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Abstract. For any vector-valued compactly supported distribu-
tion F = (f1, . . . , fN )T , let i(F ) be the space of all sequences of
the form (� F (·+ j), h�)j∈Zd , where h are compactly supported
C∞ functions, and let K(F ) be the space of all linear dependence
of the shifts of F , i.e.,

K(F ) =
{

(w(j))j∈Zd :
∑

j∈Zd w(j)TF (· − j) ≡ 0
}
.

The shift-invariant sequence space i(F ) is finitely generated and is
spanned by (F (x+j))j∈Zd , x ∈ Rd when F is continuous, and then
i(F ) is easy to handle than K(F ). In this paper, we show that i(F )
is the whole space of finitely supported sequences if and only if F
has linear independent shifts, and that K(F ) is the annihilator of
i(F ). We also provide some methods, especially for refinable dis-
tributions F , to compute the shift-invariant space i(F ). Finally we
apply the shift-invariant space i(F ) to establish the self-adaptive
stability lemma for any compactly supported Lp function F , and
to give a necessary and sufficient condition on the dependent ideal
i(F ) for which a compactly supported (refinable) distribution can
be decomposed as finite linear combination of the shifts of some
compactly supported (refinable) distributions having linear inde-
pendent shifts.

Mathematics Subject Classification: 41A63, 42C40, 13A15

1. Introduction

Let � := �(Zd) be the space of all sequences on Zd, and �0 := �0(Zd) be
the space of all sequences (d(j))j∈Zd on Zd with finite support, i.e., d(j) = 0
for all but finitely many j ∈ Zd. Denote their N copies by (�)N and (�0)N

respectively. Define shift operators τk, k ∈ Zd, on the space (�)N by

τk : (w(j))j∈Zd �−→ (w(j − k))j∈Zd .
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A linear space V of sequences is said to be shift-invariant if it is invariant
under the shift operators τk, k ∈ Zd. In this paper, a shift-invariant linear
space of (�0)N is said to be an ideal. The reason for the terminology of
“ideal” is that for N = 1, a shift-invariant linear subspace of �0 is really an
ideal of the ring �0 in algebraic terminology.

For any W = (w(j))j∈Zd ∈ (�)N and D = (d(j))j∈Zd ∈ (�0)N , define their
action

(�)N × (�0)N � (W,D) �−→ D(W ) ≡W (D) ∈ C

by

D(W ) :=
∑
j∈Zd

d(j)Tw(−j) =
∑
j∈Zd

w(j)Td(−j) =: W (D).

Here and hereafter, AT is the transpose of a vector (matrix) A. For a linear
subspace I of (�0)N , define its annihilator I⊥ by

I⊥ :=
{
W ∈ (�)N : W (D) = 0 ∀ D ∈ I}

([3, 4]). Given a compactly supported distribution F = (f1, . . . , fN )T on
Rd, define an (�0)N -valued distribution L(F ) by

L(F ) := (F (· + j))j∈Zd ,

and a shift-invariant subspace K(F ) of (�)N by

K(F ) :=
{
W ∈ (�)N : W (L(F )) ≡ 0

}
.

The space K(F ) contains all sequences of the linear dependence of the shifts
of F , which is crucial in the study of redundancy of the system generated
by the shifts of finitely many compactly supported distributions ([18]). We
say that F has, or f1, . . . , fN have, linear independent shifts if K(F ) =
{0}. The linear independent shifts are well-studied, and there is a long list
of publications on the various characterizations and applications (see for
instance [2, 9, 13, 16, 20, 23] and the survey paper [18]). In this paper, we
introduce a sequence space to study the redundancy of the system generated
by the shifts of compactly supported distributions, and apply it to establish a
self-adaptive lemma and a decomposition of compactly supported (refinable)
distributions.

Let us start from studying the dependent relation of a compactly sup-
ported distribution F , which is finite combinations of the shifts of some
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compactly supported distributions having linear independent shifts,

(1.1) F =
M∑
i=1

∑
j∈Zd

pi(j)φi(· − j),

where φ1, . . . , φM are compactly supported distributions having linear in-
dependent shifts, and where Pi = (pi(j))j∈Zd , 1 ≤ i ≤ M , are sequences in
(�0)N . We remark that the above decomposition does not restrict us be-
cause any compactly supported distribution has the decomposition of the
form (1.1) theoretically.

Theorem 1.1. ([1]) Let F = (f1, . . . , fN )T be a vector-valued compactly
supported distribution. Then F has the decomposition of the form (1.1).
Moreover, the distributions φ1, . . . , φM can be chosen to be finite linear com-
bination of hfi(· − j), where 1 ≤ i ≤ N, j ∈ Zd, and h are compactly sup-
ported C∞ functions.

For the vector-valued compactly supported distribution F having the form
(1.1), one may easily verify that

(1.2) L(F ) =
M∑
i=1

∑
k∈Zd

τk(Pi) L(φi)(· + k),

which, together with the linear independent shifts of φ1, . . . , φM , imply that
(1.3)
W ∈ K(F ) if and only if W (τkPi) = 0 ∀ k ∈ Zd and 1 ≤ i ≤M.

This leads to the following important observations: K(F ) is the annihilator
of I(P1, . . . , PM ), i.e.,

(1.4) K(F ) = I(P1, . . . , PM )⊥,

where

(1.5) I(P1, . . . , PM ) := spanned by τkPi, 1 ≤ i ≤M and k ∈ Zd

(see also [13, Lemma 3.1] and [17, Proposition 3.2.7] for related results).
For the sequences Pi = (pi(j))j∈Zd , 1 ≤ i ≤ M , in (1.1), define Pi(z) =∑
j∈Zd pi(j)z−j , 1 ≤ i ≤ M , and let z0 be any common root of the Laurent

polynomials vTP1(z), . . . , vTPM (z) in (C\{0})d, where v ∈ RN\{0}, then
(zj

0v)j∈Zd ∈ I(P1, . . . , PM )⊥ by direct computation, and hence (zj
0v)j∈Zd ∈

K(F ) by (1.4). It is known that the set of roots of Laurent polynomials
in high dimensions has complicated structure. So we believe that for a
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compactly supported distribution F on high dimensions, the shift-invariant
space K(F ) would have more complicated structure.

For a shift-invariant linear subspace I of (�0)N , we say that I is generated
by a subset J of (�0)N , or J is a generator of I, if I is the minimal shift-
invariant linear subspace of (�0)N containing all sequences in J , and that
I is finitely generated if there is a generator with finite cardinality. By
Proposition A.1 in the appendix, every shift-invariant linear subspace of
(�0)N is finitely generated and closed in the usual topology of (�0)N .

Clearly, the shift-invariant space I(P1, . . . , PM ) in (1.5) is generated by
{P1, . . . , PM}. So the shift-invariant space I(P1, . . . , PM ) has simpler struc-
ture, and is easier to be handled than K(F ). Moreover, in some applications
such as certain quantity estimate of D(L(F )) and decomposition of a re-
finable distribution, the shift-invariant space I(P1, . . . , PM ) is more useful
than the shift-invariant space K(F ) (see Theorems 4.2 and 5.3 for details).

Now let us introduce the problems considered in this paper. First we
observe that the left hand side of (1.4) is independent of the decomposition
(1.1). This arises the following problem naturally:

Problem 1 Does the shift-invariant space I(P1, . . . , PM ) in (1.1) depend
on F only?

In this paper, an affirmative answer to Problem 1 is given (see Theorem
2.1 for detail). So we call the shift-invariant space I(P1, . . . , Pm) as the
dependent ideal of F . As an application, we show that F has linear inde-
pendent shifts if and only if I(P1, . . . , PM ) = (�0)N (Theorem 2.2). This
gives a new time-domain characterization to the linear independent shifts of
a vector-valued compactly supported distribution.

Given any compactly supported distribution F , the decomposition (1.1)
in [1] is constructive, and the distributions φ1, . . . , φM in the decomposition
(1.1) have the same “smoothness” as f1, . . . , fN have, but the procedure to
obtain that decomposition is complicated. So for a compactly supported
distribution F , it is very necessary to find alternative ways to compute
the shift-invariant space I(P1, . . . , PM ). This inspires us to consider the
following problem:

Problem 2 How to compute the shift-invariant space I(P1, . . . , PM ) for
a given distribution F?

In this paper, several approaches are provided for that computation (see
Theorems 2.1, 3.1, 3.3, 3.2, 3.4 and 3.5 for details). The decomposition
(1.1), the representation (3.3), and the linear space (3.5) is not new and
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has been used in the study of the existence of upper shift-invariant spaces,
linear independent shifts, (locally) linear independent shifts in different sit-
uations(see for instance [1, 9, 11, 13, 20]). The advance made in this paper
is that we show that the dependent ideal connects those techniques ap-
peared and were used in different situations. We remark that for the case
that F is continuous, the shift-invariant space I(P1, . . . , PM ) is spanned by
L(F )(x), x ∈ Rd (see Theorem 3.2). If, additionally, F is refinable, then
I(P1, . . . , PM ) is a minimal subspace of (�0)N which is invariant under op-
erators Bk, k ∈ Zd, and which contains � L(F ), G � (see Theorem 3.5
for details). A shift-invariant space generated by (but not containing) the
vector � L(F ), G� for some smooth refinable function G has been used in
[15] to give a complete characterization of the Lp smoothness of compactly
supported refinable distributions without stable assumption.

