Local Polynomial Property and Linear Independence of Refinable Distributions

Xinrong Dai,* Daren Huang † and Qiyu Sun ‡ April 8, 1999

Abstract

In this paper, local polynomial property, global linear independence, and local linear dependence of the convolution of a B-spline and a refinable distribution supported on a Cantor-like set are studied.

AMS Subject Classification 42C40, 28A80

1 Introduction and Main Result

Define Fourier transform \hat{f} of an integrable function f by $\hat{f}(\xi) = \int_{\mathbf{R}} f(x)e^{-ix\xi}dx$ and interpret Fourier transform of a compactly supported distribution as usual. Fix an integer $M \geq 2$. In this paper, a compactly supported distribution f is said to be refinable if

$$f = \sum_{i \in \mathbf{Z}} c_j f(M \cdot -j) \tag{1}$$

and $\hat{f}(0) = 1$, where the sequence $\{c_j\}_{j \in \mathbf{Z}}$ has finite support, i.e., $c_j = 0$ for all but finite many $j \in \mathbf{Z}$, and satisfies $\sum_{j \in \mathbf{Z}} c_j = M$. Associated with the refinement equation (1) is the Laurent polynomial $H(z) := \frac{1}{M} \sum_{j \in \mathbf{Z}} c_j z^j$, which is known as the *symbol* of the refinement equation (1). The Fourier transform of both sides of the refinement equation (1) yields

$$\hat{f}(\xi) = H(e^{-i\xi/M})\hat{f}(\xi/M). \tag{2}$$

 $^{^*\}mbox{Department}$ of Mathematics, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China

[†]Department of Mathematics, Zhongshan University, Guangzhou, Guangdong 510275, China

[‡]Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.

We say that a compactly supported distribution f has local polynomial property if there is an open set $A \subset \text{supp } f$ such that m(supp f - A) = 0 and the restriction of f on any open interval contained in A coincides with some polynomial. Here m(E) denotes the Lebesgue measure of a set E. For a refinable distribution, its analytic expression is useful in some practical applications, but we know little about it except B-splines ([7]). To some degree, a refinable function which is integrable and has local polynomial property can be regarded to have analytic expression, since analytic expression is given except on a set with Lebesgue measure zero. The local polynomial property was found in [1, 13] for the M band Daubechies' scaling functions $\phi_{M,N}$ with $N \leq M - 1$ (see [1] for the precise statement).

We say that the integer shifts of a compactly supported distribution f are, or for simplicity f is, globally linearly independent if

$$\sum_{j \in \mathbf{Z}} e_j f(\cdot + j) \equiv 0 \quad \text{on} \quad \mathbf{R} \quad \text{implies} \quad e_j \equiv 0 \quad \forall \ j \in \mathbf{Z},$$

and locally linearly independent if for any open set A,

$$\sum_{j \in \mathbf{Z}} e_j f(\cdot + j) \equiv 0 \quad \text{on} \quad A \quad \text{and} \quad f(\cdot + j) \not\equiv 0 \quad \text{on} \quad A \quad \text{imply} \quad e_j = 0.$$

The global linear independence is a necessary condition for orthogonality, or biorthogonality, of a refinable function that we need at most times when a refinable distribution is used in the construction of various wavelets. The local linear independence plays an important role in spline interpolation as well as in nonlinear wavelet approximation (see [4, 6] and references therein). About the global and local linear independence of compactly supported refinable distributions, there is a long list of publications (see for instance [2, 6, 8, 9, 11, 12]). For a refinable distribution, its global linear independence is characterized by corresponding symbol in [8], but its local linear independence is **not** easy to be checked in general. When M=2, it was proved that the local and global linear independence of refinable distributions are equivalent to each other (see [9] for refinable functions with biorthogonal dual and [11] for any refinable distributions). For refinable distributions with M=3, it was pointed out in [2] that their local and global linear independence are not equivalent. Also some examples of refinable distributions, which are Hölder continuous, globally linearly independent but locally linearly dependent, are constructed in [2]. General discussion about the local linear independence of a refinable distribution can be found in [6, 12]. The local linear independence of any compactly supported distribution is characterized in [12].

Define the convolution of two integrable functions f and g by $f * g(x) = \int_{\mathbf{R}} f(x - y)g(y)dy$ and the one of two compactly supported distributions by usual interpretation.

