0, \beta \neq 0}\left|a_{\alpha \beta}\left(x_{0}\right)\right|\left(2^{k} r\right)^{|\alpha|} r^{|\beta|}$ as in Case 1. Define the first positive integer k such that $g_{x_{0}}(r, k) \geq 1$ by k_{0} if it exists and define $k_{0}=0$ otherwise. Observe that

$$
2^{k} g_{x_{0}}(r, 0) \leq g_{x_{0}}(r, k) \leq 2^{N k} g_{x_{0}}(r, 0)
$$

for some positive integer N. Thus we get

$$
\begin{equation*}
C_{1} \log \left(\min \left(1, g_{x_{0}}(r, 0)\right)\right)^{-1} \leq k_{0} \leq C_{2} \log \left(\min \left(1, g_{x_{0}}(r, 0)\right)\right)^{-1} \tag{27}
\end{equation*}
$$

for some constants $C_{2} \geq C_{1}>0$ independent of x_{0} and $r<1$. Therefore

$$
\begin{aligned}
&\left\|T_{x_{0}} a\right\|_{1, \tau\left(x_{0}\right)_{w}} \leq C+C \sum_{k_{0} \geq k} g_{x_{0}}(r, k)^{-\epsilon}+C \sum_{1 \leq k \leq k_{0}} g_{x_{0}}(r, k) \\
&+C \sum_{1 \leq k \leq k_{0}} 2^{-k n}\left(\tau\left(x_{0}\right) w\right)\left(2^{k} B\right)\left(\tau\left(x_{0}\right) w\right)(B)^{-1} \\
& \min \left(1, \sum_{\beta \neq 0}\left|a_{0 \beta}\left(x_{0}\right)\right| r^{|\beta|}\right) \\
& \leq C+C \min \left(1, \sum_{\beta \neq 0}\left|a_{0 \beta}\left(x_{0}\right)\right| r^{|\beta|}\right) \\
& \quad \sum^{1 \leq k \leq \log \left(\min \left(1, g_{x_{0}}(r, 0)\right)\right)^{-1}} 2^{-k n}\left(\tau\left(x_{0}\right) w\right)\left(2^{k} B\right)\left(\tau\left(x_{0}\right) w\right)(B)^{-1} \\
& \leq C<\infty
\end{aligned}
$$

where the first inequality follows from (5) and the second one from our assumption $2)$,

$$
\begin{equation*}
\sum_{k \leq j \leq 2 k} 2^{-j n}\left(\tau\left(x_{0}\right) w\right)\left(2^{j} B\right) \leq C \sum_{1 \leq j \leq k} 2^{-j n}\left(\tau\left(x_{0}\right) w\right)\left(2^{j} B\right) \tag{28}
\end{equation*}
$$

(5) and (7). Thus (25) holds in Case 2.

Secondly we prove 1$) \Longrightarrow 2$). Let a be an $h_{w}^{1, p}$ atom with its supporting B having radius $r=r(B)<1$ and center zero. Write

$$
T_{x_{0}} a=f_{0}+\sum_{k=1}^{\infty} f_{k}
$$

where f_{k} are defined as in (26). Observe that

$$
\begin{align*}
\left|f_{k}(x)\right| & \geq\left|K\left(x+x_{0}, x_{0}\right)\right|\left|\int e^{i \sum_{\beta \neq 0} a_{0 \beta}\left(x_{0}\right) y^{\beta}} a(y) d y\right| \\
& -\left|K\left(x+x_{0}, x_{0}\right)\right|\left|\int \sum_{\alpha \neq 0, \beta \neq 0}\right| a_{\alpha \beta}\left(x_{0}\right)\left|\left(2^{k} r\right)^{|\alpha|} r^{|\beta|}\right| a(y) \mid d y \tag{29}\\
& -\int\left|K\left(x+x_{0}, x_{0}\right)-K\left(x+x_{0}, y+x_{0}\right)\right||a(y)| d y
\end{align*}
$$

on $2^{k+1} B \backslash 2^{k} B$ for $k \geq 1$. Also we know from (27) that $g_{x_{0}}(r, 0) \geq C r^{N}$ and $2^{k} r \leq 1$ for all $k \leq \epsilon_{1} \log \left(\min \left(1, g_{x_{0}}(r, 0)\right)\right)^{-1}$, where C, N and $0<\epsilon_{1}<1$ are constants independent of x_{0} and $r<1$. Recall that (28), (29) and $\left|K\left(x+x_{0}, x_{0}\right)\right| \geq C|x|^{-n}$ for all $|x|<1$ and $x_{0} \in R^{n}$ by our assumption. Therefore we get

