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Abstract. We prove that any Parseval wavelet frame is the projection of an orthonormal wavelet basis for

a representation of the Baumslag-Solitar group

BS(1, 2) = 〈u, t | utu−1 = t2〉.
We give a precise description of this representation in some special cases, and show that for wavelet sets,

it is related to symbolic dynamics (Theorem 3.14). We prove that the structure of the representation

depends on the analysis of certain finite orbits for the associated symbolic dynamics (Theorem 3.24). We
give concrete examples of Parseval wavelets for which we compute the orthonormal dilations in detail; we

construct Parseval wavelet sets which have infinitely many non-isomorphic orthonormal dilations.
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1. Introduction

An orthonormal wavelet in L2(R) is a function ψ ∈ L2(R) with the property that

(1.1) {2j/2ψ(2j · −k) | j ∈ Z, k ∈ Z}
is an orthonormal basis for L2(R).

The theory of wavelets has found numerous applications in a variety of areas such as signal processing,
image compression and numerical analysis [Dau92, Mal98, BJ02]. The geometry of orthonormal wavelets
is fairly well understood [GHS+03, HST07, ILP98, PSWX03, Spe99, Con98]. The main technique used in
the study of orthonormal wavelets is the multiresolution analysis (MRA) introduced by Mallat and Meyer
[Dau92, BJ02] and its generalizations [BMM99, BCM02, BJMP05].

A function ψ is called a Parseval wavelet if the family in (1.1) is a Parseval frame for L2(R). A Parseval
frame for a Hilbert space H is a family {ei | i ∈ I} of vectors in H that satisfies the Parseval identity

‖f‖2 =
∑
i∈I

| 〈f , ei〉 |2, (f ∈ H).

Parseval wavelets are more flexible than their orthogonal counterparts. They can have a certain degree of
symmetry, which is advantageous in applications [Dau92]. The redundancy in the associated basis decom-
positions can be useful in compression problems. However, since the Parseval wavelets are not orthogonal,
they can have complicated correlations, and the multiresolution techniques cannot be applied. In this paper
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we will prove that Parseval wavelets can be obtained from orthonormal wavelets by Hilbert space dilations
and projections, and therefore one can use multiresolutions in this case too.

There is a very general result linking orthonormal bases to Parseval frames [HL00], which says that every
Parseval frame is a projection of an orthonormal basis. More precisely, if {ei | i ∈ I} is a Parseval frame for
a Hilbert space H, then there exists a bigger Hilbert space H̃ ⊃ H and an orthonormal basis {ẽi | i ∈ I} for
H̃ such that PHẽi = ei for all i ∈ I, where PH is the orthogonal projection onto the subspace H. We say
that the Parseval frame {ei | i ∈ I} can be dilated to the orthonormal basis {ẽi | i ∈ I}, or that {ẽi | i ∈ I}
is an orthonormal dilation of the Parseval frame {ei | i ∈ I}. We call {(1H̃ − PH)ẽi | i ∈ I} a complementary
frame for {ei | i ∈ I}.

Then a natural question is: if the Parseval frame {ei | i ∈ I} has some additional structure can we dilate it
to an orthonormal basis that shares similar properties? In the case of frames generated by actions groups or
for Gabor frames, the answer is positive [HL00]. For Parseval wavelets there are some dilation results in the
literature [HL00, GH05, BDP05] which apply to some particular classes of wavelets. In this paper we give a
complete solution for the general case and prove that the affine structure attached to the wavelet basis can
be preserved under orthonormal dilations (Theorem 2.6).

To formulate the question more explicitly, let us express the family in (1.1) in terms of the action of
unitary operators. In L2(R) we consider two unitary operators: the translation operator T0, and the dilation
operator

T0f = f(· − 1), U0f =
1√
2
f

( ·
2

)
, (f ∈ L2(R)).

Then the family in (1.1) is

(1.2) {U j
0T

k
0 ψ | j, k ∈ Z}.

The two operators U0 and T0 satisfy the relation U0T0U
−1
0 = T 2

0 , therefore we are dealing with a unitary
representation of the Baumslag-Solitar group with two generators and one relation:

(1.3) BS(1, 2) := 〈u, t |utu−1 = t2〉.

Any representation of the Baumslag-Solitar group BS(1, 2) is in fact given by two unitary operators U and
T on some Hilbert space H, that satisfy the relation UTU−1 = T 2.

While the Baumslag-Solitar group appears to be quite simple, this can be deceiving, there are several
extremely interesting results about it in the literature which reveal surprising properties. The Baumslag-
Solitar group is of independent interest in combinatorial topology and operator algebras. In [MV00] the
authors compute the spectrum of the Markov operator associated to this group, basing their result on
the Generalized Riemann Hypothesis! In [FM98, FM99] these groups are shown to satisfy some rigidity
properties, and at the same time they are not lattices in Lie groups.

Definition 1.1. Let {U, T} be a representation of the Baumslag-Solitar group BS(1, 2) on a Hilbert space
H. We call a vector ψ ∈ H a Parseval (orthonormal) wavelet for this representation, if

{U jT kψ | j, k ∈ Z}

is a Parseval frame (orthonormal basis) for H.

To distinguish between the two levels, the initial problem, and the extended version for the dilated
Hilbert space, we use the name “super-representation” for the latter. In the Parseval-wavelet case, the
dilated version acquires the orthonormal structure, while still preserving the affine scaling relations dictated
by the Baumslag-Solitar group.

Definition 1.2. Let {Ũ , T̃}, {U, T} be representations of the group BS(1, 2) on the Hilbert spaces H̃ and
H respectively. We say that {U, T} is a subrepresentation of {Ũ , T̃} if H ⊂ H̃, the projection PH onto the
subspace H commutes with Ũ and T̃ and PHŨPH = U , PHT̃PH = T . We will also say that {Ũ , T̃} is a
super-representation of {U, T}.

Now we can formulate our question more precisely:

Question. (Dilations of Parseval wavelets) Let ψ be a Parseval wavelet for a representation {U, T} of
the group BS(1, 2) on a Hilbert space H. Does there exist a representation {Ũ , T̃} of BS(1, 2) on a bigger
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space H̃ ⊃ H and a vector ψ̃ ∈ H̃ such that {U, T} is a subrepresentation of {Ũ , T̃}, ψ̃ is an orthonormal
wavelet for {Ũ , T̃}, and PHψ̃ = ψ? PH is the orthogonal projection onto the subspace H.

We will give a positive answer to our Question in Theorem 2.6: any Parseval wavelet can be dilated to an
orthonormal wavelet.

The results from [HL00, Dut04] cannot be applied directly because the family in (1.2) does not involve
the entire group BS(1, 2), but only a subset of it, namely the elements of the form ujtk with j, k ∈ Z.
Our construction of orthonormal dilations will be based on the general theory of Hilbert spaces built out
of positive definite functions. This is essentially contained in Theorem 2.1. Since seminal papers by Krein
and Rudin, the problem of finding a positive extension for a positive definite map from a subset to the
entire group is known to be notoriously difficult, few results are available, each for a very particular case,
see [Kre40, Rud63, Sas87, BN00, Jor89, Jor90, Jor91]. Theorem 2.1 adds one to the list: a positive definite
map on the subset of BS(1, 2) determined by the wavelet family in (1.2) can be extended to the whole group
BS(1, 2).

There are several abstract precursors to our extension problems. These include: unitary dilation of
isometries, Stinespring dilations in operator algebras, or Naimark dilations for operator valued measures.
However, these earlier results lack computational detail. Our results in Section 3 identify the right abstract
models and provide algorithms for the computation of the orthogonal dilation.

Question. (Explicit dilations) Let ψ be a Parseval wavelet for {U0, T0} in L2(R) and let ψ̃ be an ortho-
normal wavelet for a super-representation {Ũ , T̃}. What is the precise structure of the representation {Ũ , T̃}
and what is ψ̃?

We do not have a complete answer to this question; nevertheless, we are be able to construct a concrete
orthonormal dilation in the special case of Parseval wavelet sets, which has the advantage that preserves
the multiresolution structure. We believe that our results can be extended to more complicated Parseval
wavelets. We offer a computational correspondence between two seemingly unrelated areas, representations
of the Baumslag-Solitar group on the one hand, and on the other a formula for the geometry and for invariants
of wavelet sets (sections 3 and 4).

We recall some of the concrete dilation results in the literature. A wavelet set is a wavelet ψ such that its
Fourier transform ψ̂ is a characteristic function. In [HL00, GH05] many examples of Parseval wavelet sets are
provided where the orthonormal dilation lies in the space L2(R)⊕· · ·⊕L2(R) with the representation of the
group BS(1, 2) given by a simple amplification of the representation {U0, T0} in L2(R): Ũ = U0 ⊕ · · · ⊕ U0,
T̃ = T0⊕· · ·⊕T0. There is one issue with this representation, as shown in [HL00]: it does not have orthogonal
multiresolution wavelets. Therefore if we start from a multiresolution Parseval wavelet in L2(R), and we want
to dilate it to an orthonormal wavelet in such a way that this super-wavelet comes also from a multiresolution,
then we have to look somewhere else, and replace the amplification with another representation.

An answer to this problem can be found in [BDP05]. We illustrate it by a classical example: the stretched
Haar wavelet ψ = 1

2χ[0,3/2) − 1
2χ[3/2,3) is a non-orthogonal Parseval wavelet that is constructed from a

multiresolution with low-pass filter m0(x) = 1√
2
(1 + e2πi3x) and scaling function ϕ = 1

3χ[0,3) (see [Dau92,
BJ02]). In [BDP05] it was shown that, in order to construct the orthonormal dilation wavelet that preserves
the multiresolution, one has to consider the representation of BS(1, 2) on L2(R)⊕ L2(R)⊕ L2(R) given by

T3(f1, f2, f3) = (T0f1, e
2πi/3T0f2, e

4πi/3T0f3), U3(f1, f2, f3) = (U0f1, U0f3, U0f2).

The dilated orthonormal wavelet is
ψ̃ = (ψ,ψ, ψ).

This is a multiresolution wavelet that has the associated scaling function ϕ̃ = (ϕ,ϕ, ϕ).
The theory in [BDP05] shows that this procedure works in a more general case, e.g. when ψ is a com-

pactly supported multiresolution Parseval frame. Then the orthonormal dilation can be realized in a similar
“twisted” amplification of the representation of the group BS(1, 2) in L2(R).

