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Abstract. A long standing problem in Gabor theory is to identify time-

frequency shifting lattices aZ× bZ and ideal window functions χI on intervals

I of length c such that {e−2πinbtχI(t − ma) : (m,n) ∈ Z × Z} are Gabor
frames for the space of all square-integrable functions on the real line. In

this paper, we create a time-domain approach for Gabor frames, introduce
novel techniques involving invariant sets of non-contractive and non-measure-

preserving transformations on the line, and provide a complete answer to the

above abc-problem for Gabor systems.



Contents

Preface vii

Chapter 1. Introduction 1
1.1. Outlines 3

Chapter 2. Gabor Frames and Infinite Matrices 11
2.1. Gabor frames and uniform stability of infinite matrices 13
2.2. Maximal lengths of consecutive twos in range spaces of infinite

matrices 15
2.3. Uniform stability and null spaces of infinite matrices 16

Chapter 3. Maximal Invariant Sets 21
3.1. Maximality of invariant sets 23
3.2. Explicit construction of maximal invariant sets 27
3.3. Maximal invariant sets around the origin 28
3.4. Gabor frames and maximal invariant sets 33
3.5. Instability of infinite matrices 34

Chapter 4. Piecewise Linear Transformations 37
4.1. Hutchinson’s construction of maximal invariant sets 38
4.2. Piecewise linear transformations onto maximal invariant sets 39
4.3. Gabor frames and covering of maximal invariant sets 40

Chapter 5. Maximal Invariant Sets with Irrational Time Shifts 43
5.1. Maximal invariant sets with irrational time shifts 45
5.2. Nontriviality of maximal invariant sets with irrational time shifts 48
5.3. Ergodicity of piecewise linear transformations 53

Chapter 6. Maximal Invariant Sets with Rational Time Shifts 57
6.1. Maximal invariant sets with rational time shifts I 62
6.2. Maximal invariant sets with rational time shifts II 63
6.3. Cyclic group structure of maximal invariant sets 68
6.4. Nontriviality of maximal invariant sets with rational time shifts 72

Chapter 7. The abc-problem for Gabor Systems 81
7.1. Proofs 84

Appendix A. Algorithm 91

Appendix B. Uniform sampling of signals in a shift-invariant space 95

Bibliography 97

v





Preface

A Gabor system generated by a window function φ and a rectangular lattice
aZ× bZ is given by

G(φ, aZ× bZ) := {e−2πinbtφ(t−ma) : (m,n) ∈ Z× Z}.

Gabor theory could date back to the completeness claim in 1932 by von Neumann
and the expansion conjecture in 1946 by Gabor. Gabor theory has close links to
Fourier analysis, operator algebra and complex analysis, and it has been applied in
a wide range of mathematical and engineering fields.

One of fundamental problems in Gabor theory is to identify window functions φ
and time-frequency shift lattices aZ× bZ such that G(φ, aZ× bZ) are Gabor frames
for the space L2(R) of all square-integrable functions on the real line R. Denote by
R(φ) the set of density parameter pairs (a, b) such that G(φ, aZ × bZ) is a frame
for L2(R). The range R(φ) is an open domain on the plane for window functions
φ in Feichtinger algebra, but that range is fully known surprisingly only for small
numbers of window functions, including the Gaussian window function and totally
positive window functions.

The ranges R(φ) associated with general window functions φ, especially out-
side Feichtinger algebra, are almost nothing known and Janssen’s tie suggests that
they could be arbitrarily complicated. Ideal window functions χI on intervals I are
important examples of such window functions and they have received special atten-
tions. In this paper, we answer that range problem by providing a full classification
of triples (a, b, c) for which G(χI , aZ× bZ) generated by the ideal window function
χI on an interval I of length c is a Gabor frame for L2(R), i.e., the abc-problem
for Gabor systems. For an interval I of length c, we show that the range R(χI) of
density parameter pairs (a, b) is neither open nor path-connected, and it is a dense
subset of the open region below the equilateral hyperbola ab = 1 and on the left of
the vertical line a = c.

To study the range R(χI) of density parameter pairs (a, b) associated with
ideal window function χI , we normalize the interval I to [0, c) and the frequency
parameter b to 1. This reduces the abc-problem for Gabor systems to finding out all
pairs (a, c) of time-spacing and window-size parameters such that G(χ[0,c), aZ×Z)
are Gabor frames.

Denote by B0 the set of all binary vectors x := (x(λ))λ∈Z with x(0) = 1 and
x(λ) ∈ {0, 1} for all λ ∈ Z, and let Da,c contain all real numbers t for which there
exists a binary solution x ∈ B0 to the following infinite-dimensional linear system∑

λ∈Z
χ[0,c)(t− µ+ λ)x(λ) = 2, µ ∈ aZ.
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viii PREFACE

We create a time-domain approach to Gabor frames and show that G(χ[0,c), aZ×Z)
is a Gabor frame if and only if Da,c = ∅.

We do not apply the above empty set characterization of Gabor frames directly,
instead we introduce another set Sa,c of real numbers t for which there exists a
binary solution x ∈ B0 to another infinite-dimensional linear system∑

λ∈Z
χ[0,c)(t− µ+ λ)x(λ) = 1, µ ∈ aZ.

The set Sa,c is a supset of Da,c and conversely Da,c can be obtained from Sa,c
by some set operations. Most importantly, Sa,c is a maximal set that is invariant
under the transformation Ra,c and that has empty intersection with its black hole
[max(c0 + a− 1, 0),min(c0 − a, 0) + a) + aZ, where

Ra,c(t) :=

 t+ bcc if t ∈ [min(c0 − a, 0), 0) + aZ
t+ bcc+ 1 if t ∈ [0,max(c0 + a− 1, 0)) + aZ
t if t ∈ [max(c0 + a− 1, 0),min(c0 − a, 0) + a) + aZ.

The piecewise linear transformation Ra,c is non-contractive on the whole line
and it does not satisfy standard requirement for Hutchinson’s remarkable construc-
tion of maximal invariant sets. In this paper, we show that Hutchinson’s construc-
tion works for the maximal invariant set Sa,c of the transformation Ra,c, and even
more surprisingly it requires only finite iterations, i.e.,

Sa,c = (Ra,c)
D(R)\([max(c0 + a− 1, 0),min(c0 − a, 0) + a) + aZ)

for some nonnegative integer D, whenever it is not an empty set. Therefore comple-
ment of the set Sa,c is a periodic set with its restriction on one period consisting of
finitely many holes (left-closed right-open intervals). So we may squeeze out those
holes on the line and then reconnect their endpoints. This holes-removal surgery
yields an isomorphism from the set Sa,c to the line with marks (image of holes).
More importantly, restriction of the nonlinear transformation Ra,c onto the set Sa,c
becomes a linear transformation on a line with marks, and interestingly the set of
marks forms a cyclic group for a ∈ Q.

After exploring deep about locations and sizes of holes, we show that hole-
removal surgery is reversible and the set Sa,c can be obtained from the real line by
putting marks at appropriate positions and then inserting holes of appropriate sizes
at marked positions. The above delicate and complicated augmentation operation
leads to parametrization of the set Sa,c via two nonnegative integers for a 6∈ Q and
via four nonnegative integers for a ∈ Q. This parametrization yields our complete
answer to the abc-problem for Gabor systems.

The piecewise linear transformation Ra,c is non-measure-preserving on the
whole line, but certain ergodic theorem could be established. As it involves four-
teen cases (and few more subcases) for full classification of triples (a, b, c) such that
G(χ[0,c), aZ × bZ) is a Gabor frame for L2(R), an algorithm is proposed for that
intricate verification. The abc-problem for Gabor systems has also close link to the
stable recovery problem of rectangular signals f in the shift-invariant space

V2(χ[0,c),Z/b) :=
{ ∑
λ∈Z/b

d(λ)χ[0,c)(t− λ) :
∑
λ∈Z/b

|d(λ)|2 <∞
}

from their equally-spaced samples f(t0 +µ), µ ∈ aZ, with arbitrary initial sampling
position t0.
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CHAPTER 1

Introduction

Let L2 := L2(R) be the space of all square-integrable functions on the real line
R with the inner product and norm on L2 denoted by 〈·, ·〉 and ‖ · ‖2 respectively.
A frame for L2 is a collection F of functions in L2 satisfying

0 < A := inf
‖f‖2=1

(∑
φ∈F

|〈f, φ〉|2
)1/2

≤ sup
‖f‖2=1

(∑
φ∈F

|〈f, φ〉|2
)1/2

=: B <∞.

The constants A and B are known as lower and upper frame bounds of the frame F .
Frames for a Hilbert space were introduced in 1952 by Duffin and Schaeffer in the
context of nonharmonic Fourier series [11, 17], and the notion of frames has been
extended to p-frames, Banach frames, g-frames and fusion frames [3, 9, 10, 45].
The reader may refer to the textbook by Christensen [12] and the survey by Casazza
[7] for the extensive literature and historical remarks.

The Gabor system (also called Weyl-Heisenberg system) generated by a window
function φ ∈ L2 and a rectangular lattice aZ× bZ is defined by

(1.1) G(φ, aZ× bZ) := {e−2πinbtφ(t−ma) : (m,n) ∈ Z× Z};
and a Gabor frame is a Gabor system that forms a frame for L2, i.e., there exist
positive constants A and B such that

A‖f‖2 ≤
( ∑
m,n∈Z

|〈f, e−2πinb·φ(· −ma)〉|2
)1/2

≤ B‖f‖2 for all f ∈ L2.

Gabor frames have links to operator algebra and complex analysis, and they have
been applied in a wide range of mathematical and engineering field, especially suit-
able for applications involving time-dependent frequency content [6, 12, 20, 21,
24, 25, 26, 29]. The history of Gabor theory could date back to the complete-
ness claim in 1932 by von Neumann on the completeness of the Gabor system
G( 4
√

2 exp(−t2),Z×Z) generated by the Gaussian window [35, p. 406], and the ex-
pansion conjecture in 1946 by Gabor [19, Eq. 1.29] on the expansion of the Gabor

system G( 4
√

2 exp(−t2),Z×Z) for all square-integrable functions in his fundamental
paper. Gabor theory become widely studied after the landmark paper [16] in 1986
by Daubechies, Grossmann and Meyer, where they proved that given any positive
density parameters a, b satisfying ab < 1 there exists a compactly supported smooth
function φ such that G(φ, aZ×bZ) is a Gabor frame, see the textbook by Gröchenig
[20] and the surveys by Janssen [29] and Heil [26] for more detailed and updated
information about Gabor theory and applications.

One of fundamental problems in Gabor theory is to identify window functions
and time-frequency shift sets such that the corresponding Gabor systems are Gabor
frames. Given a window function φ ∈ L2 and a rectangular lattice aZ× bZ, a well-
known necessary condition for the Gabor system G(φ, aZ × bZ) to be a Gabor

1



2 1. INTRODUCTION

frame, obtained via Banach algebra technique, is that the density parameters a
and b satisfy ab ≤ 1 [5, 13, 28, 33, 37]. Two other basic necessary conditions for
the Gabor system G(φ, aZ× bZ) to be a Gabor frame are

(1.2) 0 < inf
t∈R

∑
m∈Z
|φ(t−ma)|2 ≤ sup

t∈R

∑
m∈Z
|φ(t−ma)|2 <∞,

and

(1.3) 0 < inf
ξ∈R

∑
n∈Z
|φ̂(ξ − nb)|2 ≤ sup

ξ∈R

∑
n∈Z
|φ̂(ξ − nb)|2 <∞

[13, 14]. Here the Fourier transform f̂ is given by

f̂(ξ) =

∫
R
f(t)e−2πitξdt

for an integrable function f on the real line R, with standard extension to tempered
distributions, including square-integrable functions. But the above three necessary
conditions on window functions and density parameters are far from providing an
answer to the fundamental problem.

Denote by R(φ) the range of positive density parameter pairs (a, b) such that
the Gabor system G(φ, aZ×bZ) is a frame for L2. Then the first necessary condition
can be rewritten as

(1.4) R(φ) ⊂ {(a, b) : ab ≤ 1}

for arbitrary window function φ. An important result proved by Feichtinger and
Kaiblinger [18] states that the range R(φ) is an open domain for a window function
φ in Feichtinger’s algebra [18], but it is fully characterized unexpectedly only for
few families of window functions φ [31, 32, 34, 39, 40], including recent significant
advance made by Gröchenig and Stöckler for a totally positive function of finite type
[22].

The Gaussian window 4
√

2 exp(−πt2) and the “ideal” window χI (the charac-
teristic function) on an interval I have received special attention. For the Gaussian
window, it is conjectured by Daubechies and Grossmann [15] and later proved in-
dependently by Lyubarskii [34] and by Seip and Wallsten [39, 40] via complex
analysis technique that the range of positive density parameters a and b is the open
domain {(a, b) : ab < 1}. For the ideal window on an interval I, it is known that
G(χI , aZ×bZ) is a Gabor frame if and only if G(χI+d, aZ×bZ) is a Gabor frame for
every d ∈ R. Due to the above shift-invariance of Gabor frames, the interval I can
be assumed to be left-closed and right-open, and to have zero as its left endpoint,
i.e.,

I = [0, c) for some c > 0.

Thus the range problem for the ideal window on an interval reduces to the so-called
abc-problem for Gabor systems: given a triple (a, b, c) of positive numbers,
determine whether G(χ[0,c), aZ× bZ) is a Gabor frame.

Applying (1.2) to the ideal window function χE on a bounded set E yields the
covering property

∪m∈Z(E +ma) = R
which becomes a ≤ c for the the ideal window on the interval [0, c) [8]. Similarly
applying (1.3) for the ideal window on the interval [0, c) shows that bc is not an
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integer larger than or equal to 2. The above requirements together with (1.4) imply
that

R(χ[0,c)) ⊂ {(a, b) : ab ≤ 1, a ≤ c, bc 6∈ Z\{1}}.
But there is a large gap between the range R(χ[0,c)) and its supset {(a, b) : ab ≤
1, a ≤ c, bc 6∈ Z\{1}}. In fact the range could be arbitrarily complicated, cf. the
famous Janssen’s tie [23, 30]. In this paper, we introduce a discontinuous periodic
transformation, study its two invariant sets, and use them to provide a complete
answer to the abc-problem for Gabor systems.

Notation: For a real number t, we let t+ = max(t, 0), t− = min(t, 0) = t− t+,
btc be the largest integer not greater than t, dte the smallest integer not less than t,
sgn(t) be the sign of t, and t := (· · · , t, t, t, · · · )T be the column vector whose entries
take value t. Specially for the window size parameter c, we let c0 := c− bcc be the
fractional part of the window size. For a set E, we denote by χE the characteristic
function on it, by |E| its Lebesgue measure, and by #(E) its cardinality respectively.
We also denote by Q the set of rational numbers; by gcd(s, t) the greatest common
divisor such that s/gcd(s, t), t/gcd(s, t) ∈ Z for any given s and t in a lattice rZ
with r > 0; by AT the transpose of a matrix (vector) A; and by N(A) the null
space of a matrix A. In this paper, we also let `2 := `2(Λ) be the space of all
square-summable vectors z := (z(λ))λ∈Λ on a given index set Λ, with standard
norm ‖ · ‖2 := ‖ · ‖`2(Λ);

B := {(x(λ))λ∈Z : x(λ) ∈ {0, 1} for all λ ∈ Z}

contain all binary column vectors whose components taking values either zero or
one; and

B0 := {(x(λ))λ∈Z ∈ B : x(0) = 1}
be the set of all binary vectors taking value one at the origin.

1.1. Outlines

Given a triple (a, b, c) of positive numbers, one may verify that G(χ[0,c), aZ×bZ)
is a Gabor frame if and only if G(χ[0,bc), (ab)Z × Z) is. By the above dilation-
invariance, we can normalize the frequency-spacing parameter b to 1. Thus the
abc-problem for Gabor systems reduces to finding out all pairs (a, c) of positive
numbers of time-spacing and window-size parameters such that G(χ[0,c), aZ × Z)
are Gabor frames.

It is known that the Gabor system G(χ[0,c), aZ×Z) associated with a pair (a, c)
satisfying either a ≥ 1 or c ≤ 1 is a Gabor frame if and only if c = 1 and 0 < a ≤ 1,
see for instance [16, 23, 30] and also Theorem 7.1. So it remains to consider the
abc-problem for Gabor systems with triples (a, b, c) satisfying

0 < a < 1 < c and b = 1.

Define infinite matrices Ma,c(t), t ∈ R, by

(1.5) Ma,c(t) :=
(
χ[0,c)(t− µ+ λ)

)
µ∈aZ,λ∈Z, t ∈ R.

The infinite matrices Ma,c(t), t ∈ R, in (1.5) have been used by Ron and Shen
in [38] to characterize frame property for the Gabor system G(χ[0,c), aZ × Z). In
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particular, G(χ[0,c), aZ× Z) is a Gabor frame if and only if

(1.6) 0 < inf
t∈R

inf
‖z‖2=1

‖Ma,c(t)z‖2 ≤ sup
t∈R

sup
‖z‖2=1

‖Ma,c(t)z‖2 <∞,

see also Theorem 2.4. We observe that infinite matrices Ma,c(t), t ∈ R, in (1.5) are
binary, their rows contain bcc+{0, 1} consecutive ones, and they have the following
elementary properties about frequency shifts in Z and time shifts in aZ:

(1.7) Ma,c(t− λ′)z = Ma,c(t)τλ′z for all λ′ ∈ Z

and

(1.8) Ma,c(t− µ′)z = τµ′(Ma,c(t)z) for all µ′ ∈ aZ,

where for α > 0, the shift-operators τν′ , ν
′ ∈ αZ, are defined by

τν′z := (z(ν + ν′))ν∈αZ for z := (z(ν))ν∈αZ.

Using special structures for infinite matrices in (1.5), we establish the equivalence
between their uniform stability (1.6) and the non-existence of binary solutions for
the infinite-dimensional linear systems

(1.9) Ma,c(t)x = 2, t ∈ R,

or equivalently the empty set property for the set Da,c defined by

(1.10) Da,c :=
{
t ∈ R : Ma,c(t)x = 2 for some binary vectors x ∈ B0

}
,

see Theorem 2.1.

Any binary vector x ∈ B0 satisfying Ma,c(t)x = 2 can be written as the sum
of two binary vectors x1 ∈ B0 and x2 ∈ B\B0 such that

(1.11) x = x1 + x2 and Ma,c(t)x1 = Ma,c(t)x2 = 1,

see Lemma 2.6. The binary vector x1 ∈ B0 in the above decomposition (1.11) is
uniquely determined by t (see Lemma 3.12), and multiple binary vector solutions x
could exist for the linear system Ma,c(t)x = 2, t ∈ R. So we consider binary vector
solutions x ∈ B0 to the linear system

(1.12) Ma,c(t)x = 1, t ∈ R,

and define

(1.13) Sa,c :=
{
t ∈ R : Ma,c(t)x = 1 for some vector x ∈ B0

}
.

The sets Da,c and Sa,c are closely related:

1) they are periodic sets with period a by the time-shift property (1.8);
2) Sa,c is a supset of Da,c by the decomposition (1.11); and
3) Da,c can be obtained from Sa,c via some set operations, see Theorem 2.3.

For pairs (a, c) of positive numbers satisfying either c0 := c−bcc ≥ a or c0 ≤ 1− a,
we can construct the set Da,c explicitly by applying the above results about the
sets Da,c and Sa,c, and then we can determine whether the corresponding Gabor
system G(χ[0,c), aZ × Z) is a frame, see Theorem 7.2. Thus the abc-problem for
Gabor systems reduces further to triples (a, b, c) satisfying

0 < a < 1 < c, 1− a < c0 < a and b = 1.
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Take t ∈ Sa,c. Let xt ∈ B0 be the unique solution of the linear system

Ma,c(t)xt = 1, and let λa,c(t) (resp. λ̃a,c(t)) be the smallest positive integer (resp.

the largest negative integer) such that xt(λa,c(t)) = xt(λ̃a,c(t)) = 1. Then

τλa,c(t)xt, τλ̃a,c(t)xt ∈ B
0

and

Ma,c(t+ λa,c(t))τλa,cxt = Ma,c(t+ λ̃a,c(t))τλ̃a,c
xt = Ma,c(t)xt = 1

by the frequency-shift property (1.7). This yields two maps on the set Sa,c:

(1.14) Sa,c 3 t −→ t+ λa,c(t) ∈ Sa,c and Sa,c 3 t −→ t+ λ̃a,c(t) ∈ Sa,c.
Our inspection shows that the above two maps can be extended to discontinuous
periodic transformations Ra,c and R̃a,c on the line R respectively, where

(1.15) Ra,c(t) :=

 t+ bcc if t ∈ [(c0 − a)−, 0) + aZ
t+ bcc+ 1 if t ∈ [0, (c0 + a− 1)+) + aZ
t if t ∈ [(c0 + a− 1)+, (c0 − a)− + a) + aZ,

and
(1.16)

R̃a,c(t) =

 t− bcc − 1 if t ∈ [c− (c0 + a− 1)+, c) + aZ
t− bcc if t ∈ [c, c− (c0 − a)−) + aZ
t if t ∈ [c− (c0 − a)−, c+ a− (c0 + a− 1)+) + aZ,

see Lemma 3.7. So the set Sa,c is an invariant set under transformations Ra,c and

R̃a,c and it has empty intersection with their black holes [(c0 + a− 1)+, (c0− a)−+
a) + aZ and [c− (c0 − a)−, c+ a− (c0 + a− 1)+) + aZ. Most importantly, the set
Sa,c is maximal in the sense that any set E satisfying

Ra,c(E) = E and E ∩ ([(c0 + a− 1)+, (c0 − a)− + a) + aZ) = ∅
is a subset of Sa,c, see Theorem 3.4. Due to the above property, we call Sa,c the
maximal invariant set.

The piecewise-linear transformations Ra,c and R̃a,c are well-defined as (c0 +
a− 1)+ ≤ (c0 − a)− + a. The black hole [(c0 + a− 1)+, (c0 − a)− + a) + aZ of the
transformation Ra,c and the black hole [c− (c0− a)−, c+ a− (c0 + a− 1)+) + aZ of

the transformation R̃a,c play important role for us to explore the structure of the
maximal invariant set Sa,c. The following properties for the transformations Ra,c
and R̃a,c follow immediately from their definitions (1.15) and (1.16):

1) The transformation R̃a,c is the left-inverse of the transformation Ra,c out-

side its black hole and vice versa (hence the transformations Ra,c and R̃a,c
are one-to-one outside their black holes), i.e.,

(1.17)

{
R̃a,c(Ra,c(t)) = t if t 6∈ [(c0 + a− 1)+, a+ (c0 − a)−) + aZ,
Ra,c(R̃a,c(t)) = t if t 6∈ [c− (c0 − a)−, c+ a− (c0 + a− 1)+) + aZ.

2) The range of the transformation Ra,c outside its black hole is the comple-

ment of the black hole of the transformation R̃a,c and vice versa, i.e.,

(1.18)


Ra,c

(
R\([(c0 + a− 1)+, (c0 − a)− + a) + aZ)

)
= R\([c− (c0 − a)−, c+ a− (c0 + a− 1)+) + aZ),

R̃a,c
(
R\([c− (c0 − a)−, c+ a− (c0 + a− 1)+) + aZ)

)
= R\([(c0 + a− 1)+, (c0 − a)− + a) + aZ).
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3) The transformations Ra,c and R̃a,c are measure-preserving outside their
black holes, i.e.,

(1.19){
|Ra,c(E)| = |E| if E ∩ ([(c0 + a− 1)+, (c0 − a)− + a) + aZ) = ∅,
|R̃a,c(E)| = |E| if E ∩ ([c− (c0 − a)−, c+ a− (c0 + a− 1)+) + aZ) = ∅.

As the transformation Ra,c is non-contractive by the above measure-preserving
property (1.19), its maximal invariant set Sa,c does not directly follow from the
Hutchinson’s remarkable construction [27]. We observe that invariance of the set
Sa,c under the transformation Ra,c and its empty intersection with the black hole
[(c0 + a− 1)+, (c0 − a)− + a) + aZ imply that

(1.20) Sa,c ⊂ ∩∞n=0(Ra,c)
n(R)\([(c0 + a− 1)+, (c0 − a)− + a) + aZ).

Surprisingly we show that infinite intersection in the above inclusion can be replaced
by finite intersection and the inclusion is indeed an equality whenever Sa,c 6= ∅. This
leads to the existence of a nonnegative integer D such that

(1.21) Sa,c = (Ra,c)
L(R)\([(c0 + a− 1)+, (c0 − a)− + a) + aZ) for all L ≥ D,

see Theorem 4.1. Hence the maximal invariant set Sa,c consists of finitely many
left-closed and right-open intervals on one period and it is measurable, see Examples
5.1, 6.1 and 6.2 for illustrative examples. Our algorithm to verify frame property for
the Gabor system G(χ[0,c), aZ×Z) for given pair (a, c) is based on the observation
(1.21), see Appendix A.

In this paper, we prove the finite iteration (1.21) of the maximal invariant set
Sa,c from exploring its complement R\Sa,c. We observe that holes (Ra,c)

n([c−(c0−
a)−, c+a−(c0+a−1)+)+aZ), n ≥ 0, obtained from applying the transformationRa,c
to the black hole [c−(c0−a)−, c+a−(c0 +a−1)+)+aZ of the transformation R̃a,c
have empty intersection with the maximal invariant set Sa,c, see Proposition 3.6.
Furthermore, the black hole [(c0 +a−1)+, a+(c0−a)−)+aZ of the transformation
Ra,c and the black hole [c−(c0−a)−, c+a−(c0+a−1)+)+aZ of the transformation

R̃a,c are transformable through periodic holes (Ra,c)
n([c− (c0 − a)−, c+ a− (c0 +

a− 1)+) + aZ), 0 ≤ n ≤ D, in finite steps, provided that Sa,c 6= ∅. Thus

(1.22) Sa,c = R\
(
∪Dn=0 (Ra,c)

n([c− (c0 − a)−, c+ a− (c0 + a− 1)+) + aZ)
)

by its maximal invariance under the transformationRa,c, see Theorem 5.2 for a 6∈ Q
and Theorems 6.3, 6.4 and 6.5 for a ∈ Q.

Set c1 := bcc−b(bcc/a)ca. For pairs (a, c) of positive numbers satisfying either
c1 ≥ 2a−1 or c1 = 0, we can construct the set Sa,c explicitly by applying (1.22), and
then we can determine whether the corresponding Gabor system G(χ[0,c), aZ×Z) is
a frame, see Theorem 7.3. Then it remains to consider the abc-problem for Gabor
systems with triples (a, b, c) satisfying

0 < a < 1 < c, 1− a < c0 < a, 0 < c1 < 2a− 1 and b = 1.

For the parametrization of the maximal invariant set Sa,c, we need some addi-
tional properties for the transformation Ra,c and perform a topological surgery for
the maximal invariant set Sa,c. Recall that the maximal invariant set Sa,c has its
complement composed by finitely many left-closed right-open intervals, called holes,
on one period by (1.22). So we may squeeze out those holes on the line and then
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reconnect their endpoints. The above holes-removal surgery could be described by
the map

(1.23) Ya,c(t) := sgn(t)|[t−, t+) ∩ Sa,c|, t ∈ R

on the line in the sense that it is an isomorphism from the maximal invariant set
Sa,c to the line with marks (image of the holes). In Figure 1 below, we illustrate
the performance of the holes-removal surgery via

aT 3 a exp(2πit/a) 7−→ Ya,c(a) exp
(
− 2πiYa,c(t)/Ya,c(a)

)
∈ Ya,c(a)T,

where
(
π
4 , 23 − 11π

2

)
,
(

6
7 ,

23
7

)
,
(

13
17 ,

77
17

)
and

(
13
17 ,

75
17

)
are used as pairs (a, c) in the

four subfigures respectively, c.f. Examples 5.1, 6.1 and 6.2. More importantly, after

Figure 1. The set a exp(2πiSa,c/a) contains blue arcs in the big circle,
while the set a exp(2πi(R\Sa,c)/a) is composed of red dashed arcs in the
big circle. The image Ya,c(a) exp

(
2πiYa,c(R)/Ya,c(a)

)
of the map Ya,c

is the small circle, and the set Ya,c(a) exp
(
2πiKa,c/Ya,c(a)

)
is circled

marked, where Ka,c is the set of marks on the line.

performing holes-removal surgery, the restriction of the nonlinear transformation
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Ra,c onto the maximal invariant set Sa,c becomes a linear transformation S(θa,c)
on a line with marks, i.e., the following diagram commutes,

(1.24)

Sa,c
Ra,c−−−−→ Sa,c

Ya,c

y yYa,c

R/(Ya,c(a)Z) −−−−→
S(θa,c)

R/(Ya,c(a)Z)

where
θa,c = Ya,c(bcc+ 1)

and
S(θa,c)(z + Ya,c(a)Z) = θa,c + z + Ya,c(a)Z, z ∈ R/(Ya,c(a)Z),

see Theorem 4.4.

For irrational time-spacing parameter a, holes (Ra,c)
n([c − c0, c − c0 + 1) +

aZ), 0 ≤ n ≤ D, in the complement of the maximal invariant set Sa,c have their
closure being mutually disjoint, see Theorem 5.2. This gives a one-to-one cor-
respondence between those holes of length 1 − a and marks on the line, where
marks are obtained by applying the hole removal surgery and conversely holes
of same length are inserted at marks by the augmentation operation. From the
commutative diagram (1.24) for the transformation Ra,c and the above one-to-one
correspondence between holes and marks, we conclude that the set of marks are
completely determined by the number of marks on one period [0, Ya,c(a)) and the
position Ya,c(c− c0 + 1) +Ya,c(a)Z and Ya,c(c0) +Ya,c(a)Z of two marks associated
with black holes [c − c0, c − c0 + 1 − a) + aZ and [c0 + a − 1, c0) + aZ of trans-

formations R̃a,c and Ra,c respectively. Using the above conclusion, we may fully
classify the maximal invariant set Sa,c by two parameters d1 and d2, the numbers
of holes in [0, c0 +a− 1) and [c0, a) respectively. This leads to a characterization of
nontriviality of the maximal invariant set Sa,c, see Theorem 5.5. Also it gives the
full classification of pairs (a, c) of positive numbers satisfying 0 < c1 < 2a− 1 and
a 6∈ Q such that the corresponding Gabor system G(χ[0,c), aZ × Z) is a frame, see
Theorem 7.4.

For rational time-spacing parameter a, one may easily verify that the set Sa,c is
finite union of intervals of length c−bqcc/q and (bqc/c+1)/q−c on one period, and
it is completely determined by its restriction to the finite set ({0, c}+Z/q)∩ [0, a),
where a = p/q for some co-prime integers p and q. In particular,

(1.25) Sa,c =
(
Sa,c∩Z/q+[0, c−bqcc/q)

)
∪
(
Sa,c∩(c+Z/q)+[0, (bqcc+1)/q−c)

)
,

because infinite matrices Ma,c(t) in (1.5) has the following property for a ∈ Q:

(1.26) Ma,c(t) =

{
Ma,c(bqtc/q + c− bqcc/q) if t− bqtc/q ≥ c− bqcc/q
Ma,c(bqtc/q) if 0 ≤ t− bqtc/q < c− bqcc/q.

Furthermore, the maximal invariant set Sa,c has its complement consisting of pe-
riodic gaps of two different sizes, see Theorems 6.3, 6.4 and 6.5. Also the trans-
formation Ra,c has its restriction on Sa,c being of finite order, since there exists a
positive integer D such that

(Ra,c)
D(t)− t ∈ aZ for all t ∈ Sa,c

cf. Theorem 4.5. Taking holes-removal surgery described by the map in (1.23)
for the maximal invariant set Sa,c leads to a line with marks. Interestingly, it
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is shown that the set Ka,c of marks forms a cyclic group, see Theorem 6.6 and
Corollary 6.7. We observe that the hole-removal surgery is reversible, that is, the
maximal invariant set Sa,c can be obtained from the real line by putting marks at
appropriate positions and then inserting holes of appropriate sizes at marked posi-
tions, that augmentation operation is much more delicate and complicated than the
holes-removal surgery. Using the above augmentation operation, we characterize
nontriviality of the maximal invariant set Sa,c for a ∈ Q, see Theorem 6.8. Finally
using the above characterization and the covering property of the maximal invari-
ant set Sa,c in Theorems 3.2 and 3.3, we provide full classification of pairs (a, c)
satisfying 0 < c1 < 2a − 1 and a ∈ Q such that the corresponding Gabor system
G(χ[0,c), aZ× Z) is a frame, see Theorem 7.5.

The paper is organized as follows. In Chapter 2, we introduce a new character-
ization of frame property for the Gabor system G(χ[0,c), aZ× Z) via non-existence
of binary solution of infinite-dimensional linear systems (1.9), and we show that
the set Da,c could be obtained from the maximal invariant set Sa,c by some set
operations. The main results in that chapter are Theorems 2.1 and 2.3.

In Chapter 3, we consider covering property of the set Sa,c in Theorem 3.2,
and show in Theorem 3.4 that the set Sa,c has empty intersection with the black
hole [(c0 + a − 1)+, (c0 − a)− + a) + aZ of the transformations Ra,c, and that it
is the maximal set that is invariant under the transformation Ra,c and has empty
intersection with its black hole. The maximal invariance property for the set Sa,c is
crucial in our study. Applying the maximal invariance property, we can construct
the maximal invariant set Sa,c immediately for pairs (a, c) satisfying either c0 ≥ a
or 0 ≤ c0 ≤ 1 − a. Important observations in that chapter also include the dense
property of the maximal invariant set Sa,c around the origin, and unique binary
solution x ∈ B0 to the linear system Ma,c(t)x = 1 for any given t ∈ Sa,c, see
Lemmas 3.10, 3.11 and 3.12.

