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1. Introduction and Results

We say that a local integrable function K on R™ x R™\{(z,z),x € R"} is a kernel
of Calderon-Zygmund type if |K (z,y)| < Clz—y|™" and | -2 K (=, y)|+|8%K(:E, y)| <
Clz —y|~"! for all  # y. For a kernel K of Calderon-Zygmund type and a real-
valued polynomial () on R™ x R™, define an oscillatory singular integral 7" considered
later by

Tf(@)= [ XD K ) (o). (1)

The above oscillatory singular integral 71" arises in Fourier analysis on lower dimen-
sional variations and has various applications such as Radon transform, Hilbert
transform etc. The boundedness of the operator T" on various spaces such as un-
weighted and weighted p-integrable function spaces for 1 < p < 0o, weak integrable
function space w-L!, unweighted and weighted Hardy spaces are considered in [1],
[4]-[8]. Especially they emphasize the connection between the oscillatory singular
integral T and the following truncated Calderon-Zygmund operator T defined by

Tf(zx)= - K(z,y)¢(|z — y|) f(y)dy, (2)

where K is a kernel of Calderon-Zygmund type and ¢ is a fixed nonnegative smooth
function satisfying ¢(t) =1 on [0, 1] and ¢(¢) = 0 on [2, c0).

In this paper, we will consider the behaviour of the oscillatory singualr integral
T on weighted local Hardy spaces hLP. To this end, we introduce some notations
and definitions.

We say that w is a Muckenhoupt A, weight if

da: / b= 1da: §C’
|B|/ |B|

holds for all balls B when 1 < p < oo and
Muw(z) < Cw(x)

holds for all z € R™ when p = 1, where constant C independent of the balls B
when 1 < p < oo and independent of x € R™ when p = 1. Hereafter M denotes the
Hardy-Littlewood maximal operator defined by

M) = sup oo [ 1£ldy

rEB

as usual where the supremum is taken over all balls B containing x.

Definition 1. Let 1 < p < oco. A function a is called an atom of weighted local

Hardy spaces h,;? if there exists a ball B such that suppa C B, ||al|pw < w(B)ﬁ
and either
(i) r(B)<1land [a(z)dz=0



(i) r(B)> 1.

Hereafter B is called the supporting ball of hLP atom a, we denote ||f||pw =
(J 1S (z)Pw(z) dz)? for 1 < p < oo, w(B) = [pw(z)dz and r(B) denotes the
radius of B. Also let LE = {f : || f||p,w < o0} be the weighted p-integrable function
spaces for 1 < p < co. For simplity we use |B| instead of w(B) and L? instead of
L? when w = 1.

Definition 2. Let w € A; and 1 < p < co. The weighted local Hardy spaces
hLP is the set of all tempered distributions f which can be written as

f=> Xa (3)

j€EZ
for a family of hl;? atoms a; and a sequences {\;} with djez |Ajl < oo

Obviously hL? is a Banach spaces for every 1 < p < oo under the norm

1 e = mf(Y 1A,

jEZ

where the infimum is taken over all possible representation (3) of f. For simplity
we use hP instead of hl;? when w = 1. The local Hardy space h'? was introduced
by Goldberg [3] who used the local square function to define it and proved the
equivalence with the above definition of A'2. In comparison with the weighted
Hardy spaces [11], the only difference between them is that the vanishing moment
condition on atoms in hLP is deleted when the radius of its supporting ball B is
larger than one. On the other hand, hL? is an subspace of L. and furthermore a
proper subspace of Ll in general.

In Section 2, we will consider the boundedness of osciallatory singular integral T’
on hLP for Muckenhoupt A; weight w when Q(z,y) = P(z—y) for some real-valued
polynomial P with P(0) = 0 and its degree deg(P) > 2. Precisely we have proved
the following result:

Theorem 1. Let w € A;,1 < p < oo and K be a kernel of Calderon-Zygmund
type. Assume Q(x,y) = P(x —y) for some real-valued polynomial P with P(0) =0
and its degree deg(P) > 2. Then T — T, the difference between the corresponding
oscillatory singular integral T and the corresponding truncated Calderon-Zygmund
operator T, is bounded on weighted local Hardy space h1P.

Denote the weighted Hardy space by H] for w € A; [11]. Therefore H., C hl? C
Ll . We say that an oscillatory singular integral T is of convolution type if

Tf(x) = / PE R (2~ y) f(y)dy
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for some real-valued polynomial P and a local integrable function K on R™\{0} such
that K (r — y) is a kernel of Calderon-Zygmund type. Recall that the conclusion
f € H) and f,R;f € L) are equivalent, where R; (1 < j < n) denote Riesz
transforms as usual. Observe that R; maps H} to H) for every w € A; and
R;T = TR; when the oscillatory singular integral T" is of convolution type. Also
observe that T maps H} to L. by the Calderon-Zygmund theory. Therefore T
maps H} to H! by Theorem 1 when T is a bounded operator on L%, w € A,
deg(P) > 2 and the oscillatory singular integral T is of convolution type, which is
the case considered by Pan and Hu in [5].