One difficulty of the theory in [BDP05] is that it requires the low-pass filter to have a finite number of
zeros, and therefore, it cannot be used for Parseval wavelet sets. In section 3 we will construct orthonormal
dilations in the very special case of multiresolution Parseval wavelet sets, and show that even in this particular
case there are interesting connections to symbolic dynamics. We will show that the orthonormal dilations
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are by no means unique, and in Proposition 2.8 we prove that, when the Parseval wavelet is semi-orthogonal,
the dilation can be realized in a subrepresentation of L2(R)⊕ L2(R) with U = U0 ⊕ U0 and T = T0 ⊕ T0.

Here is the summary of the paper: in Section 2 we analyze Parseval wavelets for abstract representations of
the group BS(1, 2). We show that every Parseval wavelet can be dilated to an orthogonal wavelet (Theorem
2.6). This is based on the fact that positive definite maps on the subset of the group BS(1, 2) can be extended
to a positive definite map on the entire group (Theorem 2.1). We prove that if the Parseval wavelet is semi-
orthogonal, then we have a concrete form of this orthonormal dilation, explicitly, the Parseval wavelet has a
complementary wavelet in a subspace of L2(R) (Proposition 2.8).

In Section 3 we shift our focus to MRA Parseval wavelet sets in L2(R) and we give a concrete form of an
orthonormal dilation (Theorem 3.14). This requires several steps: in Section 3.1 we show how a low-pass
filter and scaling function can be constructed for a MRA Parseval wavelet set. The low-pass filter is then
used in Section 3.2 to construct a representation of the BS(1, 2) on a symbolic space. This representation
will contain the orthonormal dilation. In Section 3.3 we show how the classical representation on L2(R)
can be embedded in this representation. Section 3.4 contains our dilation result for Parseval wavelet sets.
Theorem 3.14 provides the concrete orthonormal dilation for a Parseval wavelet sets which preserves the
multiresolution structure. In Section 3.5 we show that, under certain assumptions on the low-pass filter, the
dilated representation of Section 3.2 is in fact the same as the one used in [BDP05], of the type we mentioned
above for the stretched Haar wavelet. The representation is based on cyclic orbits for the associated symbolic
dynamics.

In the final section of the paper we give some concrete examples of orthonormal dilations of Parseval
wavelet sets. In Example 4.1 we show that the family of Parseval wavelet sets ψ̂[−2a,−a]∪[a,2a], with 0 < a ≤ 1

4
can be dilated in the same representation of BS(1, 2) as the stretched Haar wavelet. In Example 4.3 we
construct an orthonormal dilation of ψ̂[− 1

4 ,− 1
8 ]∪[ 18 , 1

4 ] in a different representation, thus proving that the
orthonormal dilation is not unique. Example 4.5 proves that, in some cases, the cycles are not sufficient to
describe the orthonormal dilation, therefore the results of Section 3.5 do not give a complete picture of the
possible representations of Theorem 3.14. In Example 4.7 we prove that if a is small enough, the Parseval
wavelet set in Example 4.1 has infinitely many non-isomorphic orthonormal dilations.

2. General dilations of Parseval wavelets

We want to construct an orthonormal dilation of a Parseval wavelet. For this we will first construct a
certain positive definite map, following the ideas in [Dut04]. Recall that a map K : X ×X → C is said to
be positive definite if for all finite sets F ⊂ X and any xi ∈ X, ξi ∈ C, with i ∈ F one has∑

i,j∈F

K(xi, xj)ξiξj ≥ 0.

From the positive definite map K, one can construct a Hilbert space and a family of vectors that have the
inner products determined by K. Then the crucial point is to construct the unitary operators U and T and
a ψ such that this family of vectors is equal to {U jT kψ | j, k ∈ Z} and such that the relation UTU−1 = T 2

is satisfied.

Theorem 2.1. Let K : Z2 × Z2 → C be positive definite, and assume that the following conditions are
satisfied:

(2.1) K((j, k), (j′, k′)) = K((j + 1, k), (j′ + 1, k′)), (j, j′, k, k′ ∈ Z),

and

(2.2) K((j, k), (j′, k′)) = K((j, 2−j + k), (j′, 2−j′ + k′)), (j, j′ ≤ 0, k, k′ ∈ Z).

Then there exists a Hilbert space H, a representation U , T of the Baumslag-Solitar group BS(1, 2), and
a vector ψ ∈ H such that〈

U jT kψ , U j′T k′ψ
〉

= K((j, k), (j′, k′)), (j, j′, k, k′ ∈ Z)

and span{U jT kψ | j, k ∈ Z} = H.
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Remark 2.2. Before we give the proof of this theorem, let us explain where the relations (2.1) and (2.2)
come from. If U, T is a representation of the Baumslag-Solitar group BS(1, 2) on a Hilbert space H and
ψ ∈ H, then a simple computation that uses the fact that U and T are unitary and TU j = U jT 2−j

for j ≤ 0,
shows that the map

K((j, k), (j′, k′)) =
〈
U jT kψ , U j′T k′ψ

〉
, (j, j′, k, k′ ∈ Z)

satisfies (2.1) and (2.2), and it is of course positive definite.

Proof. Using Kolmogorov’s result mentioned in [Dut04, Theorem 2.2], we obtain a Hilbert spaceH and a map
v : Z2 → H such that 〈v(j, k) , v(j′, k′)〉 = K((j, k), (j′, k′)) for all j, j′, k, k′, and such that span{v(j, k) | j, k ∈
Z} = H.

Define the operator U on H, by Uv(j, k) = v(j+ 1, k) for all j, k ∈ Z, and extend linearly. Then we claim
that U is a unitary operator.

Indeed, we have for all finite subsets F of Z2 and αj,k ∈ C:∥∥∥∥∥∥U(
∑

(j,k)∈F

αj,kv(j, k))

∥∥∥∥∥∥
2

=
∑

(j,k),(j′,k′)∈F

αj,kαj′,k′K((j + 1, k), (j′ + 1, k′)) = (∗)

and using (2.1),

(∗) =
∑

(j,k),(j′,k′)∈F

αj,kαj′,k′K((j, k), (j′, k′)) =

∥∥∥∥∥∥
∑

(j,k)∈F

αj,kv(j, k)

∥∥∥∥∥∥
2

.

This shows that U is an isometry, and since span{v(j + 1, k) | j, k ∈ Z} = H, U is unitary.
Let Ṽl := span{v(j, k) | j ≤ l, k ∈ Z} for all l ≥ −1. Then Ṽl ⊂ Ṽl+1, and UṼl = Ṽl+1, for l ≥ −1. Note

also that ∪lṼl = H.
Define the operator T0 on Ṽ0 by T0v(j, k) = v(j, 2−j + k), for j ≤ 0, k ∈ Z. We check that T0 is an

isometry on Ṽ0.∥∥∥∥∥∥
∑

(j,k)∈F

αj,kv(j, 2−j + k)

∥∥∥∥∥∥
2

=
∑

(j,k),(j′,k′)∈F

αj,kαj′,k′K((j, 2−j + k), (j′, 2−j′ + k)) = (∗)

and using (2.2),

(∗) =
∑

(j,k),(j′,k′)∈F

αj,kαj′,k′K((j, k), (j′, k′)) =

∥∥∥∥∥∥
∑

(j,k)∈F

αj,kv(j, k)

∥∥∥∥∥∥
2

.

This proves that T0 is an isometry.
Clearly T0Ṽ0 = Ṽ0 and T0Ṽ−1 = Ṽ−1.
Define W̃l := Ṽl 	 Ṽl−1 for l ≥ 0. Then H = Ṽ0 ⊕⊕l≥1W̃l. Also, since T0 is unitary on Ṽ0, T0W̃0 = W̃0,

and, since U is unitary, UW̃l = W̃l+1 for all l ≥ 0.
We will need the following lemma, which can be easily obtained by an application of Borel functional

calculus:

Lemma 2.3. If a is a unitary operator on a Hilbert space then there exists a unitary operator b, on the
same Hilbert space, such that b2 = a.

Now define T1 : W̃1 → W̃1 as follows: the operator UT0U
−1 is unitary on W̃1, so by Lemma 2.3, there

exists a unitary operator T1 on W̃1 such that T 2
1 = UT0U

−1.
By induction, we use Lemma 2.3 to define the unitary operator Tl on W̃l such that T 2

l = UTl−1U
−1.

Now we can define the unitary operator T on H such that T on Ṽ0 is T0, and T on W̃l is Tl for all l ≥ 1.
We check that UTU−1 = T 2. First, on Ṽ0: take j ≤ 0, k ∈ Z.

UTU−1v(j, k) = UT0v(j − 1, k) = Uv(j − 1, 2−j+1 + k) = v(j, 2−j+1 + k),

T 2v(j, k) = T0T0v(j, k) = T0v(j, 2−j + k) = v(j, 2−j + 2−j + k) = v(j, 2−j+1 + k).
Then, on W̃l for l ≥ 1, UTU−1 = UTl−1U

−1 = T 2
l = T .
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Let ψ := v(0, 0). Then U jT kψ = U jv(0, k) = v(j, k) and everything follows. �

To construct the orthonormal dilation of the Parseval wavelet and the associated representation of the
Baumslag-Solitar group, we will find what the positive definite map associated to the “complement” should
be. If {ei | i ∈ I} is a Parseval frame and {ẽi | i ∈ I} is an orthonormal dilation, then the complement is
{ẽi − ei | i ∈ I}, so the positive definite map associated to the complement is K2(i, j) = 〈ẽi − ei , ẽj − ej〉 =
δi,j − 〈ei , ej〉, for i, j ∈ I. (We used here the fact that ẽi − ei is orthogonal to ej for all i, j ∈ I.)

Using the positive definite map of the complement, we can construct a “complementary” representation
of the group BS(1, 2) and the complementary Parseval frame ψ2. The orthonormal dilation is then obtained
by a direct sum of the two components. The details of these steps are contained in the following lemmas.

Lemma 2.4. If (fi)i∈I is a Parseval frame for a Hilbert space H then, for all F ⊂ I finite and all αi ∈ C,
(i ∈ F ), ∥∥∥∥∥∑

i∈F

αifi

∥∥∥∥∥
2

≤
∑
i∈F

|αi|2.

This implies that
K(i, j) := δi,j − 〈fi , fj〉 , (i, j ∈ I)

is positive definite.

Proof. By [HL00] there exist a Hilbert space K, K ⊃ H, and (ei)i∈I an orthonormal basis for K, such that,
if P is the projection onto H, then Pei = fi for all i ∈ I. Then∥∥∥∥∥∑

i∈F

αifi

∥∥∥∥∥
2

=

∥∥∥∥∥P (
∑
i∈F

αiei)

∥∥∥∥∥
2

≤

∥∥∥∥∥∑
i∈F

αiei

∥∥∥∥∥
2

=
∑
i∈F

|αi|2.