$$
\begin{aligned}
& \quad\left|\int e^{i \sum_{\beta \neq 0} a_{0 \beta}\left(x_{0}\right) y^{\beta}} a(y) d y\right| \sum_{1 \leq k \leq \log \left(\min \left(1, g_{x_{0}}(r, 0)\right)\right)^{-1}} r^{-n} 2^{-k n}\left(\tau\left(x_{0}\right) w\right)\left(2^{k} B\right) \\
& \leq \\
& \quad C \int_{R^{n}}\left|T_{x_{0}} a(x)\right|\left(\tau\left(x_{0}\right) w\right)(x) d x \\
& \quad+C \sum_{\quad 1 \leq k \leq \epsilon_{1} \log \left(\min \left(1, g_{x_{0}}(r, 0)\right)\right)^{-1}}\left(2^{-k}+\sum_{\alpha \neq 0, \beta \neq 0}\left|a_{\alpha \beta}\left(x_{0}\right)\right|\left(2^{k} r\right)^{|\alpha|} r^{|\beta|}\right) \\
& \leq\left\|T_{x_{0}} a\right\|_{1, \tau\left(x_{0}\right) w}+C \leq C,
\end{aligned}
$$

where the first inequality follows from (5), and the last one from our assumption 1). Therefore the matter reduces to

$$
\begin{align*}
& \min \left(1, \sum_{\beta \neq 0}\left|a_{0 \beta}\left(x_{0}\right)\right| r^{|\beta|}\right)\left(\tau\left(x_{0}\right) w\right)(B)^{-1} r^{n} \\
& \quad \leq C \sup _{a}\left|\int e^{i \sum_{\beta \neq 0} a_{0 \beta}\left(x_{0}\right) y^{\beta}} a(y) d y\right| \tag{30}
\end{align*}
$$

where the supremum on a is taken over all function a satisfying suppa $\subset B(0, r)$, $\int a(y) d y=0$ and $\|a\|_{p, \tau\left(x_{0}\right) w} \leq\left(\tau\left(x_{0}\right) w\right)(B(0, r))^{\frac{1}{p}-1}$. Observe that

$$
\|a\|_{p, \tau\left(x_{0}\right) w} \leq\left(\tau\left(x_{0}\right) w\right)(B(0, r))^{\frac{1}{p}-1}
$$

provided $\|a\|_{\infty} \leq\left(\tau\left(x_{0}\right) w\right)(B(0, r))^{-1}$. Denote

$$
\mathcal{R}_{N}^{\prime}=\left\{R(y)=\sum_{\beta \neq 0} a_{\beta} y^{\beta}, R \text { is real-valued polynomial, } \operatorname{deg} R \leq N\right\}
$$

Therefore the matter reduces to
Lemma 3. Let \mathcal{R}_{N}^{\prime} be defined as above. Thus

$$
\begin{equation*}
\sup _{a}\left|\int e^{i R(y)} a(y) d y\right| \geq C \min (1,\|R\|) \tag{31}
\end{equation*}
$$

holds for all $R \in \mathcal{R}_{N}^{\prime}$ and a constant C independent of R, where the supremum on a is taken over all function a satisfying suppa $\subset B(0,1), \int a(y) d y=0$ and $\|a\|_{\infty} \leq 1$, and we define $\|R\|=\sum_{\beta \neq 0}\left|a_{\beta}\right|$ for all $R \in \mathcal{R}_{N}^{\prime}$.

Proof of Lemma 3. Denote

$$
\|R\|_{*}=\sup _{a}\left|\int R(y) a(y) d y\right|
$$

for all $R \in \mathcal{R}_{N}^{\prime}$, where the supremum on a is taken over the same region as in (31). Obviously $\|R\|_{*} \geq 0,\|C R\|_{*}=|C|\|R\|_{*}$ and $\left\|R_{1}+R_{2}\right\|_{*} \leq\left\|R_{1}\right\|_{*}+\left\|R_{2}\right\|_{*}$ for all $R, R_{1}, R_{2} \in \mathcal{R}_{N}^{\prime}$ and real number C. Furthermore $\|R\|_{*}=0$ implies $\int R(y) a(y) d y=0$ for all bounded functions a satisfying $\operatorname{supp} a \subset B(0,1)$ and $\int a(y) d y=0$. Therefore