Finally we consider the applications of the shift-invariant space i(F ):
Problem 3 Is the shift-invariant space I(P1, . . . , PM ) applicable?
As the first application of the shift-invariant space I(P1, . . . , PM ), we es-

tablish a self-adaptive stability lemma (Theorem 4.2). The self-adaptive
stability lemma plays an important role in the study of the convergence
of cascade algorithm without linear independence assumption to the ini-
tial, the smoothness of refinable distributions with linear dependent shifts,
and compactly supported solutions of nonhomogeneous refinement equations
in Sobolev spaces with the nonhomogeneous term having linear dependent
shifts([21]).

The second application given in this paper is to give a necessary and suffi-
cient condition for the existence of the decomposition of the form (1.1) with
φ1, . . . , φM being (infinite) linear combinations of the shifts of F . For those
functions φ1, . . . , φM , the shift-invariant space generated by φ1, . . . , φM is
the same as the one generated by components of F . Moreover if F is re-
finable, then φ1, . . . , φM can be so chosen to be refinable too (see Theorem
5.3). This generalizes a result by Jia ([10]) for refinable distributions on the
real line to higher dimensions.

The application of the dependent ideal to characterize stable shifts of
globally supported distributions is given in [19].

The paper is organized as follows. In Section 2, we show that the shift-
invariant space I(P1, . . . , PM ) depends on F only. In Section 3, several ap-
proaches are provided to compute the shift-invariant sequence space I(P1, . . . , PM ),
especially for a refinable distribution. Sections 4 and 5 are devoted to the
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self-adaptive stability lemma and decompositions of a compactly supported
(refinable) distribution. All proofs are gathered in Section 6. Some ele-
mentary properties of shift-invariant subspaces of (�0)N are given in the
appendix.

The author would like to thank Professor Lee Seng Luan for his constant
help and many useful discussion.

2. Invariant of Decomposition and Linear Independent Shifts

In this section, we show that the shift-invariant space I(P1, . . . , PM ) is
independent of the decomposition of the form (1.1), and also give a new
time-domain characterization to linear independent shifts.

Let D be the space of all compactly supported C∞ functions. Denote
the action between a distribution and a compactly supported C∞ function
by � ·, · �. Given any vector-valued compactly supported distribution
F = (f1, . . . , fN )T , we define the semi-convolution operator F∗′ on (�)N by

F ∗′ W := W (L(F )),

and let

(2.1) i(F ) := {� L(F ), h�: h ∈ D} .
By direct computation, we have

W (� L(F ), h�) =� F ∗′ W,h� .

So the space i(F ) can be thought of as the space of all continuous linear
forms on (�)N induced by the semi-convolution F∗′ and the continuous linear
form h ∈ D on the space of distributions. One may verify that

τk(� L(F ), h�) =� L(F ), h(· + k) �,

where W ∈ (�)N , h ∈ D and k ∈ Zd. Thus i(F ) is a shift-invariant subspace
of (�0)N . In this paper, we show that for any distribution F having the form
(1.1), i(F ) is just the shift-invariant sequence space generated by P1, . . . , PM .

Theorem 2.1. Let F = (f1, . . . , fN )T be a vector-valued compactly sup-
ported distribution, and let i(F ) be defined by (2.1). If F has the decomposi-
tion (1.1) with Pi = (pi(j))j∈Zd ∈ (�0)N , 1 ≤ i ≤M , and φ1, . . . , φM having
linear independent shifts, then

I(P1, . . . , PM ) = i(F ),

where I(P1, . . . , PM ) is the shift-invariant sequence space generated by {P1, . . . , PM}.
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This gives an affirmative answer to Problem 1 because i(F ) is clearly inde-
pendent of the decomposition of the form (1.1).

In this paper, the shift-invariant space i(F ) is said to be the dependent
ideal of F . The reason to use the terminology of “dependent ideal” is that
K(F ) contains all linear dependence of the shifts of F , and that K(F ) is the
annihilator of i(F ) by (1.4), Theorem 1.1, and Theorem 2.1.

As a consequence of (1.4) and Theorem 2.1, we have the following new
time-domain characterization of the linear independent shifts.

Theorem 2.2. Let F = (f1, . . . , fN )T be compactly supported.Then F has
linear independent shifts if and only if i(F ) = (�0)N .

Similar time-domain characterization for the linear independent shifts was
established in [9, 20]. In particular, they used the common roots of the
Laurent polynomials with coefficient vectors in a time-domain space (similar
to the one in (3.5)). When F is continuous, the characterization given in
[9, 20] are equivalent to the one in Theorem 2.2 since the shift-invariant
sequence space containing the finite dimensional space in the above two
references is just the dependent ideal i(F ) in this paper.

3. Dependent Ideal

In this section, we provide several methods to compute dependent ideals
i(F ).

A linear space V of distributions is said to be shift-invariant if it is in-
variant under the shift operators f �−→ f(· − j), j ∈ Zd. For a compactly
supported distribution F = (f1, . . . , fN )T , let

V (F ) ≡ V (f1, . . . , fN ) := {W (L(F )) : W ∈ (�)N}.

Clearly V (F ) is shift-invariant. The space V (F ) is usually called the shift-
invariant space generated by F , or by f1, . . . , fN .

As mentioned early, the procedure to decompose a compactly supported
distribution into the form (1.1) in [1] is universal but complicated. For
the case that F is a compactly supported integrable function, one may con-
struct a decomposition of the form (1.1) in a simple way. Let V| be the space
of the restriction of functions in V (F ) on [0, 1]d. Then the space V| is fi-
nite dimensional, and hence there exists an M -dimensional basis φ1, . . . , φM

of V|, where M = dimV| is the dimension of the space V|. From the above
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construction, the functions φ1, . . . , φM have linear independent shifts. More-
over, there exist sequences Pi = (pi(j))j∈Z ∈ (�0)N , 1 ≤ i ≤M , such that

(3.1) F =
M∑
i=1

∑
j∈Zd

pi(j)φi(· − j).

In the decomposition (3.1) for the integrable function F , we remark that
the restriction of functions in F to unit cubes j + [0, 1]d, j ∈ Zd, are used,
but such a restriction procedure cannot be generalized in a straightforward
way to distributions that are not generated by functions.

By (3.1) and supp φ1, . . . , supp φM ⊂ [0, 1]d, we have the following three
observations:

(3.2) L(F ) =
M∑
i=1

Piφi on [0, 1]d;

the family of sequences P1, . . . , PM is unique by the linear independence of
φ1, . . . , φM on [0, 1]d; and {P1, . . . , PM} is a generator of the dependent ideal
i(F ) by (3.1) and Theorem 2.1. This inspires us to consider similar decom-
position to (3.2) on some open set for any compactly supported distribution
F , and then to find a generator of the dependent ideal i(F ).

For a compactly supported distribution F and a bounded open set A,
denote the space of the restriction of distributions in V (F ) on A by V (F )|A,
i.e.,

V (F )|A := {f |A : f ∈ V (F )} .
Then V (F )|A is a finite dimensional linear space, and hence there exist
compactly supported distributions ψi ∈ V (F ), 1 ≤ i ≤ dimV (F )|A, such
that {ψi|A : 1 ≤ i ≤ dimV (F )|A} is a basis of V (F )|A. We remark that
not like the functions φ1, . . . , φM in (3.1), the above distributions ψi, 1 ≤
i ≤ dimV (F )|A, are not supported in A and have linear dependent shifts
in general. But from the construction of ψi, 1 ≤ i ≤ dimV (F )|A, the shift-
invariance of the space V (F ), and the boundedness of the open set A, there
still exist sequences Ei ∈ (�0)N , 1 ≤ i ≤ dimV (F )|A, such that

(3.3) L(F ) =
dim V (F )|A∑

i=1

Eiψi on A.

In this paper, we use the above decomposition as an approach to compute the
dependent ideal i(F ). We remark that the decomposition of a distribution
into the form (3.3) has been used in studying the shift-invariant space V (F )
and the linear independent shifts of F (see for instance [1, 11, 13]).
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Let i(A,F ) be the shift-invariant space generated byEi, 1 ≤ i ≤ dimV (F )|A,
in (3.3), i.e.,

i(A,F ) := spanned by τkEi, 1 ≤ i ≤ dimV (F )|A and k ∈ Zd.

Then we have

Theorem 3.1. Let F be a vector-valued compactly supported distribution
on Rd, and A be a bounded open set with A+ Zd = Rd. Then

i(A,F ) = i(F ).

From Theorem 3.1, we see that the space i(F ) is the “minimal” shift-
invariant space in the sense that i(F ) ⊂ i(A,F ) for any open set A such
that Rd\(A + Zd) is empty, and at the same times i(F ) is a “maximal”
shift-invariant space since i(A,F ) ⊂ i(F ) for any bounded open set A.

For the case that F is continuous, we have the following result about the
dependent ideal i(F ):

Theorem 3.2. Let F be a compactly supported distribution and i(F ) be its
dependent shifts. Then

(3.4) i(F ) = spanned by L(F )(x), x ∈ Rd.

For any bounded open set A and for any compactly supported distribution
F = (f1, ..., fN )T on Rd, we define two linear spaces W(A,F ) and S(A,F )
by

W(A,F ) :=
{
W ∈ (�)N : W (L(F )) = 0 on A

}
and

(3.5) S(A,F ) :=
{
D ∈ (�0)N : W (D) = 0 ∀ W ∈ W(A,F )

}
.

Similar time-domain linear spaces for refinable distributions were used to
study the polynomial reproducibility, local and global linear independence,
and convergence of cascade algorithm etc (see for instance [5, 9, 17, 20, 21]).
In this paper, we use the above two time-domain linear spaces S(A,F )
and W(A,F ) to study the dependent ideal i(F ). For the case that F is
continuous, one may easily verify that S(A,F ) is spanned by L(F )(x), x ∈
A. Then for any bounded open set A with A + Zd = Rd, it follows from
(3.4) that

i(F ) = spanned by τkS(A,F ), k ∈ Zd.