In Theorem 1, the bound constant of the operator T — T is dependent on the
sum of absolute values of the coefficients in P. It is easy to prove that

. 2 1 1
/ | / e @=y) —dy|dr = In A4 0(1) — +oo,
A= ozlal22 eyl 22 Ty 3

as A — 0, where O(1) denotes a term bounded by a constant independent of
0 < A < 1. Therefore the bound constants of the operators T — T corresponding to
K(z,y) = (x—y)~'in (1) and P(z) = Az? tends to infinity as A — 0. The author
believe that the fundamental reason why this phenomenon happens to local Hardy
space and does not happen to p-integable spaces is that local Hardy space has not
good dilation invariance.

In Section 3, we will consider the behaviour of the oscillatory singular integral 7'
defined by (1) for general polynomial @ on R™ x R™. First the oscillatory singular
integral 7" defined by

eimy
Tf(z)= d
f@) = [ £ )y
does not map h'? to L' for all 1 < p < oo (see Example 1). Generally the oscillatory
factor would damage the vanishing moment on hl? atom which plays an important
role. Also the oscillatory factor Q(x+xo, y+yo) is completely different from Q(x, y)
in the sense of damaging the vanishing moment. These make us to consider the
sufficient and necessary condition on polynomials () on R™ x R™ under which the
corresponding oscillatory singular integral T maps hl? to L.

Theorem 2. Letl <p < oo andw € A,. Assume that () is a real-valued polyno-
mial on R™ x R™ which cannot be written as Ry (x)+ R2(y) for some polynomials Ry
and Ry, and K is a kernel of Calderon-Zygmund type with |K(z,y)| > Clz —y|™"
for all 0 < |x—y| < 1. If the corresponding oscillatory singular integral T defined by
(1) is bounded on LP, then the following statements are equivalent to each other:

1) T maps hl? to LL;

2) Zlgjglog(min(l,A(mo)))ﬂ w(B(xO7 23r))2_3”min(1,B($0)) < Cw(B(xo,T))

holds for all 0 < r < 1,z9 € R™ and a constant C' independent of r and xy but de-
pendent of Q, where A(z0) = Y, 4 s20 [aap(@0)[r1*H1PL B(x0) = 3 50 |aos(ao)|r!?,
and aqnp(xo) be the coefficient of Q(x + zo,y + yo), i.e., Q(z + xo,y + yo) =

> Zﬁ aaﬁ($0)$ayﬁ-



o

The condition 2) in Theorem 2 seems not very computable. In Section 4, we
will give some remarks on condition 2) in Theorem 2 and give a condition on T for
which T, hence T, is bounded on hl?. We prove that

Theorem 2'. Let p,w,Q,T,ans(xo) be the same as Theorem 2. Furthermore we
assume that the weight w satisfies

C_lw(y) <w(z) < Cw(y)

for all |x —y| < 1,|z| > C and some constant C. Therefore the following statements
are equivalent to each other:
1) T maps hlP to LL;
1 1
2) g0 la0p(x0) [T < C 340 g0 |@ap(T0)|[T¥+7T holds for all zg € R"™ and
some constant C' independent of x, where ang(x) is defined as in Theorem 2.

2. Semi-convolution Type

In this section, we will give the proof of Theorem 1.
Write
(1 = T)f(w) = [~ K@)~ o) f @)y
+ [ EPEER )1 9)( - u)I )y
=T f(z) + T2 f(x).
Observe that the kernel of T satisfies

(P — DK (2, 9)¢(Je = y)| < Clar = y|' " Xja—yi<o-

Therefore the proof of Theorem 1 reduces to

Theorem 3. Let1l < p < oo and w € A;. Assume that a local integrable function
K on R" x R™"\{(z,z);x € R"} satisfies |K(z,y)| < C|z —y|*""X|z_y|<2 for some
constant C' > 0 and 0 < a < n. Then the operator Ty defined by

T f(x) = - K(z,y)f(y)dy

is bounded on hL?P.
Theorem 4. Letl <p < oo andw € Ay. Assume that P is a non-zero real-valued

polynomial with its degree deg(P) > 2 and K is a kernel of Calderon-Zygmund type
with suppK N {(z,y) : |z —y| <1} = 0. Then the operator T defined by

Tof(w) = [ PR () f)dy



Y
is bounded on hlP.