$$
\frac{1}{|B(0,1)|} \int_{B(0,1)}|R(y)|^{2} d y=\left(\frac{1}{|B(0,1)|} \int_{B(0,1)} R(y) d y\right)^{2}
$$

where $|B(0,1)|$ denotes the Lebesgue measure of $B(0,1)$, and R must be a constant. Recall that $R \in \mathcal{R}_{N}^{\prime}$. Thus $R=0$, and $\|R\|_{*}=0$ implies $R=0$. Hence we prove that $\|\cdot\|_{*}$ is a norm on \mathcal{R}_{N}^{\prime}. By the equivalence of two norms on finite dimensions spaces, we get $\|R\|_{*} \geq C_{1}\|R\|$ for all $R \in \mathcal{R}_{N}^{\prime}$ and some constant C_{1}.

Observe that

$$
\left|e^{i R(y)}-1-i R(y)\right| \leq\|R\|^{2}
$$

for all $|y| \leq 1$ by Taylor formula. Hence we get

$$
\begin{aligned}
\sup _{a}\left|\int e^{i R(y)} a(y) d y\right| & \geq\|R\|_{*}-\|R\|^{2} \\
& \geq C_{1}\|R\|-\|R\|^{2} \geq \frac{C_{1}}{2}\|R\|
\end{aligned}
$$

when $\|R\|$ is chosen sufficient small.
As in the procedure to prove $\|R\|_{*}=0$ holds only for $R=0$, we get

$$
\sup _{a}\left|\int e^{i R(y)} a(y) d y\right|=0
$$

holds only for $R=0$, where $R \in \mathcal{R}_{N}^{\prime}$ and the supremum on a is taken over all bounded functions a satisfying supp $a \subset B(0,1)$ and $\int a(y) d y=0$. Observe that $\int e^{i R(y)} a(y) d y$ is continuous on $R \in \mathcal{R}_{N}^{\prime}$ for all bounded functions a. Therefore the matter reduces to proving that (31) holds for all $R \in \mathcal{R}_{N}^{\prime}$ when $\|R\|$ is large enough.

Define

$$
R_{B(0,1)}=\frac{1}{|B(0,1)|} \int_{B(0,1)} e^{i R(y)} d y
$$

Therefore by estimates of Van de Corput type [8], we get

$$
\left\|R_{B(0,1)}\right\| \leq C\|R\|^{-\epsilon}
$$

holds for all $R \in \mathcal{R}_{N}^{\prime}$, where constants C and $\epsilon>0$ is independent of $R \in \mathcal{R}_{N}^{\prime}$. Observe that

$$
\int_{B(0,1)}\left(e^{-i R(y)}-\bar{R}_{B(0,1)} \chi_{B(0,1)}(y)\right) d y=0
$$

and

$$
\left|e^{-i R(y)}-\bar{R}_{B(0,1)} \chi_{B(0.1)}(y)\right| \leq 2
$$

Therefore we get

$$
\begin{aligned}
& \sup _{a}\left|\int e^{i R(y)} a(y) d y\right| \\
& \quad \geq \frac{1}{2} \int\left|e^{i R(y)}-R_{B(0,1)} \chi_{B(0,1)}(y)\right|^{2} d y \\
& \quad \geq \frac{1}{2}|B(0,1)|-C\|R\|^{-2 \epsilon} \geq \frac{1}{4}|B(0,1)|,
\end{aligned}
$$

provided that $\|R\|$ chosen large enough. Lemma 3 and hence Theorem 2 is proved
Example 1. (revised) Let $Q(x, y)=x y$. Then $a_{01}\left(x_{0}\right)=x_{0}, a_{11}\left(x_{0}\right)=$ $1, a_{10}\left(x_{0}\right)=x_{0}, a_{00}\left(x_{0}\right)=x_{0}^{2}$ and $a_{\alpha \beta}\left(x_{0}\right)=0$ otherwise. Now the condition 2) in Theorem 2 becomes

$$
\min \left(1,\left|x_{0}\right| r\right) \int_{x_{0}-1}^{x_{0}+1} w(x)\left(1+\frac{\left|x-x_{0}\right|}{r}\right)^{-1} d x \leq C \int_{x_{0}-r}^{x_{0}+r} w(x) d x
$$

for all $x_{0} \in R^{n}, 0<r<1$. The authors believe that a weight $w \in A_{1}$ satisfying the the above condition does not exist.