Let h_0 and h_1 be Schwartz functions with supp $\hat{h}_0 \subset \{\xi : |\xi| \leq 1\}$, supp $\hat{h}_1 \subset \{\xi : 1/2 \leq |\xi| \leq 2\}$, and $\hat{h}_0(\xi) + \sum_{s=0}^{\infty} \hat{h}_1(2^{-s}\xi) = 1$ for all $\xi \in \mathbf{R}$. The Besov space $B_{\infty}^{\alpha,\infty}, \alpha \in \mathbf{R}$, is the space of all tempered distributions f with

$$||h_0 * f||_{\infty} + \sup_{s>0} 2^{s\alpha} ||h_{1,s} * f||_{\infty} < \infty$$

where $\|\cdot\|_{\infty}$ is the usual L^{∞} norm of bounded functions, and where $h_{1,s} = 2^s h_1(2^s \cdot), 0 \le s \in \mathbb{Z}$. The purpose of this paper is to study the local polynomial property, global linear independence, and local linear independence of the convolution of a B-spline and a refinable distribution supported on a Cantor-like set. Precisely, we have

Theorem 1 Let $Q(z) = \sum_{j=0}^{M-1} d_j z^j / M$ for some sequence $\{d_j\}_{j=0}^{M-1}$, and assume that $\sum_{j=0}^{M-1} d_j = M$ and the number of nonzero coefficients d_j is at least 2 but at most M-1. Define $\phi_N, N \geq 0$, recursively by $\hat{\phi}_0(\xi) = \prod_{j=0}^{\infty} Q(e^{-i2^{-j}\xi})$, and $\phi_{N+1} = \chi_{[0,1]} * \phi_N$. Then for any $N \geq 1$, we have

- (i) there exists $\alpha_0 \in \mathbf{R}$ such that ϕ_N belongs to the Besov space $B_{\infty}^{\alpha_0+N,\infty}$;
- (ii) ϕ_N is refinable;
- (iii) ϕ_N has local polynomial property;
- (iv) the integer shifts of ϕ_N are globally linearly independent;
- (v) the integer shifts of ϕ_N are locally linearly dependent.

Given any $\tau > 0$, as a consequence of Theorem 1, for sufficiently large N, ϕ_N in Theorem 1 are refinable distributions in the space of all Hölder continuous functions with Hölder index τ , whose integer shifts are globally linearly independent but locally linearly dependent.

2 Proof

Define B-spline $B_N, N \geq 1$, by $\widehat{B_N}(\xi) = ((1 - e^{-i\xi})/(i\xi))^N$. Obviously $B_N, N \geq 1$, are refinable with corresponding symbol $((1 - z^M)/(M - Mz))^N$. The B-spline B_N can also be defined as the convolution of the characteristic function on [0,1] for N times,

$$B_N = \chi_{[0,1]} * \chi_{[0,1]} * \cdots * \chi_{[0,1]}$$
 (N times).

From the construction of ϕ_N , we have

$$\phi_N = B_N * \phi_0. \tag{3}$$

The Fourier transform of both sides of the equation (3) yields

$$\widehat{\phi}_N(\xi) = \widehat{B}_N(\xi)\widehat{\phi}_0(\xi). \tag{4}$$

Let $\alpha_0 \in \mathbf{R}$ be chosen so that $\phi_0 \in B_{\infty}^{\alpha_0,\infty}$. Such a real number α_0 exists since ϕ_0 is a compactly supported distribution. Then the first assertion follows from (4), and the facts that B_N are integrable, and that given any compactly supported C^{∞} function h with supp $h \subset \{\xi : 1/4 \le |\xi| \le 4\}$, we have

$$\int_{\mathbf{R}} \left| \int_{\mathbf{R}} e^{ix\xi} h(2^{-s}\xi) \widehat{B}_N(\xi) d\xi \right| dx \le 2^N \int_{\mathbf{R}} \left| \int_{\mathbf{R}} e^{ix\xi} h(2^{-s}\xi) \xi^{-N} d\xi \right| dx$$

$$\le 2^{(1-s)N} \int_{\mathbf{R}} \left| \int_{\mathbf{R}} e^{ix\xi} h(\xi) \xi^{-N} d\xi \right| dx =: C2^{-sN}$$

for all $0 \le s \in \mathbf{Z}$, where the positive constant $C := 2^N \int_{\mathbf{R}} |\int_{\mathbf{R}} e^{-ix\xi} h(\xi) \xi^{-N} d\xi| dx < \infty$ follows from our assumption on h.

By the definition of ϕ_0 , $\hat{\phi}_0(\xi) = Q(e^{-i\xi/2})\hat{\phi}_0(\xi/2)$. Hence ϕ_0 is a refinable function with symbol Q(z) by (2). This, together with (4), imply that ϕ_N is a refinable function with symbol $((1-z^M)/(M-Mz))^N Q(z)$. Therefore $\phi_N, N \geq 0$, are refinable.