Proof of Theorem 3. Obsverve that T} is a linear operator. Hence it sufficies
to prove
Tiall,g < € (4)

for every hL? atom a and some constant C independent of a. Denote the supporting
ball of a by B which has radius r = r(B) and center zy. Observe that
suppTha C B(zg,r + 2).

Hereafter B(z,s) denotes the ball with its center z € R™ and its radius s > 0 and
tB denotes the ball with the same center as the one of B and radius ¢ times the
one of B for t > 0. First we know

IT2allpw < ClIMallpw < Cllallpw < Cw(B(zo,7))7 ™,

where M denotes the Hardy-Littlewood maximal operator as usual and the second
inequality follows from the L? boundedness of M provided 1 < p < co and w €
A, C Ay. Therefore C™'Tya is an hLP atom when r > 1 and (4) holds when the
supporting ball B of a having radius » > 1. Thus the matter reduces to proving
(4) when the supporting ball B of a has its radius r < 1. Write

Tva = (Tha)x2p + Z (Tha)Xor+1B\2r B
ko >k>2

= Z lea,

1<k<ko
where kg is an integer satisfying 2% < r +2 < 2ko+1 QObserve that

U)(B(.TO’ 2k7ﬂ)) S(ri)ninwaB(mo,T)Mw(’T) < C(2kr)ninmeB(w0,7)w($)

<C2¥"w(B(z0,1)) (5)

and

[ weyts( [ v @)y <clpp (6)

for every w € Ay. Therefore we have

T allpw < Cro|[Malpw < Cw(B)r =11

and 1
[T allyw <C247)* " [la]l (244 B)S

<O allul [ 077 )dn) T (2B
B

<C(2Fr)*w(252B) v,
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where third inequality follows from (5) and (6). On the other hand, for every
f € L? supported in B’ = B(xg, s) for some s < 1, we can write

f=(f = e(H)hp) + c(f)(hpr = hapr) + -
+ c(f)(haropr — horor1pr) + () hokor1 pr,

where ¢(f) = [ f(z)dz, ko is chosen such that 2k0s > 1 > 2k =lg hyip = ¢
X2++1B\2+B’, XE denotes the characteristic function of the set E and cj is chosen
such that [ horpi(z)dz = 1. Therefore we get

1 oy
1152 < Cllfllpww(B(zo, 5))' 7 +C|/f($)d$|w(3($o,3))8 logs™".  (7)
Observe that suppTFa C B(xg, 2¥+2r). Therefore

ITwallye < Y ITFaly

k>1,2kr<2

<c > @+ > (ITFaliw(B(xo, 28r))(28r) "log(2Fr) 7!

k>1,2kr<2 k>1,2kr<2

<C+C Y (@) (w22B))r

k>1,2kr<2

(/2k+23 w_ﬁ(x)dx)%l(2kr)_"log(2kr)_1

<C+C ) (2r)Mog(2fr)T < C,

k>1,2kr<2
and (4) holds truel
To prove theorem 4, we will use the following lemmas.

Lemma 1. Let Q, K and T, be the same as in Theorem 4. Then T, is bounded
on LY provided 1 < p < oo and w € A,.

Proof of Lemma 1. Lemma 1 is proved by Liu and Zhang [6]. For complete-
ness of this paper, we give the sketch of their proof here. Define

121(0) = [ PR gy o))y ®)

for j > 1, where ¢; are smooth functions satisfying ¢;(t) = ¢(277¢)(j > 1) and
> j>1 ¢(277t) =1 on (1, 00). Therefore we can write

Tof =Y T7f.

J21

Obviously we have

17 fllpw < ClIM fllpw < Cllfllp,w (9)



o}

for 1 <p <ooand w € A,. On the other hand, we have
177112 < C279| £l (10)

for some ¢ > 0 independent of f c.f. [8]. Recall that there exists p —1 > § > 0
for every w € A, and 1 < p < oo such that w'*® € A, s [2]. Therefore by
Marcinkiewicz real interpolation theorem [9] between (9) and (10), we get

175 fllp.aw < C27| £

pw
for some C' and € independent of f and 57 > 1, and

T2 fllpaw < D NTE fllpw < CIf

j21

p,w*

Lemma 1 is provedll

Lemma 2. Let Q(z,y) =), > 4 aapr®y? be a real-valued polynomial. Define

Skf(x):/Be"Q(”’y)f(y)dnykB(x),

for k > 1, where B is a ball with its center zero and its radius r = r(B). Therefore
there exist constants C' and ¢ > 0 independent of k and f for every 1 < p,q < o0
such that o