4. Remarks

Observe that $2^{k} r \leq 1$ when $k \leq \varepsilon_{1} \log \left(\min \left(1, \sum_{\alpha \neq 0, \beta \neq 0}\left|a_{\alpha \beta}\left(x_{0}\right)\right| r^{|\alpha|+|\beta|}\right)\right)^{-1}$, where $\varepsilon_{1}>0$ is a constant independent of x_{0} and $r<1$. Therefore condition 2) in Theorem 2 is equivalent to

$$
\begin{equation*}
\left.\min \left(1, \sum_{\beta \neq 0}\left|a_{0 \beta}\left(x_{0}\right)\right| r^{|\beta|}\right) \log \left(\min \left(1, \sum_{\alpha \neq 0, \beta \neq 0}\left|a_{\alpha \beta}\left(x_{0}\right)\right| r^{|\alpha|+|\beta|}\right)\right)\right)^{-1} \leq C \tag{32}
\end{equation*}
$$

holds for all $x_{0} \in R^{n}$ and $0<r<1$, provided $w \in A_{1}$ and

$$
\begin{equation*}
C^{-1} w(y) \leq w(x) \leq C w(y) \tag{33}
\end{equation*}
$$

holds for all $|x-y| \leq 1,|x| \geq C$ and a constant C.
Example 2. $w(x)=|x|^{\alpha},-n<\alpha \leq 0$ satisfies (33).
Observe that

$$
\log \left(\min \left(1, \sum_{\alpha \neq 0, \beta \neq 0}\left|a_{\alpha \beta}\left(x_{0}\right)\right| r^{|\alpha|+|\beta|}\right)\right)^{-1}
$$

is equivalent to

$$
\begin{equation*}
\log \left(\min \left(1, \sum_{\alpha \neq 0, \beta \neq 0}\left|a_{\alpha \beta}\left(x_{0}\right)\right|^{\frac{1}{\alpha|+|\beta|}} r\right)\right)^{-1} \tag{34}
\end{equation*}
$$

Therefore (32) is equivalent to

$$
\begin{equation*}
\min \left(1,\left|a_{0 \beta}\left(x_{0}\right)\right| r^{|\beta|}\right) \log \left(\min \left(1, g\left(x_{0}\right)^{|\beta|} r^{|\beta|}\right)\right)^{-1} \leq C \tag{35}
\end{equation*}
$$

for all $\beta \neq 0$, where $g\left(x_{0}\right)=\sum_{\alpha \neq 0, \beta \neq 0}\left|a_{\alpha \beta}\left(x_{0}\right)\right|^{\frac{1}{|\alpha|+|\beta|}}$. Recall that $a_{\alpha \beta}\left(x_{0}\right)=$ $a_{\alpha \beta}(0) \neq 0$ for all index pair (α, β) for which there does not exist index (γ, δ) satisfying $a_{\gamma \delta}(0) \neq 0,(\gamma, \delta) \neq(\alpha, \beta), \gamma \geq \alpha$ and $\delta \geq \beta$. Thus

$$
\begin{equation*}
g\left(x_{0}\right) \geq C_{1} \tag{36}
\end{equation*}
$$

for some constant C_{1} independent of $x_{0} \in R^{n}$. Now we can prove

$$
\left|a_{0 \beta}\left(x_{0}\right)\right|^{\frac{1}{\mid \beta}} \leq C g\left(x_{0}\right)
$$

Conversely there exists a sequence $x_{k} \in R^{n}(k \geq 1)$ such that

$$
\begin{equation*}
\left|a_{0 \beta}\left(x_{k}\right)\right|^{\frac{1}{\beta}} \geq k g\left(x_{k}\right) \tag{37}
\end{equation*}
$$