In Chapter 4, we show in Theorem 4.1 that although the transformation Ra,c is
not-contractive on the whole, the Hutchinson’s remarkable construction [27] works
for its maximal invariant set Sa,c. The surprising observation given in Theorem 4.4
is that the restriction of the piecewise linear transformation Ra,c onto the maximal
invariant set Sa,c is a shift on the line with marks. In Theorem 4.5 of that chapter,
we establish an ergodic theorem for the transformation Ra,c, even though it is not
measure-preserving on the whole line.

In Chapter 5, we study the maximal invariant set Sa,c with a 6∈ Q. We show that
the complement of the maximal invariant set Sa,c consists of left-closed and right-
open intervals of same size and it contains a small neighborhood of the origin. After
performing the holes-removal surgery described by the isomorphism Ya,c in (1.23),
the maximal invariant set Sa,c becomes the real line with marks, and conversely
expanding the line with marks by inserting holes [0, 1−a) at every location of marks
recovers the maximal invariant set Sa,c. Using the above isomorphism Ya,c between
the maximal invariant set Sa,c and the real line with marks, we can parameterize
the maximal invariant set Sa,c via two nonnegative integer parameters.

In Chapter 6, we study the maximal invariant sets Sa,c with a ∈ Q. We show
that the set Sa,c is the union of mutually disjoint intervals of same size, while
its complement may contain holes of two different sizes. We observe that holes
in the complement of the set Sa,c have cyclic group structure after performing
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the holes-removal surgery. Thus the maximal invariant set Sa,c could be obtained
from inserting holes of appropriate size at every mark, which forms in a cyclic
group. Using the above augmentation operation, we can parameterize the maximal
invariant set Sa,c via four nonnegative integer parameters.

In Chapter 7, we provide full classification of all pairs (a, c) of time-spacing and
window-size parameters such that G(χ[0,c), aZ × Z) are Gabor frames. From our
classification, we see that the range R(χ[0,c)) is neither open nor path-connected,
but it is a dense subset of the open region Uc := {(a, b) : 0 < a < max(1/b, c)}, cf.
[18]. Moreover, we confirm a conjecture in [30, Section 3.3.5] that G(χI , aZ× bZ)
is a Gabor frame if (a, b) ∈ Uc, the product between a and b is irrational, and c is
not a rational combination of a and 1/b.

In Appendix A, we provide a finite-step algorithm to verify whether the Gabor
system G(χ[0,c), aZ× bZ) is a Gabor frame for any given triple of (a, b, c) of positive
numbers.

In Appendix B, we apply our results on Gabor systems to identify all intervals I
and time-sampling spacing lattices bZ×aZ such that signals f in the shift-invariant
space

V2(χI , bZ) :=
{ ∑
λ∈bZ

d(λ)χI(t− λ) :
∑
λ∈bZ
|d(λ)|2 <∞

}
can be stably recovered from their equally-spaced samples f(t0 + µ), µ ∈ aZ, for
any initial sampling position t0 ∈ R.



CHAPTER 2

Gabor Frames and Infinite Matrices

Infinite matrices Ma,c(t), t ∈ R, in (1.5) have their rows containing bcc+ {0, 1}
consecutive ones. Their rows are obtained by shifting one (or zero) unit of the
previous row with possible reduction or expansion by one unit. In the case that
the time-spacing parameter a is rational, they also have certain shift-invariance in
the sense that their (µ+ qa)-th row can be obtained by shifting p-units of the µ-th
row, where p and q are coprime integers with a = p/q, c.f. [30, Eq. 3.3.68]. The
above observations could be illustrated from examples below:

Ma,c(0) =



. . .
...

...
...

...
...

...
...

0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0
0 1 1 1 1 1 0
0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0
0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0
0 1 1 1 1 1 0
0 1 1 1 1 1 1 0

...
...

...
...

...
...

...
. . .


for the pair (a, c) = (π/4, 23− 11π/2) with a 6∈ Q; and

Ma,c(0) =



. . .
...

...
...

...
...

...
...

0 1 1 1 1 1 0
0 1 1 1 1 1 0

0 1 1 1 1 1 0
0 1 1 1 1 0

0 1 1 1 1 0
0 1 1 1 1 1 0

0 1 1 1 1 1 0
0 1 1 1 1 0

0 1 1 1 1 0
0 1 1 1 1 1 0

0 1 1 1 1 1 0
0 1 1 1 1 0

0 1 1 1 1 0
0 1 1 1 1 1 0

...
...

...
...

...
...

. . .


11
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for the pair (a, c) = (13/17, 77/17) with a ∈ Q, cf. Examples 5.1 and 6.1. Those
special structures for infinite matrices in (1.5) help us to characterize frame property
for the Gabor system G(χ[0,c), aZ×Z) from uniform stability of infinite matrices to
non-existence of trinary vectors in their null spaces, and further to non-existence
of binary solution of infinite-dimensional linear systems (1.9).

Theorem 2.1. Let 0 < a < 1 < c, Ma,c(t), t ∈ R, be infinite matrices in (1.5)
and let Da,c be as in (1.10). Then the following statements are equivalent.

(i) G(χ[0,c), aZ× Z) is a Gabor frame.

(ii) Infinite matrices Ma,c(t), t ∈ R, have the uniform `2-stability property
(1.6).

(iii) For every t ∈ R, only zero vector 0 is contained in the intersection between
B − B and the null space of Ma,c(t), i.e.,

N(Ma,c(t)) ∩ (B − B) = {0} for every t ∈ R.
(iv) Da,c = ∅.

The implication (iv)=⇒(i) in the above theorem has been implicitly used in
[23, 30] for their classifications.

The statement (iv) in the above theorem can be rewritten as follows: for any
t ∈ R, there does not exist x ∈ B0 such that Ma,c(t)x = 2. In the next theorem,
we show that it suffices to verify nonexistence of binary solutions x of infinite-
dimensional linear systems Ma,c(t)x = 2 for finitely many t, cf. Theorem 3.1 for
the set Sa,c.

Theorem 2.2. Let 0 < a < 1 < c, Ma,c(t), t ∈ R, be infinite matrices in (1.5),
and let Da,c be as in (1.10). Define

Θa,c :=

{
{0} if a 6∈ Q,
({0, c}+ gcd(a, 1)Z) ∩ [0, a) if a ∈ Q.

Then Da,c = ∅ if and only if Da,c ∩Θa,c = ∅.

The set Da,c is a periodic set with period a,

(2.1) Da,c = Da,c + aZ
by the shift property (1.8), and it can be obtained from the maximal invariant set
Sa,c in (1.13) by some set operations.

Theorem 2.3. Let 0 < a < 1 < c. Then

Da,c =
(
Sa,c ∩ (∪λ∈[1,bcc−1]∩Z(Sa,c − λ))

)
∪
(
Sa,c ∩ ([0, (c− bcc+ a− 1)+) + aZ) ∩ (Sa,c − bcc)

)
.(2.2)

For pairs (a, c) of positive numbers satisfying either c0 := c − bcc ≥ 1 − a, or
c0 ≥ a, or bcc = 1, we can construct the set Da,c explicitly. Hence Theorem 2.1
can be used to determine whether Gabor systems G(χ[0,c), aZ × Z) corresponding
to those pairs are frames, see Theorem 7.2 and the statement (VIII) of Theorem
7.3 for details.

The organization of this chapter is as follows. We recall the characterization of
Gabor frames by Ron and Shen [38], the equivalence between statements (i) and (ii)
of Theorem 2.1, in Section 2.1. To prove the implication (iv)=⇒(i) of Theorem 2.1,
we introduce a characterization for Da,c = ∅ via uniform boundedness of lengths
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of consecutive twos in range spaces Ma,c(t)B, t ∈ R, in Section 2.2. In Section 2.3,
we give a proof of Theorem 2.1. In addition, we provide a frame bound estimate
(2.23) via maximal length Qa,c of consecutive twos in range spaces Ma,c(t)B, t ∈ R,
in Remark 2.8 of that section. We postpone the proofs of Theorems 2.2 and 2.3 to
Sections 3.5 and 3.4 of next chapter respectively.

2.1. Gabor frames and uniform stability of infinite matrices

In this section, we recall the equivalence between frame property for the Gabor
system G(χ[0,c), aZ×Z) and uniform stability of infinite matrices Ma,c(t), t ∈ R, in
(1.5), i.e., the equivalence of statements (i) and (ii) of Theorem 2.1.

Theorem 2.4. Let (a, c) be a pair of positive numbers. Then G(χ[0,c), aZ× Z)

is a Gabor frame if and only if Ma,c(t), t ∈ R, have the uniform `2-stability property
(1.6), i.e., there exist positive constants A and B such that

A‖z‖2 ≤ ‖Ma,c(t)z‖2 ≤ B‖z‖2 for all z ∈ `2 and t ∈ R.

Furthermore,

(2.3) inf
‖f‖2=1

( ∑
φ∈G(χ[0,c),aZ×Z)

|〈f, φ〉|2
)1/2

= inf
t∈R

inf
‖z‖2=1

‖Ma,c(t)z‖2

and

(2.4) sup
‖f‖2=1

( ∑
φ∈G(χ[0,c),aZ×Z)

|〈f, φ〉|2
)1/2

= sup
t∈R

sup
‖z‖2=1

‖Ma,c(t)z‖2.

The above theorem was proved in [38] for arbitrary Gabor system G(φ, aZ ×
Z) generated by a window function φ ∈ L2. From the equivalence in Theorem
2.4, we see that necessary conditions (1.2), (1.3) and (1.4) for the Gabor system
G(χ[0,c), aZ × Z) to be a frame become the nonzero column property for uniform
stable matrices Ma,c(t), nonexistence of exponential vectors (exp(2πinξ0))n∈Z, ξ0 ∈
R, in null spaces N(Ma,c(t)), and the non-thinness property for infinite matrices
Ma,c(t) respectively. The interested reader is referred to [36, 43] for various criteria
and necessary conditions for the `2-stability of an infinite matrix.

For the completeness of this paper, we include a short proof of Theorem 2.4.

Proof. First the sufficiency. Take t0 ∈ [0, 1), a sufficiently small positive
number ε ∈ (0, 1 − t0), and a nonzero vector z := (z(λ))λ∈Z having finitely many
nonzero entries. Define

fε,t0(t) = ε−1/2
∑
λ∈Z

z(λ)χ[0,ε)(t− t0 − λ).

Then

‖fε,t0‖22 = ε−1

∫
R

∣∣∣∑
λ∈Z

z(λ)χ[0,ε)(t− t0 − λ)
∣∣2dt

= ε−1
∑
λ∈Z
|z(λ)|2

∫
R
χ[0,ε)(t− t0 − λ)dt = ‖z‖22,
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where the second equality holds as ([0, ε) + λ)) ∩ ([0, ε) + λ′)) = ∅ for all distinct
integers λ and λ′; and∑

φ∈G(χ[0,c),aZ×Z)

|〈fε,t0 , φ〉|2

=
∑
µ∈aZ

∑
n∈Z

∣∣∣ ∫ 1

0

(∑
λ∈Z

fε,t0(t+ λ)χ[0,c)(t− µ+ λ)
)
e−2πintdt

∣∣∣2
=

∑
µ∈aZ

∫ 1

0

∣∣∣∑
λ∈Z

fε,t0(t+ λ)χ[0,c)(t− µ+ λ)
∣∣∣2dt

= ε−1
∑
µ∈aZ

∫ t0+ε

t0

∣∣∣∑
λ∈Z

z(λ)χ[0,c)(t− µ+ λ)
∣∣∣2dt

= ‖Ma,c(t0)z‖22,

where the last equality follows from∑
λ∈Z

z(λ)χ[0,c)(t− µ+ λ) =
∑
λ∈Z

z(λ)χ[0,c)(t0 − µ+ λ) for all t ∈ [t0, t0 + ε]

by the assumption that the vector z has finitely many nonzero entries and ε > 0 is
sufficiently small. Combining the above two equalities with frame property for the
Gabor system G(χ[0,c), aZ× Z), we obtain

0 < inf
‖f‖2=1

∑
φ∈G(χ[0,c),aZ×Z)

|〈f, φ〉|2

≤ inf
t∈[0,1)

inf
‖z‖2=1

‖Ma,c(t)z‖22 = inf
t∈R

inf
‖z‖2=1

‖Ma,c(t)z‖22

≤ sup
t∈R

sup
‖z‖2=1

‖Ma,c(t)z‖22 = sup
t∈[0,1)

sup
‖z‖2=1

‖Ma,c(t)z‖22

≤ sup
‖f‖2=1

∑
φ∈G(χ[0,c),aZ×Z)

|〈f, φ〉|2 <∞.(2.5)

This proves the sufficiency.

Then the necessity. For a compactly supported function f ∈ L2(R),

∑
φ∈G(χ[0,c),aZ×Z)

|〈f, φ〉|2 =
∑
µ∈aZ

∫ 1

0

∣∣∣∑
λ∈Z

χ[0,c)(t− µ+ λ)f(t+ λ)
∣∣∣2dt

≥
∫ 1

0

(
inf
‖z‖2=1

‖Ma,c(t)z‖2
)2

×
(∑
λ∈Z
|f(t+ λ)|2

)
dt

≥
(

inf
t∈R

inf
‖z‖2=1

‖Ma,c(t)z‖2
)2

‖f‖22

and similarly ∑
φ∈G(χ[0,c),aZ×Z)

|〈f, φ〉|2 ≤
(

sup
t∈R

sup
‖z‖2=1

‖Ma,c(t)z‖2
)2

‖f‖22.
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Combining the above two estimates, we have

0 < inf
t∈R

inf
‖z‖2=1

‖Ma,c(t)z‖22

≤ inf
‖f‖2=1

∑
φ∈G(χ[0,c),aZ×Z)

|〈f, φ〉|2 ≤ sup
‖f‖2=1

∑
φ∈G(χ[0,c),aZ×Z)

|〈f, φ〉|2

≤ sup
t∈R

sup
‖z‖2=1

‖Ma,c(t)z‖22 <∞.(2.6)

This completes the proof of the necessity.

Finally bound estimates in (2.3) and (2.4) follow immediately from (2.5) and
(2.6). �

2.2. Maximal lengths of consecutive twos in range spaces of infinite
matrices

For any t ∈ R and x ∈ B, let

Qa,c(t,x) :=


0 if K(t,x) = ∅
sup

{
n ∈ N

∣∣ [µ, µ+ na) ∩ aZ
⊂ K(t,x) for some µ ∈ aZ

}
otherwise,

where
K(t,x) :=

{
µ ∈ aZ

∣∣ Ma,c(t)x(µ) = 2
}
.

Define the maximal length Qa,c of consecutive twos of vectors in range spaces
Ma,c(t)B, t ∈ R, by

(2.7) Qa,c := sup
t∈R,x∈B

Qa,c(t,x).

Obviously,
Qa,c = +∞ if Da,c 6= ∅,

because Qa,c(t,x0) = +∞ for any t0 ∈ Da,c and x0 ∈ B satisfying Ma,c(t0)x0 = 2.
The converse is shown to be true in the next theorem. Hence Da,c = ∅ if and
only if the maximal length Qa,c of consecutive twos of vectors in range spaces
Ma,c(t)B, t ∈ R, is finite, cf. Lemma 5.6 for the empty set property for Sa,c.

Theorem 2.5. Let 0 < a < 1 < c. Then Da,c = ∅ if and only if Qa,c < +∞.

Proof. The sufficiency is obvious. Now the necessity. Suppose, on the con-
trary, that Qa,c = +∞. Then for every n ≥ 1 there exist tn ∈ R, µn ∈ aZ and
xn ∈ B such that

Ma,c(tn)xn(µ) = 2 for all µn ≤ µ ≤ µn + 2na.

Applying (1.7) and (1.8) for time-frequency shifts of infinite matrices Ma,c(t), we
may assume, without loss of generality, that tn ∈ [0, 1) and

(2.8) (Ma,c(tn)xn)(µ) = 2 for all µ ∈ [−na, na] ∩ aZ,
otherwise replacing tn by the unique number t′n ∈ [0, 1) satisfying tn − µn − na −
t′n ∈ Z and xn by τt′n−tn+µn+naxn. Furthermore, we can assume that xn :=

(xn(µ))µ∈Z ∈ B0, n ≥ 1, satisfy

(2.9) xn′(λ) = xn(λ) for all λ ∈ [−n, n] ∩ Z and n′ ≥ n,
and

(2.10) {tn}∞n=1 is a monotone sequence,
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otherwise replacing them by their subsequences satisfying (2.9) and (2.10).
Denote by t∞ the limit of {tn}∞n=1 and x∞ the limit of {xn}∞n=1. Clearly

t∞ ∈ [0, 1] and x∞ ∈ B0.
If there exists n0 such that tn = t∞ for all n ≥ n0, then for any given µ ∈ aZ,(

Ma,c(t∞)x∞
)
(µ) =

(
Ma,c(tn)xn

)
(µ) = 2

for sufficiently large n by (2.9). Thus Ma,c(t∞)x∞ = 2 and t∞ ∈ Da,c, which
contradicts to the empty-set assumption for Da,c.

If {tn}∞n=1 is a strictly decreasing sequence, then for any given λ ∈ Z and
µ ∈ aZ,

(2.11) χ[0,c)(t∞ − µ+ λ) = χ[0,c)(tn − µ+ λ)

for sufficiently large n. This together with (2.8) and (2.9) implies that(
Ma,c(t∞)x∞

)
(µ) = 2 for any given µ ∈ aZ,

which contradicts to the assumption that Da,c = ∅.
If {tn}∞n=1 is a strictly increasing sequence, then for any given λ ∈ aZ and

µ ∈ aZ,

χ(0,c](t∞ − µ+ λ) = χ[0,c)(tn − µ+ λ)

for sufficiently large n. This together with (2.8) and (2.9) yields that∑
λ∈Z

χ(0,c](t∞ − µ+ λ)x∞(λ) = 2 for all µ ∈ aZ.

Thus c− t∞ ∈ Da,c, which is a contradiction. �

2.3. Uniform stability and null spaces of infinite matrices

In this section, we prove Theorem 2.1 by showing (i)=⇒(ii)=⇒(iii)=⇒(iv)=⇒(i).

Proof of Theorem 2.1. The implication (i)=⇒(ii) has been given by The-
orem 2.4.

Next we prove the implication (ii)=⇒(iii). Suppose, on the contrary, that there
exist t0 ∈ R and a nonzero vector x = (x(λ))λ∈Z such that

(2.12) Ma,c(t0)x = 0 and x(λ) ∈ {−1, 0, 1} for all λ ∈ Z.

Then ‖x‖2 = +∞ by (2.12) and the assumption (ii). Set

xN := (x(λ)χ[−N,N ](λ))λ∈Z, N ≥ 2.

Then we obtain from (1.5) and (2.12) that limN→∞ ‖xN‖2 =∞,
‖Ma,c(t0)xN‖∞ ≤ ‖Ma,c(t0)1‖∞ ≤ c+ 1, and
(Ma,c(t0)xN )(µ) = 0 for all µ− t0 6∈ [N − c,N ] ∪ [−N − c,−N ].

Therefore

lim
N→∞

‖Ma,c(t0)xN‖2
‖xN‖2

= 0,

which contradicts to the assumption (ii).

Then we establish the implication (iii)=⇒(iv). To do so, we need a technical
lemma about binary solutions of the infinite-dimensional linear system (1.9).
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Lemma 2.6. Let 0 < a < 1 < c, t ∈ R and x := (x(λ))λ∈Z ∈ B0 satisfy
Ma,c(t)x = 2. Then there exist binary vectors x1 ∈ B0 and x2 ∈ B\B0 such that
(1.11) holds.

Proof. Let K be the set of all λ ∈ Z with x(λ) = 1, and write K = {λj :
j ∈ Z} for a strictly increasing sequence {λj}∞j=−∞ with λ0 = 0. For any µ ∈ aZ,
it follows from Ma,c(t0)x = 2 that K ∩ (−t0 + µ + [0, c)) is either {λ2j , λ2j+1} or
{λ2j−1, λ2j} for some j ∈ Z. One may then verify that x∗l := (x∗l (λ))λ∈Z, l = 1, 2,
defined by x∗l (λ) = 1 if λ = λ2j−l+1 for some integer j and x∗l (λ) = 0 otherwise,
are binary vectors satisfying (1.11). �

Let us return to the proof of the implication (iii)=⇒(iv). Suppose, on the
contrary, that there exist t0 ∈ R and a vector x ∈ B0 such that Ma,c(t0)x = 2. Let
x1,x2 be the binary vectors satisfying (1.11). The existence of such binary vectors
follows from Lemma 2.6. Then z∗ := x1−x2 is a nonzero trinary vector in the null
space N(Ma,c(t0)), which contradicts to the assumption (iii).

Finally we prove the implication (iii)=⇒(iv). This is the most technical part
of the whole proof. We need the stability inequality (2.13).

Lemma 2.7. Let 0 < a < 1 < c and Qa,c be as in (2.7). If Qa,c < +∞, then

(2.13)
∑

0≤µ≤aQa,c+a+c+1

|(Ma,c(t)z)(µ)| ≥ 1

2c
|z(0)|

for all t ∈ [0, 1) and vectors z = (z(λ))λ∈Z.

Proof. For t ∈ [0, 1), let λ0 = 0, µ0 = bt/aca and let δ0 ≥ 0 be the integer in
[c+ µ0 − t− 1, c+ µ0 − t). If δ0 = 0, then (2.13) holds as |(Ma,c(t)z)(µ0)| = |z(0)|
and µ0 ≤ t ≤ aQa,c + a+ c+ 1.

Now we prove (2.13) in the case that δ0 ≥ 1. Take an integer λ∗ ∈ [1, δ0] with

(2.14) |z(λ∗)| = max
1≤λ≤δ0

|z(λ)|.

Let us construct a binary vector x ∈ B0 such that x(0) = x(λ∗) = 1, x(λ) = 0 for all
λ < 0, and Ma,c(t)x has maximal length of consecutive twos. To do so, we introduce
families of triples (λk, µk, δk) ∈ Z× aZ× Z, 0 ≤ k ≤ M , iteratively. For k = 0, we
let λ0 = 0, µ0 = bt/aca, and δ0 be the unique integer in [c+ µ0 − t− 1, c+ µ0 − t).
Similarly for k = 1, we let λ1 = λ∗, µ1 = b(t+λ1)/aca and δ1 be the unique integer
in [c+ µ1 − t− 1, c+ µ1 − t). Inductively suppose that we have defined all triples
(λm, µm, δm) with m ≤ k, we set M = k if δk ≥ c + µk − t + a − 1, and otherwise
we define the triple (λk+1, µk+1, δk+1) by λk+1 = δk−1 + 1, µk+1 = b(t+ λk+1)/aca
and δk+1 ∈ [c+µk+1− t− 1, c+µk+1− t)∩Z. By the above construction of triples
(λk, µk, δk), 0 ≤ k ≤M ,

(2.15)

{
λk ∈ [µk − t, µk − t+ a) if 0 ≤ k ≤M
λk+2 ∈ [c+ µk − t, c+ µk − t+ a) if 0 ≤ k ≤M − 2,

(2.16) [µM − t+ c, µM − t+ c+ a) ∩ Z = ∅ if M <∞,

and

(2.17) {λk}Mk=0 and {µk}Mk=0 are strictly increasing sequences.
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Define x := (x(λ))λ∈Z by x(λ) = 1 if λ = λk for some 0 ≤ k ≤M , and x(λ) = 0
otherwise. Then x ∈ B0 by (2.17), and for µ0 ≤ µ ≤ µM−1,

(Ma,c(t)x)(µ) =
( ∑

0≤k≤M,k even

+
∑

0≤k≤M,k odd

)
χ[0,c)(t− µ+ λk)

= χ[0,µ0](µ) +
∑

2≤k≤M,k even

χ(µk−2,µk](µ)

+χ(t+λ1−c,µ1](µ) +
∑

3≤k≤M,k odd

χ(µk−2,µk](µ) = 2,

where the second equation follows from

[µk−2 + a, µk] ⊂ (t+ λk − c, t+ λk] ⊂ (µk−2, µk + a), 2 ≤ k ≤M
which holds by (2.15). Thus maximal length of consecutive twos for the vector
Ma,c(t)x is at least (µM−1 − µ0 + a)/a, which leads to the following estimate:

(2.18) µM−1 − µ0 + a ≤ aQa,c.
By (2.15) and (2.17),

(2.19) µM − µM−1 ≤ µM − µM−2 ≤ λM + t− (λM − c+ t− a) ≤ a+ c.

Combining (2.18) and (2.19) and recalling µ0 ≤ t < 1, we have

(2.20) µM ≤ aQa,c + c+ 1.

By (2.20), M <∞. Applying (2.15) and (2.16), we obtain

(2.21) |(Ma,c(t)z)(µk)|+ |(Ma,c(t)z)(µk + a)| ≥ |z(λk+2)− z(λk)|
for all integers 0 ≤ k ≤M − 2, and

|(Ma,c(t)z)(µM )|+ |(Ma,c(t)z)(µM + a)| ≥ |z(λM )|.(2.22)

By (2.14), (2.20), (2.21) and (2.22), we get

2
∑

0≤µ≤aQa,c+a+c+1

|(Ma,c(t)z)(µ)|

≥
M/2∑
k=0

|(Ma,c(t)z)(µ2k)|+ |(Ma,c(t)z)(µ2k + a)|

≥
M/2−1∑
k=0

|z(λ2k+2)− z(λ2k)|+ |z(λM )| ≥ |z(λ0)| = |z(0)|

if M is even, and

2δ0
∑

0≤µ≤aQa,c+a+c+1

|(Ma,c(t)z)(µ)|

≥ |(Ma,c(t)z)(µ0)|+ δ0

(M−1)/2∑
k=0

(
|(Ma,c(t)z)(µ2k+1)|

+|(Ma,c(t)z)(µ2k+1 + a)|
)

≥
∣∣∣ ∑

0≤λ≤δ0

z(λ)
∣∣∣+ δ0|z(λ∗)| ≥ |z(0)|

if M is odd. This proves (2.13) in the case that δ0 ≥ 1. �
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Let’s return the proof of the implication (iv)=⇒(i). Let Qa,c be as in (2.7).
Then Qa,c <∞ by Theorem 2.5. For any f ∈ L2,(

Qa,c +
2a+ c+ 1

a

)2 ∑
φ∈G(χ[0,c),aZ×Z)

|〈f, φ〉|2

≥
(
Qa,c +

2a+ c+ 1

a

) ∑
µ∈aZ

∑
0≤µ′≤aQa,c+a+c+1

∑
n∈Z∣∣∣ ∫ 1

0

(∑
λ∈Z

χ[0,c)(t− µ′ + λ)f(t+ µ+ λ)
)
e−2πintdt

∣∣∣2
=

∑
µ∈aZ

∫ 1

0

((
Qa,c +

2a+ c+ 1

a

) ∑
0≤µ′≤aQa,c+a+c+1∣∣∣∑

λ∈Z
χ[0,c)(t− µ′ + λ)f(t+ µ+ λ)

∣∣∣2)dt
≥

∑
µ∈aZ

∫ 1

0

( ∑
0≤µ′≤aQa,c+a+c+1

∣∣∣∑
λ∈Z

χ[0,c)(t− µ′ + λ)f(t+ µ+ λ)
∣∣∣)2

dt

≥ 1

4c2

∑
µ∈aZ

∫ 1

0

|f(t+ µ)|2dt ≥ b1/ac
4c2

‖f‖22

where the third inequality follows from Lemma 2.7, and∑
φ∈G(χ[0,c),aZ×Z)

|〈f, φ〉|2

=
∑
µ∈aZ

∫ 1

0

∣∣∣∑
λ∈Z

χ[0,c)(t+ λ)f(t+ λ+ µ)
∣∣∣2dt

≤ (bcc+ 1)
∑
µ∈aZ

∫ 1

0

∑
λ∈Z

χ[0,c)(t+ λ)|f(t+ λ+ µ)|2dt

≤ (bcc+ 1)(bc/ac+ 1)‖f‖22.
Hence G(χ[0,c), aZ×Z) is a Gabor frame. This completes the proof of the implication
(iv)=⇒(i) and the proof of Theorem 2.1. �

Remark 2.8. From the argument used to prove the implication (iv)=⇒(i) of
Theorem 2.1, we have the following frame bound estimate for the Gabor frame
G(χ[0,c), aZ × Z) via the maximal length Qa,c of consecutive twos in range spaces
of infinite matrices Ma,c(t), t ∈ R:

a2b1/ac
4c2(aQa,c + 2a+ c+ 1)2

≤ inf
‖f‖2=1

( ∑
φ∈G(χ[0,c),aZ×Z)

|〈f, φ〉|2
)1/2

≤ sup
‖f‖2=1

( ∑
φ∈G(χ[0,c),aZ×Z)

|〈f, φ〉|2
)1/2

≤ (bcc+ 1)(bc/ac+ 1).(2.23)





CHAPTER 3

Maximal Invariant Sets

The set Da,c in (1.10) can be used to characterize frame property of the Gabor
system G(χ[0,c), aZ × Z), and it can be obtained from the set Sa,c in (1.13) by
set operations, see Theorems 2.1 and 2.3. In this chapter, we consider various
properties of the set Sa,c. The advantages to study the set Sa,c instead of the set
Da,c include:

1) For t ∈ Sa,c, there is a unique binary solution x ∈ B0 to the linear system
Ma,c(t)x = 1, while for t ∈ Da,c multiple binary solutions y ∈ B0 could
exist for the linear system Ma,c(t)y = 2, see Lemma 3.12.

2) Both Sa,c and Da,c are invariant under the transformation Ra,c and have
empty intersection with its black hole, but Sa,c is its maximal invariant
set, see (3.7) and Theorem 3.4.

3) Both Sa,c and Da,c can be constructed explicitly by finite steps, but
Hutchinson’s remarkable construction applies only for the set Sa,c, see
Theorems 2.3, 4.1, 5.2, 6.3, 6.4 and 6.5.

4) The set Sa,c can be fully parameterized, see Theorems 5.5 and 6.8.

The set Sa,c has period a,

(3.1) Sa,c = Sa,c + aZ

by the time-shift property (1.8); it is a supset of the set Da,c in (1.10),

(3.2) Da,c ⊂ Sa,c
by the decomposition (1.11), which is confirmed in Lemma 2.6; and it is not an
empty set if and only if it contains some particular points, cf. Theorem 2.2 for the
set Da,c.

Theorem 3.1. Let 0 < a < 1 < c and define

Ωa,c =

{
{0} if a 6∈ Q,
{0, c− (bc/gcd(a, 1)c+ 1)gcd(a, 1)} if a ∈ Q.

Then Sa,c 6= ∅ if and only if Sa,c ∩ Ωa,c 6= ∅.

The set Sa,c is either an empty set or its (bcc+ 1) copies cover the whole line.

Theorem 3.2. Let (a, c) satisfy 0 < a < 1 < c, and either 1) a 6∈ Q or 2)
a ∈ Q and c ∈ gcd(a, 1)Z. Assume that Sa,c 6= ∅. Then

(3.3)
(
Sa,c ∩ ([0, (c− bcc+ a− 1)+) + aZ) + bcc

)
∪
(
∪bcc−1
k=0 (Sa,c + k)

)
= R.

As an application of the covering property in Theorem 3.2, we have that Da,c =
∅ if and only if the covering in (3.3) is mutually disjoint, or equivalently the sum of
measurement of their restrictions onto one period is a.

21
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Theorem 3.3. Let (a, c) satisfy 0 < a < 1 < c, and either 1) a 6∈ Q or 2)
a ∈ Q and c ∈ gcd(a, 1)Z. Assume that Sa,c 6= ∅. Then Da,c = ∅ if and only if

(3.4) bcc|Sa,c ∩ [0, a)|+ |Sa,c ∩ [0, (c− bcc+ a− 1)+)| = a.

The set Sa,c has empty intersection with black holes of transformations Ra,c
and R̃a,c; and it is a maximal set that is invariant under the transformation Ra,c
and that has empty intersection with its black hole.

Theorem 3.4. Let 0 < a < 1 < c and set c0 = c − bcc. Then the following
statements hold.

(i) The set Sa,c has empty intersection with black holes of transformations

Ra,c and R̃a,c,

(3.5)

{
Sa,c ∩ ([(c0 + a− 1)+, a+ (c0 − a)−) + aZ) = ∅
Sa,c ∩ ([c− (c0 − a)−, c+ a− (c0 + a− 1)+) + aZ) = ∅.

(ii) The set Sa,c is invariant under transformations Ra,c and R̃a,c,

(3.6) Ra,cSa,c = Sa,c and R̃a,cSa,c = Sa,c.

(iii) Any set E satisfying Ra,cE = E and having empty intersection with the
black hole [(c0 + a − 1)+, a + (c0 − a)−) + aZ of the transformation Ra,c
is contained in Sa,c.

The maximal invariance property for the set Sa,c is crucial in our study. So
we call the set Sa,c as maximal invariant set. We remark that it follows from (1.11)
and (3.6) that the set Da,c in (1.10) is also invariant under transformations Ra,c
and R̃a,c,

(3.7) Ra,cDa,c = Da,c and R̃a,cDa,c = Da,c.

For some pairs (a, c) of positive numbers, applying the maximal invariance in
Theorem 3.4 gives explicit expression for the maximal invariant set Sa,c.

Theorem 3.5. Let 0 < a < 1 < c, and set

c0 = c− bcc, c1 = c− c0 − b(c− c0)/aca.

Then the following statements hold.

(i) If c0 = 0, then

(3.8) Sa,c = R.

(ii) If c0 ≥ a and c0 ≤ 1− a, then

(3.9) Sa,c = ∅.

(iii) If c0 ≥ a and c0 > 1 − a, then Sa,c 6= ∅ if and only if a ∈ Q and
c0 > 1− gcd(bcc+ 1, a). Furthermore,

(3.10) Sa,c = [−gcd(bcc+ 1, a), c0 − 1) + gcd(bcc+ 1, a)Z.