1Skfllp < C(1+ g(r, k) =255 £l

where we denote g(r,k) = 3_ 0 50 |aap|(2Fr) 1Pl

Proof of Lemma 2. Obviously we have

ISkfll < C@5r)™ | fllx < Cl2br T £, (12)
and
1Sk fllso < ClIFlL < Cr T | £l (13)
On the other hand, we have

1Sk f1I5
’ i(Q@*ray) -2 ray))

2 //f dydy/ rE.y T,y w(flj)d.’l)'

C(Zkr)"”f”g(/ / dydy/|/ei(Q(rim,y)—Q(rim,y/))¢(m)d$|#)qT

ly|<r Jly'|<r

<Oy 1

(/ L+ D21 aasr(y” =y (2501 " dydy') T
ly|<1,]y'|<1 ak0 B
SC(ZkT)nr

/ 1+ 3 Z“ srlyB] 4 3 118 ) (265 ) e dy) %7
ly|<1

v #H0 B0
= (L g B)

§C(2kr)"r
(14)
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where 1) is a positive smooth function satisfying ¢(x) = 1 on {z : |z| < 1} and
P(z) = 0 on {z : |x| > 2}, €1, €2 and € are sufficient small constants independent
of f,r and k, and the third inequality follows the following estimate of of Van de
Corput type( see [8] for example),

/l |<1(1 +1Q(y)) " dy < C(1 + Z g

holds for some constant C, ¢, e; dependent of the degree of @ only, where Q(y) =

> €ay”
Therefore Lemma 2 follows from the Marcinkiewicz real interpolation theorem

[9] between (12) , (13) and (14)M

Proof of Theorem 4. Recall that T5 is a linear operator. Therefore it sufficies

to prove
IT2all1 < € (15)

for every hl? atom a and some constant C independent of a. We divide two cases

to prove (15).

Case 1. The supporting ball B of a has its radius r = r(B) > 1.
Write

oo
Tya =(Taa)Xx2 + Y _(Taa)Xar+1p\24 B
k=1

=fo + Z fr-
k=1

Recall that suppfo C 2B, T5 is boundedon L? for every 1 < p < oo and w € A, by
Lemma 1. Therefore we get

pw < Clla]lpw < Cw(B)7 . (16)

[ follp.w < T2a

On the other hand we have

ula)] <C2 Rl + 02 ke [P agy)ay)
:Ik(l') + IIk(.T)

on 2Ft1B\2%B for k > 1. For w € Ay, there exist constants py > 1 and C for every
q > 0 such that

(|B|—1/Bw(m)p0dm)% §C|B|_1/Bw(a:)da; (17)

and

(|B|_1/Bw($)_‘”’°d$)% < C|B|_1/Bw($)_qd$v (18)



by reverse Holder inequality [2]. Write P(z —y) = Y aapr®yP. Thus aas Z 0 for
a # 0, 8 # 0 by our assumption deg(P) > 2. Recall that suppf; C 2¥*'B and
suppa C B. Therefore we get

1Tkl <C27EE+Dr="fq]|yw (251 B)
<O all [ wl@) P TIREB)E (19)
B
<C2 Fw(2F1B)r !

by (5) and (6), and we also get

po—1

W) d) 75 ( / | / &P @) a(y)dy |25 der) oo
k+1pB

M il <C2 /
2

2k+1B
n(g—1)

<C27F (2 BY 5T ([a|o(1 4 g(r, k)~
<C(1+ g(r, k)" w(2+'B)s 71,

(20)
where g(r, k) = > 20 g0 |aap|(28r)IelrBl g = % < p, the second inequality

follows from (17) and Lemma 2 (in fact we use -222; as the p in Lemma 2), and the
third one from the Holder inequality

b—gq

lallg < lallp /B w(x) 75 d) 5

and (18). Recall that » > 1 and ang # 0 for o # 0,5 # 0. Combining (19) and
(20), we get

I Tsallye <[l follpww(B)' ™7 + 3" || frllpww(2+'B)' 7>
E>1
<C+CY grk)yc<C+C) 27k <C

k>1 k>1

and (15) holds in Case 1.