Set $\mathcal{A} = \{0 \leq j \leq M - 1 : d_j \neq 0\}$ and $\mathcal{F} = \{\sum_{n=1}^{\infty} M^{-n} i_n : i_n \in \mathcal{A}\}$. Then $2 \leq \#\mathcal{A} \leq M - 1$, $\mathcal{F} \subset [0, 1]$, \mathcal{F} is a compact set, the Hausdorff dimension of \mathcal{F} is $\ln \#\mathcal{A}/\ln M < 1$, and $M\mathcal{F} = \bigcup_{j \in \mathcal{A}} (j + \mathcal{F})$. Hence we have

$$(0,1)\backslash \mathcal{F}$$
 is an open set and $m((0,1)\backslash \mathcal{F})=1.$ (5)

Taking derivatives of N-th order at both sides of (3) and using

$$D^{N}B_{N} = \sum_{j=0}^{N} (-1)^{j} \begin{pmatrix} N \\ j \end{pmatrix} \delta(\cdot - j),$$

we obtain

$$D^{N}\phi_{N} = \left(\sum_{j=0}^{N} (-1)^{j} \begin{pmatrix} N \\ j \end{pmatrix} \delta(\cdot - j)\right) * \phi_{0} = \sum_{j=0}^{N} (-1)^{j} \begin{pmatrix} N \\ j \end{pmatrix} \phi_{0}(\cdot - j), \tag{6}$$

where δ denotes the usual delta distribution. By [5], ϕ_0 is supported in the set \mathcal{F} . Thus $D^N \phi_N$ is supported in $\bigcup_{j=0}^N (j+\mathcal{F})$ by (6). Hence the restriction of ϕ_N on any open interval contained in $\bigcup_{j=0}^N (j+(0,1)\backslash \mathcal{F})$ is a polynomial with its degree at most N-1. This, together with (5) and supp $\phi_N \subset [0, N+1]$, lead to the local polynomial property of ϕ_N .

To prove the global linear independence of ϕ_N , we need a characterization of global linear independence of a refinable distribution in [10].

Lemma 2 Let f be a compactly supported distribution. Then the integer shifts of f are globally linearly independent if and only if the entire function \hat{f} has no 2π -periodical zero, i.e., there does not exist a complex number z_0 such that $\hat{f}(z_0 + 2k\pi) = 0$ for all $k \in \mathbb{Z}$.

Note that ϕ_0 is supported in \mathcal{F} , and is not reduced to $\{0,1\}$. Then the integer shifts of ϕ_0 are globally linearly independent. Hence the entire function $\hat{\phi}_0$ does not have any 2π periodical zero by Lemma 2. By (4), $\hat{\phi}_N(0) = 1$ and

$$\{z \in \mathbf{C} : \widehat{\phi}_N(z) = 0\} \subset \{z \in \mathbf{C} : \widehat{\phi}_0(z) = 0\} \cup (2\pi \mathbf{Z} \setminus \{0\}). \tag{7}$$

Hence the global linear independence of the integer shifts of ϕ_N follows from (7), Lemma 2, and the global linear independence of the shifts of ϕ_0 .

Finally, we prove the local linear dependence of the integer shifts of ϕ_N . For $0 \le k \le M^{n-1} - 1$, $i \in \{0, 1, ..., M - 1\} \setminus \mathcal{A}$ and $n \ge 1$, set

$$A(k, i, n) = kM^{-n+1} + iM^{-n} + (0, M^{-n}).$$

Recall that $M\mathcal{F} = \bigcup_{j \in \mathcal{A}} (j + \mathcal{F})$. Thus

$$A(k,i,n) \subset (0,1) \backslash \mathcal{F} \tag{8}$$

for any $0 \le k \le M^{n-1} - 1$, $i \in \{0, 1, ..., M-1\} \setminus \mathcal{A}$ and $n \ge 1$. This, together with (6) and supp $\phi_0 \subset \mathcal{F}$, imply that the restriction of ϕ_N on A(k, i, n) + j is a polynomial with its degree at most N-1 for any j=0, ..., N. Hence there exists a nonzero sequence $\{v_j\}_{j=0}^N$ for any A(k, i, n) such that $\sum_{j=0}^N v_j \phi_N(\cdot + j) \equiv 0$ on A(k, i, n). Therefore the local linear dependence of ϕ_N reduces to the existence of an interval A(k, i, n) such that

$$\phi_N(\cdot + j) \not\equiv 0 \quad \text{on} \quad A(k, i, n) \qquad \forall \ 0 \le j \le N.$$
 (9)