(iv) If 0 < c0 < a and c0 ≤ 1 − a, then Sa,c 6= ∅ if and only if a ∈ Q and
c0 < gcd(bcc, a). Furthermore,

(3.11) Sa,c = [c0, gcd(bcc, a)) + gcd(bcc, a)Z.

(v) If 0 < c0 < a, a < c0 < 1− a and c1 > 1− 2a, then Sa,c = ∅.
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(vi) If 0 < c0 < a, a < c0 < 1− a and c1 = 1− 2a, then

(3.12) Sa,c = [0, c0 + a− 1) + aZ.

(vii) If 0 < c0 < a, a < c0 < 1− a and c1 = 0, then

(3.13) Sa,c = [c0, a) + aZ.

Having the above expression of the set Sa,c (hence the set Da,c by Theorem 2.3),
we can apply Theorem 2.1 to determine whether Gabor systems G(χ[0,c), aZ × Z)

corresponding to those pairs with either c1 ≥ 1 − 2a or c1 = 0 are frames for L2,
see Theorem 7.3 for details.

This chapter is organized as follows. In Section 3.1, we start from a piv-
otal observation to binary solutions of the infinite-dimensional linear system (1.12)
(Lemma 3.7) and a crucial characterization of the maximal invariant set Sa,c
(Lemma 3.9), and we then use them to prove Theorem 3.4. In Section 3.2, we apply
the maximal invariance property and the empty intersection property in Theorem
3.4 to prove Theorem 3.5. In Section 3.3, we study density of the maximal invariant
set Sa,c around the origin (see Lemmas 3.10 and 3.11) and use it to prove Theorem
3.1. We use the last two sections to prove Theorems 2.2 and 2.3 of Chapter 2.
We postpone the proof of Theorems 3.2 and 3.3 to Section 4.3 of Chapter 4, as we
need the property that Sa,c ∩ [0, a) is union of finitely many left-closed right-open
intervals, which follows from Theorem 4.1.

3.1. Maximality of invariant sets

Let 0 < a < 1 < c. Define

(3.14) An := (Ra,c)
n([c− (c0 − a)−, c+ a− (c0 + a− 1)+) + aZ)

and

(3.15) Ãn := (R̃a,c)
n([(c0 + a− 1)+, a+ (c0 − a)−) + aZ), n ≥ 0.

In this section, we prove Theorem 3.4 and the following proposition about holes An
and Ãn, n ≥ 0.

Proposition 3.6. Let 0 < a < 1 < c, and let An and Ãn, n ≥ 0, be as in
(3.14) and (3.15) respectively. Then

(3.16) An ∩ Sa,c = ∅ and Ãn ∩ Sa,c = ∅ for all n ≥ 0,

(3.17) An ∩ An′ ⊂ [(c0 + a− 1)+, a+ (c0 − a)−) + aZ for all n 6= n′,

and

(3.18) Ãn ∩ Ãn′ ⊂ [c− (c0 − a)−, c+ a− (c0 + a− 1)+) + aZ for all n 6= n′.

To prove them, we need several lemmas about the linear system (1.12), invariant

sets of transformations Ra,c and R̃a,c, and a characterization for a real number
belonging to the set Sa,c.

Lemma 3.7. Let 0 < a < 1 < c. Then for any t ∈ Sa,c and x = (x(λ))λ∈Z ∈ B0

satisfying Ma,c(t)x = 1,

(3.19) x(λ) =

{
0 if R̃a,c(t)− t < λ < Ra,c(t)− t and λ 6= 0,

1 if λ = Ra,c(t)− t, 0, R̃a,c(t)− t.
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Proof. By (1.8), we may assume that t ∈ [0, a). Let λ1 be the smallest
positive integer such that x(λ1) = 1. Then

λ1 ≥ bcc
because

(3.20) 1 = χ[0,c)(t) ≤ χ[0,c)(t) + χ[0,c)(t+ λ1) ≤
∑
λ∈Z

χ[0,c)(t+ λ)x(λ) = 1;

and
λ1 ≤ bcc+ 1

since otherwise ∑
λ∈Z

χ[0,c)(t− a+ λ)x(λ) = 0.

If λ1 = bcc, then t ≥ c0 by (3.20); and if λ1 = bcc+ 1, then t < c0 + a− 1 as

1 =
∑
λ∈Z

χ[0,c)(t− a+ λ)x(λ) = χ[0,c)(t− a+ bcc+ 1).

Thus
t 6∈ [(c0 + a− 1)+, a+ (c0 − a)−) and λ1 = Ra,c(t)− t.

This implies that

(3.21) Sa,c ∩
(
[(c0 + a− 1)+, a+ (c0 − a)−) + aZ

)
= ∅

and

(3.22) x(λ) =

{
0 if 0 < λ < Ra,c(t)− t,
1 if λ = Ra,c(t)− t.

For the above vector x ∈ B0 satisfying Ma,c(t)x = 1, one may verify that

M̃a,c(c− t)x̃ = 1,

where

(3.23) M̃a,c(t) = (χ(0,c](t− µ+ λ))µ∈aZ,λ∈Z, t ∈ R,

and x̃ = (x(−λ))λ∈Z ∈ B0. Mimicking the argument used to establish (3.21) and
(3.22), we obtain that

(3.24) Sa,c ∩
(
[c− a− (c0 − a)−, c− (c0 + a− 1)+) + aZ

)
= ∅,

and

(3.25) x̃(λ) =

{
0 if 0 < λ < t− R̃a,c(t)
1 if λ = t− R̃a,c(t).

Combining (3.22) and (3.25) proves (3.19). �

Let E have empty intersection with the black hole [(c0 + a − 1)+, a + (c0 −
a)−) + aZ. Then the invariance Ra,c(E) = E of the transformation Ra,c implies
that

(3.26) Ra,c(E) ⊂ E and R̃a,c(E) ⊂ E
by the first equation in (1.17). The converse is true by the second equation in
(1.17) if we further assume that E has empty intersection with the black hole

[c − (c0 − a)−, c + a − (c0 + a − 1)+) + aZ of the transformation R̃a,c. This,
together with (1.17), leads to the following characterization of invariant sets of

transformations Ra,c and R̃a,c.
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Lemma 3.8. Let 0 < a < 1 < c. If

E∩([(c0+a−1)+, a+(c0−a)−)+aZ) = E∩([c−(c0−a)−, c+a−(c0+a−1)+)+aZ) = ∅,

then Ra,c(E) = E if and only if R̃a,c(E) = E if and only if (3.26) holds.

The following characterization of the set Sa,c is important for us to establish
the maximality of the invariant set Sa,c.

Lemma 3.9. Let 0 < a < 1 < c. Then t 6∈ Sa,c if and only if either (Ra,c)
n(t) ∈

[(c0 + a − 1)+, a + (c0 − a)−) + aZ for some n ≥ 0 or (R̃a,c)
m(t) ∈ [c − a − (c0 −

a)−, c− (c0 + a− 1)+) + aZ for some m ≥ 0.

Proof. (⇐=) For any t ∈ Sa,c and x ∈ B0 satisfying Ma,c(t)x = 1, it follows
from (1.7) and Lemma 3.7 that

Ma,c(Ra,c(t))τRa,c(t)−tx = Ma,c(R̃a,c(t))τR̃a,c(t)−tx = Ma,c(t)x = 1.

Thus

(3.27) Ra,cSa,c ⊂ Sa,c and R̃a,cSa,c ⊂ Sa,c.
This together with (3.21) and (3.24) proves the sufficiency.

(=⇒) Take t 6∈ Sa,c. Suppose, on the contrary, that (Ra,c)
n(t) 6∈ [(c0 + a −

1)+, a+ (c0 − a)−) + aZ for all n ≥ 0 and (R̃a,c)
m(t) 6∈ [c− a− (c0 − a)−, c− (c0 +

a− 1)+) + aZ for all m ≥ 0. Define

tn =


(Ra,c)

n(t) if n ≥ 1
t if n = 0

(R̃a,c)
−n(t) if n ≤ −1,

and λn = tn − t, n ∈ Z. Then

tn+m = (Ra,c)
m(tn) for all n ∈ Z and 0 ≤ m ∈ Z

and

(3.28) λn ∈ Z and λn+1 − λn ∈ {bcc, bcc+ 1} for all n ∈ Z

by the definitions (1.15) and (1.16) of transformations Ra,c and R̃a,c, and the left-
inverse properties (1.17) between them. Define x := (x(λ))λ∈Z ∈ B0 by x(λ) = 1 if
λ = λn for some n ∈ Z and x(λ) = 0 otherwise, and let µn ∈ aZ be so chosen that
t̃n := tn − µn ∈ [0, a). Then {µn}n∈Z is a strictly increasing sequence with

(3.29) lim
n→+∞

µn = +∞ and lim
n→−∞

µn = −∞

by (3.28), and ∑
λ∈Z

χ[0,c)(t− µn + λ)x(λ) =
∑
m∈Z

χ[0,c)(t− µn + λm)

=
∑
m∈Z

χ[0,c)(tm − µn) = χ[0,c)(tn − µn) = 1 for all n ∈ Z,(3.30)

where the first equation follows from the definition of the vector x and the third
one holds as

tm − µn ≤ tn − µn − 1 < 0 for all m < n

and

tm − µn ≥ (tn+1 − tn) + (tn − µn) = (λn+1 − λn) + (tn − µn) ≥ c for all m > n.
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Similarly for any µ ∈ aZ with µn < µ < µn+1,∑
λ∈Z

χ[0,c)(t− µ+ λ)x(λ) =
∑
m∈Z

χ[0,c)(tm − µ) = 1(3.31)

as
tm − µ ≤ tn − µ < µn + a− µ ≤ 0 for m ≤ n,

0 ≤ tn+1 − µn+1 < tm − µ ≤ tn+1 − µn − a < c for m = n+ 1,

and
tm − µ ≥ tn+2 − µn+1 + a ≥ c for m ≥ n+ 2.

Combining (3.29), (3.30) and (3.31) proves Ma,c(t)x = 1, which contradicts to the
assumption t 6∈ Sa,c. �

Now we have all the ingredients to prove Theorem 3.4 and Proposition 3.6.

Proof of Theorem 3.4. (i): The empty-intersection property (3.5) for the
set Sa,c has been given in (3.21) and (3.24).

(ii): The invariance (3.6) follows from (3.5), (3.27) and Lemma 3.8.

(iii): Take t ∈ E. Then

(3.32) (Ra,c)
n(t) ∈ E for all n ≥ 0

by the invariance of the set E. By (1.18) and the invariance E = Ra,c(E), we have
that

(3.33) E ∩
(
[c− a− (c0 − a)−, c− (c0 + a− 1)+) + aZ

)
= ∅.

This together with the characterization in Lemma 3.8 implies that R̃a,c(E) ⊂ E.
Hence

(3.34) (R̃a,c)
m(t) ∈ E for all m ≥ 0.

Combining (3.32), (3.33) and (3.34) with Lemma 3.9 proves that t ∈ Sa,c. This
proves the inclusion E ⊂ Sa,c and hence maximality of the invariant set Sa,c. �

Proof of Proposition 3.6. Suppose, on the contrary, that the first equa-
tion in (3.16) does not hold. Then there exists a nonnegative integer m such that

(Ra,c)
m([c− (c0 − a)−, c+ a− (c0 + a− 1)+) + aZ) ∩ Sa,c 6= ∅

and
(Ra,c)

n([c− (c0 − a)−, c+ a− (c0 + a− 1)+) + aZ) ∩ Sa,c = ∅
for all 0 ≤ n < m. We observe that m is a positive integer by (3.24). Take

t ∈ (Ra,c)
m([c− (c0 − a)−, c+ a− (c0 + a− 1)+) + aZ) ∩ Sa,c.

Then
t = Ra,c(s)

for some s ∈ (Ra,c)
m−1([c− (c0− a)−, c+ a− (c0 + a− 1)+) + aZ). If s ∈ [(c0 + a−

1)+, a+ (c0− a)−) + aZ, then t = s by (1.15), which contradicts to the assumption
on m. If s 6∈ [(c0 + a− 1)+, a+ (c0 − a)−) + aZ, then

s = R̃a,c(t) ∈ Sa,c
where the equality follows from (1.17) and the inclusion (3.6) in Theorem 3.4. Hence

s ∈ (Ra,c)
m−1([c− (c0 − a)−, c+ a− (c0 + a− 1)+) + aZ) ∩ Sa,c,

which is a contradiction. This proves the first equality in (3.16).
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The second equality in (3.16) can be established by using similar argument.
We leave the detailed arguments to the reader.

Suppose that (3.17) does not hold. Then there exists nonnegative integers n, n′

and y 6∈ [(c0 + a− 1),a+ (c0− a)−) + aZ such that n > n′ and y ∈ An ∩An′ . Thus
there exist z1, z2 ∈ [c− (c0 − a)−, c+ a− (c0 + a− 1)+) + aZ such that

y = (Ra,c)
n(z1) = (Ra,c)

n′(z2).

Applying (1.17) leads to

z2 = (Ra,c)
n−n′(z1),

which contradicts to the range property (1.18) of the transformation Ra,c. This
completes the proof of the mutually disjoint property (3.17) for holes An, n ≥ 0.

The mutually disjoint property (3.18) for holes Ãn, n ≥ 0, can be proved by
similar argument. �

3.2. Explicit construction of maximal invariant sets

In this section, we prove Theorem 3.5.

Proof of Theorem 3.5. (i): In this case, the black hole [(c0 + a− 1)+, a+
(c0 − a)−) + aZ of the transformation Ra,c is the empty set. Then the conclusion
(3.8) follows from the maximality given in Theorem 3.4.

(ii): In this case, the black hole [(c0 + a − 1)+, a + (c0 − a)−) + aZ of the
transformation Ra,c is the whole line. Hence the empty set property (3.9) holds by
the empty intersection property (3.5) in Theorem 3.4.

(iii): (=⇒) Take t0 ∈ Sa,c. Then

(Ra,c)
n(t0) = t0 + n(bcc+ 1) ∈ Sa,c, n ≥ 0

by Theorem 3.4 and the definition (1.15) of the transformation Ra,c. Set

E := {n(bcc+ 1) + aZ, n ≥ 0}.
Observe that E is dense in R if a 6∈ Q, and E = gcd(bcc + 1, a)Z if a ∈ Q. This
observation with t0 +n(bcc+1) 6∈ [c0 +a−1, a)+aZ, n ≥ 0, by Theorem 3.4 implies
that a ∈ Q and t0 +gcd(bcc+1, a)Z ∈ Sa,c. This together with Theorem 3.4 implies
that the length 1−c0 of the black hole [c0 +a−1, a)+aZ of the transformation Ra,c
on one period must be strictly less than gcd(bcc+1, a), i.e., 1−c0 < gcd(bcc+1, a).

(⇐=) Set

F := [−gcd(bcc+ 1, a), c0 − 1) + gcd(bcc+ 1, a).

Then F has empty intersection with the black hole [c0 +a− 1, a) +aZ of the trans-
formation Ra,c and it is invariant under the transformation Ra,c, i.e., Ra,c(F) = F .
Thus

(3.35) F ⊂ Sa,c
by Theorem 3.4, and hence the sufficiency follows.

Now we prove (3.10). For any t 6∈ F , we may write t = t0 + s for some t0 ∈
[c0−1, 0) and s ∈ gcd(bcc+ 1, a). One may verify that (Ra,c)

n(t) ∈ [c0−a, a) +aZ,
where n is smallest nonnegative integer such that s + n(bcc + 1) ∈ aZ. Thus
Sa,c ⊂ F . This together with (3.35) proves (3.10).

(iv): We may apply the similar argument used in the proof the third statement
and (3.11), and leave the details to the reader.
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(v) By Theorem 3.4 and Proposition 3.6, it suffices to prove

(3.36) [c0 − a, c0 + a− 1) + aZ ⊂ ∪Ln=0(Ra,c)
n([c− c0, c− c0 + 1− a) + aZ),

where L = max(b(c0 + a− 1)/(c1 + 1− 2a)c, b(a− c0)/(a− c1)c).
For any t ∈ [0, c0 +a−1), write t = l(c1 + 1−2a) + t′ for some t′ ∈ [0,min(c1 +

1− 2a, c0 + a− 1)) and 0 ≤ l ≤ L. Then

t ∈ (Ra,c)
l(t′) + aZ ⊂ (Ra,c)

l([0, c1 + 1− 2a) + aZ)

⊂ ∪Ln=0(Ra,b,c)
n([c− c0, c− c0 + 1− a) + aZ)(3.37)

for all t ∈ [0, c0 + a− b), where the last inclusion holds as c1 ≤ a.
Similarly for any s ∈ [c0 − a, 0), let s = l′(c1 − a) + s′ for some s′ ∈ [max(c1 −

a, c0 − a), 0) and 0 ≤ l′ ≤ L. Then

s ∈ (Ra,c)
l′(s′) + aZ ⊂ (Ra,c)

l′([c1 − a, 0) + aZ)

⊂ ∪Ln=0(Ra,b,c)
n([c− c0, c− c0 + 1− a) + aZ)(3.38)

for all s ∈ [c1 − a, 0). Combining (3.37) and (3.38) and applying the periodic
property (3.1) proves (3.36).

(vi) Mimicking the argument used to prove the statement (v), we can show
that

∪∞n=0(Ra,c)
n([c− c0, c− c0 + 1− a) + aZ) = [c0 + a− 1, a) + aZ.

This together with (1.17) and Theorem 3.4 proves the desired conclusion (3.12).

(vii) The conclusion (3.13) can be obtained by mimicking the argument used
to prove the statement (v). �

3.3. Maximal invariant sets around the origin

In this section, we prove Theorem 3.1. To do so, we need two important
lemmas about the maximal invariant set Sa,c near the origin for a 6∈ Q and a ∈ Q
respectively.

Lemma 3.10. Let 0 < a < 1 < c and a 6∈ Q. If Sa,c 6= ∅, then

(3.39) (0, ε) ∩ Sa,c 6= ∅
and

(3.40) (−ε, 0) ∩ Sa,c 6= ∅
for any ε > 0.

Proof. For c0 = 0, the dense properties (3.39) and (3.40) follows from the first
conclusion (3.8) of Theorem 3.5. So hereafter we assume that c0 > 0. In this case,
a+(c0−a)−−(c0 +a−1)+ > 0 and the black hole [(c0 +a−1)+, a+(c0−a)−)+aZ
of the transformation Ra,c is not an empty set. Take t0 ∈ Sa,c, and let tn :=
(Ra,c)

n(t0) and t̃n := tn − btn/aca, n ≥ 0. Then

(3.41) t̃n ∈ Sa,c ∩ [0, a) ⊂ [0, (c0 + a− 1)+) ∪ [a+ (c0 − a)−, a)

by (3.1), (3.5) and (3.6); and

(3.42) t̃n − t̃m 6= 0 whenever n 6= m

by (3.6) and the assumption a 6∈ Q. Thus without loss of generality, we assume
that t̃n 6= 0 for all n ≥ 0, otherwise replacing t0 by tn0 for a sufficiently large n0.
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Suppose, on the contrary, that (3.39) does not hold. Then there exists 0 < ε <
a+ (c0 − a)− − (c0 + a− 1)+ such that

(3.43) t̃n 6∈ (0, ε) for all n ≥ 1.

As t̃n, n ≥ 0, lie in the bounded set (0, a), there exist integers n1 < n2 such that

0 < |t̃n1
− t̃n2

| < ε

by (3.42). Therefore either

t̃n1
, t̃n2

∈ [ε, (c0 + a− 1)+)

or
t̃n1
, t̃n2

∈ [a+ (c0 − a)−, a)

by (3.41). This implies that

tn2+1 − tn1+1 = tn2
− tn1

and
t̃n2+1 − t̃n1+1 ∈ t̃n2 − t̃n1 + aZ.

Thus either
t̃n2+1 − t̃n1+1 = t̃n2

− t̃n1

or
|t̃n2+1 − t̃n1+1| = a− |t̃n2

− t̃n1
|.

The second case does not happen as in that case either t̃n2+1 ∈ [0, ε) or t̃n1+1 ∈ [0, ε),
which contradicts to (3.43). Thus

t̃n2+k − t̃n1+k = t̃n2
− t̃n1

for all k ≥ 1,

which implies that {t̃n1+j(n2−n1)}∞j=0 is an arithmetic sequence with common dif-

ference 0 6= t̃n2 − t̃n1 ∈ (−ε, ε). This contradicts to t̃n ∈ (0, a) for all n ≥ 0.
The conclusion (3.40) can be proved by using similar argument. �

To prove Theorem 3.1, we also need the density property that (−ε, ε)∩Sa,c 6= ∅
for sufficiently small ε > 0, for a ∈ Q,

Lemma 3.11. Let 0 < a < 1 < c and a ∈ Q. If Sa,c 6= ∅, then there exists a
positive number ε > 0 such that

(i) at least one of two intervals [0, ε) and (c0 − a)− + a + [0, ε) is contained
in Sa,c;

(ii) at least one of two intervals [−ε, 0) and (c0 +a−1)+ +[−ε, 0) is contained
in Sa,c; and

(iii) at least one of two intervals [0, ε) and [−ε, 0) is contained in Sa,c.

Proof. By Theorem 3.5, the statements (i), (ii) and (iii) hold for either c0 ≤
1− a or c0 ≥ a. So hereafter we assume that 1− a < c0 < a and write a = p/q for
some co-prime integers p and q.

(i) Suppose on the contrary that both [0, ε) and [c0, c0 + ε) are not contained
in Sa,c. Set

(3.44) ε1 :=

{
min(c− bqcc/q, (bqcc+ 1)/q − c) if c 6∈ Z/q
1/q if c ∈ Z/q.

Without loss of generality, we assume that ε ≤ ε1. Then

Sa,c ∩ [0, ε) = Sa,c ∩ [c0, c0 + ε) = ∅
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by (1.25). This together with (3.5) implies that

(3.45) Sa,c ⊂ ([ε, c0 + a− 1) ∪ [c0 + ε, a)) + aZ.

Thus Sa,c − ε/2 has empty intersection with the black hole [c0 + a− 1, c0) + aZ of
the transformation Ra,c, and it is invariant under the transformation Ra,c because

Ra,c(Sa,c − ε/2) = Ra,c(Sa,c)− ε/2 = Sa,c − ε/2

by (1.15), (3.6) and (3.45). Thus by the maximality of the set Sa,c in Theorem 3.4,
we have that

Sa,c − ε/2 ⊂ Sa,c,
which contradicts to (3.45) and the assumption Sa,c 6= ∅.

(ii) Suppose on the contrary that both [−ε, 0) and [c0 + a− 1− ε, c0 + a− 1)
are not contained in Sa,c for some sufficiently small ε > 0. Then

[−ε, 0) ∩ Sa,c = [c0 + a− 1− ε, c0 + a− 1) ∩ Sa,c = ∅

by (1.25). Following the argument in the proof of the first conclusion, we have that

Ra,c(Sa,c + ε/2) = Sa,c + ε/2

and

(Sa,c + ε/2) ∩ ([c0 + a− 1, c0) + aZ) = ∅.
Hence

Sa,c + ε/2 ⊂ Sa,c
by Theorem 3.4, which contradicts to the assumption Sa,c 6= ∅ and Sa,c∩[−ε, 0) = ∅.

(iii) Suppose on the contrary that both [0, ε) and [−ε, 0) are not contained in
Sa,c for sufficiently small ε > 0. Then

(3.46) [0, ε) ∩ Sa,c = [−ε, 0) ∩ Sa,c = ∅

by (1.25); and

(3.47) [c0, c0 + ε) ⊂ Sa,c and [c0 + a− 1− ε, c0 + a− 1) ∈ Sa,c
by the first two conclusions of this lemma. We claim that there exists a nonnegative
integer 1 ≤ D ≤ (2p− q)/(q − p) such that

(3.48) (Ra,c)
D([c− c0, c− c0 + 1− a) + aZ) ∩ ([c0 + a− 1, c0) + aZ) 6= ∅.

Proof of Claim (3.48). Suppose on the contrary that (3.48) does not hold.
Then

(Ra,c)
n([c− c0, c− c0 + 1− a) + aZ) ∩ ([c0 + a− 1, c0) + aZ) = ∅

for all 0 ≤ n ≤ (2p − q)/(q − p). This together with the one-to-one property of
the transformation Ra,c out of its black hole and the range property (1.18) implies
that (Ra,c)

n([c − c0, c − c0 + 1 − a) + aZ), 0 ≤ n ≤ (2p − q)/(q − p), are mutually
disjoint. So

| ∪(2p−q)/(q−p)
n=0 (Ra,c)

n([c− c0, c− c0 + 1− a) + aZ) ∩ ([0, a)\[c0 + a− 1, c0))|
= bp/(q − p)c(q − p)/q > |[0, a)\[c0 + a− 1, c0)|

by (1.19), which is a contradiction. This proves (3.48). �
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Now returning to the proof of the third statement of Lemma 3.11. By (3.48),
we may assume that the nonnegative integer D in (3.48) is the minimal integer.
Hence

(3.49) (Ra,c)
n([c− c0, c− c0 + 1− a) + aZ), 0 ≤ n ≤ D, are mutually disjoint.

Now let us verify the following claim:

(3.50) (Ra,c)
n([c− c0, c− c0 + 1− a) + aZ) = [bn + a− 1, bn) + aZ

for some bn ∈ (0, a] ∩ (c+ Z/q), 0 ≤ n ≤ D, and

(3.51) (Ra,c)
D([c− c0, c− c0 + 1− a) + aZ) = [c0 + a− 1, c0) + aZ.

Proof of Claim (3.50) and (3.51). If D = 0, then (3.50) and (3.51) follow
from (3.5) and (3.47). Now we consider D ≥ 1. Let T0 = [c− c0, c− c0 +1−a)+aZ
and define Tn, 1 ≤ n ≤ D, inductively by

(3.52) Tn =

{
Ra,c(Tn−1) if 0 6∈ Tn−1,
Ra,c(Tn−1) ∪ ([c− c0, c− c0 + 1− a) + aZ) if 0 ∈ Tn−1.

Clearly

T0 = [b0 + a− 1, b0) + aZ
for some b0 ∈ (0, a]∩ (c+Z/q) as the periodic set T0 has length 1−a on one period.
Inductively, we assume that

Tn = [b̃n, bn) + aZ

for some b̃n, bn with bn ∈ (0, a] and 1−a ≤ bn− b̃n < a, 0 ≤ n < D. Here bn− b̃n < a
by the assumption Sa,c 6= ∅ and the emptyset intersection property Tn∩Sa,c = ∅ by

Proposition 3.6. If 0 6∈ Tn, then either [b̃n, bn) ⊂ (0, c0 + a− 1) or [b̃n, bn) ⊂ [c0, a)
by (3.49) and (3.50). This implies that

Tn+1 = Ra,c(Tn) = [Ra,c(b̃n), Ra,c(b̃n) + bn − b̃n) + aZ
=: [b̃n+1, bn+1) + aZ(3.53)

for some b̃n+1, bn+1 with bn+1 ∈ (0, a] ∩ (c + Z/q) and bn+1 − b̃n+1 = bn − b̃n. If

0 ∈ Tn, then b̃n ≤ 0. Moreover b̃n ≥ c0−a and bn ≤ c0 +a− 1, as otherwise Tn has
nonempty intersection with the black hole [c0 +a−1, c0)+aZ of the transformation
Ra,c, which contradicts to (3.48) and the observation that Tn ⊂ ∪nm=0(Ra,c)

m([c−
c0, c− c0 + 1− a) + aZ). Therefore

Tn+1 = Ra,c(Tn) ∪ ([c− c0, c− c0 + 1− a) + aZ)

= [b̃n + bcc, bn + bcc+ 1− a) + aZ
=: [b̃n+1, bn+1) + aZ(3.54)

for some b̃n+1, bn+1 with

bn+1 ∈ (0, a] ∩ (c+ Z/q) and bn+1 − b̃n+1 = bn − b̃n + 1− a.
Combining (3.53) and (3.54) proceeds the inductive proof that

(3.55) Tn = [b̃n, bn) + aZ

such that bn ∈ (0, a]∩ (c+Z/q), 0 ≤ n ≤ D and bn− b̃n ∈ [(1−a), a)∩ (1−a)Z, 0 ≤
n ≤ D is an increasing sequence. Observe that

(Ra,c)
D([c−c0, c−c0 +1−a)+aZ) ⊂ TD ⊂ ∪Dn=0(Ra,c)

n([c−c0, c−c0 +1−a)+aZ).
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Then TD has nonempty intersection with the black hole [c0 + a− 1, c0) + aZ of the
transformation Ra,c by (3.49). This together with (3.55) implies that either

[c0 + a− 1− ε1, c0 + a− 1) ⊂ TD,
or

[c0, c0 + ε1) ⊂ TD
or

TD = [c0 + a− 1, c0) + aZ,
where ε1 is given in (3.44). Recall that TD ∩ Sa,c = ∅ by Proposition 3.6. Then
both [c0 + a− 1− ε1, c0 + a− 1) and [c0, c0 + ε1) have empty intersection with TD
by (3.47). Thus

(3.56) TD = [c0 + a− 1, c0) + aZ.
This together with (3.52), (3.53) and (3.54) implies that

(3.57) b̃n > 0 and bn − b̃n = 1− a for all 0 ≤ n ≤ D.
The desired conclusions (3.50) and (3.51) then follow. �

Let us return to the proof of the conclusion (iii). By (1.25), (3.47), (3.49),
(3.50), (3.57) and Proposition 3.6, either

[bn + a− 1, bn) ⊂ [ε1, c0 + a− b)
or

[bn + a− 1, bn) ⊂ [c0 + ε1, a), 0 ≤ n < D.

This implies that

(3.58) Ra,c(bn + a− 1− ε/2) + aZ = bn+1 + a− 1− ε/2 + aZ
for all 0 ≤ n ≤ D − 1. By (3.47), (3.50), (3.51), (3.58) and Theorem 3.4, we have
that

(R̃a,c)
n(c0 + a− 1− ε/2) + aZ

= (R̃a,c)
n(bD + a− 1− ε/2) + aZ

= (R̃a,c)
n−1(bD−1 + a− 1− ε/2) + aZ = · · ·

= bD−n + a− 1− ε/2 + aZ ⊂ Sa,c, 0 ≤ n ≤ D.
Hence

−ε/2 + aZ = R̃a,c(c− c0 − ε/2) + aZ = (R̃a,c)
D+1(c0 + a− 1− ε/2) + aZ ∈ Sa,c,

which contradicts to (3.46). �

We finish this section with the proof of Theorem 3.1.

Proof of Theorem 3.1. The sufficiency is obvious.
Now the necessity for a 6∈ Q. By Lemma 3.10, there exist tn ∈ R and

xn ∈ B0, n ≥ 0, such that Ma,c(tn)xn = 1 and {tn}∞n=1 is a decreasing sequence
convergent to zero. Without loss of generality, we may assume that xn converges,
otherwise replacing it by its subsequence. Therefore

Ma,c(0)x = lim
n→∞

Ma,c(tn)xn = 1,

where x ∈ B0 is the limit of xn as n → ∞. This proves that 0 ∈ Sa,c and the
necessity for a 6∈ Q.
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The necessity for a ∈ Q follows directly from (1.25) and Lemma 3.11. �

3.4. Gabor frames and maximal invariant sets

In this section, we shall prove Theorem 2.3.
To prove Theorem 2.3, we need the uniqueness of binary solutions x ∈ B0 to

the linear system Ma,c(t)x = 1 for t ∈ Sa,c.

Lemma 3.12. Let 0 < a < 1 < c. Then for any t ∈ Sa,c there exists a unique
vector x ∈ B0 satisfying Ma,c(t)x = 1.

Proof. Suppose, on the contrary, that

Ma,c(t)x0 = Ma,c(t)x1 = 1

for two distinct vectors x0,x1 ∈ B0. Then there exists 0 6= λ0 ∈ Z such that

x0(λ0) 6= x1(λ0)

and

x0(λ) = x1(λ) for all |λ| < |λ0|.
Without loss of generality, we assume that x0(λ0) = 1,x1(λ0) = 0 and λ0 > 0. Let
λ1 be the largest integer strictly less than λ0 such that x0(λ1) = x1(λ1) = 1. Thus
both τλ1

x0 and τλ1
x1 belong to B0,

Ma,c(t+ λ1)τλ1
x0 = Ma,c(t+ λ1)τλ1

x1 = 1,

and

λ0 − λ1 = Ra,c(t+ λ1)− (t+ λ1)

by Lemma 3.7. Applying Lemma 3.7 to τλ1x1 leads to τλ1x1(λ0 − λ1) = 1, which
contradicts to x1(λ0) = 0. �

Now we prove Theorem 2.3.

Proof of Theorem 2.3. We use the double inclusion method to prove (2.2).
Take t ∈ Da,c, let x ∈ B0 satisfy Ma,c(t)x = 2. Let K be the set of all λ ∈ Z with
x(λ) = 1, and write K = {λj : j ∈ Z} for a strictly increasing sequence {λj}∞j=−∞
with λ0 = 0. By Lemma 2.6, the binary vectors xl := (xl(λ))λ∈Z, l = 0, 1, defined
by xl(λ) = 1 if λ = λ2j−l for some integer j and xl(λ) = 0 otherwise, satisfy

(3.59) x = x0 + x1 and Ma,c(t)x0 = Ma,c(t)x1 = 1.