Case 2. The supporting ball B of a has its radius r = 7(B) < 1.
Write

Tof = Tif

J21

as in the proof of Lemma 1. Recall that [ a(y)dy = 0 by the definition of AL atom.
Therefore we have

[T a(z)] < /\K(% Y|z —yl) — K (z, 20)d(|z — wol)||aly)|dy

+H K (@, o) (| — fvol)/leip(m_y) — P a(y)ldy  (21)

§C2_j(n+1)7“||a||1 + C27in Z Z |aaﬁ|21|alrlﬁl||a||1,
a B#£0
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where x is the centre of B and
T allpw <C277 "+ Vr||a]|yw(B(wo, 27))»

4277 5™ S s 271019 (B, 20

a (#0 (22)

<C 7+ 33 Jaas 221w (B0, 27)) 7 7.
a B#0

Observe that
[T a(z)] < C277F Va1 Xz <2 (2)
1K (o) [, )| [ 7 Valy + o)y
<I) + I».
By same argument as in (19) we get
111 |y < C277 7w (B(m,27))7 7L

On the other hand we get

Fallpor <C2([ | [Py 4 ag)dylPute + o))
o <C2i

—Jn iP(z—z0—y) pro po—1
<C27( | [ e oY a(y + xo)dy| 701 dz) rro
lz]<C27

(/ w(x + xo)p"daﬁ)ﬁ
lz|<C27
1

<C+ S aapl2r Y= w(B(zo, 27)) 7,
a£0,8£0

where the last inequality follows from Lemma 2 and (17). This proves

ITdallpw < C270r +(1+ Y |40 2711 =) (B(20,27)) 7 1. (23)
a#0,8#0

Recall that suppT?a C B(z,2/"). Therefore by (21) and (23) we have

|T2all,, <C> 277y

i>1
O min(3" Y laagl2Zr P (14 YT Jaag|27 ) 7).
j>1 a B#0 a#0,8#0

Let jo be the least positive integer such that

> laag2lePl > 1, (24)
a0, B£0



Then j, < Clogr=!. Let (ag,/3) be the index satisfying |aq,gs,|2/1%!rlfl >
|aap]271%0r 18] for all o # 0, 8 # 0. Therefore we have

|1 T2all,10 <C +C Z Z Z |aap|271lr 18 4 C Zﬂaaoﬁopﬂaolrlﬁol)—e

ISJSJO 64 ﬁ;éO .72.70
<C+C Z || 27010 18]
0,80
+Co 3 laoslr® + C|aays, |27 1201101y
B0

<C

and (15) holds in Case 2. Theorem 4 is provedll

3. Non-convolution Type

We begin with an example of polynomial ¢ on R™ x R"™ and a kernel K of
Calderon-Zygmund type in one spatial dimension, for which the corresponding os-
cillatory singular integral does not map h'? to L' for every 1 < p < oo.

Example 1. Letn=1, K(z —y) = ﬁ and Q(z,y) = xy. Then the oscilla-
tory singular integral T defined by

O

does not map AP to L' for every 1 < p < oo.

In particular, for f,.(y) = T_lei“’rlyx[w—l_T7M_1+T](y) (0 < r < 1/2), the htP
norm || fr||n1.» < C holds for some constant C' independent of 0 < r < 1/2. On the
other hand, we have

. 1 T eimy
L N
2r J—r T Y

. 1 r 1 . 1 r
>r | dy|dx — 2r ly|dydz
2r —r T =Y 2r J—r
1

1
2/ ﬂd$—1:log(2r)_1—1—>oo (r —0).
2r |

This show that 7 does not map h'? to L' boundedly.
Proof of Theorem 2. At first we prove 2)==-1). Obviously it suffices to proving

[ Tepallr, <C (25)

T(zglw
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for every hl? atoms a with its supporting ball B having center zero and radius
r = r(B), where we define

Ty f(z) = / (IRt @0 w0 K (1 4 oy + o) f (y)dy

and 7(xg)w(:) = w(- + zp). Hereafter the big letter C' denotes a constant indepen-
dent of zg and 0 < r < 1, but would be different at different occurances. We divide
two cases to prove (25).

Casel. r=r(B)>1
As in the proof of Theorem 4, write

a = fo+ Z -
k=1
Therefore we have

||f0||1,T(wo)w < ||Tmoa||p,T(wo ( (xO)w)( ) <C
1 fell 1, oy < 1 llpsr ooy (T(@o)w) (251 B) 5
< C27% 4 (14 gy (1, k) ),

where g, (1, k) = >_ 20 220 |aas(w0)|(2%r)1*lr1Pl and constants C,e > 0 are inde-
pendent of k and a. We say index v = (y1,.,7n) > 6 = (61,..,0p) if v > 6;
for all 1 < i < n. Observe that ang(zo) = anp(0) for all index pairs (o, 3) and
xo € R™ for which there does not exist index pairs (7, 8) such that a,s(0) # 0,
(7,6) # (o,3),7y > « and § > B. Therefore g, (r,k) > C2% holds for some
constants C and s independent of xy and k provided r > 1. This shows that

| < filhw<C+CY 278 <C

To
k>0 k>1
and (25) holds in Case 1.
Case 2. r =7(B) < 1.
Write -
a=fo+> fu (26)
k=1