We check that K is positive definite:∑
i,j∈F

αiαjK(i, j) =
∑

i,j∈F

(δi,j − 〈fi , fj〉)αiαj =
∑
i∈F

|αi|2 −

∥∥∥∥∥∑
i∈F

αifi

∥∥∥∥∥
2

≥ 0.

�

Lemma 2.5. If (fi)i∈I is a Parseval frame for H1 and (gi)i∈I are vectors that span H2 such that 〈gi , gj〉 =
δi,j −〈fi , fj〉 for all i, j ∈ I, then (fi⊕ gi)i∈I is an orthonormal basis for H1⊕H2, and (gi)i∈I is a Parseval
frame for H2.

Proof. As in [HL00, Corollary 1.3], consider a strong complementary Parseval frame (g̃i)i∈I , i.e., (fi⊕g̃i)i∈I is
an orthonormal basis forH1⊕H̃2, for some Hilbert space H̃2. Then 〈g̃i , g̃j〉 = δi,j−〈fi , fj〉 = 〈gi , gj〉. Define
the operator W from H̃2 to H2, by Wg̃i = gi. Clearly, W is an isometry and, since span{gi | i ∈ I} = H2, it
follows that W is unitary, so (gi)i∈I is also a Parseval frame.

The operator I ⊕ U is unitary so (fi ⊕ gi)i∈I is an orthonormal basis for H1 ⊕H2. �

With Lemma 2.4 and Lemma 2.5 the desired dilation result follows:

Theorem 2.6. Any Parseval wavelet can be dilated to an orthonormal wavelet. More precisely, let {U, T}
be a representation of the Baumslag-Solitar group BS(1, 2) on some Hilbert space H. Let ψ be a Parseval
wavelet for {U, T} on H. Then there exists a Hilbert space H2, a representation {U2, T2} of the group
BS(1, 2), and a Parseval wavelet ψ2 for {U2, T2} on H2, such that ψ⊕ψ2 is an orthonormal wavelet for the
representation of the group BS(1, 2) given by U ⊕ U2 and T ⊕ T2 on H ⊕H2.

Proof. Let
K2((j, k), (j′, k′)) = δj,j′δk,k′ −

〈
U jT kψ , U j′T k′ψ

〉
, (j, j′, k, k′ ∈ Z).

Then it is easy to check thatK2 satisfies (2.1) and (2.2). Lemma 2.4 shows thatK2 is positive definite. There-
fore, by Theorem 2.1, there exists a Hilbert space H2, a representation {U2, T2} of the group BS(1, 2) and a
vector ψ2 ∈ H2 such that span{U j

2T
k
2 ψ2 | j, k ∈ Z} = H2 and

〈
U j

2T
k
2 ψ2 , U

j′

2 T
k′

2 ψ2

〉
= K2((j, k), (j′, k′)) for

all j, j′, k, k′.
Then the conclusions follow from Lemma 2.5. �
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We end this section with a more concrete result which shows that when the Parseval wavelet is semi-
orthogonal we have a more precise description of the orthonormal dilation.

Recall the definition of a semi-orthogonal wavelet:

Definition 2.7. Let ψ be a Parseval wavelet in some Hilbert space H with the representation {U, T} of the
group BS(1, 2). We say that ψ is semi-orthogonal if U jT kψ is orthogonal to U j′T k′ψ for all j 6= j′ in Z and
all k, k′ ∈ Z.

We will use the notation Û0 = FU0F−1, T̂0 = FT0F−1, where F is the Fourier transform on R,

Ff(x) =
∫

R
f(t)e−2πixt dt.

Proposition 2.8. Any semi-orthogonal Parseval wavelet can be complemented by a Parseval wavelet in a
subspace of L2(R), and this subspace can be chosen as small as desired. More precisely, let ψ be a semi-
orthogonal Parseval wavelet for some representation U, T of the group BS(1, 2) on a Hilbert space H. Let
Ω ⊂ R such that 2Ω = Ω, and Ω has positive Lebesgue measure. Then there exists a set F ⊂ Ω such that, if
ψ̂2 = χF , and Ω′ := ∪j∈Z2jF , then ψ⊕ψ2 is an orthonormal wavelet for H⊕ Ľ2(Ω′) with the representation
{U ⊕ Û0, T ⊕ T̂0}. (Here Ľ2(Ω′) is the Hilbert space of functions in L2(R) that have Fourier transform
supported on Ω′.)

Proof. Since ψ is a semi-orthogonal Parseval wavelet, {T kψ | k ∈ Z} is a Parseval frame for its span W0. By
[HL00], there exists an isomorphism W : W0 → L2[0, 1) and a subset E of [0, 1) such that Wψ = χE and
WT kf(x) = e2kπixWf(x) for all x ∈ [0, 1), k ∈ Z, and f ∈W0.

By [DL96], there exists a wavelet set ψ̂1 = χG for Ľ2(Ω), and this means that the disjoint union ∪j∈Z2jG =
Ω and G is translation congruent to [0, 1), i.e., τ : x 7→ 2xmod1 maps G injectively onto [0, 1). Then G has
a subset F which is translation congruent to [0, 1) \ E. Of course the sets 2jF will be mutually disjoint for
j ∈ Z. We denote by Ω′ := ∪j∈Z2jF ⊂ Ω.

So ψ̂2 = χF is a Parseval frame for Ľ2(Ω′). Moreover, we have, using the isomorphism W and the Fourier
transform, for k ∈ Z:〈

(T ⊕ T0)k(ψ ⊕ ψ2) , ψ ⊕ ψ2

〉
=

∫ 1

0

e2πikxχE(x) dx+
∫

Ω′
e2πikxχF (x) dx = (∗)

and, since F is translation congruent to [0, 1) \ E, (i.e., τ is injective on E)

(∗) =
∫ 1

0

e2πikxχE(x) + χ[0,1)\E(x) dx = δk.

The fact that the sets 2jF are mutually disjoint implies that Û j
0 T̂

k
0 ψ2 and Û j′

0 T̂
k′

0 ψ2 are orthogonal if j 6= j′.
Since ψ is semi-orthogonal, the same relation holds for ψ, hence it will hold for ψ ⊕ ψ2. Consequently,
{(U ⊕ U)j(T ⊕ T )kψ ⊕ ψ2 | j, k ∈ Z} is an orthonormal family. Since ψ and ψ2 are both Parseval wavelets,
it follows using [HL00, Proposition 2.5] that ψ ⊕ ψ2 is an orthonormal wavelet for H ⊕ Ľ2(Ω′). �

3. Dilation of MRA Parseval wavelet sets

We focus now on orthonormal dilations of Parseval wavelet sets. Recall that a Parseval (orthonormal)
wavelet set is a Parseval (orthonormal) wavelet ψ in L2(R) such that ψ̂ = χP for some subset P of R. f̂
denotes the Fourier transform of the function f ∈ L1(R):

f̂(x) =
∫

R
f(t)e−2πitx dt, (x ∈ R).

We restrict our attention to MRA Parseval wavelet sets; we characterize them in Proposition 3.5, and we
construct the associated scaling function and low-pass filter. We will see that an orthonormal dilation of a
Parseval wavelet set can be realized on a symbolic space, and its precise structure is determined by certain
symbolic dynamics (Theorem 3.14). The advantage of this type of orthonormal dilation over the one in
Proposition 2.8 is that the multiresolution structure is preserved too.

We begin with some definitions.
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Definition 3.1. The periodization of a function f on R is

Per(f)(x) =
∑
k∈Z

f(x+ k), (x ∈ R).

If A is a subset of R, we denote by Per(A) := ∪k∈Z(A+ k).

Definition 3.2. We will need the following maps

τ(x) = xmod1, s(x) =
(
x+

1
2

)
mod1, (x ∈ R).

r(x) = xmod1, τ0(x) =
x

2
, τ1(x) =

x+ 1
2

, (x ∈ [0, 1)).

Note that s(s(x)) = x for all x ∈ [0, 1).

Definition 3.3. A subset A of R is called translation simple if for all k ∈ Z \ {0}, E ∩ (E + k) = ∅ up to
Lebesgue measure zero. A subset A of [0, 1) is called s-simple if it does not contain x and s(x) at the same
time, for almost all x ∈ [0, 1), i.e., A ∩ s(A) = ∅ up to measure zero.

The Parseval wavelet sets are characterized by the following tiling properties:

Proposition 3.4. [HL00] Let ψ̂ = χP in L2(R). Then ψ is a Parseval wavelet set if and only if P is a
multiplicative tile, i.e., {2jP | j ∈ Z} is a partition of R up to measure zero, and P is translation simple.

3.1. The scaling function and low-pass filter associated to an MRA Parseval wavelet set. In the
next proposition we show how a scaling function and a low-pass filter can be constructed for a MRA wavelet
set. For more information on multiresolution analyses see [Dau92]. The wavelet is completely determined by
the low-pass filter m0 = Per(χM ): the Fourier transform of the scaling function is an infinite product based
on m0 (Proposition 3.16), and the wavelet can be obtained from the scaling function by some dilation and
translation operations. The orthonormal dilation of the wavelet will be based on the low-pass filter. The
function m0 will “filter” some symbolic paths, and the dilation will be realized on the set of all the filtered
paths.

Proposition 3.5. Let ψ ∈ L2(R) be a Parseval wavelet set, ψ̂ = χP . Define

ϕ̂(x) :=
∑
j≥1

ψ̂(2jx), (x ∈ Rd).

Then

(3.1) ϕ̂ = χF , with F = ∪j≥12−jP, and F ⊂ 2F, P = 2F \ F.
Assume in addition that F is translation simple. Then there exists a measurable set M ⊂ [0, 1) such that if
m0 = Per(χM ), then the following scaling equation is satisfied:

(3.2) ϕ̂(2x) = m0(x)ϕ̂(x), (x ∈ R),

and m0 satisfies the QMF condition

(3.3) |m0(x)|2 + |m0(x+
1
2
)|2 = 1, i.e., the disjoint union M ∪ s(M) = [0, 1).

Also m0 and ϕ satisfy the conditions in Proposition 3.16. Moreover, in this case,

(3.4) ψ̂(2x) = (1−m0(x))ϕ̂(x), (x ∈ Rd),

i.e., 1−m0 is a high-pass filter.

Definition 3.6. If ψ̂ = χP is a Parseval wavelet set such that the set F defined in (3.1) is translation simple,
we say that ψ̂ is an MRA Parseval wavelet set.

Proof. The relations in (3.1) follow directly from the fact that P is a multiplicative tile (Proposition 3.4),
therefore the union F = ∪j≥12−jP is disjoint.