Then either t ∈ [0, (c0 + a− 1)+) + aZ or [(c0 − a)−, 0) + aZ, because

Da,c ∩ ([(c0 + a− 1)+, a+ (c0 − a)−) + aZ) = ∅

by (3.2) and Theorem 3.4. For the first case that t ∈ [0, (c0 + a − 1)+) + aZ, we
have that

λ2 = bcc+ 1

by (3.19). Hence λ1 is an integer in [1, bcc] and t+ λ1 ∈ Sa,c as

Ma,c(t)x1 = 1 and x1(λ1) = 1

by (3.59). Thus

(3.60) t ∈
(
Sa,c ∩ ([0, (c0 + a− 1)+ + aZ)

)
∩
(
∪bccλ=1 (Sa,c − λ)

)
for the first case.
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Similarly for the second case that t ∈ [(c0−a)−, 0) +aZ, we obtain from (3.19)
that

λ2 = bcc,
which together with (3.59) implies that

(3.61) t ∈
(
Sa,c ∩ ([(c0 − a)−, 0) + aZ)

)
∩
(
∪bcc−1
λ=1 (Sa,c − λ)

)
for the second case. Combining (3.5), (3.60) and (3.61) proves the first inclusion

Da,c ⊂
(
Sa,c ∩ ([0, (c0 + a− 1)+ + aZ) ∩ (Sa,c − bcc)

)
∪
(
Sa,c ∩ (∪bcc−1

λ=1 (Sa,c − λ))
)
.(3.62)

Conversely, take

t ∈ Sa,c ∩ ([0, (c0 + a− 1)+) + aZ) ∩ (Sa,c − λ∗)
for some λ∗ ∈ [1, bcc] ∩ Z. Then there exist x0,x1 ∈ B0 such that

(3.63) Ma,c(t)x0 = Ma,c(t+ λ∗)x1 = 1.

Define x = x0 + τ−λ∗x1. By (1.7) and (3.63),

(3.64) Ma,c(t)x = Ma,c(t)x0 + Ma,c(t+ λ∗)x1 = 2.

Now let us verify that x := (x(λ))λ∈Z ∈ B0. Observe that x(λ) ∈ {0, 1, 2} for all
λ ∈ Z and x(0) ≥ x0(0) ≥ 1. Then it suffices to prove that x(λ) 6= 2 for all λ ∈ Z.
Suppose, on the contrary, that x(λ0) = 2 for some λ0 ∈ Z. Then

x0(λ0) = 1 and τ−λ∗x1(λ0) = 1.

Hence τλ0x0, τλ0−λ∗x1 ∈ B0 and

Ma,c(t+ λ0)τλ0
x0 = Ma,c(t+ λ0)τλ0−λ∗x1 = 1

by (1.7) and (3.63). Thus τλ0
x0 = τλ0−λ∗x1 by Lemma 3.12, which is a contra-

diction because τ−λ∗x1(λ∗) = x1(0) = 1 by the assumption that x1 ∈ B0, and
x0(λ∗) = 0 by (3.19) and the assumption that t ∈ [0, (c0 + a − 1)+) ∩ Sa,c. Thus
x ∈ B0. This together with (3.64) proves that

(3.65) Sa,c ∩ ([0, (c0 + a− 1)+) + aZ) ∩ (Sa,c − λ∗) ⊂ Da,c
for all positive integers λ∗ ∈ [1, bcc − 1] ∩ Z. Applying similar argument leads to

(3.66) Sa,c ∩ ([(c0 − a)−, 0) + aZ) ∩ (Sa,c − λ∗) ⊂ Da,c
for all integers λ∗ ∈ [1, bcc−1]. The desired equality (2.2) then follows from (3.62),
(3.65) and (3.66). �

3.5. Instability of infinite matrices

In this section, we shall prove Theorem 2.2.

Proof of Theorem 2.2. The necessity is obvious. We divide four cases to
verify the sufficiency.

Case 1: c0 = 0.
In this case, the sufficiency follows as Da,c = Sa,c = R by Theorems 3.5 and

2.3.

Case 2: a 6∈ Q and either c0 ≥ a or 0 < c0 ≤ 1− a.
In this case, the sufficiency holds since Da,c = Sa,c = ∅ by (3.2) and Theorem

3.5.
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Case 3: a 6∈ Q and 1− a < c0 < a.
Suppose on the contrary that Da,c 6= ∅. Following the argument used in the

proof of Lemma 3.10, we can find tn ∈ Da,c ∩ (0, a) and xn ∈ B0, n ≥ 1, such that
{tn}∞n=1 is a decreasing sequence that converges to zero, xn converges to x∞ ∈ B0,
and Ma,c(tn)xn = 2. Recall from (2.11) used in the proof of Theorem 2.5 that
given any λ ∈ Z and µ ∈ aZ,

χ[0,c)(tn − µ+ λ) = χ[0,c)(−µ+ λ)

for sufficiently large n. Thus Ma,c(0)x∞ = 2 and 0 ∈ Da,c. This leads to the
contradiction.

Case 4: a ∈ Q and c0 > 0.
Write a = p/q for some co-prime integers p and q. By (1.26), we obtain

Da,c =
(
Da,c ∩ Z/q + [0, c− bqcc/q)

)
∪
(
Da,c ∩ (c+ Z/q) + [0, (bqcc+ 1)/q − c)

)
.

Thus Da,c 6= ∅ if and only if Da,c ∩ ({0, c} + Z/q) 6= ∅. This together with the
periodicity Da,c = Da,c + aZ proves the sufficiency. �





CHAPTER 4

Piecewise Linear Transformations

The piecewise linear transformations Ra,c and R̃a,c are non-contractive on the
real line. They do not satisfy standard requirements for Hutchinson’s remarkable
construction of their maximal invariant sets [27]. Define

(4.1) Em := (Ra,c)
m(R)\([(c0 + a− 1)+, (c0 − a)− + a) + aZ), m ≥ 0.

By the invariance property (3.6) in Theorem 3.4, we obtain the following inclusion
by applying the transformation Ra,c iteratively,

(4.2) Sa,c ⊂ ∩∞m=0Em.

In this chapter, we first show that infinite intersection in the above inclusion can
be replaced by finite intersection and the inclusion is indeed an equality.

Theorem 4.1. Let 0 < a < 1 < c and Em,m ≥ 0, be as in (4.1). Then the
following statements hold.

(i) If a ∈ Q, then

(4.3) Sa,c = Ea/gcd(a,1).

(ii) If a 6∈ Q and Sa,c 6= ∅, then

(4.4) Sa,c = Eba/(1−a)c.

Combining (4.2) and Theorems 3.4 and 4.1 leads to the following characteriza-
tion whether the maximal invariant set Sa,c is an empty set, cf. Theorem 5.5.

Corollary 4.2. Let 0 < a < 1 < c and a 6∈ Q. Then Sa,c 6= ∅ if and only if
Eba/(1−a)c is a nonempty set invariant under the transformation Ra,c.

By Theorem 4.1, we have the following topological property for the maximal
invariant set Sa,c.

Corollary 4.3. Let 0 < a < 1 < c. Then complement of the maximal invari-
ant set Sa,c consists of finitely many left-closed right-open intervals on one period.

In next theorem, we show that the restriction of the transformation Ra,c onto
its maximal invariant set Sa,c is a linear isomorphism on the line with marks, i.e.,
the commutative diagram (1.24) holds.

Theorem 4.4. Let 0 < a < 1 < c. Assume that Sa,c 6= ∅. Then under the
isomorphism Ya,c from Sa,c to the line with marks, the restriction of the piecewise
linear transformation Ra,c onto the maximal invariant set Sa,c becomes a shift on
the line with marks; i.e.,

(4.5) Ya,c(Ra,c(t) + aZ) = Ya,c(t) + Ya,c(bcc+ 1) + Ya,c(a)Z for all t ∈ Sa,c.

37
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Recall that the piecewise linear transformation Ra,c is not measure-preserving
on the whole line, but it has measure-preserving property on the maximal invariant
set Sa,c by (1.19). In this chapter, we also establish an ergodic theorem for the
transformation Ra,c. The reader may refer to [48] for ergodic theory of various
dynamic systems.

Theorem 4.5. Let 0 < a < 1 < c. Then for all continuous periodic functions
f with period a, the limit

(4.6) F (t) := lim
n→∞

∑n−1
k=0 f((Ra,c)

k(t))

n

exists for any t ∈ R. Moreover

(4.7) F (t) =


1

|Sa,c∩[0,a)|
∫
Sa,c∩[0,a)

f(s)ds if t ∈ Sa,c and a 6∈ Q
1

D+1

∑D
k=0 f((Ra,c)

k(t)) if t ∈ Sa,c and a ∈ Q
f(t0) if t 6∈ Sa,c,

where D ≥ 0 is a nonnegative integer and t0 ∈ [(c0 + a− 1)+, (c0 − a)− + a) + aZ
is the limit of (Ra,c)

n(t) as n→∞ for t 6∈ Sa,c.

Applying the above theorem, we conclude that Sa,c = ∅ if and only if

lim
n→∞

∑n−1
k=0 f((Ra,c)

k(t))

n
= 0, t ∈ R

for all periodic functions f vanishing on the black hole [(c0 + a− 1)+, (c0 − a)− +
a) + aZ of the transformation Ra,c, cf. Theorems 5.5 and 6.8 and Corollary 4.2.

This chapter is organized as follows. In Section 4.1, we show that Hutchison’s
remarkable construction works for the maximal invariant set Sa,c of the transforma-
tion Ra,c and prove the first conclusion in Theorem 4.1. In Section 4.2, we discuss
the restriction of the transformation Ra,c on its maximal invariant set and establish
Theorem 4.4. In Section 4.3, we consider covering properties of the maximal invari-
ant set Sa,c and prove Theorems 3.2 and 3.3 in Chapter 3. The proofs of Theorem
4.5 and the second conclusion of Theorem 4.1 will be given in Section 5.1 and 5.3
of next chapter respectively, as we need additional information about complement
of the maximal invariant set Sa,c with a 6∈ Q in Theorem 5.2.

4.1. Hutchinson’s construction of maximal invariant sets

In this section, we prove the first conclusion of Theorem 4.1 and postpone the
proof of the second conclusion to Section 5.1.

Proof of Theorem 4.1. (i) For c0 = 0, the conclusion (4.3) is obvious be-
cause in this case Sa,c = R by Theorem 3.5, the black hole [(c0 + a − 1)+, (c0 −
a)− + a) + aZ is an empty set, and EL = R for all L ≥ 0. So it remains to consider
the case that c0 > 0.

Write a = p/q for some co-prime integers p and q. Then by (4.2) and Theorem
3.4, it suffices to prove that the set Ep is invariant under the transformation Ra,c.
Take t ∈ Ep. Then there exists s such that

t = (Ra,c)
p(s)

and

(4.8) tn := (Ra,c)
n(s) 6∈ [(c0 + a− 1)+, (c0 − a)− + a) + aZ, 0 ≤ n ≤ p.
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As tn − t ∈ {0, 1, . . . , p− 1}/q + aZ, 0 ≤ n ≤ p, there exist two distinct integers n1

and n2 such that

(4.9) tn1
− tn2

∈ aZ and 0 ≤ n1 < n2 ≤ p.

By (1.17), (4.8) and (4.9), we have that

(Ra,c)
n2−n1(s)− s ∈ aZ.

Let s1 = Ra,c(s) and s2 = (Ra,c)
n2−n1−1(s). Then

Ra,c(t) = (Ra,c)
p(s1) and R̃a,c(t) = (Ra,c)

p(s2)

with

(Ra,c)
n(s1), (Ra,c)

n(s2) ∈ {t0, . . . , tn2−n1−1}+ aZ ⊂ [(c0− a)−, (c0 + a− 1)+) + aZ

for all 0 ≤ n ≤ p. This proves that Ra,c(t), R̃a,c(t) ∈ Ep for any t ∈ E , and hence
invariance of the set Ep under the transformation Ra,c follows. �

4.2. Piecewise linear transformations onto maximal invariant sets

In this section, we prove Theorem 4.4.

Proof of Theorem 4.4. Recall that the maximal invariant set Sa,c is a mea-
surable periodic set by (1.25) and Corollary 4.3. Then the map Ya,c is well-defined
and its restriction on Sa,c is periodic by (1.23),

(4.10) Ya,c(t+ a) = Ya,c(t) + Ya,c(a) for all t ∈ Sa,c.

Hence it remains to verify (4.5) for t ∈ [0, a) ∩ Sa,c = ([0, (c0 + a − 1)+) ∪ [(c0 −
a)− + a, a)) ∩ Sa,c, where the last equality follows from (3.5).

For t ∈ [0, (c0 + a− 1)+) ∩ Sa,c, we obtain from (1.15), (1.19), (1.23) and (3.6)
that

Ya,c(Ra,c(t)) = |[0, Ra,c(t)) ∩ Sa,c|
= Ya,c(Ra,c(0)) + |[Ra,c(0), Ra,c(t)) ∩ Sa,c|
= Ya,c(Ra,c(0)) + |Ra,c([0, t) ∩ Sa,c)|
= Ya,c(Ra,c(0)) + Ya,c(t).(4.11)

Similarly for t ∈ [(c0 − a)− + a, a) ∩ Sa,c, we get c0 < a and

Ya,c(Ra,c(t)) = |[Ra,c(c0), Ra,c(t)) ∩ Sa,c|+ Ya,c(Ra,c(c0))

= |Ra,c([c0, t) ∩ Sa,c)|+ |[0, c0 + bcc+ a) ∩ Sa,c|
−|[c0 + bcc, c0 + bcc+ a) ∩ Sa,c|

= |[c0, t) ∩ Sa,c|+ |[0, bcc+ 1) ∩ Sa,c|
+|Ra,c([0, c0 + a− 1)) ∩ Sa,c| − Ya,c(a)

= Ya,c(t) + Ya,c(Ra,c(0))− Ya,c(a).(4.12)

Combining (4.11) and (4.12) proves (4.5) for t ∈ [0, a)∩Sa,c, and hence all t ∈ Sa,c
by (4.10). �
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4.3. Gabor frames and covering of maximal invariant sets

In this section, we prove Theorems 3.2 and 3.3 in Chapter 3.

Proof of Theorem 3.2. Set

Aλ := Sa,c ∩ [0, (c0 + a− 1)+) + λ+ aZ

and

Bλ := Sa,c ∩ [(c0 − a)− + a, a) + λ+ aZ, λ ∈ Z.

We divide the proof into two cases.

Case 1: a 6∈ Q.
Take t0 ∈ Sa,c. Then (Ra,c)

n(t0) ∈ Sa,c by Theorem 3.4. Write

(Ra,c)
n(t0) = t0 + kn,

with kn ∈ Z, n ≥ 0, are defined inductively by k0 = 0 and

(4.13) kn+1 − kn =

{
bcc+ 1 if t0 + kn ∈ [0, (c0 + a− 1)+) + aZ
bcc if t0 + kn ∈ [(c0 − a)− + a, a) + aZ.

Then for any nonnegative integer l,

t0 + l = t0 + kn + (l − kn)

∈
(
∪bcc−1
λ2=0 Bλ2

∪
(
∪bccλ1=0 Aλ1

)
(4.14)

by (4.13), where kn is so chosen that kn ≤ l < kn+1. Therefore{
t0 + l − b(t0 + l)/aca| 0 ≤ l ∈ Z

}
⊂

(
∪bcc−1
λ2=0 Bλ2 ∩ [0, a)

)
∪
(
∪bccλ1=0 Aλ1 ∩ [0, a)

)
by (3.1) and (4.14). Observe that the left hand side of the above inclusion is a dense
subset of [0, a) by the assumption a 6∈ Q, while its right hand side is the union of
finitely many intervals that are right-open and left-closed by Corollary 4.3. Thus

[0, a) =
(
∪bcc−1
k=0 (Sa,c + k) ∩ [0, a)

)
∪
(
(Sa,c ∩ [0, (c0 + a− 1)+) + bcc) ∩ [0, a)

)
and the conclusion (3.3) follows.

Case 2: a ∈ Q and c ∈ gcd(a, 1)Z
Write a = p/q for some coprime integers p and q. Take t0 ∈ Sa,c ∩ gcd(a, 1)Z.

The existence of such a point t0 follows from (1.25) and the assumption that Sa,c 6=
∅. Following the argument in (4.15), we have that

(4.15) t0 + l ∈
(
∪bccλ1=0 Aλ1

)
∪
(
∪bcc−1
λ2=0 Bλ2

)
for all 0 ≤ l ∈ Z. Observe that {t0, t0+1, . . . , t0+a/gcd(a, 1)−1}+aZ = gcd(a, 1)Z.
The above observation together with (4.15) implies that

(4.16) gcd(a, 1)Z ⊂
(
∪bccλ1=0 Aλ1

)
∪
(
∪bcc−1
λ2=0 Bλ2

)
.

Combining (1.25) and (4.16) proves the desired covering property (3.3). �

We finish this section with the proof of Theorem 3.3.
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Proof of Theorem 3.3. (=⇒) By Theorem 2.3 and the assumption that
Da,c = ∅, we then have that

t+ λ 6∈ Sa,c for all t ∈ Sa,c ∩ [0, (c0 + a− 1)+) and λ ∈ [1, bcc] ∩ Z;

and

t+ λ 6∈ Sa,c for all t ∈ Sa,c ∩ [(c0 − a)− + a, a) and λ ∈ [1, bcc − 1] ∩ Z.
Therefore the sets Sa,c ∩ [0, (c0 + a − 1)+) + λ1 + aZ, λ1 ∈ [0, bcc] ∩ Z, and Sa,c ∩
[(c0−a)−+a, a)+λ2 +aZ, λ2 ∈ [0, bcc−1]∩Z, are mutually disjoint. This together
with the covering property in Theorem 3.2 and the periodic property (2.1) for the
set Sa,c implies that

a =
∑

λ1∈[0,bcc]∩Z

|(Sa,c ∩ [0, (c0 + a− 1)+) + λ1 + aZ) ∩ [0, a)|

+
∑

λ2∈[0,bcc−1]∩Z

|(Sa,c ∩ [(c0 − a)− + a, a) + λ2 + aZ) ∩ [0, a)|

=
∑

λ1∈[0,bcc]∩Z

|(Sa,c ∩ [0, (c0 + a− 1)+) + λ1 + aZ) ∩ [λ1, a+ λ1)|

+
∑

λ2∈[0,bcc−1]∩Z

|(Sa,c ∩ [(c0 − a)− + a, a) + λ2 + aZ) ∩ [λ2, a+ λ2)|

= (bcc+ 1)|Sa,c ∩ [0, (c0 + a− 1)+)|+ bcc|Sa,c ∩ [(c0 − a)− + a, a)|,
which proves (3.4).

(⇐=) Set

Aλ = (Sa,c ∩ [0, (c0 + a− 1)+) + λ+ aZ) ∩ [0, a)

and
Bλ = (Sa,c ∩ [(c0 − a)− + a, a) + λ+ aZ) ∩ [0, a), λ ∈ Z.

By Theorem 3.2, the sets Aλ1 , λ1 ∈ [0, bcc] ∩ Z and Bλ2 , λ2 ∈ [0, bcc − 1] ∩ Z form
a covering for the interval [0, a). This together with the assumption (3.4) and the
periodic property (2.1) for the set Sa,c implies that

a = (bcc+ 1)|Sa,c ∩ [0, (c0 + a− 1)+)|+ bcc|Sa,c ∩ [c0, a)|

=
∑

λ1∈[0,bcc]∩Z

|Aλ1
|+

∑
λ2∈[0,bcc−1]∩Z

|Bλ2
|

≥
∣∣( ∪λ1∈[0,bcc]∩Z Aλ1

) ∪
(
∪λ2∈[0,bcc−1]∩Z Bλ2

)
| = a.

Thus the intersection of any two of those sets Aλ1
, λ1 ∈ [0, bcc] ∩ Z and Bλ2

, λ2 ∈
[0, bcc − 1]∩Z, has zero Lebesgue measure. Hence they have empty intersection as
those sets are finite union of intervals that are left-closed and right-open by (1.25).
This together with Theorem 2.3 proves that Da,c = ∅. �





CHAPTER 5

Maximal Invariant Sets with Irrational Time Shifts

Let c0 := c − bcc be the fractional part of window parameter c. For either
c0 ≤ 1−a or c0 ≥ a, the maximal invariant set Sa,c has been explicitly constructed,
see Theorem 3.5. In this chapter, we consider the maximal invariant set Sa,c with

(5.1) 0 < a < 1 < c, 1− a < c0 < a and a 6∈ Q.

Before exploring further, let us have an illustrative example.

Example 5.1. Take a = π/4 ≈ 0.7854, and c = 23 − 11π/2 ≈ 5.7212. The

black holes of the corresponding transformations Ra,c and R̃a,c are [17−21π/4, 18−
11π/2)+πZ/4 and [5−3π/2, 6−7π/4)+πZ/4 respectively, which can be transformed
back and forth via the hole [11− 7π/2, 12− 15π/4) + πZ/4; i.e.,{

Ra,c([5− 3π/2, 6− 7π/4) + πZ/4) = [11− 7π/2, 12− 15π/4) + πZ/4
(Ra,c)

2([5− 3π/2, 6− 7π/4) + πZ/4) = [17− 21π/4, 18− 11π/2) + πZ/4,
and{

R̃a,c([17− 21π/4, 18− 11π/2) + πZ/4) = [11− 7π/2, 12− 15π/4) + πZ/4
(R̃a,c)

2([17− 21π/4, 18− 11π/2) + πZ/4) = [5− 3π/2, 6− 7π/4) + πZ/4.

Therefore for the pair (a, c) = (π/4, 23− 11π/2),

Sa,c = [18− 23π/4, 11− 7π/2) ∪ [12− 15π/4, 5− 3π/2)

∪ [6− 7π/4, 17− 21π/4) + πZ/4
≈ [−0.0642, 0.0044) ∪ [0.2190, 0.2876) ∪ [0.5022, 0.5066) + 0.7864Z

by Theorem 3.4, which consists of intervals of different lengths on one period and
contains a small neighborhood of the lattice πZ/4, cf. Figure 1.

For arbitrary a 6∈ Q, the black hole [c0 + a− 1, c0) + aZ of the transformation

Ra,c and the black hole [c− c0, c− c0 + 1− a) + aZ of the transformation R̃a,c are
inter-transformable through mutually disjoint periodic holes

(Ra,c)
n([c− c0, c− c0 + 1− a) + aZ) = (R̃a,c)

D−n([c0 + a− 1, c0) + aZ), 0 ≤ n ≤ D,
in finite steps, provided that Sa,c 6= ∅, where D ≤ ba/(1− a)c − 1 is a nonnegative
integer. This together with the maximal invariance property in Theorem 3.4 leads
to the following conclusion for the set Sa,c, cf. Example 5.1.

Theorem 5.2. Let (a, c) satisfy (5.1). Assume that Sa,c 6= ∅. Then there exists
a nonnegative integer D ≤ ba/(1− a)c− 1 such that An := (Ra,c)

n([c− c0, c− c0 +
1− a) + aZ), 0 ≤ n ≤ D, satisfy the following properties:

(5.2) An = (Ra,c)
n(c− c0) + [0, 1− a) + aZ, 0 ≤ n ≤ D;

(5.3) closure of An, 0 ≤ n ≤ D, are mutually disjoint;

43
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(5.4) AD = [c0 + a− 1, c0) + aZ;

and

(5.5) R\Sa,c = ∪Dn=0An.

For a 6∈ Q, it follows from Lemma 3.10 and Theorems 3.5 and 5.2 that the max-
imal invariant set Sa,c consists of finitely many left-closed and right-open intervals
on one period (hence it is measurable) and it contains a small neighborhood of the
origin.

Corollary 5.3. Let 0 < a < 1 < c and a 6∈ Q. Assume that Sa,c 6= ∅. Then
the following statements hold.

(i) The set Sa,c contains finitely many left-closed and right-open intervals on
one period and it contains a small neighborhood of the lattice aZ.

(ii) The complement of the set Sa,c contains finitely many left-closed right-
open intervals of length 1 − a on one period whose closure are mutually
disjoint.

Combining Theorems 4.4 and 5.2 , we have the following result about the marks
Ka,c.

Corollary 5.4. Let (a, c) satisfy (5.1). Assume that Sa,c 6= ∅. Then the set
Ka,c of marks is given by

(5.6) Ka,c = {nYa,c(bcc+ 1), 1 ≤ n ≤ D + 1}+ Ya,c(a)Z,
where D is the smallest nonnegative integer satisfying (5.4).

After performing the holes-removal surgery, the maximal invariant set Sa,c
becomes the real line with marks in Ka,c. This suggests that for the case that
a 6∈ Q we can expand the line with marks by inserting holes [0, 1 − a) at every
location of marks to recover the maximal invariant set Sa,c by Theorem 5.2. Using
the equivalence between the application of the piecewise linear transformation Ra,c
on the set Sa,c and a rotation on the circle with marks given in Theorem 4.4, we can
characterize the non-triviality of the maximal invariant set Sa,c via two nonnegative
integer parameters d1 and d2 for the case that a 6∈ Q.

Theorem 5.5. Let (a, c) be a pair of positive numbers satisfying bcc ≥ 2, 0 <
c1 := c− c0 − b(c− c0)/aca < 2a− 1 and (5.1). Then Sa,c 6= ∅ if and only if there
exist nonnegative integers d1 and d2 such that

(5.7) (d1 + d2 + 1)c1 − c0 + (d1 + 1)(1− a) ∈ aZ,

(5.8) (d1 + 1)(1− a) < c0 < 1− (d2 + 1)(1− a),

and

(5.9) #Ea,c = d1,

where

m =
(d1 + d2 + 1)c1 − c0 + (d1 + 1)(1− a)

a
and

Ea,c =
{
n ∈ [1, d1 + d2 + 1]

∣∣ n(c1 −m(1− a))

∈ [0, c0 − (d1 + 1)(1− a)) + (a− (d1 + d2 + 1)(1− a))Z
}
.(5.10)
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The nonnegative integers d1 and d2 in Theorem 5.5 satisfy (d1 + d2 + 1) <
a/(1− a) by (5.8), and they are uniquely determined by the pair (a, c) of positive
numbers by (5.7) and the assumptions that bcc ≥ 2 and a 6∈ Q. We also notice
that the nonnegative integer parameters d1 and d2 in Theorem 5.5 are indeed the
numbers of holes contained in [0, c0 + a− 1) and [c0, a) respectively, and the set of
marks is given by

Ka,c =
{
n(c1 −m(1− a))}d1+d2+1

n=1 + (a− (d1 + d2 + 1)(1− a))Z.

For pairs (a, c) satisfying bcc ≥ 2, 0 < c1 < 2a − 1 and (5.1), we can apply
Theorem 5.5 to determine whether the corresponding Gabor systems G(χ[0,c), aZ×
Z) is a frame, see Theorem 7.4 for details.

This chapter is organized as follows. In Section 5.1, we prove Theorem 5.2,
Corollary 5.4 and the second conclusion of Theorem 4.1. In Section 5.2, we param-
eterize the maximal invariant set Sa,c and establish Theorem 5.5. In Section 5.3,
we consider the ergodic theory associated with the transformation Ra,c and prove
Theorem 4.5 of Chapter 4.

5.1. Maximal invariant sets with irrational time shifts

In this section, we prove Theorem 5.2, Corollary 5.4 and the second conclusion
of Theorem 4.1.

Proof of Theorem 5.2. By Proposition 3.6, An, n ≥ 0, have empty inter-
section with the maximal invariant set Sa,c,

(5.11) An ∩ Sa,c = ∅,

and they have the following mutual intersection property:

(5.12) Am ∩ An ⊂ [c0 + a− 1, c0) + aZ whenever m 6= n.

Let D be the smallest nonnegative integer such that

(5.13) AD ∩
(
[c0 + a− 1, c0) + aZ

)
6= ∅

if it exists, and set D =∞ if An∩ ([c0 +a−1, c0)+aZ) = ∅ for all n ≥ 0. By (1.19)
and the definition (5.13) of the integer D, An ∩ [0, a), 0 ≤ n < D, have the same
Lebesgue measure 1− a. On the other hand, An ∩ [0, a), 0 ≤ n < D, are mutually
disjoint sets contained in [0, a)\[c0 + a− 1, c0) by (5.12) and (5.13). Therefore

D ≤ ba/(1− a)c − 1.

By (5.11), (5.13) and Lemma 3.10, we can prove immediately thatAn∩[0, a), 0 ≤
n < D, are intervals of length 1 − a contained either in [0, c0 + 1 − a) or in [c0, a)
(and hence (5.2) follows) by induction on n ≥ 0.

Now we prove (5.3). Suppose, on the contrary, there exist 0 ≤ n 6= m ≤ D
such that

(5.14) (Ra,c)
n(c− c0) + 1− a ∈ (Ra,c)

m(c− c0) + aZ

by (5.2) and (5.12). This together with the assumption a 6∈ Q and the definition of
the transformation Ra,c implies that

(5.15) bcc = 1, m = n+ 1, and (Ra,c)
n(c− c0) ∈ [c0, a) + aZ.
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Applying (5.14) and (5.15) repeatedly gives that

∪n+L
k=nAk = ((Ra,c)

n(c− c0) + [0, 1− a) + aZ)

∪ ((Ra,c)
n(c− c0) + 1− a+ [0, 1− a) + aZ)

∪ · · · ∪ ((Ra,c)
n(c− c0) + L(1− a) + [0, 1− a) + aZ)

= (Ra,c)
n(c− c0) + [0, (L+ 1)(1− a)) + aZ,

where L ≥ 0 is largest nonnegative integer such that

(Ra,c)
n(c− c0) + L(1− a) + [0, 1− a) ⊂ [c0, a) + aZ.

This contradicts to the density property in Lemma 3.10 as

(−ε, 0) ⊂ (Ra,c)
n(c− c0) + [0, (L+ 1)(1− a)) + aZ

for sufficiently small ε > 0.
By (5.2) and (5.13), we may write

AD ∩ [0, a) = [uD, uD + 1− a)

for some uD satisfying

(5.16) c0 + 2a− 2 < uD < c0.

Then the proof of (5.4) reduces to showing

(5.17) uD = c0 + a− 1.

Suppose that
c0 + 2a− 2 < uD < c0 + a− 1.

Take t ∈ Sa,c ∩ (0, ε) with sufficiently small ε > 0, where the existence follows from
Lemma 3.10. Then

(Ra,c)
D+1(t) ∈ [uD + 1− a, uD + 1− a+ ε) + aZ ⊂ [c0 + a− 1, c0) + aZ,

which implies that t 6∈ Sa,c by Lemma 3.9. On the other hand,

(Ra,c)
D+1(t) ∈ Sa,c

by (3.6). This leads to a contradiction. Thus

(5.18) uD 6∈ (c0 + 2a− 2, c0 + a− 1).

Similarly we can prove that

(5.19) uD 6∈ (c0 + a− 1, c0).

Combining (5.16), (5.18) and (5.19) proves (5.17) and hence (5.4).
Define

Ta,c = R\
(
∪Dn=0 (Ra,c)

n([c− c0, c− c0 + 1− a) + aZ)
)
.

The proof of (5.5) reduces to showing

(5.20) Sa,c = Ta,c.
By Proposition 3.6, we obtain that

Sa,c ⊂ Ta,c.
Therefore it remains to prove

Ta,c ⊂ Sa,c,
which in turn reduces to establishing

(5.21) Ra,c(Ta,c) = Ta,c
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by Theorem 3.4 and the observation that Ta,c has empty intersection with the black
hole [c0 + a− 1, c0) + aZ. We first make the following claim:

Claim 1: Ra,c(Ta,c) ⊂ Ta,c.

Proof. Take t ∈ Ta,c. Therefore it suffices to prove that

Ra,c(t) 6∈ ∪Dn=1(Ra,c)
n([c− c0, c− c0 + 1− a) + aZ)

by (1.18). Suppose on the contrary that

Ra,c(t) ∈ (Ra,c)
n([c− c0, c− c0 + 1− a) + aZ)

for some 1 ≤ n ≤ D. Recall that

(Ra,c)
D([c− c0, c− c0 + 1− a) + aZ) = [c0 + a− 1, c0) + aZ.

Then
t ∈ (Ra,c)

n−1([c− c0, c− c0 + 1− a) + aZ)

by (1.17) and the fact that t 6∈ [c0 + a− 1, c0) + aZ, which is a contradiction. �

Using similar argument, we have the following claim:

Claim 2: R̃a,c(Ta,c) ⊂ Ta,c.
The invariance (5.21) of the set Ta,c under the transformation Ra,c follows from

the above two claims and Lemma 3.8. This completes the proof of the equation
(5.20) (and hence (5.5)). �

Proof of Corollary 5.4. By Theorem 5.2, (Ra,c)
n(c− c0 + 1− a) + [a−

1, 0] + aZ, 0 ≤ n ≤ D, have their closures being mutually disjoint, and

R\Sa,c = ∪Dn=0((Ra,c)
n(c− c0 + 1− a) + [a− 1, 0) + aZ).

Therefore (Ra,c)
n(c− c0 + 1− a) ∈ Sa,c for all 0 ≤ n ≤ D, and

Ka,c = ∪Dn=0{Ya,c((Ra,c)n(c− c0 + 1− a)) + Ya,c(a)Z}
= ∪Dn=0{(n+ 1)Ya,c(c− c0 + 1− a) + Ya,c(a)Z}
= ∪D+1

m=1{mYa,c(bcc+ 1) + Ya,c(a)Z}
where the second equality follows from (4.10) and Theorem 4.4. This proves (5.6).

�

Finally we prove the second conclusion of Theorem 4.1 of Chapter 4.

Proof of Theorem 4.1. (ii) For c0 = 0, the conclusion (4.4) holds because
Sa,c = EL = R for all L ≥ 0 in this case. So we may assume that c0 > 0 from now
on.

By a 6∈ Q, Theorem 3.5 and the assumptions Sa,c 6= ∅, we have that 1 − a <
c0 < a. By (4.2) and Theorem 3.4, it suffices to prove that

Eba/(1−a)c ⊂ Sa,c.
Suppose, on the contrary, that there exists t ∈ Eba/(1−a)c and t 6∈ Sa,c. Then

t = (Ra,c)
ba/(1−a)c(s)

for some s ∈ R\([c0 + a− 1, c0) + aZ); and

t = (Ra,c)
n(s0)

for some nonnegative integer n ≤ ba/(1−a)c−1, and s0 ∈ [c−c0, c−c0 +1−a)+aZ
by Theorem 5.2. As Ra,c is one-to-one outside its black holes by (1.17), we then



48 5. MAXIMAL INVARIANT SETS WITH IRRATIONAL TIME SHIFTS

have that s0 = (Ra,c)
ba/(1−a)c−n(s), which contradicts to the range property (1.18)

of the transformation Ra,c. �

5.2. Nontriviality of maximal invariant sets with irrational time shifts

In this section, we prove Theorem 5.5. The necessity follows essentially from
Theorem 5.2. For the sufficiency, we perform the augmentation operation by insert-
ing hole [0, 1−a) from the line with marks at

{
n(c1−m(1−a))}d1+d2+1

n=1 +(a−(d1 +
d2 + 1)(1 − a))Z and then show that the set obtained through the augmentation
operation is invariant under the transformation Ra,c.