as in Case 1. As in Case 2 in the proof of Theorem 4, we have

||f0 < Ca

and

||fk||1,T(wo)w <||f p,T(mo)w(T($0)w)(2k+1B)%

<C27% 4 Cmin(gg, (r, k) + Z |a0ﬁ(x0)|r|5|, (1 + guy(r k) ™°)
B#0

g—hkn (T(a:o)w) (2kB) (T(a:o)w) (B)~1,




where gz, (1, k) = 32,20 520 |aap(70)](287)1¢lr1Pl as in Case 1. Define the first
positive integer k such that g, (r,k) > 1 by ko if it exists and define ky = 0
otherwise. Observe that

255, (r,0) < gay (r, k) < 2V gy, (r,0)
for some positive integer N. Thus we get
Cilog(min(1, g, (r, O)))_1 < ko < Cslog(min(1, ga, (1, O)))_1 (27)

for some constants C's > 'y > 0 independent of g and r < 1. Therefore

|1 T20all1,r(20)e SC+C D Guy(E) ™+ C > gay(r, k)
ko>k 1<k<ko
+C Y 27 (r(wo)w) (28 B) (r(w0)w) (B) ™
1<k<kq
min(1, Z |a05(x0)|1"|5|)
B#0
<C + Cmin(1, Y |agg(wo)|r!l)
B#0

2 274" (r () (2% B) (7o ) (B) ™!
1<k< log(min(lygwo (7":0)))_1
<C < o0,

where the first inequality follows from (5) and the second one from our assumption
2),
> 27 (r(wo)w) (2PB) < C Y 27 (r(wo)w) (2 B), (28)
k<j<2k 1<j<k

(5) and (7). Thus (25) holds in Case 2.

Secondly we prove 1)==2). Let a be an hLP atom with its supporting B having
radius r = r(B) < 1 and center zero. Write

Tooa=fo+ Y [
k=1
where f are defined as in (26). Observe that

i aos (z0)y”?
(@) 2K ()| [ om0 a(y)dy

K@t aoao)ll [ 3 faaplao) @0 )iy (o)

a#0,8#0
_ / K (2 + 70, 70) — K (2 + 0,y + z0)||a(y)|dy
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on 2*F1B\2* B for k > 1. Also we know from (27) that g, (r,0) > Cr"¥ and 2%r < 1

for all k < eilog(min(1, gg, (7, O)))_l, where C, N and 0 < ¢; < 1 are constants
independent of zy and r < 1. Recall that (28), (29) and |K (z + xo, zo)| > Clz|™"
for all |z| < 1 and 2o € R™ by our assumption. Therefore we get

|/eiza¢0 205 (0)u” 4 (1) dy | > r"27 8 (7 (20 )w) (2" B)

1<k<log(min (1,9 (r0)))

<C - | T a(2)|(T(z0)w) () da

ve 2 F+ Y laas(@o)l@¥n)lrif)
1<k<erlog(min(1,.0(r0))) @#0,8#£0
SHT:EOO/HI,T(wo)’w +C < 07

where the first inequality follows from (5) , and the last one from our assumption
1). Therefore the matter reduces to

min(1, Z |a0g($0)|r|ﬁ|) (T(zo)w) (B)~ 'y
< Csup|/eiz‘#° 2030 g )y,

where the supremum on «a is taken over all function a satisfying suppa C B(0,r),
1_
[a(y)dy =0 and ||allp,r(zeyw < (T(zo)w) (B(0,7))? ' Observe that

por(mo)w = (T(:Uo)w) (B(()J.))%—l

la
provided ||also < (T(z0)w) (B(O,r))_l. Denote

N = {R(y) = Z aﬁyﬁ, R is real-valued polynomial, degR < N}.
B#0

Therefore the matter reduces to

Lemma 3. Let Rg\, be defined as above. Thus
sup| [ " Wa(y)dy| > Canin(L, | ) (31)

holds for all R € R’y and a constant C' independent of R, where the supremum on a
is taken over all function a satisfying suppa C B(0,1), [a(y)dy = 0 and ||al/- < 1,
and we define ||R|| = > 5, ag| for all R € Rly.

