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Abstract

In this paper, local polynomial property, global linear independence, and local
linear dependence of the convolution of a B-spline and a refinable distribution
supported on a Cantor-like set are studied.
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1 Introduction and Main Result

Define Fourier transform f of an integrable function f by f(€) = Jg f(2)e ™¢dz and
interpret Fourier transform of a compactly supported distribution as usual. Fix an
integer M > 2. In this paper, a compactly supported distribution f is said to be
refinable if
F=Y (M) 1)
JEZ
and f(()) = 1, where the sequence {c;};ez has finite support, i.e., ¢; = 0 for all but
finite many j € Z, and satisfies 3 cz ¢; = M. Associated with the refinement equation
(1) is the Laurent polynomial H(z) := 57 ez ¢;2’, which is known as the symbol of
the refinement equation (1). The Fourier transform of both sides of the refinement
equation (1) yields A A
f(&) = H(e M) f(¢/M). (2)
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We say that a compactly supported distribution f has local polynomial property if
there is an open set A C supp f such that m(supp f—A) = 0 and the restriction of f on
any open interval contained in A coincides with some polynomial. Here m(FE) denotes
the Lebesgue measure of a set E. For a refinable distribution, its analytic expression
is useful in some practical applications, but we know little about it except B-splines
([7]). To some degree, a refinable function which is integrable and has local polynomial
property can be regarded to have analytic expression, since analytic expression is given
except on a set with Lebesgue measure zero. The local polynomial property was found
in [1, 13] for the M band Daubechies’ scaling functions ¢y y with N < M —1 (see [1]
for the precise statement).

We say that the integer shifts of a compactly supported distribution f are, or for
simplicity f is, globally linearly independent if

> eif(-+7)=0 on R implies e, =0 Vje€Z,
jEZ

and locally linearly independent if for any open set A,

> eif(-+7)=0 on A and f(-+j)#Z0 on A imply e; =0.

JEZ

The global linear independence is a necessary condition for orthogonality, or biorthog-
onality, of a refinable function that we need at most times when a refinable distribution
is used in the construction of various wavelets. The local linear independence plays
an important role in spline interpolation as well as in nonlinear wavelet approximation
(see [4, 6] and references therein). About the global and local linear independence of
compactly supported refinable distributions, there is a long list of publications (see for
instance [2, 6, 8, 9, 11, 12]). For a refinable distribution, its global linear independence
is characterized by corresponding symbol in [8], but its local linear independence is not
easy to be checked in general. When M = 2, it was proved that the local and global
linear independence of refinable distributions are equivalent to each other (see [9] for
refinable functions with biorthogonal dual and [11] for any refinable distributions). For
refinable distributions with M = 3, it was pointed out in [2] that their local and global
linear independence are not equivalent. Also some examples of refinable distributions,
which are Holder continuous, globally linearly independent but locally linearly depen-
dent, are constructed in [2]. General discussion about the local linear independence of
a refinable distribution can be found in [6, 12]. The local linear independence of any
compactly supported distribution is characterized in [12].

Define the convolution of two integrable functions f and g by f % g(z) = Jg f(z —
y)g(y)dy and the one of two compactly supported distributions by usual interpretation.
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Let hg and hy be Schwartz functions with supp ho C {€: €] <1}, supp hy C {€:1/2<
€] < 2}, and ho(&) + 32, hi1(27°€) =1 for all £ € R. The Besov space BL>®, « € R,
is the space of all tempered distributions f with

170 * flloo + sup 2%, # flloo < 00

where ||+||« is the usual L* norm of bounded functions, and where hy ; = 2°h(2%-),0 <
s € Z. The purpose of this paper is to study the local polynomial property, global
linear independence, and local linear independence of the convolution of a B-spline and
a refinable distribution supported on a Cantor-like set. Precisely, we have

Theorem 1 Let Q(z) = 05" d;27 /M for some sequence {d;}}15", and assume that

Zj]\iﬁl d; = M and the number of nonzero coefficients d; is at least 2 but at most M —1.

Define ¢y, N > 0, recursively by do(€) = [0 Q(e™2 7€), and g1 = Xpo,1#dn- Then
for any N > 1, we have

(i) there exists ap € R such that ¢y belongs to the Besov space BTN
(ii) ¢n is refinable;
(11i) ¢n has local polynomial property;
(iv) the integer shifts of ¢n are globally linearly independent;

(v) the integer shifts of ¢ are locally linearly dependent.