Assume now F is translation simple, so τ is injective on F . Then τ(P/2) = τ(F \ F/2) = τ(F ) \ τ(F/2).
Since F is translation simple, F/2 is 1

2Z-translation simple, so τ(F/2) cannot contain both x and s(x) at
the same time (x ∈ [0, 1)). The same argument works for τ(P/2).
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Now take
C := s (τ(F ) \ τ(F/2)) .

Since τ(F )\ τ(F/2) = τ(P/2) is translation simple it follows that C ∩ (τ(F )\ τ(F/2)) = ∅ and C is s-simple.
Moreover C∪τ(F/2) is s-simple, because C and τ(F/2) are s-simple, and if x ∈ C, then s(x) ∈ τ(F )\τ(F/2)
so s(x) is not in C ∪ τ(F/2); if s(x) ∈ C then x = s(s(x)) and we use the same idea.

Since C ∪ τ(F/2) is s-simple, we can complete it to an s-tile, i.e., there exists a set D ⊂ [0, 1), disjoint
from C ∪ τ(F/2) such that if

M := C ∪ τ(F/2) ∪D
then M and s(M) form a partition of [0, 1). For example, take

D := [0, 1/2) \ (((C ∪ τ(F/2)) ∩ [0, 1/2)) ∪ (s ((C ∪ τ(F/2)) ∩ [1/2, 1)))) .

Note that M is disjoint from τ(F ) \ τ(F/2). Indeed, C and τ(F/2) are disjoint from this set, and if
x ∈ D ∩ (τ(F ) \ τ(F/2)), then s(x) ∈ C so x, s(x) ∈M , a contradiction.

Since M and s(M) form a partition of [0, 1), the function m0 := Per(χM ) is a QMF filter. We check the
scaling equation (3.2): if m0(x)ϕ̂(x) = 1 then x ∈ F and x ∈ Per(M), so

τ(x) ∈ τ(F ) ∩M = (τ(F/2) ∪ (τ(F ) \ τ(F/2))) ∩M ⊂ τ(F/2).

Since τ is injective on F , we get x ∈ F/2 so ϕ̂(2x) = 1.
Conversely, if ϕ̂(2x) = 1 then x ∈ F/2 so τ(x) ∈M and x ∈ F , hence m0(x)ϕ̂(x) = 1.
From (3.2),

(1−m0(x))ϕ̂(x) = ϕ̂(x)− ϕ̂(2x) = χF (x)− χF/2(x) = χP/2(x) = ψ̂(2x).

Since ψ is a Parseval wavelet for L2(R), ∪j∈Z2jP = R almost everywhere, so condition (ii) in Proposition
3.16 is satisfied. �

3.2. The dilated representation of the Baumslag-Solitar group. Proposition 3.5 and its proof shows
us how to construct the low-pass filter m0 = Per(χM ) associated to our Parseval wavelet set ψ̂ = χP . The
next step is to construct the representation of the Baumslag-Solitar group BS(1, 2) that will contain the
dilated orthonormal wavelet. This representation will be supported on a subset of [0, 1)× Ω where Ω is the
symbolic space

Ω := {0, 1}N = {ω = ω1ω2 . . . |ωn ∈ {0, 1}, n ∈ N}.
The subset will be determined by the filter m0.

Definition 3.7. Let r : [0, 1) → [0, 1),

r(x) = 2xmod1, (x ∈ [0, 1)).

For x ∈ [0, 1), we define ωx ∈ {0, 1} such that τωx
(r(x)) = x. Clearly ωτkx = k for k ∈ {0, 1}.

Definition 3.8. Let m0 = χM be a QMF filter. Let x ∈ [0, 1) and ω ∈ {0, 1}. We say that the transition
x → τωx is possible if τωx ∈ M , i.e., m0(τωx) = 1. Thus if τωx is not in M , i.e., m0(τωx) = 0, then the
transition x→ τωx is not possible.

For each x ∈ [0, 1), because of the QMF equation (3.3), only one of the transitions x→ τ0x, or x→ τ1x is
possible. Let ω1 ∈ {0, 1} the digit corresponding to this transition. Then for τω1x only one of the transitions
τω1x → τ0τω1x or τω1x → τ1τω1x is possible. Let ω2 ∈ {0, 1} be the digit corresponding to this transition.
Inductively, there exists a unique ωn+1 ∈ {0, 1} such that the transition τωn

. . . τω1x → τωn+1τωn
. . . τω1x is

possible.
We define ω(x) := ω1ω2 · · · ∈ Ω to be the chosen path for x.
Note that for all n ≥ 1, ω(x) = ω1 . . . ωnω(τωn

. . . τω1x).

Remark 3.9. In [CR90] a random walk is defined from a low-pass filter m0 on [0, 1) with |m0(x/2)|2 +
|m0((x + 1)/2)|2 = 1. The function |m0|2 is interpreted as a transition probability. The transition from x
to τix is possible with probability |m0(τix)|2 if m0(τix) > 0. We use the same terminology here, however in
our case, since m0 = Per(χM ), the walk is actually deterministic.
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Definition 3.10. For x ∈ [0, 1) let

A(x) := {η ∈ Ω | η = η1 . . . ηnω(τηn
. . . τη1x), for some η1, . . . , ηn ∈ {0, 1}}.

Thus, the paths inA(x) start with some random steps η1, . . . , ηn, but then follow the chosen path ω(τηn
. . . τη1x).

Denote by
X̃(m0) := {(x, ω) |x ∈ [0, 1), ω ∈ A(x)}.

Let

r̃ : [0, 1)× Ω → [0, 1)× Ω, r̃(x, ω1ω2 . . . ) = (r(x), ωxω1ω2 . . . ), (x ∈ [0, 1), ω1ω2 · · · ∈ Ω).

The inverse of r̃ is

r̃−1(x, ω1ω2 . . . ) = (τω1x, ω2ω3 . . . ), (x ∈ [0, 1), ω1ω2 · · · ∈ Ω).

Define the measure λ on [0, 1)×Ω by considering the counting measure on each A(x) and integrating these
with respect to x on [0, 1): ∫

[0,1)×Ω

f dλ :=
∫ 1

0

∑
ω∈A(x)

f(x, ω) dx.

We define the operators T̃ and Ũ on L2(X̃(m0)) by:

T̃ f(x, ω) = e2πixf(x, ω), (x ∈ [0, 1), ω ∈ Ω, f ∈ L2(X̃(m0)) ),

Ũf(x, ω) =
√

2f(r̃(x, ω)), (x ∈ [0, 1), ω ∈ Ω, f ∈ L2(X̃(m0)) ).
We define the scaling function

(3.5) ϕ̃ = χF̃ , where F̃ = {(x, ω(x)) |x ∈ [0, 1)}.

Thus the set F̃ defining the scaling function is obtained by picking exactly the chosen path at each point
x ∈ [0, 1).

3.3. An encoding of the real numbers. We want to realize our dilated representation as a super-
representation of the one on L2(R). For this we will need to embed R in the symbolic space [0, 1) × Ω.
This will be done by first establishing a one-to-one correspondence between the integers and infinite words
that end in either 000 . . . or 111 . . . . This is the “two’s complement” encoding system used in computer
science, a fact remarked also in [Gun06]. For a more general analysis of this encoding see [DJP07] where it
is proved that there are some obstructions when one wants to generalize these encodings to matrix-dilations.

Proposition 3.11. Let 0 be the infinite word 000 . . . and let 1 := 111 . . . . The map

d0(ω1 . . . ωn0) =
n∑

k=1

ωk2k−1, ( so d0(0) = 0)

is a bijection between A0 := {ω1 . . . ωn0 |ω1, . . . , ωn ∈ {0, 1}} and {k ∈ Z | k ≥ 0}.
The map

d1(ω1 . . . ωn1) =
n∑

k=1

ωk2k−1 − 2n, (so d1(1) = −1)

is a bijection between A1 := {ω1 . . . ωn1 |ω1, . . . , ωn ∈ {0, 1}} and {k ∈ Z | k < 0}. Moreover, for any ω ∈ Ai,
(i ∈ {0, 1}), and any x ∈ [0, 1),

(3.6)
x+ di(ω)

2n
= τωn . . . τω1x+ di(ωn+1ωn+2 . . . ), (n ≥ 1).

Proof. The map d0 corresponds to the base 2 representation of non-negative integers. Note that

d1(ω1 . . . ωn1) = −(2n − 1−
n∑

k=1

ωk2k−1)− 1 = −1−
n∑

k=1

ω̆k2k−1,

where ω̆ = 1− ω for ω ∈ {0, 1}. This shows that d1 is also bijective.
It is enough to prove (3.6) for n = 1, the rest follows by induction. This is obtained by a simple

computation (after n steps, one has to use the fact that d1(1) = −1, and x−1
2 = τ1x− 1). �
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Definition 3.12. Let AZ := A0 ∪A1. We define the decoding map dZ : AZ → Z,

dZ(ω) =
{

d0(ω) =
∑n

k=1 ωk2k−1, if ω = ω1 . . . ωn0 ∈ A0

d1(ω) =
∑n

k=1 ωk2k−1 − 2n, if ω = ω1 . . . ωn1 ∈ A1.

By Proposition 3.11, dZ is a bijection.
For each x ∈ R define the encoding ε(x) ∈ [0, 1)× AZ as follows: x can be uniquely written as x = y + k

with y ∈ [0, 1) and k ∈ Z, y := τ(x) = xmod1, k = x− xmod1. Then

ε(x) := (y, d−1
Z (k)) = (xmod1, d−1

Z (x− xmod1)), (x ∈ R).

Proposition 3.13. Define the operator E : L2(R) → L2([0, 1)×AZ, dλ),

E(f)(x, ω) = f ◦ ε−1(x, ω) = f(x+ dZ(ω)).

Then E is an intertwining isomorphism, E T̂ = T̃E, EÛ = ŨE.

Proof. First we check that E is an isometry. This follows from the next computation (for f ∈ L2(R)):∫
R
|f(x)|2 dx =

∫ 1

0

∑
k∈Z

|f(x+ k)|2 dx =
∫ 1

0

∑
ω∈AZ

|f(x+ dZ(ω)|2 dx.

Clearly E is invertible, so it is an isomorphism.
The fact that E intertwines the T -operators is easy. For the U operators, one only needs to prove that

for x ∈ [0, 1) and ω ∈ AZ,
2(x+ dZ(ω)) = r(x) + dZ(ωxω1 . . . ),

which follows directly from (3.6) applied to r(x). �

3.4. Main result. We can state now the main dilation result of this section:

Theorem 3.14. The operators T̃ and Ũ defined in Definition 3.10 are unitary and Ũ T̃ Ũ−1 = T̃ 2. A
projection P on L2(X̃(m0)) commutes with Ũ and T̃ if and only if P is an operator of multiplication by the
characteristic function of an r̃-invariant set, i.e., Pf = MχS

f = χSf , where S ⊂ [0, 1)× Ω and r̃(S) = S.
Let φ̃ = χF̃ as in (3.5). The translates of ϕ̃ are orthonormal:

(3.7)
〈
T̃ kϕ̃ , ϕ̃

〉
= δk, (k ∈ Z).