Proof of Lemma 3. Denote

IR = suw| [ Ra()dy



for all R € R/, where the supremum on a is taken over the same region as in
(31). Obviously [[R[l, > 0, |CR[l, = [C[[[R[« and [[Ry + Ra|l« < [[Rufl« + [[ Rz«
for all R,Ry, Ry € Ry and real number C. Furthermore ||R||, = 0 implies
[ R(y)a(y)dy = 0 for all bounded functions a satisfying suppa C B(0,1) and
[ a(y)dy = 0. Therefore

1
1B(0,1)| JB(0,1)

R(y)[*dy = (% o

where |B(0,1)| denotes the Lebesgue measure of B(0,1), and R must be a constant.
Recall that R € Ry. Thus R = 0, and ||R||. = 0 implies R = 0. Hence we prove
that || - ||« is a norm on R/y. By the equivalence of two norms on finite dimensions
spaces, we get |R||« > C1||R|| for all R € R’y and some constant Cf.
Observe that
W) —1 —iR(y)| < ||R|?

for all |y| <1 by Taylor formula. Hence we get

sup| [ " Pa(y)dy| > 7). - I
Ci
> CillR| - IR = IR,

when ||R|| is chosen sufficient small.
As in the procedure to prove ||R||. = 0 holds only for R = 0, we get

sup| [ " 0a(y)dy| =0

holds only for R = 0, where R € R/, and the supremum on a is taken over all
bounded functions a satisfying suppa C B(0,1) and [a(y)dy = 0. Observe that
[ efWa(y)dy is continuous on R € R’y for all bounded functions a. Therefore
the matter reduces to proving that (31) holds for all R € Ry when ||R|| is large
enough.

Define .
Beon = 150,1)]

iR(y) g
e Y.
0,1)] B(0,1)

Therefore by estimates of Van de Corput type [8], we get
[Reonll < ClR|™

holds for all R € R/, where constants C' and € > 0 is independent of R € Ry.
Observe that

e~ R(y) _ RB(O’l)XB(O,l)(y))dy =0

B(0,1)

and

e RW) — Rp(0,1)XB0.1)([y)] < 2.



v

Therefore we get
sup| [ " Way)d

1 )
25 / |€ZR(y) _RB(O,l)XB(O,l)(y)|2dy
1 1
>3 B0, 1) = CIR| ™ = 7B(0,1)],
provided that || R|| chosen large enough. Lemma 3 and hence Theorem 2 is provedl

Example 1. (revised) Let Q(x,y) = zy. Then ap1(z0) = xo,a11(x0) =
1, a10(z0) = o, a00(To) = z% and aap(wo) = 0 otherwise. Now the condition 2)
in Theorem 2 becomes

zo+1 _ _ To+r
min(1, |:U0|r)/ w(z) (1 + M) Yz < C/ w(z)de

mo—l r o—"T

for all xp € R™,0 < r < 1. The authors believe that a weight w € A; satisfying the
the above condition does not exist.

4. Remarks

Observe that 2Fr < 1 when k < 6110g(min(1,za¢0ﬂ¢0 |aa5(a:0)|r|a|+|ﬁ|))_1,
where £; > 0 is a constant independent of 25 and r < 1. Therefore condition 2) in
Theorem 2 is equivalent to

min(1, Y [aos(zo)|r?!)log(min(1, Y laap(zo)|r PN <o (32)
B#0 a7#0,8#0

holds for all 5 € R™ and 0 < r < 1, provided w € Ay and
Clu(y) < w(z) < Cul(y) (33)
holds for all |z — y| < 1,|z| > C and a constant C.
Example 2. w(z) = |z]|% —n < a < 0 satisfies (33).

Observe that

log(min(1, Z |aa5(x0)|r|°‘|+|ﬁ|))_1
a£0,8£0

is equivalent to

log(min(1, Z |aaﬁ($0)|mr))_l. (34)

a#0,6#0
Therefore (32) is equivalent to

min(1, |a0g($0)|r|ﬁ|)log(min(1, g(:no)'mr'ﬁ'))_l <C (35)



for all B # 0, where g(zo) = >_,.0 520 |aag(x0)|laljrlﬁ\. Recall that aqp(zo) =
aqp(0) # 0 for all index pair (a,3) for which there does not exist index (v,9)
satisfying a,s(0) # 0, (v,0) # (o, 3),7 > a and § > . Thus

g(wo) > C4 (36)

for some constant C independent of zy € R™. Now we can prove

1

laos(0)| T < Cg(zo).

Conversely there exists a sequence xy € R™ (k > 1) such that

|aos (xx) [T = kg (k) (37)

1
Let r = |a0ﬁ(xk)|_ﬁ < 1. Then g(xg)ry < k~! and

min(1, [aog (i) |r}") log (min (1, () ?'r")) ™ > |BJ10gk,

which contradicts to (35). Therefore we prove

Theorem 5. Let w € A; satisfy (33). Then condition 2) in Theorem 2 is equiv-

alent to )

j{:|a0ﬁ(£lﬂ)|‘_é_| <C j{: |aap(xo)|ToT+1E

B#0 a#0,8#0

holds for all z € R™ and some constant C' independent of x.