For $N=1, \ \phi_1$ is a refinable function with symbol $Q(z)\times (1-z^M)/(M-Mz)$. Then

$$\phi_1 = \frac{1}{M} \sum_{j=0}^{M-1} \sum_{s=0}^{M-1} d_j \phi_1(M \cdot -j - s)$$
 (10)

and $\hat{\phi}_1(0) = 1$. Moreover,

supp
$$\phi_1 \subset [0, 2], \quad \sum_{j \in \mathbf{Z}} \phi_1(\cdot + j) = 1,$$
 (11)

and ϕ_1 is constant-valued on A(k,i,n), to be denote by $\alpha(k,i,n)$. Set

$$a_j = \frac{1}{M} \sum_{l < j} d_l$$
 and $b_j = \frac{1}{M} d_j$, $j \in \mathcal{A}$.

Then for any $j \in \mathcal{A}$, by (10) and (11) we have

$$\alpha(jM^{n-1} + k, i, n+1) = a_j + b_j \alpha(k, i, n)$$
(12)

where $0 \le k \le M^{n-1} - 1, i \in \{0, 1, ..., M - 1\} \setminus \mathcal{A}$, and $n \ge 1$. To prove (9), we need the following result about ϕ_1 .

Lemma 3 Let ϕ_N , $\{d_j\}_{j=0}^{M-1}$ be as in Theorem 1, $\alpha(k,i,n)$ be defined as above, and let

$$G = \{ \alpha(k, i, n) : 0 \le k \le M^{n-1} - 1, i \in \{0, 1, \dots, M - 1\} \setminus \mathcal{A}, n \ge 1 \}.$$

Then $\#G = +\infty$.

For a moment, we assume that Lemma 3 holds, and continue our proof of the local linear dependence of the integer shifts of ϕ_N . Let $A(k_0, i_0, n_0)$ be chosen so that $\alpha(k_0, i_0, n_0) \notin N^{-1}\{0, 1, \dots, N\}$. The existence of such an open interval $A(k_0, i_0, n_0)$ follows from Lemma 3. Thus for any $j = 0, \dots, N$, by (11), we obtain

$$D^{N-1}\phi_{N}(\cdot + j)$$

$$= \sum_{l=0}^{N-1} (-1)^{l} {N-1 \choose l} \phi_{1}(\cdot + j - l)$$

$$= (-1)^{j-1} {N-1 \choose j-1} \left(1 - \alpha(k_{0}, i_{0}, n_{0})\right) + (-1)^{j} {N-1 \choose j} \alpha(k_{0}, i_{0}, n_{0})$$

$$= (-1)^{j} {N \choose j} \left(\alpha(k_{0}, i_{0}, n_{0}) - \frac{j}{N}\right) \neq 0 \quad \text{on} \quad A(k_{0}, i_{0}, n_{0}).$$

This proves (9). Hence it remains to prove Lemma 3. On the contrary, either #G = 1 or $1 < \#G < \infty$. If #G = 1, then it follows from (12) that

$$c = a_j + b_j c \quad \forall \ j \in \mathcal{A}, \tag{13}$$

where we set $G = \{c\}$. Hence $c \neq 0$ by letting j in (13) as the minimal positive index in A. Writing (13) in matrix form leads to

$$\begin{pmatrix} 1 & 0 & 0 & \cdots & \cdots & 0 \\ h & 1 & 0 & & & \vdots \\ h & h & 1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ h & h & \ddots & h & 1 & 0 \\ h & h & \cdots & h & h & 1 \end{pmatrix} \begin{pmatrix} d_{j_1} \\ d_{j_2} \\ \vdots \\ \vdots \\ d_{j_{\#A-1}} \\ d_{j_{\#A}} \end{pmatrix} = M \begin{pmatrix} 1 \\ 1 \\ \vdots \\ \vdots \\ 1 \\ 1 \end{pmatrix}, \tag{14}$$

where $h = c^{-1}$, $\mathcal{A} = \{j_k, 1 \leq k \leq \#\mathcal{A}\}$ and $0 \leq j_1 < j_2 < \cdots < j_{\#\mathcal{A}} \leq M - 1$. Therefore it follows from (14), $\#\mathcal{A} \geq 2$, and $d_{j_k} \neq 0$ for all $1 \leq k \leq \#\mathcal{A}$ that $h \neq 1$ and

$$d_{i_k} = M(1-h)^{k-1} \quad \forall \ 1 \le k \le \# \mathcal{A}.$$

Summing d_{j_k} over $1 \leq k \leq \# \mathcal{A}$ and using $h \neq 1$ and $\# \mathcal{A} \geq 2$, we obtain

$$\sum_{j=0}^{M-1} d_j = \sum_{k=1}^{\#\mathcal{A}} d_{j_k} = Mh^{-1}(1 - (1-h)^{\#\mathcal{A}}) \neq M,$$

which contradicts to the assumption $\sum_{j=0}^{M-1} d_j = M$.