The above consequence is also true for any vector-valued compactly sup-
ported distribution.
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Theorem 3.3. Let F be a compactly supported distribution on Rd, and A
be a bounded open set with A + Zd = Rd. Then i(F ) is the shift-invariant
space generated by S(A,F ).

Let �P := �P (Zd) be the space of all sequences on Zd with polynomial
increase, and (�P )N beN copies of �P . Define the Fourier series of a sequence
D = (d(j))j∈Zd ∈ (�P )N by F(D) :=

∑
j∈Zd d(j)e−ij·, and let F−1(f) be

the Fourier sequence of a 2π periodic distribution f . As usual, we use f̂
to denote the Fourier transform of a (vector-valued) tempered distribution
f , which is defined by f̂(ξ) =

∫
Rd f(x)e−ixξdx for the case that f is an

integrable function. For any tempered distributions f and g such that f̂ ĝ is
integrable on Rd, define 2π periodization of f̂(ξ)ĝ(ξ) by

[f̂ , ĝ](ξ) :=
∑
k∈Zd

f̂(ξ + 2kπ)ĝ(ξ + 2kπ).

Then for any g ∈ D and compactly supported distribution f , it follows from
Poisson summation formula that

[f̂ , ĝ](ξ) = F(� L(f), g �).

Thus the dependent ideal i(F ) can be also thought of as the space of all
Fourier sequences of 2π periodization of F̂ ĥ, h ∈ D, i.e.,

(3.6) i(F ) =
{
F−1([F̂ , ĥ]) : h ∈ D

}
.

By the closedness of a linear subspace of (�0)N , the function class D in (3.6)
can be replaced by the family of compactly supported distributions ν such
that F̂ ν̂ is integrable on Rd.

Theorem 3.4. Let F be a vector-valued compactly supported distribution.
Then

i(F ) = {F−1([F̂ , ν̂]) : ν are compactly supported and ν̂F̂ ∈ L1}.

Theorem 3.4 would be helpful to verify whether a sequence belongs to i(F )
or not. In fact, it is used to select a convenient initial sequence of a minimal
invariant subspace of (�0)N (see Theorem 3.5 for details).

A vector-valued compactly supported distribution F is said to be refinable
if there exist square matrices c(j), j ∈ Zd, such that c(j) = 0 for all but
finitely many j ∈ Zd, and such that

(3.7) F =
∑
j∈Zd

c(j)F (2 · −j)
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([6, 8, 14]). The compactly supported distributions f1, . . . , fN are said to
be refinable if (f1, . . . , fN )T is. The sequence of matrices c(j), j ∈ Zd, and
the matrix-valued trigonometric polynomial H(ξ) := 2−d

∑
j∈Zd c(j)e−ijξ

are known as the mask and the symbol of the refinement equation (3.7), or
of the refinable distribution F respectively.

Define operators on (�0)N by

(3.8) Bk := (c(2j − j′ − k))j,j′∈Zd , k ∈ Zd.

Then it follows from (3.7) that

(3.9) BkL(F ) = L(F )((· + k)/2).

Thus for any h ∈ D, we have

Bk(� L(F ), h�) = 2d � L(F ), h(2 · −k) �∈ i(F ),

which proves that i(F ) is invariant under Bk, k ∈ Zd, i.e.,

(3.10) Bki(F ) ⊂ i(F ) ∀ k ∈ Zd.

For x0 ∈ Rd and the continuous refinable function F in (3.7), using (3.9)
leads to

Bn
0Bk(L(F )(x0)) = F (2−n−1k + 2−n−1x0) ∀ n ≥ 0 and k ∈ Zd.

Then by (3.4), i(F ) is the minimal linear subspace of (�0)N which is invari-
ant under Bk, k ∈ Zd, and contains L(F )(x0) for some x0 ∈ Rd. Similar
results about the invariance of some time domain space generated by refin-
able distributions were obtained in [9, 20]. The above assertion about the
dependent ideal i(F ) of a continuous refinable functions can be generalized
to any compactly supported refinable distribution, but the initial sequence
L(F )(x0), x ∈ Rd, is replaced by � L(F ), G� for some “good” distribution
G.

Theorem 3.5. Let F be a compactly supported nonzero distributional so-
lution of the refinement equation (3.7), and let Bk, k ∈ Zd, be defined by
(3.8). If G is a compactly supported distribution so chosen that

(i) ĜF̂ is integrable on Rd, and that
(ii) for any h ∈ D, there exist hn, n ≥ 1, such that hn is finite linear

combinations of G(2n · −k), k ∈ Zd, hn are supported in a compact
set independent of n, and limn→∞ ‖F̂ (ĥ− ĥn)‖1 = 0,

then i(F ) is the minimal shift-invariant subspace of (�0)N which is invariant
under Bk, k ∈ Zd, and contains the initial sequence � L(F ), G�.
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Now let us make some remarks on the function G in the conditions (i) and
(ii), and on the computation � L(F ), G � in Theorem 3.5. Let F belong
to Sobolev space H−α0 for some α0. In particular, any compactly supported
distribution belongs to Sobolev space H−α for sufficient large α. Thus by

(3.11) ‖F̂ Ĝ‖1 ≤ ‖F‖H−α0‖G‖Hα0 ,

the condition (i) is satisfied if G belongs to the Sobolev space Hα0 . Let
Vn(G) be the space spanned by G(2n · −k), k ∈ Zd, and define operators
Pn, n ≥ 1, from D to Vn(G) by

Pnh = 2nd
∑
j∈Zd

� h, G̃(2n · −j) � G(2n · −j) ∈ Vn(G)

where G̃ is a compactly supported distribution. Then for any h ∈ D, Pnh

belongs to Vn(G) and is supported in a compact set independent of n ≥ 1.
If, additionally, Pnh has good approximation to h, such as the Hα0 norm
of h − Pnh tends to zero as n tends to infinity, then for F ∈ H−α0 , by the
Hölder inequality (3.11), ‖F̂ (ĥ − P̂nh)‖1 tends to 0 as n tends to infinity.
So, roughly speaking, the conditions (i) an (ii) are satisfied if G is chosen
sufficiently smooth and if the spaces Vn(G), n ≥ 1, are approximative to D
in certain Sobolev norm. Moreover, the projection of h to Vn(G), or certain
quasi-interpolant of h in Vn(G) could be chosen as hn.

Let G satisfy (i) and (ii) of Theorem 3.5. If, additionally, G is refinable,

(3.12) G =
∑
j∈Zd

g(j)G(2 · −j),

where (g(j))j∈Zd ∈ �0, then we can compute � L(F ), G � from the masks
of F andG in some cases. Set Ψ(x) =� F (·+x), G�. Then Ψ is continuous
by F̂ Ĝ ∈ L1, L(Ψ)(0) =� L(F ), G�, and

Ψ(x) = 2−d
∑

j,j′∈Zd

c(j)g(j′) � F (2x− j + ·), G(· − j′) �

=
∑
j∈Zd

(
2−d

∑
j′∈Zd

c(j + j′)d(j′)
)
Ψ(2x− j)(3.13)

by (3.7) and (3.12). Define an operator B on (�0)N by

B =
(
2−d

∑
k∈Zd

c(2j − j′ + k)g(k)
)

j,j′∈Zd
.

Then L(Ψ)(0) is an eigenvector of B with eigenvalue one by (3.13), and
so is � L(F ), G �. This gives a way to compute � L(F ), G � through
finding eigenvectors of the operator B on (�0)N for the case that G is chosen
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to be refinable and to satisfy (i) and (ii) of Theorem 3.5. Tensor product
of B-splines and box splines with certain regularity are typical examples of
functions G satisfying the above required properties.

In the application of characterization of Lp smoothness of refinable dis-
tribution F , the shift-invariant subspace ir(F ) of the dependent ideal i(F )
was used in [21],

ir(F ) = {� L(F ), h�: h ∈ D and ĥ(ξ) = O(|ξ|r) as ξ → 0},

where r > 0. For the compactly supported refinable distribution F , the shift-
invariant subspace ir(F ) is also the minimal shift-invariant space which is
invariant under Bk, k ∈ Zd, and contains the vector � L(F ), G∗ � for some
function G∗ with certain regularity. Moreover, we may choose the certain
finite linear combination of G(2 · −k), k ∈ Z as G∗, where G is a compact
supported refinable function with high regularity, such as the box spline with
certain regularity. Such an idea has been used implicitly in [15] to give a
first complete characterization of refinable distributions in Triebel-Lizorkin
and Besov spaces without stable assumption.

4. Self-Adaptive Stability Lemma

In this section, we provide an estimate of the Lp norm of D(L(F )) via a
semi-norm of D without linear independent shift assumption on F (Theorem
4.2).

For 1 ≤ p ≤ ∞, let �p := �p(Zd) be the space of all p-summable sequences
with usual �p norm ‖ · ‖p, (�p)N be N copies of �p, and Lp := Lp(Rd) be
the space of all p-integrable functions with usual Lp norm ‖ · ‖p. For any
compactly supported Lp function F having linear independent shifts, the
following quantity estimate is well known,

(4.1) C−1‖D‖p ≤ ‖D(L(F ))‖p ≤ C‖D‖p ∀ D ∈ (�p)N ,

where C is a positive constant independent of D (see for instance [12]).
The above Lp estimate of the sequence D(L(F )) plays an important role in
wavelet analysis as well as in the approximation by shift-invariant spaces.
Recently there is much interest on estimating Lp norm, or even some norms
in linear topological spaces such as Sobolev spaces, of D(L(F )) without
the linear independent assumption on F . The purpose of this section is
to establish a quantity estimate of D(L(F )) without linear independent
assumption on F .
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Let 1 ≤ p ≤ ∞, F = (f1, . . . , fN )T be a compactly supported distribution,
and let {E1, . . . , Er} be a generator of the dependent ideal i(F ). Define a
semi-norm ||| · |||p on (�0)N adaptive to F by

(4.2) |||D|||p =
r∑

i=1

∥∥{D(τjEi)}j∈Zd

∥∥
p

for any D ∈ (�0)N .