The scaling equation is satisfied:

(3.8) Ũ ϕ̃(x, ω) =
√

2m0(x)ϕ̃(x, ω), (x ∈ [0, 1), ω ∈ Ω).

If Ṽ0 := span{T̃ kϕ̃ | k ∈ Z}, and Ṽn := Ũ−nṼ0 for n ∈ Z, then (Ṽn)n∈Z is a multiresolution analysis for
L2(X̃(m0)).

Let
ψ̃(x, ω) := Ũ−1(

√
2(1−m0)ϕ̃) = χP̃ , where P̃ = r̃(F̃ ) \ F̃ .

Then ψ̃ is an orthonormal wavelet for L2(X̃(m0)).
Suppose now that ψ̂ = χP is an MRA Parseval wavelet set in R and let m0 = Per(χM ) be the associated

QMF filter, and ϕ̂ = χF be the associated scaling function, as in Proposition 3.5. Then [0, 1)× AZ is an r̃-
invariant subset of X̃(m0). Let ψ̃ be the orthonormal wavelet for L2(X̃(m0)) and let PR be the corresponding
projection PR = Mχ[0,1)×AZ

. Then

PRϕ̃ = Eϕ̂, PRψ̃ = Eψ̂.

Proof. The operator T̃ is a multiplication by e2πix so it is unitary. To see that Ũ is unitary we need the
following

Proposition 3.15. For all integrable functions f on [0, 1)× Ω,

(3.9)
∫

[0,1)×Ω

2f ◦ r̃ dλ =
∫

[0,1)×Ω

f dλ.
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Proof. The Lebesgue measure on [0, 1) has the following strong invariance property:

(3.10)
∫ 1

0

f(x) dx =
∫ 1

0

1
2

∑
ω∈{0,1}

f(τωx) dx, (f ∈ L1[0, 1)).

Using equation (3.10) we have:∫
[0,1)×Ω

2f ◦ r̃ dλ =
∫ 1

0

2
∑

ω∈A(x)

f(r(x), ωxω) dx =
∫ 1

0

∑
k∈{0,1}

∑
ω∈A(τkx)

f(r(τkx), ωτkxω) dx =

∫ 1

0

∑
k∈{0,1}

∑
ω∈A(τkx)

f(x, kω) dx =
∫ 1

0

∑
ω∈A(x)

f(x, ω) dx,

and, for the last equality, we used the fact that A(x) is the disjoint union

(3.11) A(x) = 0A(τ0x) ∪ 1A(τ1x).

This proves (3.9).
�

Equation (3.9) shows that Ũ is an isometry and since r̃ is bijective and the set X̃(m0) is invariant under
r̃, the operator U is unitary.

The relation Ũ T̃ Ũ−1 = T̃ 2 is obtained by an easy computation.
Let W be a projection that commutes with Ũ and T̃ . Then W commutes with

∑
k akT̃

k. So it must
commute with all operators of multiplication by functions that depend only on x, Mgf(x, ω) = g(x)f(x, ω).
Then W commutes with operators of the form Ũ−nMgŨ

n, n ∈ N, but these are operators of multiplication
by g ◦ r̃−n, i.e., operators of multiplication by functions which depend only on x and ω1, . . . , ωn. The SOT-
closure of these operators is the algebra of all multiplication operators on L2(X̃(m0)). But this is a maximal
abelian algebra, so W must be contained in it. Thus W is a multiplication operator W = Mf . Since W is a
projection, f is a characteristic function f = χS . Since W commutes with Ũ , the set S is r̃-invariant.

The orthogonality of the translates of ϕ̃ is trivial. The scaling equation follows from the following equality:

r̃−1(F̃ ) = {(x, ω) |ω(r(x)) = ωxω1 . . . } = {(x, ω) | τωx(r(x)) ∈M,ω(x) = ω1 . . . } = (M × Ω) ∩ F̃ .

Notice that Ṽ0 consists of all the functions supported on F̃ . Then Ṽn consists of the functions supported
on r̃nF̃ for all n ∈ Z. We also have r̃−1F̃ ⊂ F̃ , from the scaling equation. The definition of A(x) implies
that ∪n≥0r̃

nF̃ = X̃(m0). This implies that the union of the subspaces Ṽn is dense.
To show that ∩nVn = {0}, note that, using (3.9)

λ(r̃−nF̃ ) =
∫

[0,1)×Ω

χF̃ ◦ r̃n dλ =
1
2n

∫
[0,1)×Ω

χF̃ dλ =
1
2n
.

Therefore a function f in ∩Vn is supported on a set of measure 0, so it has to be identically 0.
Now let us consider the case of a MRA Parseval wavelet set. Proposition 3.16 shows that A(x) contains

AZ for almost every x ∈ [0, 1). We have that PRϕ̃ = Mχ[0,1)×AZ
χF̃ = χ[0,1)×AZ ∩F̃ . We have to check that

(3.12) ([0, 1)×AZ) ∩ F̃ = ε(F ).

If x ∈ [0, 1) and ω ∈ A(x) ∩ AZ then the chosen path of x ends in 0, in which case we let i := 0, or
1, and in this case we let i := 1. Since ω is the chosen path of x, using equation (3.6), we have that
m0((x + di(ω))/2n) = m0(τωn

. . . τω1x) = 1. Therefore, since ϕ̂ is the infinite product in Proposition 3.16,
we obtain that ϕ̂(x+ di(ω)) = 1 so (x, ω) ∈ ε(F ).

Conversely, if (x, ω) ∈ ε(F ), then x + di(ω) is in F , where i is 0 if ω ends in 0 and i = 1 if ω ends in 1.
So m0((x + di)/2n) = 1 and with equation (3.6), this shows that m0(τωn . . . τω1x) = 1, which implies that
ω is the chosen path of x. This proves (3.12). Since E and PR intertwine the representations, and since the
relation between ψ̃ and ϕ̃ is the same as the relation between ψ̂ and ϕ̂, it follows that PRψ̃ = Eψ̂. �

The next proposition characterizes the density property of the multiresolution in terms of the chosen
paths. It will tell us in which cases the orthonormal dilation contains L2(R) as a subrepresentation.
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Proposition 3.16. Suppose ϕ̂ = χF and m0 = Per(χM ) where F ⊂ R, M ⊂ [0, 1). Assume that:

ϕ̂(x) =
∞∏

n=1

m0

( x

2n

)
, i.e., F =

∞⋂
n=1

2n Per(M).

The following affirmations are equivalent:

(i) limn→∞ ϕ̂
(

x
2n

)
= 1 for a.e. x ∈ R;

(ii) ∪∞n=12
nF = R (up to measure zero);

(iii) limn→∞m0

(
x
2n

)
= 1 for a.e., x ∈ R;

(iv) limn→∞m0(τn
0 x) = 1 and limn→∞m0(τn

1 x) = 1, for a.e. x ∈ [0, 1);
(v) For a.e. x ∈ [0, 1), the chosen paths ω(τn

0 x) = 0 and ω(τn
1 x) = 1 if n is big enough;

(vi) For a.e. x ∈ [0, 1), the set A(x) contains the paths ω1 . . . ωn0 and ω1 . . . ωn1 for all ω1, . . . , ωn ∈
{0, 1}.

Proof. (i)⇒(ii). If ϕ̂(x/2n) → 1, then x/2n ∈ F for n big enough, so x ∈ 2nF .
(ii)⇒(iii). If x ∈ 2nF then, since F ⊂ 2F (from the hypothesis), x/2n+k ∈ F for k ≥ 0. But F ⊂ 2 Per(M),

so m0(x/2n+k) = 1 for k ≥ 1.
(iii)⇒(iv). For any x ∈ [0, 1) and any k ∈ Z we have m0((x + k)/2n) = 1 for n big enough. Using the

encoding in Corollary 3.11, we obtain that m0(τk
0 τωn

. . . τω1x) = 1 and m0(τk
1 τωn

. . . τω1x) = 1 if k is big
enough, for all ω1, . . . ωn ∈ {0, 1}. (iv) is a particular case of this.

(iv)⇒(v). Evident.
(v)⇒(vi). Let ω1, . . . ωn ∈ {0, 1}. Then apply (v) to τωn . . . τω1x and (vi) follows.
(vi)⇒(i). We have m0(τk

0 τωn . . . τω1x) = 1 for all ω1, . . . , ωn and k big enough. Similarly with τ1. Using
the encoding in Corollary 3.11, we obtain m0((x + k)/2n) = 1 for all x ∈ [0, 1) and all k ∈ Z, and n big
enough. But this implies that for all x ∈ R, x/2n ∈ Per(M) for n big enough, so x/2p ∈ F for some
p ≥ 1. �

3.5. Cyclic paths. Our construction of the orthonormal dilation is based on finding the chosen paths.
We will show that under some extra assumption on m0 the chosen paths are eventually periodic, and the
orthonormal dilation has a particularly simple form and can be realized on an orthogonal sum of copies of
L2(R) just as in [BDP05].

Definition 3.17. We call a set C := {θ0, . . . , θp−1} in [0, 1) a cycle corresponding to l0 . . . lp−1 ∈ {0, 1}p, if
τl0θ0 = θ1, τl1θ1 = θ2, . . . , τlp−2θp−2 = θp−1 and τlp−1θp−1 = θ0.

We denote by l0 . . . lp−1 the infinite word obtained by the infinite repetition of the finite word l0 . . . lp−1,
i.e.,

l0 . . . lp−1 = l0 . . . lp−1l0 . . . lp−1 . . . .

We denote by ΩC the set of infinite words that end in l0 . . . lp−1, i.e.,

ΩC := {ω1 . . . ωnl0 . . . lp−1 |ω1, . . . , ωn ∈ {0, 1}}.

We define the encoding/decoding maps between eventually cyclic paths and integers as in [DJP07].

Definition 3.18. Let C = {θ0, . . . , θp−1} be a cycle, Zp := {0, 1, . . . , p−1}. Let T0 and U0 be the operators
on L2(R) from (1.2). Define the following operators on L2(R× Zp):

(3.13) T̂C(f0, . . . , fp−1) = (e2πiθ0 T̂0f0, . . . , e
2πiθp−1 T̂0fp−1),

(3.14) ÛC(f0, . . . , fp−1) = (Û0fp−1, Û0f0, . . . , Û0fp−2).