Proof of Theorem 5.5. (=⇒) Assume that Sa,c 6= ∅. Let D ≤ ba/(1−a)c−
1 be the nonnegative integer in Theorem 5.2 such that

(5.22) [an, an+ 1−a) := ((Ra,c)
n([c− c0, c− c0 + 1−a) +aZ))∩ [0, a), 0 ≤ n ≤ D,

are mutually disjoint;

(5.23) Sa,c = R\
(
∪Dn=0 ([an, an + 1− a) + aZ)

)
;

(5.24) (Ra,c)
D([c− c0, c− c0 + 1− a) + aZ) = [c0 + a− 1, c0) + aZ;

and

(5.25) an − (Ra,c)
n(c− c0) ∈ aZ, 0 ≤ n ≤ D.

Applying (5.25) with n = D and using (5.22) and (5.24), we obtain

(5.26) c0 + a− 1−
(
c− c0 + d1(bcc+ 1) + d2bcc

)
∈ aZ,

where d1, d2 are the numbers of the indices n ∈ [0, D− 1] such that [an, an + 1− a)
is contained in [0, c0 + a− 1) and in [c0, a) respectively. Then the desired inclusion
(5.7) follows from (5.26).

Observe that

(5.27) D = d1 + d2

because it follows from (5.22) and (5.24) that

[an, an + 1− a) ⊂ [0, a)

and

[an, an + 1− a) ∩ [c0 + a− 1, c0) = [an, an + 1− a) ∩ [aD, aD + 1− a) = ∅

for every 0 ≤ n ≤ D− 1. Recall that there are d1 (resp. d2) mutually disjoint holes
of length 1− a contained in [0, c0 + a− 1) (resp. [c0, a)) by (5.22), (5.27) and the
definition of integer parameters d1 and d2; and that (−ε, ε) ⊂ Sa,c for sufficiently
small ε > 0 by Corollary 5.3. Therefore

d1(1− a) < c0 + a− 1 = |[0, c0 + a− 1)|

and

d2(1− a) < a− c0 = |[c0, a)|,
which proves (5.8).

Let θa,c := Ya,c(c− c0 + 1) be as in Theorem 4.4, and set θ̃a,c = Ya,c(c1). Then

(5.28) Ya,c(a) = a− (d1 + d2 + 1)(1− a)
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by (5.22) and (5.23); and

(5.29) θ̃a,c ∈ Ya,c(c−c0)+Ya,c(a)Z = Ya,c(c−c0+1−a)+Ya,c(a)Z = θa,c+Ya,c(a)Z

by (4.10) and the fact that the black hole [c− c0, c− c0 + 1− a) of the transforma-

tion R̃a,c having empty intersection with the set Sa,c (see (3.2) in Theorem 3.2).
Combining (5.22), (5.23), (5.28), (5.29) with Theorem 4.4, we conclude that the
marks are located at

nθ̃a,c + (a− (d1 + d2 + 1)(1− a))Z, 1 ≤ n ≤ d1 + d2 + 1,

with the first mark θ̃a,c+aZ and the last mark (d1 +d2 +1)θ̃a,c+aZ being obtained
from the holes [c− c0, c− c0 + 1− a) + aZ and [c0 + a− 1, c0) + aZ respectively. As
there are d1 holes contained in [0, c0 + a− 1), we have that

Ya,c(c0 + a− 1) = c0 + a− 1− d1(1− a)

by the definition of the map Ya,c. Thus

(5.30) c0 − (d1 + 1)(1− a)− (d1 + d2 + 1)θ̃a,c ∈ (a− (d1 + d2 + 1)(1− a))Z.

Let m be the number of holes [an, an + 1− a), 0 ≤ n ≤ d1 + d2, contained in [0, c1).

By the definition θ̃a,c = Ya,c(c1) and the one-to-one correspondence between holes
and marks,

m = #
{

1 ≤ n ≤ d1 + d2 + 1
∣∣nθ̃a,c ∈ [0, θ̃a,c) + (a− (d1 + d2 + 1)(1− a))Z

}
.

This, together with the observation that the black hole [c1, c1 + 1− a) of the trans-

formation R̃a,c has empty intersection with the set Sa,c, implies that

(5.31) θ̃a,c = c1 −m(1− a).

Let m̃ be another integer such that

(d1 + d2 + 1)θ̃a,c ∈ m̃(a− (d1 + d2 + 1)(1− a)) + [0, a− (d1 + d2 + 1)(1− a)).

We want to prove that

(5.32) m̃ = m.

For any 1 ≤ l ≤ m̃, there exists one and only one 1 ≤ nl ≤ d1 + d2 + 1 such that

nlθ̃a,c ∈ l(a− (d1 + d2 + 1)(1− a)) + [0, θ̃a,c),

which implies that m̃ ≤ m. Now we prove that m ≤ m̃. Suppose on the contrary
that m > m̃. Then there exists an integer 1 ≤ n ≤ d1 + d2 + 1 such that

nθ̃a,c ∈ [0, θ̃a,c) + (a− (d1 + d2 + 1)(1− a))(Z\{1, . . . , m̃}).

This implies that

nθ̃a,c ≥ (m̃+ 1)(a− (d1 + d2 + 1)(1− a)),

which is a contradiction as

θ̃a,c ≤ nθ̃a,c ≤ (d1 + d2 + 1)θ̃a,c < (m̃+ 1)(a− (d1 + d2 + 1)(1− a))

by the definition of the integer m̃, and hence (5.32) is established.
From (5.30), (5.31) and (5.32), it follows that

(d1 + d2 + 1)(c1 −m(1− a)) = (d1 + d2 + 1)θ̃a,c

= c0 − (d1 + 1)(1− a) +m(a− (d1 + d2 + 1)(1− a)),
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which implies that

(5.33) ma = (d1 + d2 + 1)c1 − c0 + (d1 + 1)(1− a).

Then the condition (5.9) follows from (5.30), (5.31) and (5.33), and the definition
of the integer d1.

(⇐=) Let d1 and d2 be nonnegative integers in (5.7) and (5.8), and c1 =
c− c0 − b(c− c0)/aca. Then

0 < c1 < a < 1

by a 6∈ Q; and

−a < −c0+1−a < (d1+d2+1)c1−c0+(d1+1)(1−a) < (d1+d2+1)c1 < (d1+d2+1)a

by (5.7) and (5.8). Also from (5.7) and (5.8), we see that

(d1 +d2 +1)c1−c0 +(d1 +1)(1−a) ∈ (d1 +d2 +1)bcc−c+bcc+(d1 +1)+aZ = aZ.

Thus

(5.34) (d1 + d2 + 1)c1 − c0 + (d1 + 1)(1− a) = ma

for some integer 0 ≤ m ≤ d1 + d2. Set

(5.35) θ̃a,c = c1 −m(1− a).

Then

(5.36) (d1 + d2 + 1)θ̃a,c = c0 − (d1 + 1)(1− a) +m(a− (d1 + d2 + 1)(1− a))

by (5.34). This together with 0 ≤ m ≤ d1 + d2 and 0 < c0 − (d1 + 1)(1 − a) <
a− (d1 + d2 + 1)(1− a) implies that

(5.37) θ̃a,c ∈ (0, a− (d1 + d2 + 1)(1− a)).

We next claim that

(5.38) (n− n′)θ̃a,c 6∈ (a− (d1 + d2 + 1)(1− a))Z

for all 0 ≤ n 6= n′ ≤ d1 + d2 + 1.

Proof of Claim (5.38). For n − n′ = ±(d1 + d2 + 1), the conclusion (5.38)
follows from (5.8) and (5.36). Then it remain to prove (5.38) for 1 ≤ |n − n′| ≤
d1 + d2. Suppose on the contrary that (5.38) are not true. Then

kθ̃a,c = l(a− (d1 + d2 + 1)(1− a))

for some integers l ∈ Z and k ∈ [1, d1 + d2] ∩ Z. Then

k(m− bcc) = l(d1 + d2 + 1) and k(m− b(bcc/a)c) = l(d1 + d2 + 2)

by the assumption a 6∈ Q. Thus

l = k(b(bcc/a)c − bcc),

which is a contradiction as 1 ≤ l < k by (5.37). �
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Denote

Ka,c := {nθ̃a,c}d1+d2+1
n=1 + (a− (d1 + d2 + 1)(1− a))Z

and rewrite Ka,c as {zn}d1+d2+1
n=1 + (a− (d1 + d2 + 1)(1− a))Z for some increasing

sequence

0 < z1 < z2 < . . . < zd1+d2+1 < a− (d1 + d2 + 1)(1− a).

The existence of such a positive strictly increasing sequence {zn}d1+d2+1
n=1 follows

from (5.38). Given any δ ∈ (0, c0 − (d1 + 1)(1 − a)) (respectively δ ∈ (c0 − (d1 +
1)(1 − a), a − (d1 + d2 + 1)(1 − a))), it follows from (5.36) and (5.37) that for
any integer k ∈ [0,m] (resp. k ∈ [0,m − 1]) there is one and only one integer
n ∈ [1, d1 + d2 + 1] such that

nθ̃a,c ∈ k(a− (d1 + d2 + 1)(1− a)) + [δ, δ + θ̃a,c)

and for k ∈ Z\[0,m] (resp. l ∈ Z\[0,m− 1]) there is no integer n 6∈ [1, d1 + d2 + 1]
such that

nθ̃a,c ∈ k(a− (d1 + d2 + 1)(1− a)) + [δ, δ + θ̃a,c).

The above observations together with (5.37) and (5.38) imply that

(5.39) #
(
[δ, δ + θ̃a,c) ∩

(
{zl}d1+d2+1

l=1 + {0, a− (d1 + d2 + 1)(1− a)}
)

= m+ 1

for δ ∈ (0, c0 − (d1 + 1)(1− a)), and

(5.40) #
(
[δ, δ + θ̃a,c) ∩

(
{zl}d1+d2+1

l=1 + {0, a− (d1 + d2 + 1)(1− a)}
)

= m

for δ ∈ (c0 − (d1 + 1)(1− a), a− (d1 + d2 + 1)(1− a)).

Now let us expand marks located at {zl}d1+d2+1
l=1 + (a− (d1 + d2 + 1)(1− a))Z

to holes of length 1− a located at {yl}d1+d2+1
l=1 + aZ on the real line by

(5.41) yl = zl + (l − 1)(1− a), 1 ≤ l ≤ d1 + d2 + 1.

Clearly
0 < y1 < y2 < . . . < yd1+d2+1 < a.

Now let claim that

(5.42) (Ra,c)
n(c− c0) + aZ = yl(n) + aZ for all 0 ≤ n ≤ d1 + d2,

by induction on 0 ≤ n ≤ d1 + d2, where l(n) ∈ [1, d1 + d2 + 1] is the unique integer
such that

zl(n) ∈ (n+ 1)θ̃a,c + (a− (d1 + d2 + 1)(1− a))Z.

Proof of Claim (5.42). Applying (5.39) gives

[δ, δ + θ̃a,c) ∩
(
{zl}d1+d2+1

l=1 + {0, a− (d1 + d2 + 1)(1− a)}
)

= {z1, . . . , zm+1},
where δ > 0 is so chosen that

δ < z1 and (θ̃a,c, θ̃a,c + δ) ∩ {z1, . . . , zd1+d2+1} = ∅.
Thus we obtain that

(5.43) zm+1 = θ̃a,c

which together with (5.35) implies that

(5.44) yl(0) = ym+1 = zm+1 +m(1− a) = θ̃a,c +m(1− a) = c1.

Combining (5.9) and (5.36) gives

(5.45) zd1+1 = c0 +a−1−d1(1−a) = (d1 +d2 +1)θ̃a,c−m(a−(d1 +d2 +1)(1−a)).
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Thus

(5.46) yl(d1+d2) = yd1+1 = zd1+1 + d1(1− a) = c0 + a− 1,

Having the above information about yl(0) and yl(d1+d2), we now prove (5.42) by
induction on n. Clearly the conclusion (5.42) for n = 0 follows from (5.44). Induc-
tively we assume that (5.42) holds for n = k ≤ d1 + d2 − 1. Then

zl(k) 6= c0 − (d1 + 1)(1− a)

by (5.36), (5.38) and the observation that l(k) 6= d1 + d2 + 1. If zl(k) < c0 − (d1 +
1)(1− a), then

yl(k) < c0 + a− 1

by (5.46) and

(Ra,c)
k+1(c− c0) = Ra,c((Ra,c)

k(c− c0)) ∈ Ra,c(yl(k)) + aZ
= yl(k) + bcc+ 1 + aZ

= zl(k) + θ̃a,c + (m+ l(k))(1− a) + aZ.(5.47)

Note that either
zl(k+1) = zl(k) + θ̃a,c

or
zl(k+1) = zk(l) + θ̃a,c − (a− (d1 + d2 + 1)(1− a)).

For the first case,
l(k + 1) = l(k) +m+ 1

because

[zl(k), zl(k) + θ̃a,c) ∩
(
{zk}d1+d2+1

k=1 + {0, a− (d1 + d2 + 1)(1− a)}
)

= m+ 1

by (5.39) and hence

(Ra,c)
k+1(c− c0) ∈ zl(k) + θ̃a,c + (m+ l(k))(1− a) + aZ

= zl(k+1) + (l(k + 1)− 1)(1− a) + aZ = yl(k+1) + aZ.(5.48)

Similarly for the second case,

l(k + 1) = l(k) +m+ 1− (d1 + d2 + 1)

since

#
(
[0, zl(k+1)) + (a− (d1 + d2 + 1)(1− a))

∩
(
{zk}d1+d2+1

k=1 + {0, a− (d1 + d2 + 1)(1− a)}
))

= #
((

[0, zl(k)) ∩ {zk}d1+d2+1
k=1 }

)
∪
(
[zl(k), zl(k) + θ̃a,c) ∩ {zk}d1+d2+1

k=1 }
))

= l(k)− 1 +m+ 1 = m+ l(k)

by (5.39). Thus

(Ra,c)
k+1(c− c0) ∈ zl(k) + θ̃a,c + (m+ l(k))(1− a) + aZ

= zl(k+1) + (a− (d1 + d2 + 1)(1− a))

+(l(k + 1) + (d1 + d2 + 1)− 1)(1− a) + aZ
= yl(k+1) + aZ.(5.49)

This shows that the inductive conclusion holds when zl(k) < c0 − (d1 + 1)(1 − a).
Similarly we can show that the inductive conclusion (5.42) holds when zl(k) >
c0 − (d1 + 1)(1− a). �
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We continue our proof of the sufficiency. From (5.42), we see that for any
0 ≤ n ≤ d1 + d2 − 1,

(Ra,c)
n([c− c0, c− c0 + 1− a)) + aZ = [yl(n), yl(n) + 1− a) + aZ

is contained either in [0, c0 + a− 1) + aZ or [c0, a) + aZ, and

(Ra,c)
D([c− c0, c− c0 + 1− a)) + aZ = [c0 + a− 1, c0) + aZ

by (5.42). Therefore Sa,c is the complement of ∪d1+d2
n=0 ([yl(n), yl(n) + 1 − a) + aZ),

which implies that its restriction on [0, a) has measure a− (d1 + d2 + 1))1− a) > 0
and hence it is not an empty set. �

5.3. Ergodicity of piecewise linear transformations

In this section, we prove Theorem 4.5 of Chapter 4. Define

Q̃a,c := sup
t∈R

sup
x∈B

Q̃a,c(t,x),

where

K̃(t,x) = {µ ∈ aZ : Ma,c(t)x(µ) = 1}.
Let

Q̃a,c(t,x) =

 0 if K̃(t,x) = ∅
sup{n ∈ N | [µ, µ+ na) ⊂ K̃(t,x)

for some µ ∈ aZ} otherwise,

cf. the index Qa,c in (2.7). Following the argument used in the proof of Theorem
2.5, we have the following result.

Lemma 5.6. Let 0 < a < 1 < c. Then

Sa,c = ∅ if and only if Q̃a,c <∞.

To prove Theorem 4.5, we need another technical lemma, cf. Lemma 3.9.

Lemma 5.7. Let 0 < a < 1 < c. Then then exists a nonnegative integer L such
that

(5.50) (Ra,c)
L(t) ∈ [(c0 + a− 1)+, (c0 − a)− + a) + aZ for all t 6∈ Sa,c.

Proof. For a ∈ Q, the conclusion (5.50) with L = a/gcd(a, 1) follows from
Theorem 3.4 and the first conclusion of Theorem 4.1.

For a 6∈ Q and Sa,c 6= ∅, the conclusion (5.50) with L = ba/(1 − a)c holds by
Theorem 3.4 and the second conclusion of Theorem 4.1.

Now it remains to prove (5.50) under the assumption that Sa,c = ∅. Suppose,
on the contrary, there exists t ∈ R such that

(5.51) (Ra,c)
L(t) 6∈ [(c0 + a− 1)+, (c0 − a)− + a) + aZ

for all L ≥ 0. Define x = (xt(λ))λ∈Z by xt(λ) = 1 if λ = (Ra,c)
L(t) − t for some

nonnegative integer L, and xt(λ) = 0 otherwise. Then xt ∈ B as 0 6= (Ra,c)
L(t)−t ∈

Z for all L ≥ 1. Following the argument in Lemma 3.9, we have that

(5.52) Ma,c(t)xt(µ) = 1 for all 0 ≤ µ ∈ aZ,

which implies that Q̃a,c = +∞. This is a contradiction by Lemma 5.6. �

Now we prove Theorem 4.5.
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Proof of Theorem 4.5. We divide three cases to verify (4.6) and (4.7).
Case 1: t 6∈ Sa,c.
In this case, there exists L ≥ 0 by Lemma 5.7 such that

(Ra,c)
n(t) = (Ra,c)

L(t) ∈ [(c0 + a− 1)+, (c0 − a)− + a) + aZ

for all n ≥ L. Thus (4.6) and (4.7) follow.

Case 2: a ∈ Q and t ∈ Sa,c.
In this case, tn = (Ra,c)

n(t) ∈ Sa,c for all n ≥ 0. Following the argument
used in the proof of Theorem 4.1, there exists a nonnegative integer D such that
tD+1 − t ∈ aZ, which in turn implies that

(5.53) (Ra,c)
n+D+1(t)− (Ra,c)

n(t) ∈ aZ

for all n ≥ 0. This together with the periodicity of the function f proves (4.6) and
(4.7).

Case 3: a 6∈ Q and t ∈ Sa,c.
If c0 = 0, then Sa,c = R by Theorem 3.5; and Ra,c(t) = bcc for all t ∈ R. Thus

(4.7) follows from ergodic theorem for irrational rotation [48].
Now we consider c0 > 0. In this case, we further assume that 1 − a < c0 < a

by Theorem 3.5. Define g on the real line by

(5.54) g(Ya,c(t)) = f(t), t ∈ Sa,c,

where Ya,c is given in (1.23). The function g is well-defined as Ya,c is an isomorphism
between the maximal invariant set Sa,c to the line with marks. Furthermore it
follows the periodic of the function f that g is piecewise continuous and satisfies

(5.55) g(u+ Ya,c(a)) = g(u), u ∈ R.

By Theorem 4.4, we then have that

(5.56)

∑n−1
k=0 f((Ra,c)

k(t))

n
=

∑n−1
k=0 g(Ya,c(t) + kYa,c(bcc+ 1))

n
.

Then by (5.54), (5.55), (5.56) and the ergodic theorem for irrational rotation [48],
it remains to prove that

(5.57)
Ya,c(bcc+ 1)

Ya,c(a)
6∈ Q.

Suppose, on the contrary, that
Ya,c(bcc+1)
Ya,c(a) ∈ Q. Let r, s be co-prime nonnegative

integers with

(5.58)
Ya,c(bcc+ 1)

Ya,c(a)
=
r

s
.

Denote the number of holes in the interval [0, bcc+1) and [0, a) byM,N respectively.
Then it follows from (1.23), (5.58) and Theorem 5.2 that

s(bcc+ 1−M(1− a)) = r(a−N(1− a)),

which together with a 6∈ Q implies

(5.59) s(bcc+ 1−M) = −rN and sM = r(N + 1).

Thus

r = s(bcc+ 1).
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Substituting the above equality into (5.58) gives

Ya,c(bcc+ 1) ∈ Ya,c(a)Z,
which is a contradiction as bcc + 1 = Ra,c(0) ∈ Sa,c and bcc + 1 6∈ aZ by a 6∈ Q.
This proves (5.57) and completes the proof of (4.6) and (4.7) for Case 3. �





CHAPTER 6

Maximal Invariant Sets with Rational Time Shifts

In this chapter, we study maximal invariant sets Sa,c for pairs (a, c) satisfying

(6.1) 0 < a < 1 < c, 1− a < c0 < a and a ∈ Q.

Before doing that, let us have some illustrative examples.

Example 6.1. For the pair (a, c) = (13/17, 77/17), black holes of the corre-

sponding transformations Ra,c and R̃a,c are [5/17, 9/17)+13Z/17 and [3/17, 7/17)+
13Z/17 respectively. Applying the transformation Ra,c to the black hole of the

transformation R̃a,c, we obtain that Ra,c([3, 7)/17 + 13Z/17) = ([5, 7) ∪ [10, 12))/17 + 13Z/17,
(Ra,c)

2([3, 7)/17 + 13Z/17) = ([5, 7) ∪ [0, 2))/17 + 13Z/17,
(Ra,c)

3([3, 7)/17 + 13Z/17) = [5, 9)/17 + 13Z/17.

Thus

Sa,c = ([2, 3) ∪ [9, 10) ∪ [12, 13))/17 + 13Z/17

≈ [0.1176, 0.1764) ∪ [0.5294, 0.5882) ∪ [0.7059, 0.7647) + 0.7647Z

consists of intervals of same length 1/17 on the period [0, 13/17) and contains
small left neighborhood of the lattice 13Z/17. On the other hand, its complement
R\Sa,c = ([0, 2) ∪ [3, 9) ∪ [10, 12))/17 + 13Z/17 contains one big gap of size 6/17,
two small gaps of size 2/17 on the period [0, 13/17), and a small gap attached to
the right-hand side of the lattice 13Z/17.

For the pair (a, c) = (13/17, 73/17), the maximal invariant set Sa,c = ([0, 1) ∪
[7, 8) ∪ [10, 11))/17 + 13Z/17 contains a small right neighborhood of the lattice
13Z/17, while its complement R\Sa,c = ([1, 7) ∪ [8, 10) ∪ [11, 13))/17 + 13Z/17
contains a small gap attached to the left-hand side of the lattice 13/17.

For the pair (a, c) = (13/17, 75/17), the maximal invariant set

Sa,c = ([0, 3) ∪ [7, 10) ∪ [10, 13))/17 + 13Z/17

= [0, 0.1765) ∪ [0.4118, 0.5882) ∪ [0.5882, 0.7647) + 0.7647Z

consists of intervals of “same” length 3/17 and contains small left and right neigh-
borhoods of the lattice 13Z/17. On the other hand, its complement R\Sa,c =
[3, 7)/17 + 13Z/17 contains one big gap of size 4/17 and two small gaps of size
“zero” at {0, 10/17} on the period [0, 13/17), c.f. Figure 1.

Example 6.2. For the pair (a, c) = (6/7, 23/7 + δ) with −1/14 < δ < 1/14,

black holes of the corresponding transformations Ra,c and R̃a,c are [1/7 + δ, 2/7 +

57
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δ) + 6Z/7 and [3/7, 4/7) + 6Z/7 respectively. Observe that Ra,c([3/7, 4/7) + 6Z/7) = [0, 1/7) + 6Z/7
(Ra,c)

2([3/7, 4/7) + 6Z/7) = ([4/7, 5/7 + δ) ∪ [1/7 + δ, 1/7)) + 6Z/7
(Ra,c)

3([3/7, 4/7) + 6Z/7) = [1/7 + δ, 2/7 + δ) + 6Z/7

if δ < 0, and
Ra,c([3/7, 4/7) + 6Z/7) = [0, 1/7) + 6Z/7
(Ra,c)

2([3/7, 4/7) + 6Z/7) = [4/7, 5/7) + 6Z/7
(Ra,c)

3([3, 4)/7 + 6Z/7) = [1/7, 2/7) + 6Z/7
(Ra,c)

4([3, 4)/7 + 6Z/7) = (([5/7, 5/7 + δ) ∪ [1/7 + δ, 2/7)) + 6Z/7
(Ra,c)

5([3, 4)/7 + 6Z/7) = [1/7 + δ, 2/7 + δ) + 6Z/7,

if δ ≥ 0. Therefore for the pair (a, c) = (6/7, 23/7 + δ)

Sa,c = [2/7 + δ, 3/7) ∪ [5/7 + δ, 6/7) + 6Z/7

consists of intervals of length 1/7− δ, while its complement R\Sa,c = ([0, 2/7 + δ)∪
[3/7, 5/7 + δ)) + 6Z/7 contains a small left neighborhood of the lattice 6Z/7, c.f.
(1.25) and Figure 1.

For arbitrary a ∈ Q, as shown in Lemma 3.11, the set Sa,c contains at least
one of two intervals [0, ε) and [−ε, 0) whenever it is not an empty set, where ε > 0
is sufficiently small. For the case that the set Sa,c contains a small neighborhood
of the origin, the restriction of its complement R\Sa,c on one period consists of
finitely many left-closed right-open intervals of length 1 − a, cf. Theorem 5.2 and
Example 6.2 with (a, c) = (13/17, 75/17).

Theorem 6.3. Let (a, c) satisfy (6.1). Define

An := (Ra,c)
n([c− c0, c− c0 + 1− a) + aZ), n ≥ 0.

Let N be the smallest nonnegative integers such that

(6.2) AN ∩
(
[c0 + a− 1, c0) + aZ

)
6= ∅.

Assume that [−ε, ε) ⊂ Sa,c for some sufficiently small ε > 0. Then the following
statements hold for gaps An, 0 ≤ n ≤ N .

(i) Their restrictions on one period are intervals of length 1− a,

(6.3) An = (Ra,c)
n(c− c0 + 1− a) + [a− 1, 0) + aZ, 0 ≤ n ≤ N.

(ii) The last gap AN concoides with the black hole [c0 + a− 1, c0) + aZ of the
transformation Ra,c,

(6.4) AN = [c0 + a− 1, c0) + aZ.

(iii) Their closures Ān, 0 ≤ n ≤ N , are mutually disjoint,

(6.5) Ān ∩ Ān′ = ∅ for all 0 ≤ n 6= n′ ≤ N.

(iv) Their union is same as the complement of the maximal invariant set Sa,c,

(6.6) R\Sa,c = ∪Nn=0An.

For the case that only one of two intervals [0, ε) and [−ε, 0) is contained in the
set Sa,c, the restriction of its complement R\Sa,c on the period [0, a) consists of
finitely many gaps of two different sizes, cf. Examples 6.1 and 6.2.
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Theorem 6.4. Let (a, c) satisfy (6.1). Assume that

[−ε, 0) ⊂ Sa,c and [0, ε) ⊂ R\Sa,c
for some positive ε > 0. Define

(6.7) δ = sup{ε ∈ (0, c0 + a− 1], [0, ε) ⊂ R\Sa,c},
An := (Ra,c)

n([c− c0, c− c0 + 1− a+ δ) + aZ), n ≥ 0,

and
Bm := (Ra,c)

m
(
[c0 + a− 1− δ, c0 + a− 1) + aZ

)
, m ≥ 0.

Then there are nonnegative integers N,D with

(6.8) N ≤ D ≤ 1/gcd(a, 1)− 1,

such that periodic gaps An, 0 ≤ n ≤ N , and Bm, 0 ≤ m ≤ D−N , have the following
properties:

(i) Big gaps An, 0 ≤ n ≤ N , have their restrictions on one period being
intervals of length 1− a+ δ,

(6.9) An = (Ra,c)
n(c− c0 + 1− a+ δ) + [a− 1− δ, 0) + aZ, 0 ≤ n ≤ N.

(ii) The last big gap AN concoides with the gap [c0 + a − 1 − δ, c0) + aZ
containing the black hole of the transformation Ra,c,

(6.10) AN = [c0 + a− 1− δ, c0) + aZ.
(iii) Gaps An, 0 ≤ n ≤ N , and Bm, 1 ≤ m ≤ D −N , has their closures being

mutually disjoint,

(6.11)

 Ān ∩ Ān
′ = ∅ for all 0 ≤ n 6= n′ ≤ N,

Ān ∩ B̄m = ∅ for all 0 ≤ n ≤ N and 1 ≤ m ≤ D −N,
B̄m ∩ B̄m′ = ∅ for all 1 ≤ m,m′ ≤ D −N.

(iv) Small gaps Bm, 1 ≤ m ≤ D − N , have their restrictions on [0, a) being
intervals of length δ,

(6.12) Bm = (Ra,c)
m(c0) + [−δ, 0) + aZ, 1 ≤ m ≤ D −N.

(v) The last small gap BD−N is [0, δ) + aZ,

(6.13) BD−N = [0, δ) + aZ.
(vi) The union of big gaps An, 0 ≤ n ≤ N , and small gaps Bm, 1 ≤ m ≤ D−N ,

is the complement of the maximal invariant set Sa,c,

(6.14) R\Sa,c =
(
∪Nn=0 An

)
∪
(
∪D−Nm=1 Bm

)
.

Theorem 6.5. Let (a, c) satisfy (6.1). Assume that

[0, ε) ⊂ Sa,c and [−ε, 0) ⊂ R\Sa,c
for some positive ε > 0. Define

(6.15) δ′ = inf{−ε ∈ [c0 − a, 0), [−ε, 0) ⊂ R\Sa,c},
An := (Ra,c)

n([c− c0 + δ′, c− c0 + 1− a) + aZ), n ≥ 0,

and
Bm := (Ra,c)

m
(
[c0, c0 − δ′) + aZ

)
, m ≥ 0.

Then there are nonnegative integers N and D with N ≤ D ≤ 1/gcd(a, 1)− 1, such
that periodic gaps An, 0 ≤ n ≤ N , and Bm, 0 ≤ m ≤ D − N , have the following
properties:
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(i) An = (Ra,c)
n(c− c0 + 1− a) + [a− 1 + δ′, 0) + aZ, 0 ≤ n ≤ N ;

(ii) AN = [c0 + a− 1, c0 − δ′) + aZ;
(iii) An, 0 ≤ n ≤ N , and Bm, 1 ≤ m ≤ D − N , have their closures being

mutually disjoint;
(iv) Bm = (Ra,c)

m(c0 − δ′) + [δ′, 0) + aZ, 1 ≤ m ≤ D −N ;
(v) BD−N = [δ′, 0) + aZ; and

(vi) R\Sa,c =
(
∪Nn=0 An

)
∪
(
∪D−Nm=1 Bm

)
.

For a ∈ Q, the black hole [c0 + a − 1, c0) + aZ of the transformation Ra,c
and the black hole [c − c0, c − c0 + 1 − a) + aZ of the transformation R̃a,c are
inter-transformable in the sense that

[c− c0, c− c0 + 1− a) + aZ
Ra,c7−→ · · · Ra,c7−→ [c0 + a− 1, c0) + aZ

and

[c0 + a− 1, c0) + aZ
R̃a,c7−→ · · · R̃a,c7−→ [c− c0, c− c0 + 1− a) + aZ,

i.e., there exists a nonnegative integer L such that

(Ra,c)
L([c− c0, c− c0 + 1− a) + aZ) = [c0 + a− 1, c0) + aZ

and
(R̃a,c)

L([c0 + a− 1, c0) + aZ) = [c− c0, c− c0 + 1− a) + aZ,
see (6.62), (6.63) and (6.64). But gaps (Ra,c)

n([c − c0, c − c0 + 1 − a) + aZ), 0 <

n < L, and (R̃a,c)
n([c0 + a − 1, c0) + aZ), 0 < n < L, to connect black holes of

transformations Ra,c and R̃a,c could have overlaps, see Examples 6.1 and 6.2 and
compare Theorem 5.2.

For a 6∈ Q, the complement R\Sa,c of the maximal invariant set Sa,c is composed
of gaps of length 1− a by Theorem 5.2, while for a ∈ Q it may contain gaps of two
different sizes by Theorems 6.3, 6.4 and 6.5. For a 6∈ Q, the maximal invariant set
Sa,c is the union of intervals of different size (see Example 5.1), while we show in
the next theorem that for a ∈ Q, it is union of intervals of same size.

Theorem 6.6. Let (a, c) satisfy (6.1). Assume that Sa,c 6= ∅. Let

(6.16) Ga,c := {(Ra,c)n(c− c0 + 1− a+ δ)}Dn=0 + aZ
where

δ = inf{ε ≥ 0, c− c0 + 1− a+ ε ∈ Sa,c}
and D is the smallest nonnegative integer such that

(6.17) (Ra,c)
D+1(c− c0 + 1− a+ δ)− (c− c0 + 1− a+ δ) ∈ aZ.

Then the maximal invariant set Sa,c is the union of mutually disjoint intervals of
same size,

(6.18) Sa,c = Ga,c + [0, h),

and

(6.19) (α+ [0, h)) ∩ (β + [0, h)) = ∅ for all distinct α, β ∈ Ga,c,
where h > 0.