If $1 < \#G < \infty$, then there exist two triples (k_1, i_1, n_1) and (k_2, i_2, n_2) such that

$$\alpha(k_1, i_1, n_1) \neq \alpha(k_2, i_2, n_2). \tag{15}$$

Let $\gamma \in \mathcal{A}$ be chosen that $d_{\gamma} \neq 0, M$. The existence of such an index γ follows from $\sum_{j=0}^{M-1} d_j = M$ and $\#\mathcal{A} \geq 2$. By (12), we have

$$\alpha \left(k_s + \gamma \frac{M^{n_s + n} - M^{n_s - 1}}{M - 1}, i_s, n + n_s + 1 \right)$$

$$= a_{\gamma} + b_{\gamma} \alpha \left(k_s + \gamma \frac{M^{n_s + n - 1} - M^{n_s - 1}}{M - 1}, i_s, n + n_s \right), \quad s = 1, 2,$$
(16)

for $n=0,1,2,\cdots$. By $\#G<\infty$, there exist positive integers N_{1s} and N_{2s} such that $N_{1s}\neq N_{2s}$ and

$$\alpha \left(k_s + \gamma \frac{M^{n_s + N_{1s}} - M^{n_s - 1}}{M - 1}, i_s, N_{1s} + n_s + 1\right)$$

$$= \alpha \left(k_s + \gamma \frac{M^{n_s + N_{2s}} - M^{n_s - 1}}{M - 1}, i_s, N_{2s} + n_s + 1\right), \quad s = 1, 2.$$
(17)

Combining (16) and (17), we obtain

$$a_{\gamma} = (1 - b_{\gamma})\alpha(k_1, i_1, n_1)$$

and

$$a_{\gamma} = (1 - b_{\gamma})\alpha(k_2, i_2, n_2),$$

which contradicts to (15), since $b_{\gamma} = d_{\gamma}/M \neq 1$. This completes the proof of Lemma 3, and hence Theorem 1. \square

Acknowledgment The authors would thank the anonymous referee for his(her) very kind and helpful suggestion .

References

- N. Bi, L. Debnath and Q. Sun, Asymptotic behavior of M band scaling functions of Daubechies type, Zeitschrift für Analysis und ihr Anwendugen, 17(1998), 813-830.
- [2] X. Dai, D. Huang and Q. Sun, Some properties of five-coefficient refinement equation, Archiv Math., 66(1996), 299-309.
- [3] I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA 1992.
- [4] R. Devore, B. Jawerth and V. Popov, Compression of wavelet decompositions, Amer. Math. J., 66(1992), 737-785.
- [5] K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, New York, 1990.
- [6] T. N. T. Goodman, R.-Q. Jia and D.-X. Zhou, Local linear independence of refinable vectors of functions, Proc. Roy. Soc. Edinburgh, Sect. A 130(2000), 813–826.
- [7] B. Jawerth and T. Sweldens, An overview of wavelet based multiresolution analysis, SIAM Review, **36**(1994), 377-412.
- [8] R.-Q. Jia and J.-Z. Wang, Stability and linear independence associated with wavelet decompositions, Proc. Amer. Math. Soc., 117(1993), 1115-1124.
- [9] P. G. Lemarie and G. Malgouyres, Support des fonctions de base dans une analyse multi-resolution, C. R. Acad. Sci. Paris, Ser. I, **313**(1991), 377-380.
- [10] A. Ron, A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution, Constr. Approx., 5(1989), 297-308.
- [11] Q. Sun, Two-scale difference equation: local and global linear independence, Unpublished Manuscript 1991.
- [12] Q. Sun, Linear independence of the integer translates of compactly supported distributions and refinable vectors, Applied Mathematics A Journal of Chinese University, To appear, 2001.
- [13] Q. Sun and Z. Zhang, M band scaling function with filter having vanishing moments two and minimal length, J. Math. Anal. Appl., 222(1998), 225-243.