Note that equation (3.14) can be rewritten as

(3.15) ÛCf =
√

2f ◦ αC , f ∈ L2(R× Zp), where αC(x, j) = (2x, (j − 1)mod p), (x ∈ R, j ∈ Zp).

We define the decoding map

(3.16) dC : [0, 1)× ΩC → R× Zp, dC(x, ω) = (x− θj(ω) + k(ω), j(ω)),
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where j(ω) ∈ Zp and k(ω) ∈ Z are defined as follows: there is a unique j(ω) ∈ {0, . . . , p − 1} such that
ω = ω0 . . . ωnp−1lj(ω)lj(ω)+1 . . . lp−1l0 . . . lj(ω)−1 for some ω1, . . . , ωnp−1 ∈ {0, 1}.

(3.17) k(ω) = ω0 + · · ·+ 2np−1ωnp−1 + θj(ω) − 2npθj(ω).

Remark 3.19. The inverse transformation R× Zp 3 (x, j) 7→ (y, ω) ∈ [0, 1)×ΩC is constructed as follows:
There is a unique y ∈ [0, 1) and a k ∈ Z such that x− θj = y + k.

We will associate to (k, j) a path ω ∈ ΩC . The way to define ω resembles the Euclidian algorithm.
First we define the map RC : Z−C → Z−C, using a division with remainder: for a− θj ∈ Z− θj there

is a unique RC(a− θj) ∈ Z− θj+1 and d ∈ {0, 1} such that

a− θj = 2RC(a− θj) + d.

(Note that we use here the notation θj = θj mod p.)
Then, to define ω ∈ ΩC from k ∈ Z and j ∈ Zp, we iterate this division and keep the remainders: there

is a unique ω0 ∈ {0, 1} such that k − θj = 2RC(k − θj) + ω0; at the next step, there is a unique ω1 ∈ {0, 1}
such that RC(k − θj) = 2R2

C(k − θj) + ω1; at step n, there is a unique ωn ∈ {0, 1} such that

Rn
C(k − θj) = 2Rn+1

C (k − θj) + ωn.

Then ω is defined by ω0ω1 . . . .

Using the decoding maps, one can embed the represenatation associated to a cycle into the representation
of the group BS(1, 2) on the symbolic space L2([0, 1)× Ω) defined in Section 3.2.

Theorem 3.20. [DJP07] The map dC is bijective and

(3.18) dC ◦ r̃ = αC ◦ dC

The map EC : L2(R× Zp) → L2([0, 1)× ΩC , λ), ECf = f ◦ dC is an isometric isomorphism that intertwines
the representations {ÛC , T̂C} and {Ũ , T̃}.

Proposition 3.21. Let C be the cycle corresponding to l0 . . . lp−1. Let

m
(p)
0 (x) = m0(x)m0(rx) . . .m0(rp−1x) = m0(x)m0(2x) . . .m0(2p−1x), (x ∈ R).

The following affirmations are equivalent:

(i) For a.e. x ∈ [0, 1), limn→∞m
(p)
0 ((τlp−1 . . . τl0)

nx) = 1;
(ii) For a.e. x ∈ [0, 1), A(x) ⊃ ΩC ;
(iii) The representation πm0 := {Ũ , T̃} on L2(X̃(m0)) contains πC = {ÛC , T̂C} as a subrepresentation.

Proof. (i)⇒(ii) Since the set of finite words is countable, and since the maps τω and x 7→ 2xmod1 preserve
sets of measure zero, we have that for a.e. x ∈ [0, 1), limn→∞m

(p)
0 ((τlp−1 . . . τl0)

n(τωm
. . . τω1x)) = 1 for all

ω1, . . . , ωm ∈ {0, 1}. But this means that, if ω = ω1 . . . ωml0 . . . lp−1 then m0(τωn
. . . τω1x) = 1 for n large

enough. And this implies that if we choose n large, the chosen path of τωn . . . τω1x is ωn+1ωn+2 . . . . Thus
any such ω is in A(x) which implies (ii)

(ii)⇒(iii) is clear from Theorem 3.20.
(iii)⇒(ii) We need a lemma:

Lemma 3.22. Let A be a map from [0, 1) to countable subsets of Ω. Assume that

X̃(A) := {(x, ω) |x ∈ [0, 1), ω ∈ A(x)},

is invariant under r̃. Consider representations of the form πA := {Ũ , T̃} on L2(X̃(A), λ). If A1 and A2 are
such maps, then πA1 is a subrepresentation of πA2 if and only if A1(x) ⊂ A2(x) for almost every x ∈ [0, 1).

Proof. The sufficiency is immediate. Let W be an isometry between L2(X̃(A1)) to L2(X̃(A2)) that inter-
twines the representations. Then, proceeding as in the proof of Theorem 3.14, W must intertwine multipli-
cation operators on the two spaces X̃(A1) and X̃(A2). Therefore X̃(A1)∩ X̃(A2) cannot be empty and since
W is an isometry we must have X̃(A1) ⊂ X̃(A2). The lemma follows. �
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Since πm0 contains πC , using Lemma 3.22, we have that X̃(m0) must contain [0, 1)×ΩC , and this implies
(ii).

(ii)⇒(i) We have that for a.e. x ∈ [0, 1), ω1ω2 · · · := l0 . . . lp−1 is in A(x). So for some n, the chosen path of
τωn

. . . τω1x is ωn+1ωn+2 . . . . We make n bigger if necessary to have n of the form n = kp. But his implies that
m0(τl0(τlp−1 . . . τl0)

kx) = 1, m0(τl1τl0(τlp−1 . . . τl0)
kx) = 1, and so on. Therefore m(p)

0 ((τlp−1 . . . τl0)
mx) = 1

for m large enough. And this implies (i). �

Definition 3.23. Let m0 = Per(χM ) be a QMF filter.
(i) We call M (and m0) partitionable if there exists a finite partition I1, . . . , Iq of M with the property

that for each i ∈ {1, . . . , q} there exists a j(i) ∈ {1, . . . , q} and a ν(i) ∈ {0, 1} such that τν(i)(Ii) ⊂
Ij(i). We say that the partition (Ii)

q
i=1 is subordinated to M (and m0).

(ii) For the partition (Ii)
q
i=1, we construct the following graph: the vertices are the intervals Ii, i ∈

{1, . . . , q}. We have an edge from i to j if and only if j = j(i); moreover we label the edge from i
to j(i) by ν(i). We call this the graph associated to the partition (Ii)

q
i=1

(iii) For each cycle in the graph associated to the partition (Ii)
q
i=1, let l0 . . . lp−1 be the corresponding

labels. We say that the cycle C associated to the word l0 . . . lp−1 is a cycle associated to the partition
(Ii)

q
i=1.

Theorem 3.24. Let m0 = Per(χM ) be a partitionable QMF filter, and let (Ii)
q
i=1 be a partition subordinated

to m0.
(i) The representation πm0 = {Ũ , T̃} on L2(X̃(m0)) is a subrepresentation of

⊕{πC |C cycle associated to the partition (Ii)
q
i=1}.

(Recall πC = {ÛC , T̂C} on L2(R)⊕ . . . L2(R)︸ ︷︷ ︸
length(C)-times

.)

(ii) If in addition all cycles C associated to the partition (Ii)
q
i=1 are contained in the interior of M , then

πm0 = ⊕{πC |C cycle associated to the partition (Ii)
q
i=1}.

Proof. (i) We will show that for a.e. x ∈ [0, 1), A(x) ⊂ ∪ΩC where the union is done over all the cycles
associated to the partition.

Take x ∈ [0, 1), and let ω = ω1ω2 . . . be its chosen path. Then τω1x ∈M , so there is some i0 ∈ {1, . . . , q}
such that τω1x ∈ Ii0 . Also τω2τω1x ∈ M , but, since τω1x ∈ Ii0 , this implies that τω2τω1x ∈ Ij(i0) and
ω2 = ν(i0). By induction, we obtain ω3 = ν(j(i0)), . . . , ωn = ν(jn−2(i0)), where jn = j ◦ · · · ◦ j, n times.
Moreover, we have that τωn+1 . . . τω1x ∈ Ijn(i0), so νn(i0) is the label for the edge between jn−1(i0) and
jn(i0). Since the graph is finite it is clear that this procedure will enter a cycle, i.e., the sequence jn(i0) and
νn(i0) are eventually periodic. The cycle is associated to the partition, and this proves that the chosen path
ω of x is in one of the sets ΩC . From this it follows immediately that A(x) is contained in the union of the
the sets ΩC . Then (i) follows, since X̃(m0) is subset of ∪ΩC which is invariant under r̃.

(ii) We use Proposition 3.21. We have that all cycles associated to the partition are interior points for
M . Let C = {θ0, . . . , θp−1} be such a cycle and let l0 . . . lp−1 be the corresponding word. We have that
(τlp−1 . . . τl0)

nx converges to the fixed point of the map τlp−1 . . . τl0 which is θ0. Thereforem0((τlp−1 . . . τl0)
nx) =

1 for n large enough. Similarly for the other cyclic permutations l1 . . . lp−1l0 and so on. This implies that
m

(p)
0 ((τlp−1 . . . τl0)

nx) = 1 for n large enough, and with Proposition 3.21, we get (ii). �

4. Examples

Example 4.1. Consider

ψ̂ := χ[−2a,−a]∪[a,2a], (0 < a ≤ 1
4
).

Since P := [−2a, a] ∪ [a, 2a] is a dilation tile, and translation simple, ψ is a Parseval wavelet. We want to
use our theory to construct an orthonormal dilation. We will see that:

Proposition 4.2. The wavelets ψ̂ = χ[−2a,−a]∪[a,2a], 0 < a ≤ 1
4 have an orthonormal dilation in the space

L2(R)⊕ L2(R)⊕ L2(R) with the representation {U0 ⊕ ÛC , T0 ⊕ T̂C}, where C is the cycle C := { 1
3 ,

2
3}.
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First, we have to compute the associated scaling function and low-pass filter. By Proposition 3.5, we have
that the scaling function is ϕ̂ = χF , with F = ∪j≥12−jP = [−a, a]. This set is translation simple.

To construct the set M for the low-pass filter, we follow the procedure in the proof of Proposition 3.5.
Recall τ(x) = xmod1, s(x) = (x+ 1/2) mod 1. We have

τ(F ) = [0, a] ∪ [1− a, 1], τ(F/2) = [0,
a

2
] ∪ [1− a

2
, 1].