By Theorems 4.4 and 6.6, we obtain the following cyclic group structure for
the set Ka,c of marks on the line, i.e., images of gaps in the complement of the set
Sa,c under the isomorphism Ya,c in (1.23).
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Corollary 6.7. Let (a, c) satisfy (6.1). Assume that Sa,c 6= ∅. Then the
following statements hold.

(i) If Sa,c contains small neighborhood of the origin, then

(6.20) Ka,c = {(n+ 1)Ya,c(c− c0 + 1− a)}Nn=0 + Ya,c(a)Z,

where N is the nonnegative integer in Theorem 6.3.
(ii) If either [0, ε) or [−ε, 0) is contained in R\Sa,c for sufficiently small ε > 0,

then the set Ka,c of marks on the line form a finite cyclic group generated
by Ya,c(c− c0 + 1− a) + Ya,c(a)Z. Moreover,

(6.21) Ka,c = gcd
(
Ya,c(c− c0 + 1− a), Ya,c(a)

)
Z =

Ya,c(a)

D + 1
Z,

where D is the nonnegative integer in Theorems 6.4 and 6.5.

After performing the holes-removal surgery, the maximal invariant set Sa,c
becomes the real line with marks, and the set of marks form a cyclic group. This
suggests that for the case that a ∈ Q we can start from a cyclic group, put marks on
the real line using elements in that group, and then expand the line with marks by
inserting holes of appropriate size at every location of marks to recover the maximal
invariant set Sa,c. Using the above augmentation operation, we can characterize
the non-triviality of the maximal invariant set Sa,c via four nonnegative integer
parameters di, 1 ≤ i ≤ 4, for a ∈ Q.

Theorem 6.8. Let (a, c) satisfy (6.1) and

(6.22) 0 < c1 := bcc − b(bcc/a)ca < 2a− 1, bcc ≥ 2 and c ∈ gcd(a, 1)Z.

Then Sa,c 6= ∅ if and only if the pair (a, c) of positive numbers is one of the following
three types:

1) c0 < gcd(c1, a).
2) 1− c0 < gcd(c1 + 1, a).
3) There exist nonnegative integers d1, d2, d3, d4 such that

(6.23) 0 < Bd := a− (d1 + d2 + 1)(1− a) ∈ (D + 1)gcd(a, 1)Z;

(6.24) (D + 1)c1 + (d1 + d3 + 1)(1− a) ∈ aZ;

(6.25) (d1 +d2 + 1)((D+ 1)c1 + (d1 +d3 + 1)(1−a))− (d1 +d3 + 1)a ∈ (D+ 1)aZ;

(6.26) c0 = (d1 + 1)(1− a) + (d1 + d3 + 1)Bd/(D + 1) + γ

for some γ ∈ (−min(Bd/(D + 1), a− c0),min(Bd/(D + 1), c0 + 1− a));

(6.27) gcd((D + 1)c1 + (d1 + d3 + 1)(1− a), (D + 1)a) = a;

and

(6.28) #Eda,c = d1,

where D = d1 + d2 + d3 + d4 + 1 and

Eda,c =
{
n ∈ [1, d1 + d2 + 1]

∣∣ n((D + 1)c1 + (d1 + d3 + 1)(1− a))

∈ (0, (d1 + d3 + 1)a) + (D + 1)aZ
}
.(6.29)
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In Theorem 6.8, we insert a gap of large size at the origin for the first two cases,
while a gap of small size is inserted at the origin for the third case. For the first two
cases, no gaps of small size have been inserted at any location of marks and the size
of gaps inserted is always c0 for the first case and 1 − c0 for the second case. For
the third case, the nonnegative integer parameters d1, d2 are indeed the numbers
of gaps of size 1− a+ |γ| inserted in [0, c0 + a− 1) and [c0, a) respectively, and the
nonnegative integer parameters d3, d4 are the numbers of gaps of size |γ| inserted
in [0, c0 + a− 1) and [c0, a), excluding the one inserted at the origin, respectively.

Recall that for c 6∈ gcd(a, 1)Z, G(χ[0,c), aZ × Z) is a Gabor frame if and only
if both G(χ[0,bc/gcd(a,1)cgcd(a,1)), aZ×Z) and G(χ[0,bc/gcd(a,1)+1cgcd(a,1)), aZ×Z) are
Gabor frames [30, Section 3.3.6.1]. Then for pairs (a, c) satisfying bcc ≥ 2, 0 < c1 <
2a−1 and (5.1), we can apply Theorem 6.8 and the above observation to determine
whether the corresponding Gabor systems G(χ[0,c), aZ × Z) is a frame for L2, see
Theorem 7.5 for details.

This chapter is organized as follows. In Section 6.1, we consider maximal
invariant sets Sa,c containing a small neighborhood of the origin and prove Theorem
6.3. In Section 6.2, we discuss maximal invariant sets Sa,c containing a small
half neighborhood of the origin and prove Theorems 6.4 and 6.5. In Section 6.3,
we consider the group structure of the set of marks and prove Theorem 6.6 and
Corollary 6.7. Finally in Section 6.4, we parameterize maximal invariant sets Sa,c
and prove Theorem 6.8.

6.1. Maximal invariant sets with rational time shifts I

In this section, we prove Theorem 6.3.

Proof of Theorem 6.3. We follow the arguments used in the proof of The-
orem 5.2. Write a = p/q for some co-prime integers p and q. By Proposition 3.6,
the holes An, n ≥ 0, have the following properties:

(6.30) An ∩ Sa,c = ∅, n ≥ 0,

and

(6.31) Am ∩ An ⊂ [c0 + a− 1, c0) + aZ whenever m 6= n.

Following the argument used in the proof of Theorem 5.2, a nonnegative integer N
satisfying (6.2) exists and satisfies

N ≤ a/(1− a)− 1.

From (6.2) and (6.31) it follows that

(6.32) An ∩
(
[c0 + a− 1, c0) + aZ

)
= ∅ for all 0 ≤ n < N.

By (6.30), (6.32) and Theorem 3.4, the proof of (6.3), (6.4) and (6.5) reduces to
showing that

(6.33) An = [bn + a− 1, bn) + aZ

for some bn ∈ (0, a] with

(6.34) bn − (Ra,c)
n(c− c0 + 1− a) ∈ aZ,

and

(6.35) [bn + a− 1− ε0, bn + a− 1) ∪ [bn, bn + ε0) + aZ ⊂ Sa,c, 0 ≤ n ≤ N
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for some sufficiently small ε0 > 0.

Proof of (6.33), (6.34) and (6.35). Observe that

[c− c0 − ε0, c− c0) ⊂ Sa,c and [c− c0 + 1− a, c− c0 + 1− a+ ε0) ⊂ Sa,c
because for sufficiently small ε0 > 0,

[c− c0 − ε0, c− c0) = Ra,c[−ε0, 0) ⊂ Ra,cSa,c = Sa,c
and

[c− c0 + 1− a, c− c0 + 1− a+ ε0) = Ra,c([0, ε0) + a) ⊂ Sa,c
where the last inclusion holds as Sa,c is the maximal invariant set under the trans-
formation Ra,c by Theorem 3.4. Then the conclusions (6.33), (6.34) and (6.35)
holds for n = 0. Hence the proof is finished if N = 0 and we may assume that
N ≥ 1 from now on. Inductively we assume that the conclusions (6.33), (6.34) and
(6.35) hold for all n ≤ k ≤ N −1. By the inductive hypothesis and Proposition 3.6,

(6.36) [bk + a− 1, bk) ⊂ [ε0, c0 + a− 1− ε0) ∪ [c0 + ε0, a− ε0),

which implies that (6.33) for n = k + 1. Applying (6.36) again and using the
conclusion (6.33) for n = k + 1, we have that

[bk+1 + a− 1− ε0, bk+1 + a− 1) + aZ = Ra,c([bk + a− 1− ε0, bk + a− 1) + aZ)

and
[bk+1, bk+1 + ε0) + aZ = Ra,c([bk, bk + ε0) + aZ).

The above equalities together with the inductive hypothesis and the invariance of
the set Sa,c given in Theorem 3.4 prove (6.34) and (6.35) for n = k + 1. This
completes the inductive proof (hence (6.3), (6.4) and (6.5) are proved). �

We can follow the argument used in the proof of Theorem 5.2 to prove (6.6),
and then leave the details to the reader. �

6.2. Maximal invariant sets with rational time shifts II

In this section, we will prove Theorems 6.4 and 6.5.

Proof of Theorem 6.4. Let δ ∈ (0, c0 + a − 1] be as in (6.7). As [0, δ)
is the maximal interval contained in the complement of the set Sa,c, there exists
sufficiently small ε0 > 0 such that

(6.37) [δ, δ + ε0) ⊂ Sa,c provided that δ < c0 + a− 1.

By Lemma 3.11 and the assumption about the set Sa,c around the neighborhood
of the origin, we have that

(6.38) [−ε0, 0) ⊂ Sa,c and [c0, c0 + ε0) ⊂ Sa,c
for some sufficiently small ε0 > 0. Therefore

(6.39) [c− c0 − ε0, c− c0) = Ra,c[−ε0, 0) ⊂ Ra,cSa,c = Sa,c
by (1.15), (6.38) and Theorem 3.4;

[c− c0 + 1− a+ δ, c− c0 + 1− a+ δ + ε0)

=

{
Ra,c[δ, δ + ε0)− a if 0 < δ < c0 + a− 1
Ra,c[c0, c0 + ε0) if δ = c0 + a− 1

⊂ Ra,cSa,c = Sa,c(6.40)
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by (1.15), (6.37), (6.38) and Theorem 3.4; and

[c− c0, c− c0 + 1− a+ δ) ∩ Sa,c
=

(
Ra,c[−a, δ − a) ∪ [c− c0, c− c0 + 1− a)

)
∩ Sa,c

= Ra,c([−a, δ − a) ∩ Sa,c) = ∅(6.41)

by (1.15), Theorem 3.4 and the assumption [0, δ) ⊂ [0, c0 + a− 1). Thus [c− c0, c−
c0 +1−a+δ) is a gap (i.e., a left-closed right-open interval with empty intersection
with Sa,c) with length 1− a+ δ and boundary intervals of length ε0 at each side in
the maximal invariant set Sa,c.

Let N be the smallest nonnegative integer such that

(6.42) (Ra,c)
N ([c− c0, c− c0 + 1− a+ δ) + aZ) ∩ ([c0 + a− 1, c0) + aZ) 6= ∅

if it exists and N = +∞ otherwise.
At first we verify (6.9) and (6.10) about big gaps An, 0 ≤ n ≤ N . For N = 0,

the conclusions (6.9) and (6.10) follows from (6.39), (6.40) and (6.41). So we may
assume that 1 ≤ N ≤ ∞. Thus

(6.43) An ∩ ([c0 + a− 1, c0) + aZ) = ∅, 0 ≤ n < N.

We claim that An, 0 ≤ n < N , have the following properties for 0 ≤ n < N :

(6.44) An = [bn + a− 1− δ, bn) + aZ
for some bn ∈ (0, a] satisfying

(6.45) [bn + a− 1− δ − ε0, bn + ε0) ⊂ [0, c0 + a− b) ∪ [c0, a),

(6.46) ([bn + a− 1− δ, bn) + aZ) ∩ Sa,c = ∅,
and

(6.47) [bn + a− 1− δ − ε0, bn + a− 1− δ) ∪ [bn, bn + ε0) + aZ ⊂ Sa,c.

Proof of (6.44), (6.45), (6.46) and (6.47). For n = 0, write

(Ra,c)
n([c− c0, c− c0 + 1− a+ δ) + aZ) = [c− c0, c− c0 + 1− a+ δ) + aZ

= [b0 + a− 1− δ, b0) + aZ
with b0 ∈ (0, a]. Then the conclusions (6.44), (6.45), (6.46) and (6.47) for n = 0
follow from (6.39), (6.40), (6.41), (6.43) and the empty intersection property in
Theorem 3.4. Inductively we assume that the conclusions (6.44), (6.45), (6.46) and
(6.47) hold for all 0 ≤ n ≤ k < N − 1. Then for n = k + 1,

(Ra,c)
n([c− c0, c− c0 + 1− a+ δ) + aZ)

= Ra,c[bk + a− 1− δ, bk) + aZ (by (6.44) with n = k)

= [Ra,c(bk + a− 1− δ), Ra,c(bk + a− 1− δ) + 1− a+ δ) + aZ
(by (6.45) with n = k)

=: [bk+1 + a− 1− δ, bk+1) + aZ
for some bk+1 ∈ (0, a],

([bk+1 + a− 1− δ, bk+1) + aZ) ∩ Sa,c
= Ra,c

(
([bk + a− 1− δ, bk) + aZ) ∩ Sa,c

)
(by (1.17), (6.43), and (6.45) for n = k)

= ∅,
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[bk+1 + a− 1− δ − ε0, bk+1 + a− 1− δ) + aZ
= [Ra,c(bk + a− 1− δ)− ε0, Ra,c(bk + a− 1− δ)) + aZ
= Ra,c[bk + a− 1− δ − ε0, bk + a− 1− δ) + aZ

(by (6.46) with n = k)

= (Ra,c)
k+1[c− c0 − ε0, c− c0) + aZ ⊂ Sa,c (by (6.39))

and similarly

[bk+1, bk+1 + ε0) + aZ
= (Ra,c)

k+1[c− c0 + 1− a+ δ, c− c0 + 1− a+ δ + ε0) + aZ ⊂ Sa,c

by (6.40), (6.44), (6.45) and (6.47) for n = k, the definition (1.15) of the trans-
formation Ra,c, and the invariance property (3.6) in Theorem 3.4. Those together
with (6.43) completes the inductive proof of (6.44), (6.45), (6.46), and (6.47). �

By (6.43) and Proposition 3.6, (Ra,c)
n([c−c0, c−c0+1−a)+aZ), 0 ≤ n ≤ N , are

mutually disjoint. This together with (6.44), (6.45), (6.46), (6.47) and the inclusion
(Ra,c)

n([c− c0, c− c0 + 1− a) + aZ) ⊂ An, 0 ≤ n ≤ N , shows that An, 0 ≤ n < N ,
are mutually disjoint, i.e.,

(6.48) An ∩ An′ = ∅ for all 0 ≤ n 6= n′ < N.

This together with (6.44) implies that

(6.49) 1 ≤ N ≤ 1/gcd(a, 1)− 1.

Applying (6.44) and (6.47), we obtain (6.9) immediately by inductive proof. Next
we can show that (6.10) holds by (6.38), (6.42), (6.44) and (6.45), because (Ra,c)

N [c−
c0, c − c0 + 1 − a + δ) is a periodic set with its restriction on one period being an
interval of length 1− a+ δ by using (6.44) and (6.45) with n = N − 1, and its right
neighborhood (Ra,c)

N ([c−c0 +1−a+δ, c−c0 +1−a+δ+ ε0)+aZ) is contained in
Sa,c by (6.47), while [c0, c0 + ε0) ⊂ Sa,c by (6.38) and Sa,c has empty intersection
with the black hole [c0 + a− 1, c0) + aZ.

Let D be the minimal nonnegative integer such that

(6.50) (Ra,c)
D−N ([c0 + a− 1− δ, c0 + a− 1) + aZ) ∩ ([0, δ) + aZ) 6= ∅

if it exists and D = +∞ otherwise.
Secondly we divide three cases to verify (6.12) and (6.13) for small gaps Bm, 0 ≤

m ≤ D −N .

Case 1: D = N .
In this case, the conclusions (6.12) and (6.13) hold as

[−ε0, 0) ∪ [c0 − a+ 1− δ − ε0, c0 + a− 1− δ) ⊂ Sa,c

for sufficiently small ε0 > 0 by (6.38) and (6.47); and [0, δ) ⊂ R\Sa,c by the
assumption.

Case 2: D = N + 1.
In this case,

(6.51) Ra,c[c0 + a− 1− δ, c0 + a− 1) + aZ = [b̃1 − δ, b̃1) + aZ
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for some b̃1 ∈ (0, a] with b̃1− δ−Ra,c(c0 +a−1− δ) ∈ aZ, since [c0 +a−1− δ, c0 +
a− 1) ⊂ [0, c0 + a− 1). Recall that

[c0 + a− 1− δ − ε0, c0 + a− b− δ) ∪ [c0, c0 + ε0) ⊂ Sa,c
by (6.38) and (6.47). We then obtain from (6.51) and Theorem 3.4 that

(6.52) [b̃1 − δ − ε0, b̃1 − δ) ⊂ Sa,c and [b̃1, b̃1 + ε0) ⊂ Sa,c.

Therefore [b̃1 − δ, b̃1) is a gap of length δ with boundary intervals of length ε0 at
each side in the set Sa,c. Thus

[b̃1 − δ, b̃1) ∩ ([c0 + a− 1, c0) + aZ) = ∅

as the gap containing [c0 +a− 1, c0) is (Ra,c)
N [c− c0, c− c0 + 1−a+ δ) +aZ which

has length 1 − a + δ and boundary intervals of length ε0 at each side in Sa,c. By
the definition of the nonnegative integer D,

([b̃1 − δ, b̃1) + aZ) ∩ ([0, δ) + aZ) 6= ∅.

This together with (6.38), (6.52) and [0, δ) ∈ R\Sa,c implies that b̃1 = δ and

(6.53) Ra,c[c0 + a− b− δ, c0 + a− b) + aZ = [0, δ) + aZ.

The conclusion (6.12) and (6.13) for D = N + 1 follow from (6.51) and (6.53).

Case 3: N + 2 ≤ D ≤ +∞.
In this case, following the arguments used to prove (6.44), (6.45), (6.46) and

(6.47), and the conclusions (6.12) and (6.13) for D = N + 1, we may inductively
show that

(6.54) Bm = [b̃m − δ, b̃m) + aZ, 1 ≤ m < D −N,

for some b̃m ∈ (0, a] with

(6.55) [b̃m − δ − ε0, b̃m + ε0) ⊂ [0, c0 + a− 1) ∪ [c0, a),

(6.56) Bm ∩ Sa,c = ∅, 1 ≤ m < D −N,

and

(6.57) [b̃m − δ − ε0, b̃m − δ) ∪ [b̃m, b̃m + ε0) ⊂ Sa,c.

Using (6.44), (6.47), (6.50), (6.54) and (6.57), we obtain that

(6.58) Bm ∩ ([c0 + a− 1, c0) + aZ) = ∅ for all 0 ≤ m < D −N.

Next we prove that

(6.59) Bm ∩ Bm′ = ∅ for all 0 ≤ m 6= m′ < D −N.

Suppose, on the contrary, that Bm1
∩ Bm2

6= ∅ for some 0 ≤ m1 < m2 < D − N .
Then

Bm1
= Bm2

by (6.54), (6.56), and (6.57). This, together with (6.43), (6.58) and the one-to-one
correspondence of the transformation Ra,c on the complement of [c0+a−1, c0)+aZ,
leads to

(Ra,c)
m2−m1([c−c0, c−c0 +min(δ, 1−a))+aZ) = [c−c0, c−c0 +min(δ, 1−a))+aZ,

which contradicts to the range property (1.18). This proves (6.48).
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Combining (6.54) and (6.48), we conclude that the restriction of Bm, 0 ≤ m <
D−N , on one period [0, a) are mutually disjoint interval of length δ. This implies
that

D < +∞.
Applying (6.54) with m = D − N − 1, and recalling the definition of the integer
D <∞ we obtain that

(6.60) BD−N + aZ = [0, δ) + aZ

and

(6.61) [−ε0, 0) ∪ [δ, δ + ε0) ∈ Sa,c.

Therefore the conclusions (6.12) and (6.13) for N + 2 ≤ D ≤ ∞ follow from (6.54),
(6.60) and (6.61).

In the third place we prove the mutually disjointness property (6.11) for periodic
gaps An, 0 ≤ n ≤ N , and Bm, 1 ≤ m ≤ D − N . Observe that the big gaps
An, 0 ≤ n ≤ N , have their restrictions on one period being intervals of length
1 − a + δ by (6.10), (6.38), (6.40), (6.44), (6.45), (6.46), (6.47) and (6.48). Then
their mutually disjointness follows from (6.42) and (6.48).

Observe that small gaps Bm, 1 ≤ m ≤ D − N , have their restrictions on one
period being intervals of length δ by (6.54), (6.55), (6.57), (6.60) and (6.61). Recall
that big gaps An, 0 ≤ n ≤ N , have their restrictions on one period being intervals
of length 1 − a + δ. Therefore small gaps Bm, 1 ≤ m ≤ D − N , and big gaps
An, 0 ≤ n ≤ N , have their closure being disjoint.

Recall that small gaps Bm, 1 ≤ n ≤ D−N , have their restrictions on one period
being intervals of length δ. This together with (6.59) and (6.60) proves the mutual
disjointness of the closure of small gaps Bm, 1 ≤ n ≤ D −N .

Next we establish the upper bound estimate (6.8) for D. For D = N , the upper
bound estimate (6.8) has been given in (6.49). For D ≥ N + 1, we observe that

(Ra,c)
n([c− c0, c− c0 + min(δ, 1− a)) + aZ) ⊂

{
An if 0 ≤ n ≤ N
Bn−N if N + 1 ≤ n ≤ D,

which implies that (Ra,c)
n([c − c0, c − c0 + min(δ, 1 − a)) + aZ), 0 ≤ n ≤ D, are

mutually disjoint. Also observe that (Ra,c)
n([c−c0, c−c0 +min(δ, 1−a))+aZ), 0 ≤

n ≤ D, have their restriction on one period being intervals with left endpoints in
gcd(a, 1)Z. Therefore D + 1 ≤ 1/gcd(a, 1) and (6.8) follows.

Finally we prove (6.14). Write δ = l0(1 − a) + δ̃ for some 0 ≤ l0 ∈ Z and

δ̃ ∈ (0, 1− a]. From (6.9)–(6.13), we obtain that

(Ra,c)
n([c− c0, c− c0 + 1− a) + aZ)

=



bn−l̃(D+1) + l̃(1− a)− δ + [a− 1, 0) + aZ
if 0 ≤ n− l̃(D + 1) ≤ N for some 0 ≤ l̃ ≤ l0,

b̃n−l̃(D+1)−N + l̃(1− a)− δ + [a− 1, 0) + aZ
if N + 1 ≤ n− l̃(D + 1) ≤ D for some 0 ≤ l̃ ≤ l − 1,

((b̃n−l(D+1)−N + [−δ̃, 0)) ∪ [c0 + a− 1, c0 − δ̃)) + aZ
if N + 1 ≤ n− l(D + 1) ≤ D,

((bn−(l+1)(D+1) + [−δ̃, 0)) ∪ [c0 + a− 1, c0 − δ̃)) + aZ
if 0 ≤ n− (l + 1)(D + 1) ≤ N,

(6.62)



68 6. MAXIMAL INVARIANT SETS WITH RATIONAL TIME SHIFTS

where

bn = (Ra,c)
n(c− c0 + 1− a+ δ), 0 ≤ n ≤ N,

and

b̃m = (Ra,c)
m(c0), 1 ≤ m ≤ D −N.

Therefore

(∪Nn=0An) ∪ (∪D−Nm=1 Bm) = ∪Dn=0(Ra,c)
n([c− c0, c− c0 + 1− a+ δ) + aZ)

= ∪(l0+1)(D+1)+N
n=0 (Ra,c)

n[c− c0, c− c0 + 1− a) + aZ,(6.63)

and

(6.64) (Ra,c)
(l0+1)(D+1)+N [c− c0, c− c0 + 1− a) + aZ = [c0 + a− 1, c0) + aZ.

Hence the union of the gaps An, 0 ≤ n ≤ N , and Bm, 1 ≤ m ≤ D −N , is invariant
under the transformation Ra,c and contains the black holes of the transformations

Ra,c and R̃a,c. It also indicates that any points not in that union will not be in

that union under the transformation Ra,c. Thus R\((∪Nn=0An) ∪ (∪D−Nm=1 Bm)) is
invariant under the transformation Ra,c. This together with Theorem 3.4 proves
(6.14). �

We finish this section with the proof of Theorem 6.5.

Proof of Theorem 6.5. We follow the argument used in the proof of Theo-
rem 6.4 with δ,N,D replaced by δ′ in (6.15), the smallest nonnegative integer such
that

(Ra,c)
N ([c− c0 + δ′, c− c0 + 1− a) + aZ) ∩ ([c0 + a− 1, c0) + aZ) 6= ∅,

and the minimal nonnegative integer such that

(Ra,c)
D−N ([c0, c0 − δ′) + aZ) ∩ ([δ′, 0) + aZ) 6= ∅

respectively. We leave the detailed arguments to the reader. �

6.3. Cyclic group structure of maximal invariant sets

In this section, we prove Theorem 6.6 and Corollary 6.7.

Proof of Theorem 6.6. We divide into three cases to establish (6.18) and
(6.19).

Case 1: The maximal invariant set Sa,c contains a small neighborhood of the
origin.

In this case, δ = 0 as

(6.65) (Ra,c)
n(c− c0 + 1− a) + [0, ε) ∈ Sa,c, n ≥ 0,

by (6.3), (6.6), Theorem 3.4 and the assumption on the neighborhood of the origin.
Observe that

(Ra,c)
n(c− c0 + 1− a) ∈ gad(a, 1)Z for all n ≥ 0

by a ∈ Q. Then there exist two distinct integers m,n ≥ 0 such that

(Ra,c)
m(c− c0 + 1− a)− (Ra,c)

n(c− c0 + 1− a) ∈ aZ.
This together with (1.17), (6.65) and Theorem 3.4 implies that

(Ra,c)
|m−n|(c− c0 + 1− a)− (c− c0 + 1− a) ∈ aZ.
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Then the existence of a nonnegative integer D satisfying (6.17) follows and the set
Ga,c in (6.16) is well-defined. Furthermore,

(Ra,c)
n(c− c0 + 1− a)− (Ra,c)

m(c− c0 + 1− a) 6∈ aZ for all 0 ≤ n 6= m ≤ D,
and

(6.66) N ≤ D ≤ 1/gcd(a, 1)− 1

by (6.3) and (6.5), where N is given in Theorem 3.4.
By (6.6) and (6.65), the restriction of the maximal invariant set Sa,c on [0, a)

is finitely union of finitely many left-closed right-open intervals. More precisely,
Sa,c ∩ [0, a) is union of mutually disjoint intervals [bk, bk + hk), 0 ≤ k ≤ D,

(6.67) Sa,c ∩ [0, a) = ∪Dk=0[bk, bk + hk)

and

(6.68) [bk, bk + hk) ∩ [bk′ , bk′ + hk′) = ∅ if k 6= k′,

where
bk ∈ ((Ra,c)

k(c− c0 + 1− a) + aZ) ∩ [0, a)

and bk + hk is chosen so that either

(6.69) bk + hk ∈ ∪Dn=N+1(Ra,c)
n(c− c0 + 1− a) + aZ

or

(6.70) bk + hk + [0, 1− a) ⊂ ∪Nn=0An.
Therefore the proof of (6.18) and (6.19) reduces to showing that

(6.71) hn = h0, 1 ≤ n ≤ D.
Suppose on the contrary that hm 6= h0 for some 1 ≤ m ≤ D. Then either hm > h0

or hm < h0. For the case that hm > h0,

(6.72) [bm, bm + h0] ⊂ [bm, bm + hm) ⊂ Sa,c.
Observe that

(6.73) (R̃a,c)
m([bm, bm + h0] + aZ) = [b0, b0 + h0] + aZ ⊂ Sa,c

by (6.72) and Theorem 3.4. This together with (6.69) and (6.70) with k = 0 implies
that the existence of a unique N ≤ m′ ≤ D such that

b0 + h0 ∈ (Ra,c)
m′(c− c0 + 1− a) + aZ.

Applying (Ra,c)
m leads to

bm + h0 ∈ (Ra,c)
m(b0 + h0) + aZ = (Ra,c)

m′′(c− c0 + 1− a) + aZ,
where 0 ≤ m′′ ≤ D is the unique integer with m+m′−m′′ ∈ DZ. Hence [bm, bm +
hm) ∩ [bm′′ , bm′′ + hm′′) has nonempty intersection, which contradicts to (6.68).
Therefore

hn ≤ h0 for all 1 ≤ n ≤ D.
Using similarly argument, we can prove that

hn ≥ h0 for all 1 ≤ n ≤ D.
Hence (6.71) is established, and (6.18) and (6.19) are proved.

We remark that

h =
a− (N + 1)(1− a)

D + 1
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because
|[0, a)\Sa,c| = (N + 1)(1− a)

by (6.3), (6.5), and (6.6); and

|Sa,c ∩ [0, a)| =
D∑
n=0

hn = (D + 1)h0

by (6.67), (6.68) and (6.71).

Case 2: The maximal invariant set Sa,c and its complement R\Sa,c contain a
small left and right neighborhood of the origin respectively.

In this case, δ is the same as the one in (6.7) and D satisfying (6.17) is the
same as the one in Theorem 6.4. Thus Ga,c is well-defined. Let N be as Theorem
6.4. Set

An = (Ra,c)
n([c− c0, c− c0 + 1− a+ δ) + aZ), n ≥ 0

and
Bm = (Ra,c)

m([c0 + a− 1− δ, c0 + a− 1) + aZ),m ≥ 0.

Recall that the mutually disjoint big gaps An, 0 ≤ n ≤ N , and small gaps Bm, 1 ≤
m ≤ D − N , have neighborhood of length ε0 at each side are contained in the
maximal invariant set Sa,c. Therefore

Sa,c =
(
∪Nn=0 ([bn, bn + hn) + aZ)

)
∪
(
∪D−Nm=1 ([b̃m, b̃m + h̃m) + aZ)

)
,

where hn, 0 ≤ n ≤ N , and h̃m, 1 ≤ m ≤ D −N , are so chosen that

[bn + hn, bn + hn + ε0) + aZ ⊂ R\Sa,c, 0 ≤ n ≤ N
and

[b̃m + h̃m, b̃m + h̃m + ε0) + aZ ⊂ R\Sa,c, 1 ≤ m ≤ D −N
for sufficiently small ε0 > 0. As [0, δ)+aZ and [c0+a−1, c0)+aZ are contained in the
union of the mutually disjoint gaps, each of the intervals [bn, bn+hn)+aZ, 0 ≤ n ≤
N , and [b̃m, b̃m+ h̃m)+aZ, 1 ≤ m ≤ D−N , is contained either in [0, c0 +a−1)+aZ
or in [c0, a)+aZ, and its boundary interval of length ε0 at each side is not contained
in the set Sa,c. Recall that

bn − (Ra,c)
n(c− c0 + b− a+ δ) ∈ aZ, 0 ≤ n ≤ N,

and
b̃m − (Ra,c)

m+N (c− c0 + 1− a+ δ) ∈ aZ, 1 ≤ m ≤ D −N
by Theorem 6.4. Hence the interval [bn, bn + hn) + aZ = (Ra,c)

n[b0, b0 + h0) + aZ
and [b̃m, b̃m + h̃m) + aZ = (Ra,c)

m+N1 [b0, b0 + h0) + aZ. This together with the
measure-preserving property (1.19) implies that the length of intervals contained
in the set Sa,c are the same, i.e.,

hn = h̃m = h for all 0 ≤ n ≤ N and 1 ≤ m ≤ D −N
where h > 0. This completes the proof of (6.18) and (6.19) in Case 2. We remark
that

h =
a− (N + 1)(1− a)

D + 1
− δ

because the measure of the gaps contained in [0, a) is equal to (N + 1)(1− a+ δ) +
(D −N)δ, while the measure of the intervals contained in Sa,c ∩ [0, a) is (D + 1)h.

Case 3: The maximal invariant set Sa,c and its complement R\Sa,c contain a
small right and left neighborhood of the origin respectively.



6.3. CYCLIC GROUP STRUCTURE OF MAXIMAL INVARIANT SETS 71

In this case, δ = 0 and D satisfying (6.17) is the same as the one in Theorem
6.5. Following the argument used in Case 2, with applying Theorem 6.4 replaced
by using Theorem 6.5, we can prove (6.18) and (6.19) in Case 3. Also we have

h =
a− (N + 1)(1− a)

D + 1
+ δ′

where N, δ′ are given in Theorem 6.5. �

Proof of Corollary 6.7. (i): In this case, it follows from Theorem 6.3 that
the complement of the maximal invariant set Sa,c is the union of gaps (Ra,c)

n(c−
c0 + 1−a) + [a−1, 0), 0 ≤ n ≤ N , which have their closure being mutually disjoint.
Therefore

Ka,c = {Ya,c((Ra,c)n(c− c0 + 1− a)), 0 ≤ n ≤ N}+ Ya,c(a)Z
= {(n+ 1)Ya,c(c− c0 + 1− a)}Nn=0 + aZ,

where the last equality follows from Theorem 4.4, and hence (6.20) is proved.

(ii): We divide our proof into two cases.

Case 1: The maximal invariant set Sa,c and its complement R\Sa,c contain a
small left and right neighborhood of the origin respectively.

Let D and δ be as in Theorem 6.4. Then

Ka,c = {Ya,c((Ra,c)n(c− c0 + 1− a+ δ)), 0 ≤ n ≤ D}+ Ya,c(a)Z

by Theorem 6.4. This, together with Theorem 4.4 and the fact that [0, δ) is con-
tained in R\Sa,c, implies that

Ka,c = Ya,c(Ra,c(δ)− a) + {nYa,c(c− c0 + 1− a)|0 ≤ n ≤ D}+ Ya,c(a)Z
= {nYa,c(c− c0 + 1− a)| 1 ≤ n ≤ D + 1}+ Ya,c(a)Z.(6.74)

On the other hand,

(Ra,c)
n(c− c0 + 1− a+ δ) 6∈ c− c0 + 1− a+ δ + aZ

for all 1 ≤ n ≤ D and

(Ra,c)
D+1(c− c0 + 1− a+ δ) ∈ c− c0 + 1− a+ δ + aZ

by Theorem 6.4. This together with Theorem 4.4 leads to

(6.75) nYa,c(c− c0 + 1− a) 6∈ Ya,c(a)Z, 1 ≤ n ≤ D.

and

(6.76) (D + 1)Ya,c(c− c0 + 1− a) ∈ Ya,c(a)Z

Combining (6.74), (6.75) and (6.76) proves (6.21).