Recall $g\left(x_{k}\right) \geq C_{1}$ by (36). Hence $\left|a_{0 \beta}\left(x_{k}\right)\right|^{\frac{1}{\beta \mid}} \geq k C_{1}>1$ when k is large enough. Let $r_{k}=\left|a_{0 \beta}\left(x_{k}\right)\right|^{-\frac{1}{|\beta|}}<1$. Then $g\left(x_{k}\right) r_{k} \leq k^{-1}$ and

$$
\min \left(1,\left|a_{0 \beta}(k)\right| r_{k}^{|\beta|}\right) \log \left(\min \left(1, g\left(x_{k}\right)^{|\beta|} r_{k}^{|\beta|}\right)\right)^{-1} \geq|\beta| \log k
$$

which contradicts to (35). Therefore we prove
Theorem 5. Let $w \in A_{1}$ satisfy (33). Then condition 2) in Theorem 2 is equivalent to

$$
\sum_{\beta \neq 0}\left|a_{0 \beta}(x)\right|^{\frac{1}{\beta \beta}} \leq C \sum_{\alpha \neq 0, \beta \neq 0}\left|a_{\alpha \beta}\left(x_{0}\right)\right|^{\frac{1}{\alpha+|\beta|}}
$$

holds for all $x \in R^{n}$ and some constant C independent of x.
Combining with Theorem 2 and 5, we get Thereom 2'.
Example 3. Let $Q(x, y)=(x-y)^{2} y$. Then $a_{02}\left(x_{0}\right)=x_{0}, a_{03}\left(x_{0}\right)=1, a_{10}\left(x_{0}\right)$ $=x_{0}, a_{11}\left(x_{0}\right)=-2 x_{0}, a_{12}\left(x_{0}\right)=-2, a_{21}\left(x_{0}\right)=1$ and $a_{\alpha \beta}\left(x_{0}\right)=0$ otherwise. Furthermore we have

$$
\sum_{\alpha \neq 0, \beta \neq 0}\left|a_{\alpha \beta}\left(x_{0}\right)\right|^{\frac{1}{\alpha|+|\beta|}}=1+2^{\frac{1}{3}}+\left|2 x_{0}\right|^{\frac{1}{2}}
$$

and

$$
\sum_{\beta \neq 0}\left|a_{0 \beta}\left(x_{0}\right)\right|^{\frac{1}{1 \beta \mid}}=1+\left|x_{0}\right|^{\frac{1}{2}}
$$

This shows the condition 2) in Theorem 2^{\prime} holds for $Q(x, y)=(x-y)^{2} y$ in one spatial dimension.

Now we give a condition for which \tilde{T}, hence T, is bounded on $h_{w}^{1, p}$.
Theorem 6. Let $w \in A_{1}$ and $1<p<\infty$. Assume that \tilde{T} is bounded on L_{w}^{p} and furthermore

$$
\begin{equation*}
\left|\int_{R^{n}} \tilde{T} a(x) d x\right| \leq C w\left(B\left(x_{0}, r\right)\right)^{-1} r^{n}\left(\log r^{-1}\right)^{-1} \tag{38}
\end{equation*}
$$

holds for all $h_{w}^{1, p}$ atom a with its supporting ball $B\left(x_{0}, r\right)$ having radius $r<1$. Then \tilde{T} is bounded on $h_{w}^{1, p}$.

Proof of Theorem 6. Let a be a $h_{w}^{1, p}$ atom and $B\left(x_{0}, r\right)$ be its supporting ball with radius r and center x_{0}. Observe that $\operatorname{supp} \tilde{T} \subset B\left(x_{0}, r+2\right)$. Therefore

$$
\|\tilde{T} a\|_{h_{w}^{1, p}} \leq C\|\tilde{T} a\|_{p, w} w\left(B\left(x_{0}, 2 r\right)\right)^{1-\frac{1}{p}} \leq C
$$

when $r>1$. Hence the matter reduces to $r(B)<1$.
Let $h_{k}=c_{k} \chi_{B\left(x_{0}, 2^{k+1} r\right) \backslash B\left(x_{0}, 2^{k} r\right)}(x)$ and $d_{k}=\int_{R^{n}}(\tilde{T} a)(x) \chi_{R^{n} \backslash B\left(x_{0}, 2^{k} r\right)}(x) d x$, where $c_{k}=\int \chi_{B\left(x_{0}, 2^{k+1} r\right) \backslash B\left(x_{0}, 2^{k} r\right)}(x) d x$. Write

$$
\begin{aligned}
\tilde{T} a= & (\tilde{T} a) \chi_{B\left(x_{0}, 2 r\right)}+d_{1} h_{1} \\
& +\sum_{1 \leq k \leq k_{0}}\left((\tilde{T} a) \chi_{B\left(x_{0}, 2^{k+1} r\right) \backslash B\left(x_{0}, 2^{k} r\right)}-d_{k} h_{k}+d_{k+1} h_{k+1}\right) \\
= & \tilde{f}_{0}
\end{aligned}+\sum_{1 \leq k \leq k_{0}} \tilde{f}_{k},
$$