Combining with Theorem 2 and 5, we get Thereom 2'.

Example 3. Let Q(z,y) = (x — y)?y. Then agz(xo) = 70, ap3(xo) = 1, a10(wo)
= 29,011(20) = —2x0,a12(x0) = —2,a21(x9) = 1 and a,g(xy) = 0 otherwise.
Furthermore we have

Z |aaﬁ($0)| \a\l\m =1 + 2% + |2$0|%7
a#0,8#£0

and

3 Jaos(o)|PT =1 + |xol?.
B#0

This shows the condition 2) in Theorem 2’ holds for Q(x,y) = (z — y)?y in one
spatial dimension.

Now we give a condition for which T, hence T, is bounded on hip.

Theorem 6. Let w € Ay and 1 < p < co. Assume that T is bounded on L? and
furthermore

| - Ta(:v)dx| < Cw(B(zg,7)) " (logr—)~! (38)
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holds for all hLP atom a with its supporting ball B(xq,r) having radius r < 1.
Then T is bounded on hLP.

Proof of Theorem 6. Let a be a hl,? atom and B(zg,r) be its supporting
ball with radius r and center zy. Observe that suppT C B(zg,r + 2). Therefore

ITall,0 < ClITallpww(B(wo, 2r))' "7 < C

when r > 1. Hence the matter reduces to r(B) < 1. )
Let by, = CkXB(we 24 H1r)\B(ao,26r) (2) a0d di, = [ (Ta)(T)X rr\ B(ao,24r) (T)d,
where Cr = fXB(mo,Qk“‘lr)\B(mo,ri)(l')dl'- Write

fa :(TCL)XB(J;O 2r) + d1h1

+ Z ((Ta) )X B(wo, 251 1)\ B(zo,2¢r) — Akhi + dry1hpy1)
1<k<ko :

=fo+ ji: f

1<k<ko

where ko is an integer such that 257 < 4 < 2K+l Obviously [, fre(z)dz = 0,
supp fx C B(zg,2F*1r) and

| fllpw <Cr="27% allyw(B(zo, 25 1r)) 7
<C2 Fw(B(wg, 281)) 5!
for all £ > 1. On the other hand, we have

pw < w(B(zo,2r))» !

Suppfo - B('T()a 2T)a ||f0
and

| [ Falaydsl =1 [(Fa)(@ (e,  (2)do + i
| /(Ta)@)dﬂ < Cw(B(x0,))~" (logr—")~".
Therefore we get || fol|,1.» < C by (7) and

ITallyr < 3 llfillyy < C+CY 27% <c.

k>0 k>1
This proved Theorem 6l

Remark. Let K be a kernel of Calderon-Zygmund type. Define

T f(z) = - K(z,y)f(y)dy

Observe that
[ 1] K@)t = 8)(ie - yhatw)dyids < Crlall

provided [, a(z)dz = 0. Hence [T*a(z)dz = 0 implies (38) and T satisfies (38)
when T is bounded on weighted Hardy space H..



REFERENCES

Chanillo S. and Christ M., Weak (1,1) bounds for oscillatory singular integrals, Duke Math.
J., 1987,55: 141-155.

Coifman R. R. and Fefferman R., Weighted norm inequalities for maximal functions and sin-
gular integrals, Studia Math., 1974,51: 241-250.

Goldberg D., A local version of real Hardy spaces, Duke Math. J., 1979,46: 27-42.

Hu Y., Osciallatory singular integral on weighted Hardy spaces, Studia Math., 1992,102: 145-
156.

Hu Y. and Pan Y., Boundedness of osciallatory singular integral on Hardy spaces, Ark. Math.,
1992,30: 311-320.

Liu H. and Zhang Y., Criteron of L?-boundedness for a class of oscillatory integrals, Approx.
Theory & its Appl., 1991, 7(4): 1-5.

Phong D. H. and Stein E. M., Hilbert transform integrals, singular integrals and Radon trans-
form I, Acta Math., 1986,157: 99-157.

Ricci F. and Stein E. M., Harmonic analysis on nilpotent group and singular integral I: oscial-
latory integrals, J. Funct. Anal., 1987,73: 179-194.

Stein E. M., Singular Integrals and Differentiablity Properties of Function, New York, Priceton
Univ. Press, 1970.

Stein E. M. and Wainger S., Problem in harmonic analysis related to curvature, Bull. Amer.
Math. Soc., 1978, 84: 1239-1295.

Stromberg J. O. and Torchinsky A., Weighted Hardy Spaces, Lecture Notes in Math., Vol.
1381. Berlin, Springer-Verlag, 1991.