Case 2: The maximal invariant set Sa,c and its complement R\Sa,c contain a
small right and left neighborhood of the origin respectively.

To prove (6.21), we can follow the argument used in the proof of Case 1 with δ
and Theorem 6.4 replaced by 0 and Theorem 6.5 respectively. We omit the details
here. �
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6.4. Nontriviality of maximal invariant sets with rational time shifts

In this section, we prove Theorem 6.8. The necessity of Theorem 6.8 follows
essentially from Theorems 6.3, 6.4, 6.5 and 6.6. We examine five cases to verify
the sufficiency. For the case 1) c0 < gcd(c1, a), we show that [c0, gcd(c1, a)) +
gcd(c1, a)Z is an invariant set under the transformation Ra,c and it has empty

intersection with black holes of transformations Ra,c and R̃a,c. This together with
the maximality of the set Sa,c implies that Sa,c 6= ∅. Similarly for the case 2)
1− c0 < gcd(a, c1 + 1), we verify that [0, gcd(a, c1 + 1)− 1 + c0) + gcd(a, c1 + 1)Z is
invariant under the transformation Ra,c and it has empty intersection with black

holes of transformations Ra,c and R̃a,c. For the case 3), we start from putting
marks at hZ and insert gaps of size 1−a+ |γ| at marks located at lmh+NhZ, 1 ≤
l ≤ d1 +d2 + 1, and |γ| at other marked locations, where D = d1 +d2 +d3 +d4 + 1,
h = (a−(d1+d2+1)(1−a))/(D+1)−|γ| and m = ((D+1)c1+(d1+d3+1)(1−a))/a.
We then show that the gaps just inserted form a set that is invariant under the
transformation Ra,c and that contains black holes of the transformations R̃a,c and
Ra,c.

Proof of Theorem 6.8. (=⇒) By Lemma 3.11, there exists a sufficiently
small ε > 0 such that one of the following three cases holds:

(i) [−ε, ε) ⊂ Sa,c; or
(ii) [−ε, 0) ⊂ Sa,c and [0, ε) ⊂ R\Sa,c; and
(iii) [0, ε) ⊂ Sa,c and [−ε, 0) ⊂ R\Sa,c.

Define

γ =

 δ if [−ε, 0) ⊂ Sa,c and [0, ε) ⊂ R\Sa,c
0 if [−ε, ε) ⊂ Sa,c
δ′ if [0, ε) ⊂ Sa,c and [−ε, 0) ⊂ R\Sa,c,

where δ, δ′ are given in Theorems 6.4 and 6.5 respectively. Then

c0 − a ≤ γ ≤ c0 + a− 1.

Now we divide the proof of necessity into five cases.

Case 1: γ = c0 + a− 1.
Let D,N be as in Theorem 6.4. Then

D = N

and (Ra,c)
n([c1, c1 + c0) + aZ), 0 ≤ n ≤ N , are mutually disjoint gap with

(Ra,c)
N ([c1, c1 + c0) + aZ) = [0, c0) + aZ

by Theorem 6.4 and the assumption on γ. Thus

N ≥ 1

by the assumption c1 > 0. Observe that

(Ra,c)
n([c1, c1 + c0) + aZ) = [c1, c1 + c0) + n(c1 − a) + aZ, 0 ≤ n ≤ N

because −a < c1 − a < 0 and

(Ra,c)
n([c1, c1 + c0) + aZ) ⊂ [c0, a) + aZ for all 0 ≤ n ≤ N − 1.
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Replacing n by N in the above equality and recalling that (Ra,c)
N ([c1, c1 + c0) +

aZ) = [0, c0) + aZ gives

(6.77) c1 +N(c1 − a) = ka

for some integer k. Thus
N + 1 ∈ aZ/gcd(c1, a).

This together with mutual disjointness of gaps [c1, c1 + c0) + n(c1 − a) + aZ, 0 ≤
n ≤ N , implies that

N + 1 = a/gcd(c1, a),

as otherwise a/gcd(c1, a) ≤ N and

([c1, c1 + c0) + aZ) ∩ ([c1, c1 + c0) + n(c1 − a) + aZ) = [c1, c1 + c0) + aZ 6= ∅
for n = a/gcd(c1, a) ≤ N . Thus

∪Nn=0(n(c1 − a) + aZ) = ∪a/gcd(c1,a)−1
n=0 (n(c1 − a) + aZ) = gcd(c1, a)Z.

Therefore the mutual disjointness of the gaps [c1, c1+c0)+n(c1−a)+aZ, 0 ≤ n ≤ N ,
becomes

c0 ≤ gcd(c1, a).

Observe that

∪Nn=0[c1, c1+c0)+n(c1−a)+aZ = ∪a/gcd(c1,a)−1
n=0 ([0, gcd(c1, a))+ngcd(c1, a)+aZ) = R

if c0 = gcd(c1, a), which contradicts to Sa,c 6= ∅. This proves the desired first
condition c0 < gcd(c1, a) in the theorem.

Case 2: 0 < γ < c0 + a− 1.
Let D,N be as in Theorem 6.4. Then

N ≥ 0 and D ≥ N + 1

by Theorem 6.4 and the assumption on γ. Denote by d1, d2 the number of big gaps

An := (Ra,c)
n(c− c0 + [0, 1− a+ γ)) + aZ, 0 ≤ n ≤ N − 1,

of length 1−a+γ contained in [0, c0 +a−1−γ)+aZ and in [c0, a)+aZ respectively,
and similarly denote by d3 and d4 the number of small gaps

Bm := (Ra,c)
m([c0 − γ, c0)) + aZ, 1 ≤ m ≤ D −N,

of length γ contained in [γ, c0 +a−1−γ)+aZ and in [c0, a)+aZ respectively. Now
let us verify (6.23)–(6.28) for the above nonnegative integer parameters d1, d2, d3

and d4.

Proof of (6.23). By Theorem 6.4, the big gaps An, 0 ≤ n ≤ N − 1, and the
small gaps Bm, 1 ≤ m ≤ D−N − 1, are either contained in [γ, c0 + a− 1− γ) + aZ
or [c0, a) + aZ. Hence

(6.78) N = d1 + d2

and

(6.79) D −N − 1 = d3 + d4.

Combining (6.10), (6.13), (6.18), (6.19), (6.78) and (6.79), we obtain that there
are (d1 + d2 + 1) gaps of length 1− a+ γ and (d3 + d4 + 1) gaps of length γ, and
D+ 1 := d1 + d2 + d3 + d4 + 2 intervals of length h on one period [0, a). Therefore

(6.80) 0 < Bd := a− (d1 + d2 + 1)(1− a) = (D + 1)(h+ γ) ∈ (D + 1)gcd(a, 1)Z.
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This proves (6.23) and

0 < γ <
Bd

D + 1
.

Proof of (6.24). By (6.10), (6.13) and the definition of nonnegative integers
di, 1 ≤ i ≤ 4, we obtain that

(6.81) c− c0 + 1− a+ δ + d1(bcc+ 1) + d2bcc ∈ c0 + aZ,

and

(6.82) c0 + bcc − δ + d3(bcc+ 1) + d4bcc ∈ aZ.

Adding (6.81) and (6.82) leads to

c+ (d1 + d3 + 1)(bcc+ 1) + (d2 + d4)bcc ∈ c0 + aZ.

Then (D + 1)c1 + (d1 + d3 + 1)(1− a) ∈ aZ and (6.24) is true.
Proof of (6.26). By Theorem 6.4 and the definition of the integers d1 and d3,

the interval [0, c0 + a− 1− γ) is covered by d1 gaps of length 1− a+ γ, d3 + 1 gaps
of length γ, and d1 +d3 + 1 intervals of length h. This together with (6.80) leads to

c0 + a− 1− γ = d1(1− a+ γ) + (d3 + 1)γ + (d1 + d3 + 1)h

= d1(1− a) + (d1 + d3 + 1)Bd/(D + 1).(6.83)

This proves (6.26).
Proof of (6.25). Substituting the expression (6.83) into (6.81), we obtain

that

aZ 3 c− c0 + 1− a+ δ − c0 + d1(bcc+ 1)b+ d2bcc − d1a

= d1(bcc+ 1) + d2bcc+ bcc+ 1− (d1 + 1)a

−(d1 + 1)(1− a)− (d1 + d3 + 1)Bd/(D + 1)

= (d1 + d2 + 1)bcc − (d1 + d3 + 1)Bd/(D + 1).

Multiplying D+1 at both sides of the above equation leads to the desired inclusion
(6.25).

Proof of (6.27). Define

(6.84) m =
(D + 1)c1 + (d1 + d3 + 1)(1− a))|

a
.

Then m is a positive integer in [1, D] by (6.24) and the observation that

0 < (D + 1)c1 + (d1 + d3 + 1)(1− a)

< (D + 1)(2a− 1) + (d1 + d3 + 1)(1− a) ≤ (D + 1)a.

Let Ya,c be as in (1.23) and let m1 be the nonnegative integer in [0, D] such that
Ya,c(c1 + 1− a) ∈ m1h+ Ya,c(a)Z. We claim the following:

(6.85) m1 = m.

Recall that

(Ra,c)
N ([c1, c1 + 1− a+ γ) + aZ) = [c0 + a− 1− γ, c0) + aZ

by Theorem 6.4, and that there are d1 +d3 +1 gaps in the interval [0, c0 +a−1−γ).
This together with Theorem 4.4 that

(6.86) (d1 + d2 + 1)m1h− (d1 + d3 + 1)h ∈ Ya,c(a)Z = (D + 1)hZ.
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Then the number of gaps of length 1− a+ γ contained [0, c1) is

(d1 + d2 + 1)m1h− (d1 + d3 + 1)h

Ya,c(a)
=

(d1 + d2 + 1)m1 − (d1 + d3 + 1)

D + 1
.

This implies that there are m1 gaps contained in [0, c1) with ((d1 + d2 + 1)m1 −
(d1 + d3 + 1))/(D + 1) of them are gaps of length 1− a+ γ. Hence

c1 = m1h+
(
m1 −

(d1 + d2 + 1)m1 − (d1 + d3 + 1)

D + 1

)
γ

+
(d1 + d2 + 1)m1 − (d1 + d3 + 1)

D + 1
(1− a+ γ)

=
m1a− (d1 + d3 + 1)(1− a)

D + 1
.

This together with (6.84) proves (6.85).
We return to the proof of (6.27). The above claim (6.85), together with (6.78),

(6.79), and the cyclic group property (6.21) for the set Ka,c of marks, proves (6.27).
Proof of (6.28). Applying (6.84) and (6.85), and recalling that [c1, c1 + 1− a)

is a gap in the complement of the maximal invariant set Sa,c, we have that

Ya,c(c1)−mh ∈ (D + 1)hZ.

Then n ∈ Eda,c if and only if (Ra,c)
n[c1, c1 + 1 − a + δ) is a big gap contained in

[0, c0 + a− 1) + aZ. This implies that the cardinality of the set Eda,c is equal to d1

from the definition of the nonnegative integer d1.
This completes the proof of the necessity for the case that γ ∈ (0, c0 + a− 1).

Case 3: γ = 0.
Let N and D be as in Theorems 6.3 and 6.6 respectively. Then

N ≥ 0 and D ≥ N + 1.

Denote by d1, d2 the numbers of gaps (Ra,c)
n(c − c0 + [0, 1 − a)), 0 ≤ n ≤ N − 1,

of length 1 − a contained in [0, c0 + a − 1) + aZ and in [c0, a) + aZ respectively,
and similarly denote by d3 and d4 the numbers of (Ra,c)

m(c0), 1 ≤ m ≤ D − N ,
contained in (0, c0 + a − 1) + aZ or [c0, a) + aZ respectively. Then we may follow
the argument for Case 2 line by line and establish (6.23)–(6.28) with the above
nonnegative integer parameters d1, d2, d3 and d4.

Case 4: γ ∈ (c0 − a, 0).
Let N,D be as in Theorem 6.5. By Theorem 6.5, N ≥ 0 and D ≥ N+1. Denote

by d1, d2 the numbers of big gaps (Ra,c)
n(c−c0+[γ, 1−a)), 0 ≤ n ≤ N−1, of length

1−a−γ contained in [0, c0 +a−1)+aZ and in [c0−γ, a+γ)+aZ respectively, and
similarly denote by d3 and d4 the numbers of small gaps (Ra,c)

m([c0, c0 − γ)), 1 ≤
m ≤ D−N , of length −γ contained in [0, c0 +a−1)+aZ and in [c0−γ, a+γ)+aZ
respectively. We may follow the argument for the second case and prove the desired
properties (6.23)–(6.28) with the above nonnegative integers d1, d2, d3 and d4.

Case 5: γ = c0 − a.
We follow the argument used in Case 1. Let D,N be as in Theorem 6.5. Then

D = N by the assumption on γ, and (Ra,c)
n([c1+c0−a, c1+1−a)+aZ), 0 ≤ n ≤ N ,

are mutually disjoint gap with (Ra,c)
N ([c1 + c0 − a, c1 + 1 − a) + aZ) = [c0 + a −

1, a) + aZ by Theorem 6.5. Thus N ≥ 1 as c1 < 2a− 1. Observe that

(Ra,c)
n([c1 + c0− a, c1 + 1− a) + aZ) = [c1 + c0− a, c1 + 1− a) +n(c1 + 1− a) + aZ
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for all 0 ≤ n ≤ N , because 0 < c1 + 1− a < a and

(Ra,c)
n([c1 + c0 − a, c1 + 1− a) + aZ) ⊂ [0, c0 + a− 1) + aZ, 0 ≤ n ≤ N − 1.

Replacing n by N in the above equality, recalling that (Ra,c)
N ([c1 + c0 − a, c1 +

1− a) + aZ) = [c0 + a− 1, a) + aZ and applying mutual disjointness of [c1 + c0 −
a, c1 + 1− a) + n(c1 + 1− a) + aZ, 0 ≤ n ≤ N , we obtain

N + 1 = a/gcd(c1 + 1, a),

Hence the desired second condition 1− c0 < gcd(c1 +1, a) follows from the assump-
tion Sa,c 6= ∅ and the mutual disjointness of the gaps (Ra,c)

n([c1 + c0 − a, c1 + 1−
a) + aZ), 0 ≤ n ≤ N .

(⇐=) We examine five cases to prove the sufficiency.
Case 1: c0 < gcd(c1, a).
Let D = a/gcd(c1, a)− 1 and define

T =
(
∪Dn=0 [c0, gcd(c1, a)) + n(a− c1)

)
+ aZ.

Then

T =
(
∪Di=0 [c0, gcd(c1, a)) + igcd(c1, a)

)
+ aZ

= [c0, gcd(c1, a)) + gcd(c1, a)Z,(6.87)

and T has empty intersection with black holes of the transformations Ra,c and R̃a,c,
since

T ∩ [0, c0) = T ∩ [c1, c0 + c1) = ∅,
and for any t ∈ T ,

Ra,c(t) = t+ c1 ∈ [c0, gcd(c1, a)) + c1 + gcd(c1, a)Z = T.

Therefore T ⊂ Sa,c (in fact T = Sa,c) as Sa,c is the maximal invariant set that has
empty intersection with the black hole of the transformation Ra,c by Theorem 3.4.
Thus Sa,c is not an empty set as the restriction of the set T on [0, a) consists of
a/gcd(c1, a) intervals of length gcd(c1, a)− c0 > 0.

Case 2: 1− c0 < gcd(a, c1 + 1).
Let D = a/gcd(a, c1 + 1)− 1 and define

T ′ =
(
∪Di=0 [0, gcd(a, c1 + 1)− 1 + c0) + i(c1 + 1− a)

)
+ aZ

= [0, gcd(a, c1 + 1)− 1 + c0) + gcd(a, c1 + 1)Z.
We may follow the argument used in Case 1 to show that T ′ has empty intersection
with black holes of the transformations Ra,c and R̃a,c, and it is invariant under the
transformation Ra,c. Then Sa,c ⊃ T ′ is not an empty set.

Case 3: There exist nonnegative integers d1, d2, d3, d4 and γ ∈ (0,min(Bd/(D+
1), c0 + a− 1)) satisfying (6.23)–(6.28).

In this case, we set

h =
a− (d1 + d2 + 1)(1− a)

D + 1
− γ > 0,

m =
(D + 1)c1 + (d1 + d3 + 1)(1− a)

a
,

and

m̃ =
(d1 + d2 + 1)m− (d1 + d3 + 1)

D + 1
.
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Then

0 < h ∈ gcd(a, 1)Z
by (6.23) and (6.26); m is a positive integer no larger than D, i.e.,

m ∈ Z ∩ [1, D]

as

0 < (D + 1)c1/a ≤ m < ((D + 1)(2a− 1) + (d1 + d3 + 1)(1− a))/a < D + 1;

and m̃ is a nonnegative integer no larger than m,

(6.88) m̃ ∈ [0,m] ∩ Z

by (6.25). Moreover,

m
a− (d1 + d2 + 1)(1− a)

D + 1
+ m̃(1− a)

=
m

D + 1
a− d1 + d3 + 1

D + 1
(1− a) = c1.(6.89)

In order to expand the real line R with marks at hZ to create an invariant set
under the transformation Ra,c, we insert gaps [0, 1− a+ γ) located at lmh+ (D+
1)hZ, 1 ≤ l ≤ d1 + d2 + 1, and gaps [0, δ) otherwise. Recall from (6.27) that
(l − l′)mh 6∈ (D + 1)hZ for all 1 ≤ l 6= l′ ≤ D + 1. Therefore we have inserted
d1 +d2 +1 gaps [0, 1−a+γ) and d3 +d4 +1 gaps [0, γ) on the interval [0, (D+1)h).
Thus after performing the above expansion, the interval [0, (D + 1)h) with marks
on [0, (D + 1)h) ∩ hZ becomes the interval

[0, (D + 1)h+ (d1 + d2 + 1)(1− a+ γ) + (d3 + d4 + 1)γ) = [0, a)

with gaps [yi, yi + hi), 0 ≤ i ≤ D, where 0 = y0 ≤ y1 ≤ . . . ≤ yD and hi ∈
{1− a+ γ, γ}, 0 ≤ i ≤ D. Now we want to prove that

(6.90) ym = c1.

For that purpose, we need the following claim:

Claim 6.9. For s ∈ [0, D] ∩ Z, the cardinality of the set {l ∈ [1, d1 + d2 + 1] ∩
Z| lmh ∈ sh+ [0,mh) + (D + 1)hZ} is equal to m̃+ 1 if 1 ≤ s ≤ d1 + d3 + 1, and
m̃ otherwise.

Proof. For any i ∈ Z, let ki = b((D+ 1)i+m+ s− 1)/mc the unique integer
such that kimh ∈ [sh, sh + mh) + i(D + 1)h. Therefore 1 ≤ ki ≤ d1 + d2 + 1 if
and only if m ≤ i(D + 1) + m + s − 1 ≤ (d1 + d2 + 1)m + m − 1 if and only if
1− s ≤ i(D + 1) ≤ (d1 + d2 + 1)m− s = (D + 1)m̃+ (d1 + d3 + 1− s). Therefore

#{l ∈ [1, d1 + d2 + 1] ∩ Z| lmh ∈ sh+ [0,mh) + (D + 1)hZ}
=

∑
i∈Z

#{l ∈ [1, d1 + d2 + 1] ∩ Z| lmh ∈ sh+ [0,mh) + i(D + 1)h}

=
∑
i∈Z

#{ki ∈ [1, d1 + d2 + 1] ∩ Z}

= #([(1− s)/(D + 1), m̃+ (d1 + d3 + 1− s)/(D + 1)] ∩ Z).

Counting the number of integers in the interval [(1− s)/(D+ 1), m̃+ (d1 + d3 + 1−
s)/(D + 1)] proves the claim. �
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We return to the proof of the equality (6.90). By Claim 6.9, we have inserted
m̃ interval of length 1−a+γ and m− m̃ interval of length γ in the marked interval
[0,mh). So after performing the expansion, the mark located at mh on the line
becomes the gap located at mh+ (m− m̃)γ+ m̃(1− a+ δ), which is equal to c1 by
(6.89). This completes the proof of the equality (6.90).

Next we show that

(6.91) yd1+d3+1 = c0 + a− 1− γ.

By (6.28), we have inserted d1 gaps of length 1−a+δ and (d1 +d3 +1)−d1 intervals
of length γ in the marked interval [0, (d1 + d3 + 1)h). Therefore the mark located
at (d1 + d3 + 1)h becomes

(d1 + d3 + 1)h+ d1(b− a+ γ) + (d3 + 1)γ = c0 + a− b− γ

after inserting gaps, where the last equality follows from (6.26). Hence (6.91)
follows.

Then we prove by induction on 0 ≤ k ≤ D that

(6.92) (Ra,c)
k(c− c0) + aZ = yl(k) + aZ, 0 ≤ k ≤ d1 + d2,

and

(6.93) (Ra,c)
m(c0 + a− 1− γ) + aZ = yl(m+d1+d2) + aZ, 1 ≤ m ≤ d3 + d4 + 1,

where l(k) ∈ (k+1)m+(D+1)Z. We remark that l(0) = m, l(d1+d2+d3+d4+1) =
l(D) = 0 and l(d1 + d2) = d1 + d3 + 1, where the last equality follows from (6.25).

Proof of (6.92) and (6.93). The conclusion (6.92) for k = 0 from (6.90) and
the observation that l(0) = m. Inductively, we assume that the conclusion (6.92)
holds for some 0 ≤ k ≤ d1+d2−1. Then l(k) 6= 0, d1+d3+1 as l(d1+d2) = d1+d3+1
and l(D) = 0. If 0 < l(k) < d1 + d3 + 1, then

yl(k+1) = yl(k) + (m̃+ 1)(1− a+ γ) + (m− m̃− 1)γ +mh

= yl(k) + c1 + 1− a(6.94)

if l(k + 1)− l(k) = m, and

yl(k+1) + a = yl(k) + (m̃+ 1)(1− a+ γ) + (m− m̃− 1)γ +mh

= yl(k) + c1 + 1− a(6.95)

if l(k + 1)− l(k) = m− (D + 1), where (6.94) and (6.95) hold as we have inserted
m̃+ 1 gaps of size 1− a+ γ and m− (m̃+ 1) gaps of size γ on [l(k)h, (l(k) +m)h)
by Claim 6.9. Also we obtain from (6.91) that yl(k) ∈ [0, c0 + a − 1 − γ) when
0 < l(k) < d1 + d3 + 1, which together with the inductive hypothesis implies that

(Ra,c)
k+1(c− c0) + aZ = Ra,c(yl(k)) + aZ

= yl(k) + c1 + 1− a+ aZ.(6.96)

Combining (6.94), (6.95) and (6.96) leads to

(6.97) (Ra,c)
k+1(c− c0) + aZ = yl(k+1) + aZ

if 0 < l(k) < d1 + d3 + 1.
Similarly if d1 + d3 + 1 < l(k) ≤ D, we have that

yl(k+1) − yl(k) ∈ c1 + aZ(6.98)
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because we have inserted m̃ gaps of size 1 − a + δ and m − m̃ gaps of size δ on
[l(k)h, (l(k) +m)h) by Claim 6.9; and

(6.99) (Ra,c)
k+1(c− c0) + aZ = yl(k) + c1 + aZ,

since yl(k) ∈ [c0, a) by (6.91). Combining (6.98) and (6.99) yields

(6.100) (Ra,c)
k+1(c− c0) + aZ = yl(k+1) + aZ

if d1 + d3 + 1 < l(k) ≤ D. Therefore we can proceed our inductive proof by (6.97)
and (6.100). This completes the proof of the equalities in (6.92).

Notice that yl(d1+d2) = yd1+d3+1 = c0 + a− 1− δ by (6.91). Hence

(Ra,c)
m(c0 + a− 1− δ) + aZ = (Ra,c)

m(yl(d1+d2)) + aZ
= (Ra,c)

m+d1+d2(yl(0)) + aZ = (Ra,c)
m+d1+d2(c− c0) + aZ(6.101)

for all 1 ≤ m ≤ d3 + d4 + 1. Then we can follow the argument to prove (6.92) to
show that (6.93) holds. �

Finally from (6.92) and (6.93) the mutually disjoint gaps we have inserted are
(Ra,c)

k(c− c0) + [0, 1− a+ γ) + aZ, 0 ≤ k ≤ d1 + d2, and (Ra,c)
m(c0 + a− 1− γ) +

[0, γ) + aZ, 1 ≤ m ≤ d3 + d4 + 1. Moreover

(Ra,c)
d1+d2(c− c0) + [0, 1− a+ γ) + aZ = [c0 + a− 1− δ, c0) + aZ

by (6.91) and l(d1 + d2) = d1 + d3 + 1; and

(Ra,c)
d3+d4+1(c0 + a− 1− γ) + [0, γ) + aZ

= (Ra,c)
D(c0 + a− 1− γ) + [0, γ) + aZ = [0, γ) + aZ

by (6.101) and l(D) = 0. Notice that the union of the above gaps is invariant
under the transformation Ra,c and contains the black holes of the transformations

Ra,c and R̃a,c. Therefore its complement is the set Sa,c by Theorem 3.4, whose
restriction on [0, a) has Lebesgue measure (D + 1)h. Thus the conclusion that
Sa,c 6= ∅ is established for this case.

Case 4: There exist nonnegative integers d1, d2, d3, d4 and γ = 0 satisfying
(6.23)–(6.28).

In this case, we set

h =
a− (d1 + d2 + 1)(1− a)

D + 1

and

m =
(D + 1)c1 + (d1 + d3 + 1)(1− a)

a
,

and expand the real line R with marks at hZ by inserting gaps [0, 1 − a) located
at lmh + (D + 1)hZ, 1 ≤ l ≤ d1 + d2 + 1, and gaps of zero length otherwise, c.f.
the fourth subfigure of Figure 1. Then after performing the above operation, the
interval [0, (D + 1)h) becomes the interval [0, a) with gaps [yi, yi + hi), 0 ≤ i ≤ D,
where 0 = y0 ≤ y1 ≤ . . . ≤ yD and hi ∈ {1 − a, 0}, 0 ≤ i ≤ N − 1. We follow the
argument in Case 3 to show that ym = c1, yd1+d3 = c0 + a− 1 and by induction on
0 ≤ k ≤ N − 1 that

(Ra,c)
k(c− c0) + aZ = yl(k) + aZ, 0 ≤ k ≤ d1 + d2,

and
(Ra,c)

m(c0) + aZ = yl(m+d1+d2) + aZ, 1 ≤ m ≤ d3 + d4 + 1,
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where l(k) ∈ (k + 1)m + (D + 1)Z. Thus the union of gaps of size 1 − a is

∪d1+d2
n=0 (Ra,c)

n([c−c0, c−c0+1−a)+aZ with (Ra,c)
d1+d2([c−c0, c−c0+1−a)+aZ) =

[c0 + a− 1, c0) + aZ. Therefore Sa,c is the complement of the above union of finite
gaps and the sufficiency in the fifth case follows.

Case 5: There exist nonnegative integers d1, d2, d3, d4 and γ ∈ (−min(Bd/(D+
1), a− c0), 0) satisfying (6.23)–(6.28).

In this case, we define

h =
a− (d1 + d2 + 1)(1− a)

D + 1
+ γ

and

m =
(D + 1)c1 + (d1 + d3 + 1)(1− a)

a
.

We expand the real line R with marks at hZ by inserting gaps [γ+a− 1, 0) located
at lmh+(D+1)hZ, 1 ≤ l ≤ d1 +d2 +1, and gaps [γ, 0) otherwise. After performing
the above augmentation operation, the interval [0, (D + 1)h) with marks [0, (D +
1)h) ∩ hZ becomes the interval [0, a) with gaps [yi + hi, yi), 0 ≤ i ≤ D, where
0 < y1 ≤ . . . ≤ yD+1 = a and hi ∈ {γ + a − 1, γ}, 1 ≤ i ≤ D + 1. We follow the
argument used in Case 3 to show that ym = c1 + 1− a, yd1+d3+1 = c0 − γ and for
0 ≤ k ≤ D,

(Ra,c)
k(c− c0 + 1) + aZ = yl(k) + aZ, 0 ≤ k ≤ d1 + d2,

and
(Ra,c)

m(c0 − γ) + aZ = yl(k) + aZ, 1 ≤ m ≤ d3 + d4 + 1,

where l(k) ∈ (k + 1)m+ (D + 1)Z. Therefore

Sa,c = R\
((
∪d1+d2
n=0 [yl(k) +a−b+γ, yl(k))+aZ

)
∪
(
∪d3+d4+1
m=1 [yl(k) +δ, yl(k))+aZ

))
,

whose restriction on [0, a) has Lebesgue measure (D + 1)h > 0. This proves the
sufficiency for Case 4. �



CHAPTER 7

The abc-problem for Gabor Systems

In this chapter, we provide full classification of all pairs (a, c) of positive num-
bers of time-spacing and window-size parameters such that G(χ[0,c), aZ × Z) are

Gabor frames for L2.

Let us start from recalling some known classification of pairs (a, c), see for
instance [16, 23, 30].

Theorem 7.1. Let a, c > 0, and let G(χ[0,c), aZ × Z) be the Gabor system
in (1.1) generated by the characteristic function on the interval [0, c). Then the
following statements hold.

(I) If a > c, then G(χ[0,c), aZ× Z) is not a Gabor frame.
(II) If a = c, then G(χ[0,c), aZ× Z) is a Gabor frame if and only if a ≤ 1.

(IV) If a < c and c ≤ 1, then G(χ[0,c), aZ× Z) is a Gabor frame.
(III) If a < c, 1 < c and a ≥ 1, then G(χ[0,c), aZ× Z) is not a Gabor frame.

The conclusions in Theorem 7.1 are illustrated in the red and low right-triangle
green regions of Figure 1 below, where on the left subfigure we normalize the
frequency-spacing parameter b to 1, while on the right subfigure we normalize the
window-size parameter c to 1 and use the frequency-spacing parameter b as the
y-axis, cf. Janssen’s tie in [30].

Apply the equivalences in Theorem 2.1 and the explicit construction of the set
Sa,c in Theorem 3.5, we take one step forward in the way to solve the abc-problem
for Gabor systems.

Theorem 7.2. Let 0 < a < 1 < c, and let G(χ[0,c), aZ × Z) be the Gabor
system in (1.1) generated by the characteristic function on the interval [0, c). Set
c0 = c− bcc. Then the following statements hold.

(V) If c0 ≥ a and c0 ≤ 1− a, then G(χ[0,c), aZ× Z) is a Gabor frame.
(VI) If c0 ≥ a and c0 > 1 − a, then G(χ[0,c), aZ × Z) is not a Gabor frame if

and only if a ∈ Q and either
1) c0 > 1− gcd(bcc+ 1, a) and gcd(bcc+ 1, a) 6= (bcc+ 1)gcd(a, 1), or
2) c0 > 1 − gcd(bcc + 1, a) + gcd(a, 1) and gcd(bcc + 1, a) = (bcc +

1)gcd(a, 1).
(VII) If c0 < a and c0 ≤ 1 − a, then G(χ[0,c), aZ × Z) is not a Gabor frame if

and only if either
3) c0 = 0; or
4) a ∈ Q, 0 < c0 < gcd(bcc, a) and gcd(bcc, a) 6= bccgcd(a, 1); or
5) a ∈ Q, 0 < c0 < gcd(bcc, a)−gcd(a, 1) and gcd(bcc, a) = bccgcd(a, 1).

The statement (V) in the above theorem is given in [30, Section 3.3.3.2]. The
conclusions in Theorem 7.2 are illustrated in the green, yellow and purple regions of

81



82 7. THE abc-PROBLEM FOR GABOR SYSTEMS

Figure 1. Left: Classification of pairs (a, c) such that G(χ[0,c), aZ ×
Z) are Gabor frames. Right: Classification of pairs (a, b) such that
G(χ[0,1), aZ× bZ) are Gabor frames.

Figure 1. In the green region, G(χ[0,c), aZ×Z) are Gabor frames by Conclusion (V)
of Theorem 7.2. In the yellow region, it follows from Conclusion (VI) of Theorem 7.2
that the set of pairs (a, c) such that G(χ[0,c), aZ×Z) are not Gabor frames contains
needles (line segments) of lengths gcd(bcc + 1, p)/q − {0, 1/q} hanging vertically
from the ceiling bcc+ 1 at every rational time shift location a = p/q. In the purple
region, we obtain from Conclusion (VII) of Theorem 7.2 that the set of pairs (a, c)
such that G(χ[0,c), aZ × Z) are not Gabor frames contains floors bcc ≥ 2 and also
needles (line segments) of lengths gcd(bcc, p)/q − {0, 1/q} growing vertically from
floors bcc at every rational time shift location a = p/q.

Using the expression of the set Sa,c in Theorem 3.5, we can determine whether
Gabor systems G(χ[0,c), aZ×Z) corresponding to those pairs with either c1 ≥ 1−2a

or c1 = 0 are frames for L2.

Theorem 7.3. Let 0 < a < 1 < c and 1− a < c0 < a, and let G(χ[0,c), aZ×Z)
be the Gabor system in (1.1) generated by the characteristic function on the interval
[0, c). Set c1 := bcc − b(bcc/a)ca. Then the following statements hold.

(VIII) If bcc = 1, then G(χ[0,c), aZ× Z) is a Gabor frame.
(IX) If bcc ≥ 2 and c1 > 2a− 1, then G(χ[0,c), aZ× Z) is a Gabor frame.
(X) If bcc ≥ 2 and c1 = 2a− 1, then G(χ[0,c), aZ× Z) is not a Gabor frame if

and only if a ∈ Q, c0 ≤ 1− a+ gcd(a, 1) and a = (bcc+ 1)gcd(a, 1).
(XI) If bcc ≥ 2 and c1 = 0, then G(χ[0,c), aZ× Z) is not a Gabor frame if and

only if a ∈ Q, c0 ≥ a− gcd(a, 1) and a = bccgcd(a, 1).