where k_{0} is an integer such that $2^{k_{0}} r \leq 4 \leq 2^{k_{0}+1} r$. Obviously $\int_{R^{n}} \tilde{f}_{k}(x) d x=0$, $\operatorname{supp} \tilde{f}_{k} \subset B\left(x_{0}, 2^{k+1} r\right)$ and

$$
\begin{aligned}
\left\|\tilde{f}_{k}\right\|_{p, w} & \leq C r^{-n} 2^{-k}\|a\|_{1} w\left(B\left(x_{0}, 2^{k+1} r\right)\right)^{\frac{1}{p}} \\
& \leq C 2^{-k} w\left(B\left(x_{0}, 2^{k+1}\right)\right)^{\frac{1}{p}-1}
\end{aligned}
$$

for all $k \geq 1$. On the other hand, we have

$$
\operatorname{supp} \tilde{f}_{0} \subset B\left(x_{0}, 2 r\right),\left\|\tilde{f}_{0}\right\|_{p, w} \leq w\left(B\left(x_{0}, 2 r\right)\right)^{\frac{1}{p}-1}
$$

and

$$
\begin{aligned}
\left|\int \tilde{f}_{0}(x) d x\right| & =\left|\int(\tilde{T} a)(x) \chi_{B\left(x_{0}, 2 r\right)}(x) d x+d_{1}\right| \\
& =\left|\int(\tilde{T} a)(x) d x\right| \leq C w\left(B\left(x_{0}, r\right)\right)^{-1}\left(\log r^{-1}\right)^{-1}
\end{aligned}
$$

Therefore we get $\left\|f_{0}\right\|_{h_{w}^{1, p}} \leq C$ by (7) and

$$
\|\tilde{T} a\|_{h_{w}^{1, p}} \leq \sum_{k \geq 0}\left\|\tilde{f}_{k}\right\|_{h_{w}^{1, p}} \leq C+C \sum_{k \geq 1} 2^{-k} \leq C
$$

This proved Theorem 6
Remark. Let K be a kernel of Calderon-Zygmund type. Define

$$
T^{*} f(x)=\int_{R^{n}} K(x, y) f(y) d y
$$

Observe that

$$
\int_{R^{n}}\left|\int K(x, y)(1-\phi)(|x-y|) a(y) d y\right| d x \leq C r\|a\|_{1}
$$

provided $\int_{R^{n}} a(x) d x=0$. Hence $\int T^{*} a(x) d x=0$ implies (38) and \tilde{T} satisfies (38) when T^{*} is bounded on weighted Hardy space H_{w}^{1}.

References

[1] Chanillo S. and Christ M., Weak $(1,1)$ bounds for oscillatory singular integrals, Duke Math. J., 1987,55: 141-155.
[2] Coifman R. R. and Fefferman R., Weighted norm inequalities for maximal functions and singular integrals, Studia Math., 1974,51: 241-250.
[3] Goldberg D., A local version of real Hardy spaces, Duke Math. J., 1979,46: 27-42.
[4] Hu Y., Osciallatory singular integral on weighted Hardy spaces, Studia Math., 1992,102: 145156.
[5] Hu Y. and Pan Y., Boundedness of osciallatory singular integral on Hardy spaces, Ark. Math., 1992,30: 311-320.
[6] Liu H. and Zhang Y., Criteron of L^{2}-boundedness for a class of oscillatory integrals, Approx. Theory \& its Appl., 1991, 7(4): 1-5.
[7] Phong D. H. and Stein E. M., Hilbert transform integrals, singular integrals and Radon transform I, Acta Math., 1986,157: 99-157.
[8] Ricci F. and Stein E. M., Harmonic analysis on nilpotent group and singular integral I: osciallatory integrals, J. Funct. Anal., 1987,73: 179-194.
[9] Stein E. M., Singular Integrals and Differentiablity Properties of Function, New York, Priceton Univ. Press, 1970.
[10] Stein E. M. and Wainger S., Problem in harmonic analysis related to curvature, Bull. Amer. Math. Soc., 1978, 84: 1239-1295.
[11] Strömberg J. O. and Torchinsky A., Weighted Hardy Spaces, Lecture Notes in Math., Vol. 1381. Berlin, Springer-Verlag, 1991.

[^0]: ${ }^{1}$ This author is partially supported by National Sciences Foundation of China and Zhejiang Provincial Sciences Foundation of China