The semi-norm ||| · |||p in (4.2) is well-defined since for different generators of
i(F ) the corresponding semi-norms are equivalent to each other.

Theorem 4.1. Let 1 ≤ p ≤ ∞, and let {E1, . . . , EN1} and {Ẽ1, . . . , ẼN2}
be two generators of a shift-invariant linear subspace I of (�0)N . Then there
exists a positive constant C such that for all D ∈ (�0)N ,

C−1
N1∑
i=1

‖{D(τjEi)}j∈Zd‖p ≤
N2∑
i=1

‖{D(τjẼi)}j∈Zd‖p

≤ C

N1∑
i=1

‖{D(τjEi)}j∈Zd‖p.

Using the semi-norm ||| · |||p in (4.2), we have the following self-adaptive
stability lemma for any compactly supported Lp function F .

Theorem 4.2. Let 1 ≤ p ≤ ∞, F = (f1, . . . , fN )T be a compactly supported
Lp function, and let the semi-norm ||| · |||p be defined by (4.2). Then there
exists a positive constant C independent of D such that

(4.3) C−1|||D|||p ≤ ‖D(L(F ))‖p ≤ C|||D|||p, ∀ D ∈ (�0)N .

We remark that the quantity estimate of D(L(F )) in Theorem 4.2 is the
same as the one in (4.1) if F has linear independent shifts, since the semi-
norm ||| · |||p is equivalent to the usual �p norm at that situation.

5. Decomposition

We start this paper from a decomposition of the form (1.1). In this section,
we return to that decomposition with additional properties for φ1 . . . , φM ,
such as φ1 . . . , φM have linear independent shifts and belong to V (F ).

Let Pi and φi, 1 ≤ i ≤M , be as in the decomposition (1.1). By Theorem
2.1, {Pi, 1 ≤ i ≤M} is a generator of the dependent ideal i(F ). Conversely
for any generator {Q1, . . . , Qr} of the dependent ideal i(F ), it follows from
(1.1) and

(5.1) Pi =
r∑

i′=1

∑
k∈Zd

αii′(k)τkQi′
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for some sequences αii′ = (αii′(k))k∈Zd ∈ �0 that

(5.2) F =
r∑

i=1

∑
j∈Zd

qi(j)ψi(· − j),

where we write Qi = (qi(j))j∈Zd , and set

(5.3) ψi =
M∑

i′=1

∑
k∈Zd

αi′i(k)φi′(· − k), 1 ≤ i ≤ r.

The existence of the sequences αii′ , 1 ≤ i ≤ M, 1 ≤ i′ ≤ r, follows from
our assumption that both {Q1, . . . , Qr} and {P1, . . . , PM} are generators
of the dependent ideal i(F ). This gives a decomposition of the form (5.2)
for any generator of the dependent ideal i(F ). We note that given a gen-
erator {Q1, . . . , Qr} of the dependent ideal i(F ), the decomposition of the
form (5.2) is not unique and the distributions ψ1, . . . , ψr in (5.3) may have
linear dependent shifts in general. For instance, one may easily verify
that {Q1, . . . , QM , QM+1, . . . , Q2M} with Qk = Qk+M = Pk, 1 ≤ k ≤ M ,
is a generator of the dependent ideal i(F ), and that F has the following
decompositions:

F =
M∑
i=1

pi(j)φi(· − j) =
1
2

M∑
i=1

pi(j)φi(· − j) +
1
2

2M∑
i=M+1

pi(j)φi−M (· − j),

where pi(j) = pi−M (j) for M + 1 ≤ i ≤ 2M and j ∈ Zd.
In wavelet analysis, we are more interested in the decomposition (5.2)

such that the shift-invariant space generated by the distributions ψ1, . . . , ψr

in the decomposition is the same as V (F ), i.e.,

V (F ) = V (ψ1, . . . , ψr).

In the viewpoint of the shift-invariant space, {ψ1, . . . , ψr} is a “good” gen-
erator of the shift-invariant space V (F ). All those inspires us to consider
the following problem:

Problem Given a compactly supported distribution F and a generator
{Q1, . . . , Qr} of the dependent ideal i(F ). Is the decomposition of the form
(5.2) unique, do the functions ψ1, . . . , ψr have linear independent shifts and
belong to V (F )?

In order to solve the above problem, we introduce a new concept: strongly
linear independence. We say that D1, . . . , Dr ∈ (�0)N are strongly linearly
independent if

∑r
i=1

∑
k∈Zd γi(k)τk(Di) = 0 for some (γi(k))k∈Zd ∈ �0, 1 ≤

i ≤ r, implies that γi(k) = 0 for all 1 ≤ i ≤ r and k ∈ Zd.
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Theorem 5.1. Let F = (f1, . . . , fN )T be a vector-valued compactly sup-
ported distribution, and let i(F ) be the dependent ideal of F . If {Qi =
(qi(j))j∈Zd : 1 ≤ i ≤ r} is a strongly linear independent generator of the
dependent ideal i(F ), then there exists only one family of compactly sup-
ported distributions ψ1, ..., ψr satisfying (5.2). Furthermore, those distribu-
tions have linear independent shifts, belong to V (F ) and satisfy

(5.4) V (F ) = V (ψ1, . . . , ψr).

If F is refinable, then the above compactly supported distributions ψ1, . . . , ψr

are refinable too.

A shift-invariant space of (�0)N with a strongly linear independent gen-
erator is said to be quasi-principal. By Proposition A.1, any shift-invariant
linear space of (�0(Z))N is quasi-principal. Then as an easy consequence of
Theorem 5.1, we have

Corollary 5.2. Every vector-valued compactly supported distribution F on
the real line is finite linear combinations of the shifts of some compactly sup-
ported distributions ψ1, . . . , ψr ∈ V (F ) having linear independent shifts. If,
additionally, F is refinable, then the above compactly supported distributions
ψ1, . . . , ψr can be chosen to be refinable too.

Similar result for scale-valued refinable functions with dilation 2 on the
line was proved by Jia ([10, Theorem 5.3]).

The quasi-principal condition to the dependent ideal i(F ) in Theorem 5.1
is necessary if the distributions ψ1, . . . , ψr ∈ V (F ) have linear independent
shifts.

Theorem 5.3. Let F be a vector-valued compactly supported distribution
and i(F ) be its dependent ideal. If there exist compactly supported dis-
tributions ψ1, . . . , ψr such that they have linear independent shifts, belong
to V (F ), and such that F is finite linear combinations of the shifts of
ψ1, . . . , ψr, then i(F ) is quasi-principal.

If we only need to find ψ1, . . . , ψr having linear independent, the strongly
linearly independent condition on the generator {Q1, . . . , Qr} is not neces-
sary. For instance, the Zwart-Powell spline has a decomposition of the form
(5.2) with ψ1, . . . , ψr having linear independent shifts, but its dependent
ideal is not quasi-principal.
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Example 5.4. Let F be the refinable function with symbol

H(ξ1, ξ2) =
1
16

(1 + e−iξ1)(1 + e−iξ2)(1 + e−i(ξ1+ξ2))(e−iξ2 + e−iξ1).

In fact, F is (1, 0)-shift of the Zwart-Powell spline MΞ, and hence F is
continuous and supported in [0, 3]2, where

Ξ =

(
1 0 1 −1
0 1 1 1

)
.

One may verify that the linear space spanned by the vector (F (x + i, y +
i′))i,i′=0,1,2, (x, y) ∈ [0, 1]2, is the orthogonal complement of the linear space
spanned by (1,−1, 1,−1, 1,−1, 1,−1, 1). Thus

i(F ) =
{

(c(j1, j2))(j1,j2)∈Z2 ∈ �0 :
∑

(j1,j2)∈Z2

c(j1, j2)(−1)j1+j2 = 0
}

and i(F ) is not a quasi-principal ideal. Therefore by Theorem 5.3, there
does not exist a decomposition of the form (5.2) with ψ1, . . . , ψr ∈ V (F )
having linear independent shifts.

Divide the unit square [0, 1]2 into four triangles Di, 1 ≤ i ≤ 4,⎧⎪⎪⎪⎨⎪⎪⎪⎩
D1 = {(x, y) ∈ [0, 1]2 : y ≤ x ≤ 1 − y}
D2 = {(x, y) ∈ [0, 1]2 : max(y, 1 − y) ≤ x ≤ 1}
D3 = {(x, y) ∈ [0, 1]2 : x ≤ y ≤ 1 − x}
D4 = {(x, y) ∈ [0, 1]2 : max(x, 1 − x) ≤ y ≤ 1}.

Then F is the finite combinations of the shifts of xkylχDi(x, y), i = 1, 2, 3, 4
and (k, l) ∈ Λ2, where Λ2 = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)}, that is,
F has a decomposition of the form (5.2), where we have used the fact that
the restriction of Zwart-Powell spline on the shifts of Di is a polynomial
of degree at most 2. One may easily verify that the compactly supported
functions φk,l,i, 1 ≤ i ≤ 4, (k, l) ∈ Λ2, have linear independent shifts and are
refinable.

6. Proofs

In this section, we gather all proofs. Let δ be the delta sequence on Zd,
and let ei ∈ RN , 1 ≤ i ≤ N , be vectors with the i-th component one and
other components zero.