The statement (VIII) in the above theorem can be found in [23, 30]. The
conclusions in Theorem 7.3 are illustrated in the blue and dark blue regions of
Figure 1.
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Applying the parametrization of the maximal invariant set Sa,c in Theorem 5.5,
we take another step forward in the direction to solve the abc-problem for Gabor
systems.

Theorem 7.4. Let 0 < a < 1 < c, 1 − a < c0 < a, bcc ≥ 2, 0 < c1 < 2a − 1
and a 6∈ Q. Let G(χ[0,c), aZ × Z) be the Gabor system in (1.1) generated by the
characteristic function on the interval [0, c). Then the following statement holds.

(XII) The Gabor system G(χ[0,c), aZ × Z) is not a frame for L2 if and only if
there exist nonnegative integers d1 and d2 such that
(a) a 6= c− (d1 + 1)(bcc+ 1)(1− a)− (d2 + 1)bcc(1− a) ∈ aZ;
(b) bcc+ (d1 + 1)(1− a) < c < bcc+ 1− (d2 + 1)(1− a); and
(c) #Ea,c = d1, where m = ((d1 + d2 + 1)c1 − c0 + (d1 + 1)(1 − a))/a

and Ea,c is given in (5.10).

In the above theorem, we insert d1 and d2 holes contained in intervals [0, c0 +

a− 1) and [c0, a) respectively, and put marks at ∪d1+d2+1
n=1 (n(c1 −m(1− a)) + (a−

(d1 + d2 + 1)(1− a))Z).

Applying the characterization for Sa,c 6= ∅ in Theorem 6.8, we reach the last
step to solve the abc-problem for Gabor systems.

Theorem 7.5. Let 0 < a < 1 < c, 1 − a < c0 < a, bcc ≥ 2, 0 < c1 < 2a − 1
and a ∈ Q. Let G(χ[0,c), aZ × Z) be the Gabor system in (1.1) generated by the
characteristic function on the interval [0, c). The following statements hold.

(XIII) If c ∈ gcd(a, 1)Z, then G(χ[0,c), aZ× Z) is not a Gabor frame if and only
if the pair (a, c) satisfies one of the following three conditions:

6) c0 < gcd(a, c1) and bcc(gcd(a, c1)− c0) 6= gcd(a, c1).
7) 1 − c0 < gcd(a, c1 + 1) and (bcc + 1)(gcd(a, c1 + 1) + c0 − 1) 6=

gcd(a, c1 + 1).
8) There exist nonnegative integers d1, d2, d3, d4 such that (a) 0 < a −

(d1+d2+1)(1−a) ∈ (D+1)gcd(a, 1)Z; (b) (D+1)c1+(d1+d3+1)(1−
a) ∈ aZ; (c) (d1 +d2 +1)((D+1)c1 +(d1 +d3 +1)(1−a))−(d1 +d3 +
1)a ∈ (D+1)aZ; (d) gcd((D+1)c1+(d1+d3+1)(1−a), (D+1)a) = a;
(e) #Eda,c = d1; (f) c0 = (d1 +1)(1−a)+(d1 +d3 +1)Bd/(D+1)+γ
for some some γ ∈ (−min((a − (d1 + d2 + 1)(1 − a))/(D + 1), a −
c0),min((a − (d1 + d2 + 1)(1 − a))/(D + 1), c0 + 1 − a)); and (g)
|γ|+a/((D+1)bcc+(d1 +d3 +1)) 6= (a−(d1 +d2 +1)(a−1))/(D+1),
where D := d1 + d2 + d3 + d4 + 1 and Eda,c is defined by (6.29).

(XIV) If c 6∈ gcd(a, 1)Z, then G(χ[0,c), aZ × Z) is a Gabor frame if and only
if both G(χ[0,c̃), aZ × Z) and G(χ[0,c̃+gcd(a,1)), aZ × Z) are Gabor frames,
where c̃ = bc/gcd(a, 1)cgcd(a, 1).

In Case 6) of Conclusion (XIII) in Theorem 7.5, the set Ka,c of marks is
(gcd(a, c1) − c0)Z and gaps inserted at marked positions have same length c0. In
Case 7) of Conclusion (XIII) in Theorem 7.5, Ka,c = (gcd(a, c1 + 1) + c0 − 1)Z
and gaps inserted at marks in Ka,c are of size 1 − c0. In Case 8) of Conclu-
sion (XIII) in Theorem 7.5, Ka,c = hZ, Ya,c(a) = (D + 1)h and gaps inserted
at marked positions lmh + (D + 1)hZ, 1 ≤ l ≤ N , have size |1 − a| + |γ| for
1 ≤ l ≤ d1+d2+1 and |γ| for d1+d2+2 ≤ l ≤ N , where D = d1+d2+d3+d4+1, h =
(a− (d1 + d2 + 1)(1− a))/(D + 1)− |γ|,m = ((D + 1)c1 + (d1 + d3 + 1)(1− a))/a
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and γ = c0 − (d1 + 1)(1− a)− (d1 + d3 + 1)(a− (d1 + d2 + 1)(1− a))/(D+ 1). The
statement (XIV) can be found in [30].

The conclusions of Theorems 7.4 and 7.5 are illustrated in the white region
of Figure 1. It has rather complicated geometry for the set of pairs (a, c) in the
white region such that G(χ[0,c), aZ × Z) are not Gabor frames. That set contains
some needles (line segments) on the vertical line growing from rational time shift
locations and few needle holes (points) on the vertical line located at irrational time
shifts by Theorems 7.4 and 7.5.

Combining Theorems 7.1–7.5 gives a complete answer to the abc-problem for
Gabor systems. The classification diagram of pairs (a, c) in Theorems 7.1–7.5 is
presented below:

(I) a > c

a < c

(II) a = c

(III) a ≥ 1

(IV) c ≤ 1

a < 1 < c

(V) c0 ≥ a, c0 ≤ 1− a

(VI) c0 ≥ a, c0 > 1− a

c0 < a, c0 > 1− a

(VII) c0 < a, c0 ≤ 1− a

(VIII) bcc = 1

bcc ≥ 2

0 < c1 < 2a− 1

(XI) c1 = 0

(X) c1 = 2a− 1

(IX) c1 > 2a− 1

a ∈ Q

(XII) a 6∈ Q
(XIII) a ∈ Q, c ∈ gcd(a, 1)Z

(XIV) a ∈ Q, c 6∈ gcd(a, 1)Z

From Classifications (V)–(IX) and (XII) in Theorems 7.2–7.4, it confirms a
conjecture in [30, Section 3.3.5]: If ab < 1 < bc, ab 6∈ Q and c 6∈ aQ + Q/b, then
G(χ[0,c), aZ×bZ) is a Gabor frame for L2. This, together with Classification (IV) in
Theorem 7.1 and the shift-invariance, implies that the range of density parameters
a, b such that G(χI , aZ× bZ) is a Gabor frame is a dense subset of the open region
Uc := {(a, b) : 0 < a < max(1/b, c)}, where c is the length of the interval I.

7.1. Proofs

In this section, we give the proofs of Theorems 7.1–7.5.

Proof of Theorem 7.1. The conclusions in Theorem 7.1 can be found in
[30, Sections 3.3.1.2, 3.3.1.4, 3.3.1.5, and 3.3.2.1]. We include a short proof for the
convenience.

(I): The conclusion follows from the necessary condition (1.2) for a Gabor
system to be a Gabor frame.

(II): The sufficiency holds since∑
φ∈G(χ[0,c),aZ×Z)

|〈f, φ〉|2 =
∑
n∈Z

∑
m∈Z
|〈f(·+ na)χ[0,a), e

−2πim·〉|2

=
∑
n∈Z
‖f(·+ na)χ[0,a)‖22 = ‖f‖22, f ∈ L2,



7.1. PROOFS 85

provided that a ≤ 1.
In the case that a > 1, we observe that {e−2πim·χ[0,a) : m ∈ Z} is not a frame

on L2([0, a)) (the space of square-integrable functions on the interval [0, a)), and
that

〈f, χ[0,a)(· − na)e−2πim·/b〉 = 0

for all m ∈ Z, 0 6= n ∈ Z and f ∈ L2 supported in [0, a). Hence G(χ[0,a), aZ× Z) is
not a Gabor frame if a > 1, and thus the necessity follows.

(III): For any f ∈ L2,∑
φ∈G(χ[0,c),aZ×Z)

|〈f, φ〉|2 =
∑
n∈Z

∑
m∈Z
|〈f(·+ na)χ[0,c), e

−2πim·〉|2

=
∑
n∈Z
‖f(·+ na)χ[0,c)‖22

=

∫
R
|f(x)|2

(∑
n∈Z

χ[0,c)(x− na)
)
dx.

This together with the observation that

bc/ac ≤
∑
n∈Z

χ[0,c)(x− na) ≤ bc/ac+ 1 for all x ∈ R,

proves that G(χ[0,c), aZ× Z) is a Gabor frame.

(IV): For a > 1, the non-frame property for the Gabor system G(χ[0,c), aZ×Z)
holds by (1.4). Then it suffices to consider a = 1. In this case, the infinite matrix
Ma,c(0) in (1.5) is a banded bi-infinite Toeplitz matrix (A(λ − µ))µ,λ∈bZ, where
A(λ) = 0 if λ ∈ Z\[0, c) and A(λ) = 1 if λ ∈ Z∩ [0, c). Take θ = exp(−2πi/(k0 +1))
and define zθ = (θλ)λ∈Z, where k0 = bc/ac ≥ 1 by our assumption. One may verify
that zθ is a bounded sequence with Ma,c(0)zθ = 0. Thus Ma,c(0) does not have
the `2-stability. This together Theorem 2.4 proves that G(χ[0,c),Z × Z) is not a
Gabor frame. �

Proof of Theorem 7.2. (V): By (3.2) and Theorem 2.1, it suffices to
prove Sa,c = ∅, which follows from the second statement of Theorem 3.5. We
remark that the conclusion (V) was established in [30, Section 3.3.3.2].

(VI): (=⇒) By Theorem 2.1,

(7.1) Da,c 6= ∅,
which together with the supset property (3.2) implies that Sa,c 6= ∅. Hence

(7.2) c0 > 1− gcd(bcc+ 1, a)

and

(7.3) Sa,c = [−gcd(bcc+ 1, a), c0 − 1) + gcd(bcc+ 1, a)Z
by Theorem 3.5. Recall from the set Da,c can be obtained from the maximal
invariant set Sa,c given in Theorem 2.3, we have that

(7.4) Da,c = Sa,c ∩
(
∪bccλ=1 (Sa,c − λ)

)
.

Combining (7.1), (7.2), (7.3) and (7.4) leads to the necessity.
(⇐=) In this case,

Sa,c = [−gcd(bcc+ 1, a), c0 − 1) + gcd(bcc+ 1, a)Z
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by Theorem 3.5; and

Da,c = Sa,c ∩
(
∪bccλ=1 (Sa,c − λ)

)
by Theorem 2.3. Therefore Da,c 6= ∅, which proves the sufficiency by Theorem 2.1.

(VII): The conclusion can be proved by following the arguments used in the
proof of the conclusion (VI), except showing Da,c = Sa,c = R for c0 = 0, and
replacing (7.3) and (7.4) by

Sa,c = [c0, gcd(bcc, a)) + gcd(bcc, a)Z

and

Da,c = Sa,c ∩
(
∪bcc−1
λ=1 (Sa,c − λ)

)
for c0 > 0. �

Proof of Theorem 7.3. (VIII): The conclusion follows from the results in
[30, Section 3.3.3.5, 3.3.3.6 and 3.3.4.3]. We include a different proof here. Suppose
on the contrary that G(χ[0,c), aZ×Z) is not a Gabor frame. Then by Theorem 2.1

there exist t ∈ R and (x(λ))λ∈Z ∈ B0 such that

(7.5)
∑
λ∈Z

χ[0,c)(t− µ+ λ)x(λ) = 2 for all µ ∈ aZ.

By the assumption bcc = 1 and c > 1, given any t ∈ R and µ ∈ aZ, the equality
χ[0,c)(t− µ+ λ) = 1 holds for at most two distinct λ ∈ Z. This together with (7.5)
that x(λ) = 1 for all λ ∈ Z, and also that

(7.6) t− µ 6∈ [c, 2) + Z for all µ ∈ aZ.

If a 6∈ Q, then there exists µ0 ∈ aZ by the density of the set aZ + Z in R such
that t− µ0 ∈ [c, 2) + Z, which contradicts to (7.6).

If a ∈ Q, then a = p/q for some positive coprime integers p and q. Hence

t 6∈ [c, 2) + Z/q = R,

where the first conclusion follows from (7.6) and the equality holds as 2 − c =
1− c0 > 1−a ≥ 1/q by the assumption 0 < 1−a < c0 < a. This is a contradiction.

(IX): The conclusion follows from Conclusion (v) of Theorem 3.5, the supset
property (3.2) and Theorem 2.1.

(X): By Conclusion (vi) of Theorem 3.5, we have that

(7.7) Sa,c = [0, c0 + a− 1) + aZ.

From the assumption on c1 it follows that a ∈ Q. We write a = p/q for some
coprime integers p and q. Clearly p ≥ 2 as 1− a < c0 < a. By the assumption that
c1 = 2a− 1, we have that bcc+ 1 ∈ pZ, which implies that

Ra,c(t)− t ∈ aZ for all t ∈ Sa,c = [0, c0 + a− 1) + aZ.

This together with Theorems 2.1 and 2.3 implies that the Gabor system G(χ[0,c), aZ×
Z) is a frame of L2 if and only if Da,c = ∅ if and only if

([0, c0 + a− 1) + aZ) ∩ ([0, c0 + a− 1) + λ+ aZ) = ∅ for all λ ∈ [1, bcc] ∩ Z.

Observe that

([0, c0 + a− 1) + aZ) ∩ ([0, c0 + a− 1) + λ+ aZ) = [0, c0 + a− 1) + aZ 6= ∅
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for λ = p ∈ [1, bcc] ∩ Z provided that bcc ≥ p, and also that

([0, c0 + a− 1) + aZ) ∩ ([0, c0 + a− 1) + λ+ aZ) = [1/q, c0 + a− 1) + aZ 6= ∅

for λ = k ∈ [1, bcc] ∩ Z where 1 ≤ k ≤ p − 1 is the unique integer such that
qk − 1 ∈ pZ, provided that bcc + 1 = p and c0 + a − 1 > 1/q. Therefore the
assumptions that bcc + 1 = p and c0 + a − 1 ≤ 1/q are necessary for the Gabor
system G(χ[0,c), aZ×Z) being a frame of L2. On the other hand, if bcc+ 1 = p and
c0 + a− 1 ≤ 1/q, one may verify that

([0, c0 + a− 1) + aZ) ∩ ([0, c0 + a− 1) + λ+ aZ)

= ([0, c0 + a− 1) + aZ) ∩ ([0, c0 + a− 1) + k(λ)/q + aZ) = ∅

for all λ ∈ [1, bcc] ∩ Z, where k(λ) is the unique integer in [1, p − 1] such that
k(λ)/q − λ ∈ aZ. Therefore the assumptions that bcc+ 1 = p and c0 + a− 1 ≤ 1/q
is also sufficient for the Gabor system G(χ[0,c), aZ× Z) to be a frame for L2.

(XI) By Conclusion (vii) of Theorem 3.5,

(7.8) Sa,c = [c0, a) + aZ.

Now we can apply similar argument used in the proof of the conclusion (X) of
this theorem. From the assumption that c1 = 0, it follows a = p/q for some
coprime integers p and q with p ≥ 2 and bcc ∈ pZ. By (7.8) and Theorems
2.1 and 2.3, we can show that G(χ[0,c), aZ × Z) is a frame of L2 if and only if
([c0, a) + aZ) ∩ ([c0, a) + λ+ aZ) = ∅ for all λ ∈ [1, bcc − 1] ∩ Z. Then the desired
necessary condition for the Gabor system G(χ[0,c), aZ × Z) being a frame of L2

follows from the observation that

([c0, a) + aZ) ∩ ([c0, a) + p+ aZ) = [c0, a) + aZ 6= ∅

if bcc ≥ p+ 1, and that

([c0, a) + aZ) ∩ ([c0, a) + k + aZ) = [c0, a− 1/q) + aZ 6= ∅

if bcc = p and a − c0 > 1/q where 1 ≤ k ≤ p − 1 is the unique integer such that
qk+ 1 ∈ pZ. The sufficiency for the conditions that bcc = p and a− c0 ≤ 1/q holds
as

([c0, a) + aZ) ∩ ([c0, a) + λ+ aZ) = ([c0, a) + aZ) ∩ ([c0, a)− k(λ)/q + aZ) = ∅

for all λ ∈ [1, bcc] ∩ Z, where k(λ) is the unique integer in [1, p − 1] such that
k(λ)/q + λ ∈ aZ. �

Proof of Theorem 7.4. (XII): We observe that G(χ[0,c), aZ × Z) is not a
Gabor frame if and only if Da,c 6= ∅ if and only if Sa,c 6= ∅ and (3.4) does not hold
if and only if the pair (a, c) satisfies (5.7), (5.8), (5.9) and

c− (bcc+ 1)(d1 + 1)(1− a)− bcc(d2 + 1)(1− a) 6= a.

In the above argument, the first equivalence holds by Theorem 2.1, the second one
follows from (3.2) and Theorem 3.3, and the last one is obtained from Theorem 5.5
and the observation that (3.4) holds if and only if

c− (bcc+ 1)(d1 + 1)(1− a)− bcc(d2 + 1)(1− a) = a

as there are d1 holes of length 1− a in Sa,c ∩ [0, c0 + a− 1) and d2 holes of length
1− a in Sa,c ∩ [c0, a) by Theorem 5.2. �
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Proof of Theorem 7.5. (XIII): By (3.2) and Theorems 2.1 and 3.3, we
see that G(χ[0,c), aZ× Z) is not a Gabor frame if and only if Sa,c 6= ∅ and

(bcc+ 1)|Sa,c ∩ [0, c0 + a− 1)|+ bcc|Sa,c ∩ [c0, a)| 6= a.

For the case that the pair (a, c) satisfies the first condition in Theorem 6.8, it
follows from the argument used in the proof of Theorem 6.8 that

Sa,c ∩ [0, c0 + a− 1) = ∅
and

Sa,c ∩ [c0, a) = ∪Ni=0[c0, gcd(a, c1)) + igcd(a, c1),

where N + 1 = a/gcd(a, c1). Hence (3.4) holds if and only if

(N + 1)bcc(gcd(a, c1)− c0) = a

if and only if
bcc(gcd(a, c1)− c0) = gcd(a, c1).

For the case that the triple (a, c) satisfies the second condition in Theorem 6.8,

Sa,c ∩ [c0, a) = ∅
and

Sa,c ∩ [0, c0 + a− 1) = ∪Ni=0[0, gcd(c1 + 1, a)− 1 + c0) + igcd(c1 + 1, a),

where N = a/gcd(c1 + 1, a)− 1. Hence (3.4) holds if and only if

(N + 1)(bcc+ 1)(gcd(c1 + 1, a)− 1 + c0) = a

if and only if

(bcc+ 1)(gcd(c1 + 1, a)− 1 + c0) = gcd(c1 + 1, a).

For the case that the pair (a, c) satisfies the third condition in Theorem 6.8,
there are d1 +d3 + 1 intervals of length h contained in [0, c0 + 1−a) and d2 +d4 + 1
intervals of length h contained in [c0, a), where

h+ |γ| = Bd/(D + 1)

and
Bd = a− (d1 + d3 + 1)(1− a).

Therefore (3.4) holds if and only if

(bcc+ 1)(d1 + d2 + 1)h+ bcc(d2 + d4 + 1)h = a

if and only if

h =
a

(D + 1)bcc+ (d1 + d3 + 1)

if and only if
a

(D + 1)bcc+ (d1 + d3 + 1)
+ |γ| = Bd

D + 1
.

Therefore the conclusion (XIII) holds by Theorem 6.8.

(XIV): This conclusion is given in [30, Section 3.3.6.1]. Here is a different
proof using the set Da,c. (=⇒) Write a = p/q for some coprime integers p and q.
For any t0 ∈ Da,bqcc/q ∩ Z/q 6= ∅, there exists x = (x(λ))λ∈Z ∈ B0 such that∑

λ∈Z
χ[0,bqcc/q)(t0 − µ+ λ)x(λ) = 2
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for all µ ∈ aZ. Thus∑
λ∈Z

χ[0,c)(t0 + c− bqcc/q − µ+ λ)x(λ) = 2 for all µ ∈ aZ,

as
χ[0,c)(t+ c− bqcc/q) = χ[0,bqcc/q)(t)

for all t ∈ Z/q. This proves that

(7.9) c− bqcc/q +Da,bqcc/q ∩ Z/q ⊂ Da,c.
Therefore G(χ[0,bqcc/q), aZ×Z) is a Gabor frame by (1.25), (7.9), Theorem 2.1, and
the assumption that G(χ[0,c), aZ× Z) is a Gabor frame.

Similarly we notice that

(7.10) Da,(bqcc+1)/q ∩ Z/q ⊂ Da,c
because

χ[0,c)(t) = χ[0,(bqcc+1)/q)(t)

for all t ∈ Z/q. Hence G(χ[0,(bqcc+1)/q), aZ× Z) is a Gabor frame by (1.25), (7.10),
Theorem 2.1, and the assumption that G(χ[0,c), aZ× Z) is a Gabor frame.

(⇐=) Suppose that G(χ[0,c), aZ×Z) is not a Gabor frame. Then Da,c 6= ∅ by
Theorem 2.1. Take any t ∈ Da,c, one may verify that

bqtc/q ∈ Da,(bqcc+1)/q

if t− bqtc/q > c− bqcc/q, and

bqtc/q ∈ Da,bqcc/q
otherwise. Therefore either G(χ[0,(bqcc+1)/q), aZ×Z) or G(χ[0,bqcc/q), aZ×Z) is not
a Gabor frame by Theorem 2.1, which is a contradiction. �





APPENDIX A

Algorithm

In this appendix, we provide a finite-step algorithm to verify whether the Gabor
system G(χ[0,c), aZ× bZ) is a Gabor frame for any given triple of (a, b, c) of positive
numbers.

Given a triple (a, b, c), we divide two cases ab 6∈ Q and ab ∈ Q to verify whether
G(χ[0,c), aZ×bZ) is a Gabor frame for L2. First we normalize the frequency-spacing
parameter b to 1 by defining a = ab, c = bc and b = 1. Set c0 = c − bcc and
c1 = c−c0−b(c−c0)/aca. We set Gabor = 1 if the Gabor system G(χ[0,c), aZ×bZ)

is a Gabor frame for L2 and Gabor = 0 otherwise.

Algorithm for a 6∈ Q, Part I, based on Theorems 7.1 and 7.2:

if a > c, Gabor = 0;
elseif a = c

if a ≤ 1, Gabor = 1;
else, Gabor = 0; end

else % a < c
if a ≥ 1, Gabor = 0;
elseif c ≤ 1, Gabor = 1;
% The value of Gabor is obtained from Theorem 7.1.

else % 0 < a < 1 < c
If c0 ≥ a, Gabor = 1;
elseif c0 ≤ 1− a, % 0 < a < 1 < c, c0 < a

if c0 = 0, Gabor = 0;
else, Gabor = 1; end

% The value of Gabor is obtained from Theorem 7.2.

else, do algorithm part 2;

end % 0 < a < 1 < c and 1− a < c0 < a
end

end

Algorithm for a 6∈ Q, Part II, based on Theorems 3.3, 5.2, 7.3 and 7.4:

if bcc = 1, Gabor = 1;
else % 0 < a < 1 < c, 1− a < c0 < a and bcc ≥ 2

if c1 > 2a− 1, Gabor = 1;
% c1 6= 2a− 1 and c1 6= 0 as a 6∈ Q
else % 0 < a < 1 < c, 1− a < c0 < a, bcc ≥ 2, 0 < c1 < 2a− 1.

s1 = c0 + a− 1; s2 = a− c0;
Hole = c1; N = ba/(1− a)c;
for n = 1 : N
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if Hole < c0+2∗a−2, Hole = Hole+bcc+1−b(Hole+
bcc+ 1)/ac ∗ a and s1 = s1− 1 + a;
elseif Hole < c0 + a− 1, s1 = −a and break;

elseif Hole = c0 + a− 1, break;

elseif Hole < c0, s2 = −a and break;

elseif Hole < 2 ∗ a− 1, Hole = Hole+ bcc− b(Hole+
bcc)/ac ∗ a and s2 = s2− 1 + a;
else, s2 = −a and break

end

% s1 = |Sa,c ∩ [0, c0 + a− 1)| and s2 = |Sa,c ∩ [c0, a)| if
Sa,c 6= ∅; and either s1 < 0 or s2 < 0 if Sa,c = ∅
by Theorem 5.2

m = (bcc) + 1) ∗ s1 + bcc ∗ s2;
if s1 < 0, Gabor = 1;
elseif s2 < 0, Gabor = 1;
elseif m = a, Gabor = 1; % by Theorem 3.3

else, Gabor = 0; end

end

end

Now consider the algorithm for a ∈ Q. Write a = p/q for some coprime
integers p and q. Recall that G(χ[0,c), aZ× Z) is a Gabor frame if and only if both
G(χ[0,bqcc/q), aZ×Z) and G(χ[0,(bqcc+1)/q), aZ×Z) are Gabor frames [30]. So in the
following algorithm, we assume that c ∈ Z/q.
Algorithm for a = p/q ∈ Q and c ∈ Z/q, Part III, based on Theorems 7.1
and 7.2:

if a > c, Gabor = 0;
elseif a = c

if a ≤ 1, Gabor = 1;
else, Gabor = 0; end

else % a < c
if a ≥ 1, Gabor = 0;
elseif c ≤ 1, Gabor = 1;
% The value of Gabor is obtained from Theorem 7.1.

else % 0 < a < 1 < c
If c0 ≥ a,

if c0 > 1−gcd(bcc+1, p)/q and gcd(bcc+1, p) 6= bcc+1,
Gabor = 0;
elseif c0 > 1 − gcd(bcc + 1, p)/q + 1/q and gcd(bcc +
1, p) = bcc+ 1, Gabor = 0;
else, Gabor = 1; end

elseif c0 ≤ 1− a % 0 < a < 1 < c, c0 < a
if c0 = 0, Gabor = 0;
elseif c0 < gcd(bcc, p)/q and gcd(bcc, p) 6= bcc, Gabor =
0;
elseif c0 < gcd(bcc, p)/q − 1/q and gcd(bcc, p) = bcc,
Gabor = 0;
else, Gabor = 1; end
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% The value of Gabor is obtained from Theorem 7.2.

else do algorithm part 4;

end

end

end

Algorithm for a = p/q ∈ Q and c ∈ Z/q, Part IV, based on Theorems 3.3,
6.3, 6.4, 6.5,7.3 and 7.4:

if bcc = 1, Gabor = 1;
else % 0 < a < 1 < c, 1− a < c0 < a and bcc ≥ 2

if c1 > 2a− 1, Gabor = 1;
elseif c1 = 2a− 1

if c0 ≤ 1− a+ 1/q and bcc+ 1 = p, Gabor = 0;
else Gabor = 1; end

elseif c1 = 0
if c0 ≤ a− 1/q and bcc = p, Gabor = 0;
else Gabor = 1; end

else % 0 < a < 1 < c, 1− a < c0 < a, bcc ≥ 2, 0 < c1 < 2a− 1.
s1 = c0 + a− 1; s2 = a− c0;
Hole1 = c1;Hole2 = c1 + 1− a; D = p;
for n = 1 : D + 1

if Hole1 < c0 + a− 1, Hole2 = min(Hole2, c0 + a− 1);
holelength = Hole2−Hole1; Hole1 = Hole1+bcc+1−
b(Hole1 + bcc + 1)/aca; Hole2 = Hole1 + holelength;
and s1 = s1− holelength;
elseif Hole2 ≤ c0, break

elseif Hole2 ≤ a, Hole1 = max(Hole1, c0); holelength =
Hole2−Hole1; Hole1 = Hole1+bcc−b(Hole1+bcc)/aca;
Hole2 = Hole1+holelength; and s2 = s2−holelength;
else, s1 = −a and break;

end

% s1 = |Sa,c ∩ [0, c0 + a− 1)| and s2 = |Sa,c ∩ [c0, a)| if
Sa,c 6= ∅; and s1 < 0 if Sa,c = ∅ by Theorems 6.3,

6.4 and 6.5

end

m = (bcc) + 1) ∗ s1 + bcc) ∗ s2;
if s1 < 0, Gabor = 1;
elseif s2 < 0, Gabor = 1;
elseif m = a, Gabor = 1; % by Theorem 3.3

else, Gabor = 0;
end

end

end





APPENDIX B

Uniform sampling of signals in a shift-invariant
space

An interesting problem in sampling in shift-invariant spaces is to identify gen-
erators φ and sampling-shift lattices aZ × bZ such that any signal f in the shift-
invariant space

(B.1) V2(φ, bZ) :=
{ ∑
λ∈bZ

d(λ)φ(t− λ) :
∑
λ∈bZ
|d(λ)|2 <∞

}
can be stably recovered from its equally-spaced samples f(t0 + µ), µ ∈ aZ, for
arbitrary initial sampling position t0, i.e., there exist positive constants A and B
such that

(B.2) A‖f‖2 ≤
( ∑
µ∈aZ

|f(t0 + µ)|2
)1/2

≤ B‖f‖2

for all f ∈ V2(φ, bZ) and t0 ∈ R. For fixed initial sampling position t0, the stability
requirement (B.2) is well studied, see [2, 4, 44, 46, 47, 49]. On the other hand,
for arbitrary initial sampling position t0 it is known only for few generators φ.
For instance, the classical Whittaker-Shannon-Kotel’nikov sampling theorem states
that (B.2) holds for signals bandlimited to [−σ, σ] if and only if a ≤ b = π/σ.
For the uniform spline generator χ[0,b) ∗ · · · ∗ χ[0,b)︸ ︷︷ ︸

n times

, obtained by convoluting the

characteristic function on [0, b) for n times, (B.2) holds if and only if a < b [1, 42,
46]. In this appendix, we consider the range problem of sampling-shift pairs (a, b)
for any given generator χI , the characteristic function on an interval I, such that
the stability requirement (B.2) holds.

We say that {φ(· − λ) : λ ∈ bZ} is a Riesz basis for the shift-invariant space
V2(φ, bZ) if there exist positive constants A and B such that

(B.3) A
( ∑
λ∈bZ
|d(λ)|2

)1/2

≤
∥∥∥ ∑
λ∈bZ

d(λ)φ(· − λ)
∥∥∥

2
≤ B

( ∑
λ∈bZ
|d(λ)|2

)1/2

for all square-summable sequences (d(λ))λ∈bZ. For an interval I = [d, c+d), {χI(·−
λ) : λ ∈ bZ} is a Riesz basis for the shift-invariant space V2(χI , bZ) except that 2 ≤
c/b ∈ Z. Therefore except that 2 ≤ c/b ∈ Z, one may easily verify that any signal f
in V2(χI , bZ) can be stably recovered from its equally-spaced samples f(t0 +µ), µ ∈
aZ, for any initial sampling position t0 if and only if infinite matrices Ma/b,c/b(t), t ∈
R, in (1.5) have the uniform stability property (2.4), c.f. [2, 47, 49]. This together
with the characterization of frame property of the Gabor system G(χI , aZ× Z) in
[38] leads to the following equivalence between our sampling problem associated
with the box generator χI and the abc-problem for Gabor systems.
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Proposition B.1. Let a, b > 0 and I be an interval with length c > 0. Except
that 2 ≤ c/b ∈ Z, the following two statements are equivalent.

(i) Any signal f in the shift-invariant space V2(χI , bZ) can be stably recov-
ered from equally-spaced samples f(t0 + µ), µ ∈ aZ, for arbitrary initial
sampling position t0 ∈ R.

(ii) G(χI , aZ× Z/b) is a Gabor frame for L2.

If I = [d, c + d) with 2 ≤ c/b ∈ Z, then the shift-invariant space V2(χI , bZ)
is not closed in L2, but its closure is the shift-invariant space generated by χI′

where I ′ = [d, b + d). Therefore for the case that I = [d, c + d) with 2 ≤ c/b ∈ Z,
any signal f in V2(χI , bZ) can be stably recovered from equally-spaced samples
f(t0 + µ), µ ∈ aZ, for any initial sampling position t0 ∈ R if and only if any
signal f in V2(χ[d,b+d), bZ) can be stably recovered from equally-spaced samples
f(t0 +µ), µ ∈ aZ, for any initial sampling position t0 ∈ R if and only if a ≤ b. This
together with Theorems 7.1–7.5 and Proposition B.1 provides the full classification
of sampling-shift lattices aZ× bZ such that any signal f in V2(χI , bZ) can be stably
recovered from equally-spaced samples f(t0 + µ), µ ∈ aZ, for any initial sampling
position t0 ∈ R.

Our results indicate that it is almost equivalent to the abc-problem for Gabor
systems, and hence geometry of the range of sampling-shift parameters could be
very complicated. We remark that two statements in Proposition B.1 are not
equivalent for the case that 2 ≤ c/b ∈ Z and a ≤ b. The reason is that under
that assumption on the triple (a, b, c), G(χI , aZ × Z/b) is not a Gabor frame by
Theorems 7.1 and 7.2, while any signal f in V2(χI , bZ) can be stably recovered
from equally-spaced samples f(t0 + µ), µ ∈ aZ, for any initial sampling position
t0 ∈ R.

Oversampling, i.e., a < b, helps for perfect reconstruction of band-limited sig-
nals and spline signals from their equally-spaced samples [1, 2, 47]. Our results
indicate that oversampling does not always implies the stability of sampling and
reconstruction process for signals in the shift-invariant space V2(φ, bZ).
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