Given any 7 > 0, as a consequence of Theorem 1, for sufficiently large N, ¢y in
Theorem 1 are refinable distributions in the space of all Holder continuous functions
with Holder index 7, whose integer shifts are globally linearly independent but locally
linearly dependent.

2 Proof
Define B-spline By, N > 1, by By (€) = ((1 — e7%)/(i€))™. Obviously By, N > 1, are
refinable with corresponding symbol ((1 — z™)/(M — Mz))". The B-spline By can
also be defined as the convolution of the characteristic function on [0, 1] for N times,
By = Xjo,1] * X[o,1] * =+ * X[o, (/N times).
From the construction of ¢y, we have

¢n = By * ¢p. (3)
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The Fourier transform of both sides of the equation (3) yields

~

on (€) = By (€)do(€). (4)

Let ap € R be chosen so that ¢y € B3°°. Such a real number «ay exists since ¢, is a
compactly supported distribution. Then the first assertion follows from (4), and the
facts that By are integrable, and that given any compactly supported C'**° function h
with supp h C {£:1/4 < [¢| < 4}, we have

L] [ ez e Butepdelae <2 [ | [ eho e Vaglda
< 2(175)]\7/1{‘/Reiwgh(g)ngdddx —. 95N

for all 0 < s € Z, where the positive constant C' := 2V [ | [g e @¢h(£)E Nd€|dr < oo
follows from our assumption on h.

By the definition of ¢g, ¢o(&) = Q(e™%/2)¢(£/2). Hence ¢y is a refinable function
with symbol Q(z) by (2). This, together with (4), imply that ¢ is a refinable function
with symbol ((1 — 2M)/(M — M2))YQ(z). Therefore ¢, N > 0, are refinable.

Set A={0<j<M-1:d;j #0}and F = {>X2, M ", : i, € A}. Then
2 < #A< M -1, F C [0,1], F is a compact set, the Hausdorff dimension of F is
In#A/InM <1, and MF = Ujca(j + F). Hence we have

(0,1)\F is an open set and m((0,1)\F) = 1. (5)

Taking derivatives of N-th order at both sides of (3) and using

DYBy = 3 (-1y ( N ) 5(-— ),

=0 J

we obtain

N N N N
DY g = (Z(—w GILE j)) von=3 0 (Y )at-an @
j=0 J j=0 J

where 0 denotes the usual delta distribution. By [5], ¢ is supported in the set F.
Thus DN ¢y is supported in U o(j + F) by (6). Hence the restriction of ¢y on any
open interval contained in UY_;(j 4 (0,1)\F) is a polynomial with its degree at most
N — 1. This, together with (5) and supp ¢y C [0, N + 1], lead to the local polynomial
property of ¢y.

To prove the global linear independence of ¢y, we need a characterization of global
linear independence of a refinable distribution in [10].
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Lemma 2 Let f be a compactly supported distribution. Then the integer shifts of f are
globally linearly independent if and only if the entire function f has no 2m-periodical
zero, i.e., there does not exist a complexr number zy such that f(zo + 2km) = 0 for all
kel.

Note that ¢ is supported in F, and is not reduced to {0,1}. Then the integer
shifts of ¢o are globally linearly independent. Hence the entire function ¢y does not
have any 27 periodical zero by Lemma 2. By (4), ¢n(0) = 1 and

{z€C:on(2) =0} C {z€C:dyz) =0}U (27Z\{0}). (7)

Hence the global linear independence of the integer shifts of ¢y follows from (7),
Lemma 2, and the global linear independence of the shifts of ¢y.