To prove Theorem 2.1, we recall a result in [2, 23].
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Lemma 6.1. ([2, 23]) Let F = (f1, . . . , fN )T be a vector-valued compactly
supported distribution. If F has linear independent shifts, then there exist
h1, . . . , hN ∈ D such that

� L(F ), hi �= δei for all 1 ≤ i ≤ N.

Proof of Theorem 2.1. Let F have the form (1.1), and let Pi and φi, 1 ≤
i ≤ M , be as in (1.1). Then it follows from (1.2) that � L(F ), h �∈
I(P1, . . . , PM ) for any h ∈ D, which implies i(F ) ⊂ I(P1, . . . , PM ).

By the linear independent shifts of φ1, . . . , φM and Lemma 6.1, there exist
h1, . . . , hM ∈ D such that

� φi(· − k), hi′(· − k′) �= δii′δkk′ ∀ 1 ≤ i, i′ ≤M and k, k′ ∈ Zd,

where δii′ and δkk′ are Kronecker symbols. This, together with (1.2), imply
that for any 1 ≤ i ≤M ,

Pi =
M∑

i′=1

∑
k∈Zd

τk(Pi′) � φi′(· + k), hi �=� L(F ), hi �∈ i(F ).

Then I(P1, . . . , PM ) ⊂ i(F ) since i(F ) is shift-invariant. �

Proof of Theorem 2.2. If i(F ) = (�0)N , then K(F ) = {0} by (1.4), Theorem
1.1, and Theorem 2.1. Conversely, if K(F ) = {0}, then f1, . . . , fN have linear
independent shifts. Hence f1, . . . , fN can be chosen as the functions φi in
(1.1), and F has the decomposition of the form (1.1) with Pi = δei, 1 ≤ i ≤
N , at this time. This, together with Theorem 2.1, lead to i(F ) = (�0)N . �

To prove Theorem 3.1, we need the existence of dual functions for a family
of linear independent distributions on some bounded open set. We include
a proof for the completeness of this paper.

Lemma 6.2. Let ψ1, . . . , ψM be compactly supported distributions, and let
A be a bounded open set. If ψ1, . . . , ψM are linear independent on A, then
there exist h1, . . . , hM ∈ D with support in A such that

� ψi, hi′ � = δii′ , ∀ 1 ≤ i, i′ ≤M.

Proof. We prove the assertion by induction on M . For M = 1, ψ1 �≡ 0 on
A by the linear independence of ψ1 on A. Thus � ψ1, g � �= 0 for some
g ∈ D supported in A. This proves the assertion for the case M = 1 by
letting h1 = g/� g, ψ1 �. Inductively we assume that the assertion holds
for the case M − 1, and start to prove the assertion for the case M ≥ 2.
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Note that ψ1 �≡ 0 on A, since, otherwise, ψ1, . . . , ψM are linearly dependent
on A. Then

(6.1) � ψ1, h
∗
1 � = 1

for some h∗1 ∈ D with support in A. Define ψ∗
i = ψi− � ψi, h

∗
1 � ψ1, 2 ≤

i ≤M . Then ψ∗
2, . . . , ψ

∗
M are linear independent on A, and

(6.2) � ψ∗
i , h

∗
1 � = 0, 2 ≤ i ≤M

by (6.1). By the inductive hypothesis, there exist h∗2, . . . , h∗M ∈ D supported
in A such that

(6.3) � ψ∗
i , h

∗
i′ � = δii′ ∀ 2 ≤ i, i′ ≤M.

Define ψ∗
1 = ψ1 −

∑M
i=2 � ψ1, h

∗
i � ψ∗

i . Then

(6.4) � ψ∗
1, h

∗
i � = 0, 2 ≤ i ≤M

by (6.3). From the construction of ψ∗
1, . . . , ψ

∗
M , there exist M × M non-

singular matrices B1 = (aii′)1≤i,i′≤M such that ψi =
∑M

i′=1 aii′ψ
∗
i′ and

ψ∗
i =

∑M
i′=1 bii′ψi′ , 1 ≤ i ≤ M, where (B1)−1 = (bii′)1≤i,i′≤M . Then hi =∑s

i′=1 bi′ih
∗
i′ , 1 ≤ i ≤M , satisfy the required properties by (6.1)–(6.4). �

Proof of Theorem 3.1. Let A be a bounded open set with A + Zd = Rd,
k0 = dimV (F )|A, and let Ei and ψi, 1 ≤ i ≤ k0, be as in (3.3). Therefore it
suffices to prove

(6.5) � L(F ), h�∈ i(A,F ) ∀ h ∈ D,

and

(6.6) Ei ∈ i(F ) ∀ 1 ≤ i ≤ k0.

By the assumption A + Zd = Rd, there exists a function g ∈ D so that
supp g ⊂ A and

∑
k∈Zd g(· − k) ≡ 1. Set hk = h(· − k)g. Then hk ∈ D,

supp hk ⊂ A and h =
∑

k∈Zd hk(· + k). This, together with (3.3), imply

� L(F ), h� =
∑
k∈Zd

τk � L(F ), hk �

=
k0∑
i=1

∑
k∈Zd

τk(Ei) � ψi, hk � ∈ i(A,F ).

Hence (6.5) is proved.
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By Lemma 6.2 and the linear independence of ψ1, . . . , ψk0 , there exist
h1, . . . , hk0 ∈ D, so that h1, . . . , hk0 are supported in A, and � ψi, hi′ �=
δii′ for all 1 ≤ i, i′ ≤ k0. This, together with (3.3), imply

Ei =
k0∑

i′=1

Ei′ � φi′ , hi �=� L(F ), hi �∈ i(F ) ∀ 1 ≤ i ≤ k0.

Hence (6.6) is proved. �

Proof of Theorem 3.2. By (2.1), any sequence in i(F ) belongs to the space
spanned by L(F )(x), x ∈ Rd. Conversely, for any x0 ∈ Rd, there exist
hn ∈ D, n ≥ 1, such that limn→∞ � L(F ), hn �= L(F )(x0) in the topology
of (�0)N . Then L(F )(x0) ∈ i(F ) by the fact that i(F ) is closed in the
topology of (�0)N (see Proposition A.1 in the appendix). Thus the conclusion
follows. �

Proof of Theorem 3.3 . Let Ei, 1 ≤ i ≤ dimV (F )|A, be as in (3.3), and
S̃(A,F ) be the space spanned by those sequences, i.e.,

S̃(A,F ) := spanned by Ei, 1 ≤ i ≤ dimV (F )|A.
Then, by Theorem 3.1, it suffices to prove

(6.7) S̃(A,F ) = S(A,F )

for any open set A. Set k0 = dimV (F )|A, and let Ei and ψi, 1 ≤ i ≤ k0, be
as in (3.3). Then the proof of (6.7) reduces to

(6.8) W (Ei) = 0

for all 1 ≤ i ≤ k0 and W ∈ W(A,F ), and

(6.9) W ∈ W(A,F )

for any sequence W ∈ (�)N with W (E) = 0 for all E ∈ S̃(A,F ).
For any W ∈ W(A,F ), it follows from (3.3) that

∑k0
i=1W (Ei)ψi =

W (L(F )) = 0 on A. Thus (6.8) follows from the linear independence of
ψ1, . . . , ψk0 on A.

Let W ∈ (�)N satisfy W (E) = 0 for all E ∈ S̃(A,F ). Then W (L(F )) =∑k0
i=1W (Ei)ψi = 0 on A by (3.3). Then (6.9) follows. �

Proof of Theorem 3.4. Clearly it suffices to prove that D = F−1([F̂ , ν̂]) ∈
i(F ) for any compactly supported distribution ν with ν̂F̂ ∈ L1. Fix h1 ∈ D
with ĥ1(0) = 1, and define νn by ν̂n = ν̂ĥ1(n·), n ≥ 1. Then νn ∈ D, n ≥ 1.
Moreover νn are supported in a compact set independent of n ≥ 1, and
F̂ ν̂n converges to F̂ ν̂ in L1 norm by the Lebesgue dominated theorem and
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the integrable hypothesis on F̂ ν̂. Therefore [F̂ , ν̂n] converges to [F̂ , ν̂] in
L1([0, 2π]d) norm as n tends to infinity. This proves the convergence of
Dn, n ≥ 1, to D in the topology of (�0)N , where Dn = F−1([F̂ , ν̂n]), n ≥ 1.
Note that Dn ∈ i(F ) by (3.6) and νn ∈ D, and recall that i(F ) is closed in
the topology of (�0)N by Proposition A.1. Then the limit D of Dn, n ≥ 1,
belongs to i(F ) too. �

Proof of Theorem 3.5. Let V be the minimal shift-invariant subspace of
(�0)N which is invariant under Bk, k ∈ Zd, and contains the sequence �
L(F ), G�. By the assumption onG and Theorem 3.4, we have � L(F ), G�∈
i(F ). This, together with (3.10), lead to V ⊂ i(F ). Then it remains to prove

(6.10) � L(F ), h�∈ V ∀ h ∈ D.

Let D0 =� L(F ), G �, hn be chosen as in (ii), and define Dn =�
L(F ), hn �, n ≥ 1. By (3.9), we have

Bn−1
0 BkD0 = 2nd � L(F ), G(2n · −k) � .