Then
C := s(τ(F ) \ τ(F/2)) = s([

a

2
, a] ∪ [1− a, 1− a

2
]) = [

1
2

+
a

2
,
1
2

+ a] ∪ [
1
2
− a,

1
2
− a

2
].

The set M must contain both sets τ(F/2) and C, and it must be disjoint from the sets s(C) and s(τ(F/2)).
We are left with an “undecided zone”, [a, 1/2 − a] ∪ [1/2 + a, 1 − a], where we must make a choice of a

subset D with the property that |{x, s(x)}∩D| = 1 for all x in this zone. Note that s maps the two intervals
of this zone into each other.

We pick here

D := [
1
4
,
1
2
− a] ∪ [

1
2

+ a,
3
4
].

Of course there are many other choices, and it would be interesting to see how these choices will affect the
dilation.

Then we get that the support set for our low-pass filter is

M := [0,
a

2
] ∪ [

1
4
,
1
2
− a

2
] ∪ [

1
2

+
a

2
,
3
4
] ∪ [1− a

2
, 1].

Next we have to see what the chosen paths are. For this we find a partition subordinated to M . This is
easy. The four intervals will give us this partition. Indeed we have that

τ0[0,
a

2
] ⊂ [0,

a

2
], τ1[1−

a

2
, 1] ⊂ [1− a

2
, 1],

τ1[
1
4
,
1
2
− a

2
] ⊂ [

1
2

+
a

2
,
3
4
], τ0[

1
2

+
a

2
,
3
4
] ⊂ [

1
4
,
1
2
− a

2
].

Therefore we have the following cycles associated to the partition: 0, 1 (the occurence of these two cycles
should be no surprise because our filter comes from a construction in R, where the low-pass condition on
χM implies that these cycles are present), and 10 (or 01). The cycle corresponding to 0 is 0, the one for 1 is
1, the cycle for 10 is c := { 1

3 ,
2
3}. So θ0 = 1

3 , θ1 = 2
3 , and since τ1 1

3 = 2
3 , τ0

2
3 = 1

3 , we have l0 = 1 and l1 = 0.
Note also that the cycle { 1

3 ,
2
3} lies in the interior of M .

Since we have these cycles, our dilation will be constructed in the space [0, 1)×{ω ∈ Ω |ω ends in 0, 1 or 10}.
Or equivalently, using the encoding/decoding, it can be done in R× {∗, 0, 1}, where ∗ will be the index for
the L2(R)-component that we started from (corresponding to 0, 1), and the other two components {0, 1} will
correspond to the cycle 10.

Next, we want to find what the dilated scaling function ϕ̃ = χF̃ is, so we have to find the set F̃ . Recall
that

F̃ = {(x, ω(x)) |x ∈ [0, 1)},
where ω(x) is the chosen path of x.

To determine the chosen path for a point x ∈ [0, 1) we actually need to find only the first digit, i.e., to
find ω1 ∈ {0, 1} such that τω1x ∈M , because once τω1x is in M , we use the partition associated to M to see
what the next digits of the chosen path are. Using this, and the fact that 0 < a < 1/4 we obtain:

ω(x) =


0, if x ∈ [0, a]
10, if x ∈ [a, 1

2 ]
01, if x ∈ [ 12 , 1− a]
1, if x ∈ [1− a, 1].

Now that we have the chosen paths for each x in [0, 1) we use the decoding maps to see how the set F̃ is
mapped inside R× {∗, 0, 1}.

On [0, a] we have ω(x) = 0. Then d0(0) = 0 so ε−1([0, a]× {0}) = [0, a] + 0 = [0, a].
On [1− a, 1] we have ω(x) = 1. Then d1(1) = −1 so ε−1([1− a, 1]× {1}) = [1− a, 1]− 1 = [−a, 0].
Therefore the first component of the set (the one corresponding to ∗) will be [−a, 0] ∪ [0, a] = [−a, a].

This is to be expected, of course, since that was our objective: to dilate the wavelet and scaling function
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that we started with, so the ∗ component of the scaling function χF̃ should be χF . Similarly for the wavelet
ψ̃. On [a, 1

2 ] we have ω(x) = 10. Then θj(10) is the fixed point of τ0τ1, which is 1
3 = θ0 so j(10) = 0. Then

k(10) = 0, and dc(x, 10) = (x− 1
3 , 0). So dc([a, 1

2 ]× {10}) = [a− 1
3 ,

1
6 ]× {0}.

On [12 , 1 − a] we have ω(x) = 01. Then θj(01) is the fixed point of τ1τ0, which is 2
3 = θ1 so j(01) = 1.

Then k(01) = 0, and dc(x, 01) = (x− 2
3 , 0). So dc([ 12 , 1− a]× {01}) = [− 1

6 ,
1
3 − a]× {1}.

Consequently we have that

ϕ̃ ◦ (ε, d−1
c ) = (χ[−a,a], χ[a− 1

3 , 1
6 ], χ[− 1

6 , 1
3−a]).

Let α(x∗, x0, x1) = (2x∗mod1, 2x1 mod1, 2x0 mod1). The support set of the dilated wavelet is P̃ =
α(F̃ ) \ F̃ . We have α(F̃ ) = [−2a, 2a]× {∗} ∪ [−1/3, 2/3− 2a]× {0} ∪ [2a− 2/3, 1/3]× {1}. Therefore

P̃ = ([−2a,−a] ∪ [a, 2a])× {∗} ∪ ([−1
3
, a− 1

3
] ∪ [

1
6
,
2
3
− 2a])× {0} ∪ ([2a− 2

3
,−1

6
] ∪ [

1
3
− a,

1
3
])× {1}.

Finally the dilated orthonormal wavelet is

ψ̃ = (χ[−2a,−a]∪[a,2a], χ[− 1
3 ,a− 1

3 ]∪[ 16 , 2
3−2a], χ[2a− 2

3 ,− 1
6 ]∪[ 13−a, 1

3 ]).

Example 4.3. Let us consider again the wavelet set in the previous example, now with a = 1
8 . So ψ̂ =

χ[− 1
4 ,− 1

8 ]∪[ 18 , 1
4 ].

Proposition 4.4. The wavelet ψ̂ = χ[− 1
4 ,− 1

8 ]∪[ 18 , 1
4 ] has an orthonormal dilation in the space L2(R)⊕L2(R)⊕

L2(R)⊕L2(R) with the representation {U0 ⊕ ÛC , T0 ⊕ T̂C} where C is the cycle C := { 1
7 ,

4
7 ,

2
7}. This proves

that the representation associated to orthonormal dilations is not unique.

We saw that for this wavelet set we can take the scaling function to be ϕ̂ = χ[− 1
8 , 1

8 ]. The support
M for the low-pass filter must contain [0, 1

16 ] ∪ [ 38 ,
7
16 ] ∪ [ 9

16 ,
5
8 ] ∪ [ 1516 , 1], and it should be disjoint from

[ 1
16 ,

1
8 ] ∪ [ 7

16 ,
9
16 ] ∪ [ 78 ,

15
16 ]. And we have the undecided zone [ 18 ,

3
8 ] ∪ [ 58 ,

7
8 ] where we can make a choice of a

set D which is s-simple, so that in the end we get M to be the support of a QMF filter. Here we will make
a different choice of this set D, and we will see that the orthonormal dilation is different from the one in
Example 4.1. Here we take D := [ 18 ,

3
8 ]. Therefore

M := [0,
1
16

] ∪ [
1
8
,

7
16

] ∪ [
9
16
,
5
8
] ∪ [

15
16
, 1].

We have a partition subordinated to M as follows:

τ0[0,
1
16

] ⊂ [0,
1
16

], τ1[
15
16
, 1] ⊂ [

15
16
, 1],

τ1[
1
8
,
1
4
] ⊂ [

9
16
,
5
8
], τ0[

1
4
,

7
16

] ⊂ [
1
8
,
1
4
], τ0[

9
16
,
5
8
] ⊂ [

1
4
,

7
16

].

Thus, we have the following cycles 0, 1, and 100, which corresponds to c := {θ0 = 1
7 , θ1 = 4

7 , θ2 = 2
7}.

The chosen paths for points in [0, 1) are

ω(x) =


0, if x ∈ [0, 1

8 ]
100, if x ∈ [ 18 ,

1
4 ]

010, if x ∈ [ 14 ,
1
2 ]

001, if x ∈ [ 12 ,
7
8 ]

1, if x ∈ [ 78 , 1].

On [0, 1
8 ] we have ω(x) = 0, so d0(0) = 0, ε−1([0, 1

8 ]× {0}) = [0, 1
8 ]× {∗}.

On [78 , 1] we have ω(x) = 1, so d1(1) = −1, ε−1([ 78 , 1]× {1}) = [ 78 , 1]− 1 = [− 1
8 , 0].

On [ 18 ,
1
4 ] we have ω(x) = 100, so j(100) = 0, k(100) = 0, dc([ 18 ,

1
4 ] × {100}) = [ 18 −

1
7 ,

1
4 −

1
7 ] × {0} =

[− 1
56 ,

3
28 ]× {0}.

On [ 14 ,
1
2 ] we have ω(x) = 010, so j(010) = 2, k(010) = 0, dc([ 14 ,

1
2 ] × {010}) = [ 14 −

2
7 ,

1
2 −

2
7 ] × {2} =

[− 1
28 ,

3
14 ]× {2}.

On [ 12 ,
7
8 ] we have ω(x) = 001, so j(001) = 1, k(001) = 0, dc([ 12 ,

7
8 ] × {001}) = [ 12 −

4
7 ,

7
8 −

4
7 ] × {1} =

[− 1
14 ,

17
56 ]× {1}.
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Then
F̃ = [−1

8
,
1
8
]× {∗} ∪ [− 1

56
,

3
28

]× {0} ∪ [− 1
14
,
17
56

]× {1} ∪ [− 1
28
,

3
14

]× 2]

α(F̃ ) = [−1
4
,
1
4
]× {∗} ∪ [− 1

28
,

3
14

]× {2} ∪ [−1
7
,
17
28

]× {0} ∪ [− 1
14
,
3
7
]× {1}.

Here α(x∗, x0, x1, x2) = (2x∗mod1, 2x1 mod1, 2x2 mod1, 2x0 mod1). From this P̃ = α(F̃ ) \ F̃ and the
orthogonal wavelet is

ψ̃ = χP̃ = (χ[− 1
4 ,− 1

8 ]∪[ 18 , 1
4 ], χ[− 1

7 ,− 1
56 ]∪[ 3

28 , 17
28 ], χ[ 1756 , 3

7 ], 0).