Finally, we prove the local linear dependence of the integer shifts of ¢y. For
0<k<M"'—-1i€{0,1,....,M —1}\Aand n > 1, set

A(k,i,n) = kM ™ 4+ iM ™ 4+ (0, M™™).
Recall that MF = Ujea(j + F). Thus
A(k,i,n) € (0, )\F (8)

forany 0 <k < M"'—-1,1€{0,1,...,M —1}\A and n > 1. This, together with (6)
and supp ¢g C F, imply that the restriction of ¢y on A(k,i,n)+j is a polynomial with
its degree at most N — 1 for any j = 0,..., N. Hence there exists a nonzero sequence
{v;}N, for any A(k,i,n) such that S gv;én (- +7) = 0 on A(k,i,n). Therefore the
local linear dependence of ¢y reduces to the existence of an interval A(k,i,n) such
that

On(-+7)#0 on A(k,i,n) V0o<j<N. 9)

For N = 1, ¢; is a refinable function with symbol Q(z) x (1 — 2™)/(M — Mz).
Then

1 M—-1M-1
hr=q7 2 2 did(M - —j—s) (10)
7=0 s=0
and ¢ (0) = 1. Moreover,
supp ¢1 C [0,2], D (- +j) =1, (11)
jezZ

and ¢ is constant-valued on A(k,i,n), to be denote by «(k,i,n). Set
1
M

a]':

1
Zdl and bj = Mdj, ] € A

1<j



Then for any j € A, by (10) and (11) we have
a(iM™ ' + kyi,n+1) = aj + bja(k,i,n) (12)

where 0 < k < M" 1 —1,ie€{0,1,...,M —1}\A, and n > 1. To prove (9), we need
the following result about ¢;.

Lemma 3 Let ¢y, {dj}j]\ial be as in Theorem 1, a(k,i,n) be defined as above, and let
G=1{alkin): 0<k<M" ' —1,4i€{0,1,...,M—1}\An>1}.
Then #G = 4o00.

For a moment, we assume that Lemma 3 holds, and continue our proof of the
local linear dependence of the integer shifts of ¢n. Let A(ko, i, n0) be chosen so that
a(ko, i, no) € N7'{0,1,---, N}. The existence of such an open interval A(ky,io,n0)
follows from Lemma 3. Thus for any j =0,..., N, by (11), we obtain

DY ton (- + )

= ( Mol >¢1(-+j—l)

=0

—1)71 ( N=1 > (1 — a(ko,io,ng)) + (—1) ( Nj_ L ) a(ko, 79, 0)

J—1

—

_ (_1)j ( ];[ ) (a(ko,io,no) — %) #0 on  A(ko,ig,nop)-

This proves (9). Hence it remains to prove Lemma 3. On the contrary, either #G = 1
or 1 < #G < oo. If #G =1, then it follows from (12) that

c:aj+bjc VijeA, (13)

where we set G = {c}. Hence ¢ # 0 by letting j in (13) as the minimal positive index
in A. Writing (13) in matrix form leads to

0 0 -+ --- 0 d, 1
0 : d;, 1

bl M|, (14)
h h A1 0 Ajyas 1
hoh hoho1 Ajya 1




Whereh:c’l,A:{jk,lgkg#A}andOSjl < Jo < "'<j#A§M—1.
Therefore it follows from (14), #A4 > 2, and d;, # 0 for all 1 < k < #A that h # 1
and

dj, = M(1—h)"" V1<Ek<#A

Summing d;, over 1 <k < #.A4 and using h # 1 and #A > 2, we obtain

M—1 #A
SNodj=3Y"d;, =Mh (1 - (1-h)#Y) £ M,
j=0 k=1

which contradicts to the assumption Zj]‘igl d; = M.
If 1 < #G < oo, then there exist two triples (kq,i1,n1) and (kq, 9, n2) such that
a(kl,il,nl) §£ &(kz,iz,ng). (]_5)

Let v € A be chosen that d, # 0, M. The existence of such an index 7 follows from
ij\gl dj = M and #A > 2. By (12), we have

Mretn — s

ok + v Y Vg m 4 g+ 1)
Mns-i-n—l _ Mns—l .
= a7+b7a(ks+7 71 ,zs,n+ns), s=1,2, (16)
forn =0,1,2,---. By #G < oo, there exist positive integers Ny, and Ngg such that

le 7£ NQS and
Mns+le _ Mnsfl

a(ks+7 V1 ,is,le—i—ns+1)
Mns+N2s _ ]\47%_1 )
= ok +7 T Vi, Nog + 1y +1), 5=1,2. (17)

Combining (16) and (17), we obtain

a'Y = (]‘ - b’)’)a(kla ila nl)
and

a’Y = (1 - b’Y)a(k27 i27 n2)7

which contradicts to (15), since b, = d,/M # 1. This completes the proof of Lemma
3, and hence Theorem 1. O
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