Thus Dn, n ≥ 1, are finite combination of Bn−1
0 BkD0, k ∈ Zd, and hence

belong to V . On the other hand, by the assumption on G, Dn converges to
� L(F ), h � in the topology of (�0)N as n tends to infinity. Hence (6.10)
follows from the closedness of V in the topology of (�0)N . �

Proof of Theorem 4.1. Obviously it suffices to prove the first inequality in
(4.3). Actually, the second inequality follows from the first one by chang-
ing the roles of {E1, . . . , EN1} and {Ẽ1, . . . , ẼN2}. By the definition of a
generator, there exist αii′ = (αii′(j))j∈Zd ∈ �0 such that

(6.11) Ei =
N2∑

i′=1

∑
j∈Zd

αii′(j)τj(Ẽi′), 1 ≤ i ≤ N1.

Therefore there exists a positive constant C by (6.11) such that

N1∑
i=1

‖{D(τj(Ei))}j∈Zd‖p ≤
N1∑
i=1

N2∑
i′=1

∑
j′∈Zd

|αii′(j′)| ‖{D(τj+j′(Ẽi′))}j∈Zd‖p

≤ C

N2∑
i′=1

‖{D(τj(Ẽi′))}j∈Zd‖p ∀ D ∈ (�0)N .

This proves the first inequality of (4.3) and completes the proof. �
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Proof of Theorem 4.2. Let Pi and φi, 1 ≤ i ≤ M , be as in (1.1). Then by
(1.2), (4.1), and the linear independent shifts of φ1, . . . , φM , there exists a
positive constant C such that for all D ∈ (�0)N ,
(6.12)

C−1
M∑
i=1

‖(D(τjPi))j∈Zd‖p ≤ ‖D(L(F ))‖p ≤ C
M∑
i=1

‖(D(τjPi))j∈Zd‖p.

Therefore (4.3) follows from (6.12), Theorem 2.1, and Theorem 4.1. �

The proof of Theorem 5.1 is very technical, and we need several lemmas
including a well-known result about linear independent shifts, a property of
strongly linear independent sequences, a lemma about the sequences αii′ in
(5.1), a characterization of strongly linear independence, and an existence
result of the inverse sequence of a nonzero finitely supported sequence.

Lemma 6.3. ([13, 16]) Let F be a vector-valued compactly supported dis-
tribution on Rd. Then F has linear independent shifts if and only if the
matrix (F̂ (ξ + 2jπ))j∈Zd is of full rank for any ξ ∈ Cd.

Lemma 6.4. Let Q1, . . . , Qr ∈ (�0)N be strongly linearly independent. If

(6.13)
r∑

i=1

F(Qi)(ξ)ĝi(ξ) = 0

for some compactly supported distributions g1, . . . , gr, then gi = 0 for all
1 ≤ i ≤ r.

Proof. For any y ∈ Rd and h ∈ D, multiplying eiyξĥ(ξ) at both sides of
(6.13) and then taking 2π periodization, we obtain

r∑
i=1

F(Qi)(ξ)[ĝi, e
−iy·ĥ](ξ) = 0 ∀ ξ ∈ Rd.

This, together with the strongly linear independence of Q1, . . . , Qr, implies
that for all 1 ≤ i ≤ r,

[ĝi, e
−iy·ĥ] = eiyξ

∑
k∈Zd

e2kiy ĝi(ξ + 2kπ)ĥ(ξ + 2kπ) = 0.

Therefore, ĝi(ξ)ĥ(ξ) = 0 on Rd since y is chosen arbitrarily. Hence the
assertion follows because h ∈ D is chosen arbitrarily too. �

Lemma 6.5. Let F be a vector-valued compactly supported distribution hav-
ing the decomposition (1.1), {Qi = (qi(j))j∈Zd , 1 ≤ i ≤ r} be a strongly
linear independent generator of i(F ), and let the sequences αii′ be defined as
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in (5.1). Then the matrix (F(αii′)(ξ))1≤i≤r,1≤i′≤M has full rank r ≤ M for
any ξ ∈ Cd.

Proof. Let P1, . . . , PM be as in (1.1). Then {P1, . . . , PM} is a generator
of the dependent ideal i(F ) by Theorem 2.1. Hence there exist sequences
βi′i = (βi′i(k))k∈Zd ∈ �0 such that

Qi′ =
M∑
i=1

∑
k∈Zd

βi′i(k)τk(Pi),

which is equivalent to

(6.14) F(Qi′) =
M∑
i=1

F(βi′i)F(Pi).

On the other hand,

(6.15) F(Pi) =
r∑

i′=1

F(αii′)F(Qi′)

by (5.1). Then combining (6.14) and (6.15), we obtain

F(Qi′) =
M∑

i,i′′=1

F(βi′i)F(αii′′)F(Qi′′).

By the assumption on Q1, . . . , Qr and Lemma 6.4, we have
M∑
i=1

F(βi′i)(ξ)F(αii′′)(ξ) = δi′i′′ ∀ 1 ≤ i′, i′′ ≤ r and ξ ∈ Cd.

Hence the assertion follows. �

To state the characterization of strongly linear independence, we intro-
duce Z-transform of a sequence in (�)N . For a sequenceW = (w(k))k∈Zd ∈ �,
define the formal series

∑
k∈Zd w(k)z−k as its Z-transform Z(W )(z). Denote

the space of Z-transforms of all sequences in �0 and in (�0)N by L and LN re-
spectively. For two sequences U := (u(k))k∈Zd ∈ � and V := (v(k))k∈Zd ∈ �0,
we define their convolution W := U ∗ V := (w(k))k∈Zd by

w(k) :=
∑

k′∈Zd

u(k′)v(k − k′), k ∈ Zd.

One may easily verify that Z(U ∗V )(z) = Z(U)(z)Z(V )(z) for all U, V ∈ �0.
So we define the product Z(U)(z)Z(V )(z) of Z-transform of U ∈ � and
V ∈ �0 as the Z-transform of their convolution, i.e.,

Z(U)(z)Z(V )(z) := Z(U ∗ V )(z).
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Lemma 6.6. Let Qi ∈ (�0)N , 1 ≤ i ≤ r. Then Qi, 1 ≤ i ≤ r, are strongly
linearly independent if and only if there exist B(z) ∈ Lr×N and 0 �= a(z) ∈ L
such that

(6.16) B(z)(Z(Q1)(z), . . . ,Z(Qr)(z)) = a(z)Ir,

where Ir is the r × r unit matrix.

Proof. First the sufficiency. Take any Ri(z) ∈ L, 1 ≤ i ≤ r, satisfying∑r
i=1 Z(Qi)(z)Ri(z) = 0. Then it suffices to prove

(6.17) Ri(z) ≡ 0, 1 ≤ i ≤ r.

By (6.16), the N×r matrix Q(z) := (Z(Q1)(z), . . . ,Z(Qr)(z)) is of full rank
r for all z ∈ (C\{0})d with a(z) �= 0. Therefore Ri(z) = 0, 1 ≤ i ≤ r, for all
z ∈ (C\{0})d with a(z) �= 0, which leads to (6.17).

Then the necessity. We claim that for any nonzero N × r matrix Q(z) of
Laurent polynomials, there exist 0 �= a(z) ∈ L and 1 ≤ s ≤ r such that

(6.18) a(z)Q(z) = A1(z)A2(z)A3(z)

where A1(z) ∈ LN×N and A3(z) ∈ Lr×r satisfy detA1(z) detA3(z) �≡ 0,

and A2(z) =

(
A4(z) 0

0 0

)
∈ LN×r for some diagonal matrix A4(z) ∈ Ls×s

with detA4(z) �≡ 0. In one dimension, the above decomposition follows from
the usual Smith decomposition (see for instance [22, p.150]). The above
decomposition in high dimensions can be established by using elementary
transforms: interchange two rows(columns); multiply a row by a nonzero
Laurent polynomial; and add a polynomial multiple of a row(column) to
another row(column). So we omit the detail of the proof here. Let Q(z) :=
(Z(Q1)(z), . . . ,Z(Qr)(z)) has the decomposition (6.18). Then s = r by
the strongly linear independence of Qi, 1 ≤ i ≤ r, which leads to A2(z) =(
A4(z)

0

)
for some r × r matrix A4(z) with detA4(z) �≡ 0. For

(6.19) B(z) := A3(z)∗(A4(z)∗, 0)A1(z)∗,

we have

B(z)Q(z) = A3(z)∗(A4(z)∗, 0)A1(z)∗A1(z)

(
A4(z)

0

)
A3(z)

= detA1(z) detA4(z) detA3(z)Ir,

where A(z)∗ is the adjoint matrix of A(z). Hence (6.16) follows by letting
B(z) be as in (6.19) and a(z) = detA1(z) detA4(z) detA3(z). �
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To find the inverse sequence of a nonzero finitely supported sequence, we
need introduce a sequence space �+(Zd), which is closed under the convo-
lution. Let �+(Z) be the space of all sequences U := (u(k))k∈Z such that
u(k) = 0 for all k ≤ N , whereN ∈ Z depends on the sequence U . Inductively
we define �+(Zd), d ≥ 2, to be the space of all sequences U := (u(k))k∈Zd such
that (u(k′, kd))k′∈Zd−1 ∈ �+(Zd−1) for all kd ∈ Z, and such that u(k′, kd) = 0
for all kd ≤ N and k′ ∈ Zd−1, where N ∈ Z depends on U . For two se-
quences U := (u(k))k∈Zd ∈ �+(Zd) and V := (v(k))k∈Zd ∈ �+(Zd), we define
their convolution W = U ∗ V := (w(k))k∈Zd ∈ �+(Zd) by

w(k) :=
∑

k′∈Zd

u(k′)v(k − k′), k ∈ Zd.

The above sum is well defined since for any k ∈ Zd, only finite many of
u(k′)v(k − k′), k′ ∈ Zd, are nonzero. Similar to the product of Z-transform
of two sequences in � and �0, we define the product of Z-transform of two
sequences in �+(Zd) by the Z-transform of their convolution, i.e.,

Z(U)(z)Z(V )(z) := Z(U ∗ V )(z)

for U, V ∈ �+(Zd).

Lemma 6.7. Let 0 �= V := (v(k))k∈Zd ∈ �0(Zd). Then there exists W :=
(w(k))k∈Zd ∈ �+(Zd) such that

(6.20) W ∗ V = δ

where δ := (δ(k))k∈Zd is the usual delta sequence defined by δ(0) = 1 and
δ(k) = 0 otherwise.

Proof. We prove the assertion by the induction on the dimension d. For
d = 1, write

Z(V )(z) = azL1(1 + z−1Q(z−1)),

where a ∈ R, L1 ∈ Z and Q(z) is a polynomial. Define Un := (un(k))k∈Z

by

Z(Un)(z) = a−1z−L1(−z−1Q(z−1))n, n ≥ 0.

One may verify that un(k) = 0 for all k ≤ n+L1 − 1. Thus W :=
∑∞

n=0 Un

is well defined, belongs to �+(Z), and

Z(V )(z)Z(W )(z)

= azL1(1 + z−1Q(z−1))a−1z−L1

∞∑
n=0

(−z−1Q(z−1))n = 1,
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which leads to (6.20) for d = 1. Inductively we assume that the assertion
holds for any nonzero sequence in �0(Zd−1). Take any nonzero sequence
V ∈ �0(Zd), we write

Z(V )(z′, zd) = zL(a(z′−1) + z−1
d Q(z′−1

, z−1
d ))

where L ∈ Zd, a(z′) is a nonzero polynomial of z′, and Q(z′, zd) is a
polynomial of z′ and zd. By the inductive hypothesis, there exists a se-
quence W1 ∈ �+(Zd−1) such that a(z′−1)Z(W1)(z′) = 1. Thus R(z′, zd) :=
z−1
d Q(z′−1, z−1

d )Z(W1)(z′) is the Z-transform of a sequence in �+(Zd). De-
fine Un = (un(k))k∈Zd ∈ �+(Zd), n ≥ 0, by

Z(Un)(z) = z−LZ(W1)(z′)(−1)nR(z′, zd)n.

One may verify that un(k′, kd) = 0 for all kd ≤ n+Ld and k′ ∈ Zd−1, where
L = (L′, Ld) ∈ Zd. Therefore W :=

∑∞
n=0 Un is well defined, belongs to

�+(Zd), and

Z(V )(z)Z(W )(z) = zL(a(z′−1) + z−1
d Q(z′−1

, z−1
d ))z−LZ(W1)(z′)

×
∞∑

n=0

(−1)n
(
z−1
d Q(z′−1

, z−1
d )Z(W1)(z′)

)n

= (1 +R(z′, zd))
∞∑

n=0

(−1)nR(z′, zd)n = 1,

where z = (z′, zd). Thus W is a sequence in �+(Zd) satisfying (6.20). �

Proof of Theorem 5.1. The existence of the decomposition of the form (5.2)
follows from the assumption on Q1, . . . , QM . Let ψ1, . . . , ψr be defined by
(5.3). Then it suffices to prove the uniqueness of the decomposition of the
form (5.2), ψ1, . . . , ψr have linear independent shifts, belong to V (F ), and
satisfy (5.4).

At first the uniqueness of the decomposition (5.2). Let ϕ1, ..., ϕr be an-
other family of compactly supported distributions such that F =

∑r
i=1

∑
j∈Zd qi(j)ϕi(·−

j). Substituting the above formula for F into (5.2), and then taking Fourier
transform, we obtain

(6.21)
r∑

i=1

F(Qi)(ξ)(ψ̂i(ξ) − ϕ̂i(ξ)) = 0

Then ψi = ϕi, 1 ≤ i ≤ r, by the strongly linear independence of Q1, . . . , Qr

and Lemma 6.4. This proves the uniqueness.
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Secondly the linear independent shifts of ψ1, . . . , ψr. Let φ1, . . . , φM be
as in (1.1), set Ψ = (ψ1, . . . , ψr)T and Φ = (φ1, . . . , φM )T . Taking Fourier
transform at both sides of the equation (5.3), we have

Ψ̂ = (F(α))T Φ̂,

where we set F(α) = (F(αii′))1≤i≤M,1≤i′≤r. Thus

(6.22)
(
Ψ̂(ξ + 2jπ)

)
j∈Zd = (F(α)(ξ))T

(
Φ̂(ξ + 2jπ)

)
j∈Zd .

By the linear independent shifts of Φ and Lemma 6.3, we obtain

(6.23) rank
(
Φ̂(ξ + 2jπ)

)
j∈Zd = M.

By Lemma 6.5, F(α)(ξ) has full rank r ≤M for any ξ ∈ Cd. This, together
with (6.22) and (6.23), lead to

rank
(
Ψ̂(ξ + 2jπ)

)
j∈Zd = r ∀ ξ ∈ Cd.

Therefore ψ1, . . . , ψr have linear independent shifts by Lemma 6.3.
Thirdly ψ1, . . . , ψr ∈ V (F ). Taking Fourier transform at both sides of the

equation (5.2) gives

(6.24) F̂ (ξ) =
r∑

i=1

Z(Qi)(eiξ)ψ̂i(ξ).

By the strongly linearly independent assumption on Q1, . . . , Qr and Lemma
6.6, there exist 0 �= a(z) ∈ L and bi(z) ∈ LN , 1 ≤ i ≤ r, such that for any
1 ≤ i, i′ ≤ r, it holds

bi(z)TQi′(z) =

{
a(z) if i = i′,
0 otherwise.

Then the functions gi, 1 ≤ i ≤ r, defined by

(6.25) ĝi(ξ) = bi(e−iξ)T F̂ (ξ),

satisfy

(6.26) a(e−iξ)ψ̂i(ξ) = ĝi(ξ).

Let W := (w(j))j∈Zd ∈ �+(Zd) be a sequence satisfying

(6.27) a(z)Z(W )(z) = 1.

The existence of the above sequence w follows from Lemma 6.7. Combining
(6.26) and (6.27) gives ψi =

∑
j∈Zw(j)gi(· − j), which together with (6.25)

implies that ψi is (infinite) linear combination of the shifts of F . This proves
ψ1, . . . , ψr ∈ V (F ).
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Fourthly we prove (5.4). Set Ψ = (ψ1, . . . , ψr)T . By (5.2), we have
V (F ) ⊂ V (Ψ). Then it suffices to prove

(6.28) V (Ψ) ⊂ V (F ).

Take any sequence V := (v(j))j∈Zd ∈ �(Zd), and decompose it as the sum
of Vε ∈ �ε(Zd),

(6.29) V =
∑

ε∈{0,1}d

Vε,

where for any ε ∈ {0, 1}d we define

�ε(Zd) = {(c(j))j∈Zd : (c((−1)εj))j∈Zd ∈ �+(Zd)}.
In fact, the sequences Vε := (vε(j))j∈Zd can be defined by vε(j) = 2−l(j)v(j)
for all j with all components of (−1)j being nonnegative, and vε(j) = 0
otherwise, where l(j) is the cardinality of the set {1 ≤ k ≤ d : jk = 0} for
j = (j1, . . . , jd) ∈ Zd. By the proof of the assertion ψ1, . . . , ψr ∈ V (F ), there
exist sequences Wε := (wε(j))j∈Zd ∈ (�ε(Zd))r×N such that

(6.30) Ψ =
∑
j∈Zd

wε(j)F (· − j).

Combining (6.29) and (6.30), we get∑
j∈Zd

v(j)T Ψ(· − j) =
∑

ε∈{0,1}d

∑
j,j′∈Zd

vε(j′)Twε(j − j′)F (· − j)

=
∑

ε∈{0,1}d

∑
j∈Zd

( ∑
j′∈Zd

vε(j′)Twε(j − j′)
)
F (· − j) ∈ V (F ),

where we have used the fact that
(∑

j′∈Zd vε(j′)Twε(j − j′)
)
j∈Zd ∈ �ε(Zd).

This proves (6.28) and hence completes the proof of (5.4).
Finally we prove the refinability of ψ1, . . . , ψr. For any space V of distri-

butions, let

D2V = {f(2·) : f ∈ V }.
By the refinability of F , we have V (F ) ⊂ D2V (F ). This together with
(5.4) leads to V (ψ1, . . . , ψr) ⊂ D2(ψ1, . . . , ψr). Thus there exists sequences
(c(j))j∈Z ∈ (�)r×r such that

(6.31) Ψ =
∑
j∈Zd

c(j)Ψ(2 · −j).

By the linear independent shifts of Ψ and Lemma 6.1, the sequence (c(j))j∈Zd

has finite support. This together with (6.31) proves the refinablity of Ψ. �
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Proof of Theorem 5.3. Let F have the decomposition (5.2) withQi := (qi(j))j∈Zd ∈
(�0)N and ψ1, . . . , ψr ∈ V (F ) having linear independent shifts. By Theorem
2.1, {Q1, . . . , Qr} is a generator of the dependent ideal i(F ). By the decom-
position in (6.18), there exists 0 �= a(z) ∈ L, A1(z) ∈ LN×N , A3(z) ∈ Lr×r

and a diagonal matrixA4(z) ∈ Ls×s such that detA1(z) detA3(z) detA4(z) �≡
0 and

(6.32) a(z)Z(Q)(z) = A1(z)

(
A4(z) 0

0 0

)
A3(z),

where 1 ≤ s ≤ r and Q := (q(j))j∈Zd =
(
(q1(j), . . . , qr(j))

)
j∈Zd ∈ (�0)N×r.

By Lemma 6.6, it suffices to prove

(6.33) s = r.

By the assumption ψ1, . . . , ψr ∈ V (F ), there exists a matrix-valued sequence
P := (p(j))j∈Zd ∈ (�)r×N such that

(6.34) Ψ =
∑
j∈Z

p(j)F (· − j),

where Ψ = (ψ1, . . . , ψr)T . By (5.2), we have

(6.35) F =
∑
j∈Z

q(j)Ψ(· − j).

Combining (6.34) and (6.35) gives

Ψ =
∑

j,j′∈Zd

p(j′)q(j − j′)Ψ(· − j).

This together with the linear independent shifts of Ψ leads to∑
j′∈Zd

p(j′)q(j − j′) = Irδj ∀ j ∈ Zd.

Thus

(6.36) Z(P )(z)Z(Q)(z) = Ir.

Substituting the decomposition (6.32) into (6.36), and multiplying A3(z)
and its adjoint A3(z)∗ at both sides from the left and right, we obtain

A3(z)Z(P )(z)A1(z)

(
A4(z) 0

0 0

)
= a(z)Ir.

This leads to (6.33) and completes the proof of Theorem 5.3. �
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Appendix A. Shift-Invariant Linear Subspaces of (�0)N

In the appendix, we give some basic properties of shift-invariant subspaces
of (�0)N . Those properties are known for the scale-valued case, i.e., N = 1
(see [7] for instance). We include a proof here for the completeness of this
paper.

Proposition A.1. Every shift-invariant linear subspace of (�0(Zd))N is
closed and finitely generated. Furthermore if d = 1, then it is quasi-principal.

Let L be the space of all Laurent polynomials on (C\{0})d and let LN

be N copies of L. We say that a linear subspace of LN is an ideal if it is
invariant under multiplying zk, k ∈ Zd. An ideal J of LN is said to be finitely
generated if there exist Qs(z) ∈ J , 1 ≤ s ≤ N1, such that any R(z) ∈ J
can be written as R(z) =

∑N1
s=1Rs(z)Qs(z), where R1(z), . . . , RN1(z) ∈ L,

and to be quasi-principal if there exist a generator {p1(z), . . . , pN2(z)} is of
J such that

∑N2
s=1Rs(z)ps(z) = 0 and Rs(z) ∈ L imply Rs(z) = 0 for all

1 ≤ s ≤ N2.

For any D = (d(j))j∈Zd ∈ (�0)N , define D(z) =
∑

j∈Zd d(j)z−j . Then the
map D �−→ D(z) establishes a one-to-one correspondence between (�0)N

and LN . For any I ⊂ (�0)N , let I(z) be the space of corresponding Laurent
polynomials. Then I is an ideal of (�0)N if and only if I(z) is an ideal of
LN , I is finitely generated if and only if I(z) is finitely generated, and I is
quasi-principal if and only if I(z) is quasi-principal.

Proof of Proposition A.1. Let I be a shift-invariant subspace of (�0)N . Then
for any finite set K ⊂ Zd, I ∩ (�K)N is finite dimensional and closed, where
(�K)N is the space of all RN -valued sequences supported in K. Then the
closedness of I in the topology of (�0)N follows.

Secondly we prove that I is finitely generated. Let J = I(z). Then it
clearly suffices to prove that J is finitely generated. We prove the above
assertion by induction on N . For N = 1, it is known that J is finitely
generated ([7]). Inductively we assume that the assertion holds for N − 1,
and start to prove the assertion for N ≥ 2. Define
(A.1)

J1 = {q1(z) : (q1(z), . . . , qN (z))T ∈ J for some q2(z), . . . , qN (z) ∈ L}

and

(A.2) J2 = {(q2(z), . . . , qN (z))T : (0, q2(z), . . . , qN (z))T ∈ J }.
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It is easy to check that J1 and J2 are ideals of L and LN−1 respectively.
If J1 = {0} or J2 = {0}, then the assertion follows easily from the in-
ductive hypothesis. So we may assume that J1 �= {0} and J2 �= {0}
hereafter. By inductive hypothesis, there exist p1(z), . . . , pN1(z) ∈ J1 and
pN1+1(z), . . . , pN2(z) ∈ J2 such that J1 and J2 are generated by {p1(z), . . . , pN1(z)}
and {pN1+1(z), . . . , pN2(z)} respectively. By the definition of J1, there ex-
ist P1(z), . . . , PN1(z) ∈ J such that the first component of Ps(z) is ps(z), 1 ≤
s ≤ N1. Set Pt(z) = (0, pt(z)T )T , N1+1 ≤ t ≤ N2. Then P1(z), · · · , PN2(z) ∈
J . Now it remains to prove that {P1(z), · · · , PN2(z)} is a generator of
J . Let Q(z) ∈ J and q1(z) be its first component. Then q1(z) ∈ J1,
which leads to the existence of R1(z), . . . , RN1(z) ∈ L such that q1(z) =∑N1

s=1Rs(z)ps(z). Hence the first component of Q(z) −∑N1
s=1Rs(z)Ps(z) is

zero, andQ(z)−∑N1
s=1Rs(z)Ps(z) belongs to J2. ThusQ(z)−∑N1

s=1Rs(z)Ps(z) =∑N2
t=N1+1Rt(z)Pt(z) for some RN1+1(z), . . . , RN2(z) ∈ L. This proves that

{P1(z), . . . , PN2(z)} is a generator of J , and hence J is finitely generated.
Finally, we prove that I is quasi-principal for the case d = 1. Clearly,

it suffices to prove that for d = 1, J = I(z) is quasi-principal. We
prove the assertion by induction on N ≥ 1. For N = 1, J is a Lau-
rent polynomial ideal. Then there exists p(z) ∈ J such that J is gen-
erated by p(z). Hence the assertion holds for N = 1. Inductively, we
assume that the assertion holds for N − 1, and start to prove the asser-
tion for N ≥ 2. Let J1 and J2 be as in (A.1) and (A.2). If J1 = {0}
or J2 = {0}, then the assertion follows easily from the inductive hypoth-
esis. So we may assume that J1 �= {0} and J2 �= {0} hereafter. By the
inductive hypothesis, there exist p1(z) ∈ J1 and p2(z), . . . , pN1(z) ∈ J2 such
that J1 and J2 are generated by p1(z) and {p2(z), . . . , pN1(z)} respectively,
and such that p2(z), . . . , pN1(z) are strongly linearly independent. Define
P1(z), . . . , PN1(z) as the ones in the proof of the existence of a generator
of J with finite cardinality. Then {P1(z), . . . , PN1(z)} is a generator of
J by the proof there. Hence it remains to prove strongly linear indepen-
dence of Ps(z), 1 ≤ s ≤ N1. Let R1(z), . . . , RN1(z) be any Laurent poly-
nomials such that

∑N1
s=1Rs(z)Ps(z) = 0. Then R1(z) = 0 since the first

component of
∑N1

s=1Rs(z)Ps(z) is R1(z)p1(z). Substituting R1(z) = 0 into∑N1
s=1Rs(z)Ps(z) = 0 leads to

∑N1
s=2Rs(z)Ps(z) = 0, which, together with

strongly linear independence of p2(z), . . . , pN1(z), implies that Rs(z) = 0 for
all 2 ≤ s ≤ N1. This proves the strongly linear independence of P1, . . . , PN1 ,
and hence J is quasi-principal. �
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Proposition A.2. Let N be a counterable set, and I be a closed linear
subspace of �0(N ). Then (I⊥)⊥ = I

Proof. Let K = I⊥. Clearly we have

(A.3) I ⊂ (I⊥)⊥.

Suppose, on the contrary, that (I⊥)⊥ �= I. Then there exists b ∈ (I⊥)⊥\I by
(A.3). Let I0 be the space spanned by I and b. It follows from the closedness
of I0 that every element x in I0 can be uniquely written as x = a + λb for
some a ∈ I and λ ∈ R. Thus we may define a linear function l0 from I0 to
R by l0(x) = λ if x = a + λb ∈ I0. Let en, n ≥ 1 be the standard basis of
�0(N ). Let In be the space spanned by I0 and e1, . . . , en. Clearly we have
the following inclusion:

I0 ⊂ I1 ⊂ I2 ⊂ · · · .
Let nk, k ≥ 1, be chosen so that I0 = Il for l < n1, and Ink

= In �= Ink+1

for all nk < n < nk+1, 1 ≤ k. Now we define lk, k ≥ 1, from Ink
to R by

lk(x) = lk−1(y) if x = y + λenk
for some y ∈ Ink−1

and λ ∈ R. The linear
function lk is well-defined since enk

�∈ Ink−1
and Ink−1

is closed. Now we
define a linear function l∞ on �0(N ) by l∞(x) = lk(x) if x ∈ Ink

. Clearly
the above linear function is well defined from the construction of the linear
functions �k and the fact that for any x ∈ �0(N ), there exists N ≥ 1 such
that x belongs to the space spanned by e1, . . . , eN . Since �(N ) is the dual
of �0(N ). Therefore there exists c ∈ �(N ) such that

l(x) = 〈x, c〉 for all x ∈ �0(N ).

From the definition of the linear functional �, we see that 〈x, c〉 = 0 for all
x ∈ I, which implies that c ∈ I⊥. This is a contradiction, since b ∈ (I⊥)⊥
and 〈b, c〉 = 1. �
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Birkhäuser Verlag (Basel), 1989, 31-40.

[5] A. Cavaretta, W. Dahmen and C. A. Micchelli, Stationary subdivision, Memoir Amer.

Math. Soc., 453(1991), 1-186.

[6] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in

Applied Mathematics, 61., SIAM, Philadelphia, PA, 1992.
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