Example 4.5. In this example we will show that sometimes the cycles are not sufficient to describe the
whole picture. Actually, for a large class of paths, we can find low-pass filters for which some points will
have the chosen path equal to the given path. We will then obtain the following:

Proposition 4.6. There are low-pass filters that have chosen paths ω(x) non-eventually periodic, for a set
of points x of positive measure. This implies that the corresponding dilation is not realized in a sum of
representations of the form {ÛC , T̂C} with C cycle.

Let η = η1η2 . . . be an infinite path with the property that it does not contain sequences of consecutive
0s or consecutive 1s of arbitrarily large lengths. (For example, any non-trivial cyclic path will have this
property, or η = abaabaaabaaaab . . . where a = 01 and b = 10.) Let p − 1 be the maximum number of
consecutive 0s or 1s that occur in η.

For a finite word a1 . . . an, let us denote by .a1 . . . an := a1
1
2 + · · · + an

1
2n . Let 0p denote a string of p

consecutive zeros.
Let I be the interval I := (.10p10, .10p11).
First we claim that the intervals (τηn . . . τη1I)n≥0 are mutually disjoint (the interval corresponding to

n = 0 is I).
Note that τηn

. . . τη1I = (.ηn . . . η110p10, .ηn . . . η110p11).
If x is in this interval and x has the binary expansion x = a1

1
2 + a2

1
22 + . . . , then it is easy to see

that a1a2 . . . must begin with ηn . . . η110p10. So, if τηm . . . τη1I with m > n intersects τηn . . . τη1I, then
ηm . . . η110p10 must begin with ηn . . . η110p10. This implies that ηm−n . . . η110p10 begins with 10p10. But η
does not contain p consecutive zeros, so the only place where we find 0p is at the end. And this contradicts
m > n.

From this it follows that the intervals τη̌n
τηn−1 . . . τη1I do not intersect the intervals τηm

. . . τη1I. (Recall
that ω̌ = 1− ω.) Suppose by contradiction that they do intersect. Let r(x) = 2xmod1 on [0, 1). Then

∅ 6= r(τη̌n
τηn−1 . . . τη1I ∩ τηm

. . . τη1I) ⊂ r(τη̌n
τηn−1 . . . τη1I) ∩ r(τηm

. . . τη1I) = τηn−1 . . . τη1I ∩ τηm−1 . . . τη1I,

which contradicts the previous statement.
Consider the set

S :=
⋃
n≥1

τηn
. . . τη1I.

The set S is s-simple. Indeed, if x ∈ S then x ∈ τηn . . . τη1I for some n ≥ 1. Therefore s(x) ∈
τη̌nτηn−1 . . . τη1I so s(x) /∈ S.

Moreover the distance from S to the boundary points 0 and 1 is positive. Indeed, none of the elements of
the union τηn

. . . τη1I contains 0 or 1. Therefore we can consider n large enough. Let n be also bigger than
p. Then the sequence ηn . . . ηn−p+1 with n ≥ p contains both zeros and ones

In := τηn
. . . τη1I ⊂ τηn

. . . τηn−p+1 [0, 1) =
1
2
ηn + . . .

1
2p
ηn−p +

1
2p

[0, 1).

Since at least one of the digits ηn, . . . , ηn−p+1 is a one, it follows that In ≥ 1
2p . Since at least one of these

digits is a zero it follows that Im ≤ 1
2 + · · ·+ 1

2p−1 + 0 + 1
2p = 1− 1

2p < 1.
Also, the distance from S to 1

2 is positive. This is because none of the intervals contains 1
2 (if τηn . . . τη1x =

1
2 then x = 0 or x = 1.) And if for some x ∈ I and some n ≥ 2 we have |τηn

. . . τη1x − 1
2 | < ε, then

|τηn−1 . . . τη1x+ωn − 1| < 2ε so τηn−1 . . . τη1x has to be close to either 0 or 1, which contradicts the previous
statement.

Since S is s-simple and has positive distance to {0, 1
2 , 1}, we can construct an M which contains S and

some intervals around 0 and 1 such that M is the support of a QMF filter.
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If we take x ∈ I, then τηn . . . τη1x ∈ S ⊂M , so the chosen path is ω(x) = η.

Example 4.7. In this example, we consider the following question: in how many ways can a Parseval
wavelet set be dilated? Of course, if we look at the way the low-pass filter is constructed from an MRA
Parseval wavelet set, we see that there are infinitely many ways of doing that, by choosing different sets D as
in the proof of Proposition 3.5. But we would like the representations of the group BS(1, 2) to be different.
Sure, they will have the common subrepresentation on L2(R), but can the complementary representations
be different? The answer is again yes, and we have that

Proposition 4.8. There are examples of MRA Parseval wavelet sets that have infinitely many orthonormal
dilations with distinct representations.

Recall the notation (base two expansion): .a1a2 . . . an := 1
2a1 + 1

22 a2 + · · ·+ 1
2n an, and for infinite words

.a1a2 · · · :=
∑

n≥1
1
2n an. The Euclidian order on [0, 1) becomes the lexicographical order on the base 2

expansions, i.e., .a1a2 · · · < .b1b2 . . . iff for some n ≥ 0, a1 = b1, . . . , an = bn and an+1 < bn+1 (there is the
exception of dyadic numbers like 1

2 = .10 = .01, but these can be treated similarly).
Let 0 < a < .0001 and consider the wavelet set in Example 4.1,

ψ̂ = χ[−2a,−a]∪[a,2a].

We will construct infinitely many low-pass filters m0 = Per(χM ) associated to this wavelet set, in such
a way that their corresponding representations are distinct, and actually have only L2(R) as the common
subrepresentation.

From Example 4.1, we know that such a setM must contain I := [0, a
2 ]∪[ 12−a,

1
2−

a
2 ]∪[ 12+a

2 ,
1
2+a]∪[1−a

2 , 1]
and must be disjoint from N := [a

2 , a] ∪ [ 12 −
a
2 ,

1
2 + a

2 ] ∪ [1− a, 1− a
2 ].

We have to complete the set I with a set D such that M = I ∪D gives a QMF filter, I ∩D = ∅. We will
do this in infinitely many ways, Dn, n ≥ 1.

For this we consider infinitely many cycles: let C1 be the cycle associated to 1001100, C2 the cycle
associated to 10011001100, C3 the cycle associated to 100110011001100 and so on. We will want Dn to
contain the cycle Cn in its interior.

First we have to remark a few things about the cycles Cn. It is easy to see that the points of the cycle C1

are .0011001, .1001100, .0100110, .0010011, .1001001, .1100100, .0110010. Note that the digits of the word
associated to the cycle have to be reversed in the base 2 expansion of the cyclic points and then cyclically
permuted.

We want to make sure the cycles Cn lie completely in the undecided zone

U := [a,
1
2
− a] ∪ [

1
2

+ a, 1− a].

Note that the point in Cn closest to 0 starts with .001, therefore it is bigger than a (recall a < .0001). The
point in Cn∩ [0, 1

2 ] closest to 1
2 begins with .0110 therefore its distance to 1

2 = .01111 . . . is at least .0001 > a.
The point in Cn ∩ [ 12 , 1] closest to 1

2 begins with .1001 so again the distance to 1
2 = .1 is at least .0001 > a.

Finally, the point in Cn closest to 1 begins with .110 so the distance to 1 is bigger than a.
Thus Cn lies in the undecided zone [a, 1

2 − a] ∪ [ 12 + a, 1− a].
Next, we construct Mn by adding to the set I := [0, a

2 ] ∪ [ 12 − a, 1
2 −

a
2 ] ∪ [ 12 + a

2 ,
1
2 + a] ∪ [1− a

2 , 1] some
intervals Ic, c ∈ Cn contained in [a, 1

2 −
a
2 ] ∪ [ 12 + a

2 , 1− a], and such that Ic contains c in its interior for all
c ∈ Cn.

Consider the supplements of the points in the cycle Cn, i.e., the points in s(Cn). Since Cn is in the
undecided zone U , and this is invariant under s, it follows that Cn ∪ s(Cn) is contained in the undecided
zone. Let us call the points in Cn ∪ s(Cn), main points, and the points in s(Cn), supplements.

Arrange the main points on the interval. We make the following claim: the main point closest to a is a
supplement, the main point closest to 1

2 to the left of 1
2 is a cycle point, the main point closest to 1

2 to the
right of 1

2 is a supplement, and the main point closest to 1− a is a supplement.
To prove the claim it is enough to prove the first and the last statement because then the other two follow

by applying s.
If we want a point .a1a2 . . . to be close to 0, then we need it to start with as many zeros as possible. The

cycle points start with at most two zeros: .001. The base two expansion for the supplements is obtained from
the base two expansion of the cycle points by changing the first digit from 0 to 1 and vice versa. Therefore
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we can get the supplements to start with .0001 because the cycle points can start with .1001. Thus the one
closest to 0 will be a supplement. A similar argument works for the main point closest to 1, and here we
need the base two expansion to start with as many ones as possible.

Let cl be the cycle point closest to 1
2 , to the left of 1

2 , and let cr be the cycle point closest to 1
2 to the

right of 1
2 . Then s(cl) will be the main point closest to 1, and s(cr) will be the main point closest to 0.

Also, note that both intervals [a, 1
2 − a] and [12 + a, 1− a] contain at least 3 cycle points (so also at least

3 supplements). To see this we only have to count how many cycle points start with .0 and how many start
with .1.

Next, consider a cycle point c of Cn. We want to construct an interval Ic associated to it, that we will
add to the definition of the set Dn. We have two cases:

Case I. If c 6= cl, cr, then we construct Ic as follows: let l(c), r(c) be the main points l(c) < c < r(c) that
are closest to c. Then Ic := [ l(c)+c

2 , c+r(c)
2 ].

Case II. If c = cl then let l(cl) < cl be the main point closest to cl, and let Ic = Icl
:= [ l(cl)+cl

2 , 1
2 −

a
2 ].

If c = cr then let r(cr) > cr be the main point closest to cr and let Ic := Icr
:= [ 12 + a

2 ,
cr+r(cr)

2 ].
Note that the intervals Ic are disjoint, and they are contained in [a, 1

2 −
a
2 ]∪ [ 12 + a

2 , 1−a]. Then we define

Mn := [0,
a

2
] ∪ [

1
2
− a,

1
2
− a

2
] ∪ [

1
2

+
a

2
,
1
2

+ a] ∪ [1− a

2
, 1] ∪

⋃
c∈C

Ic.

(Note that the union is not disjoint, because Icl
contains [ 12 − a, 1

2 −
a
2 ], and Icr

contains [ 12 + a
2 ,

1
2 + a]; but

this will not be a problem. The set Mn is indeed of the type constructed in the proof of Proposition 3.5.)
First we have to prove that Per(χMn) is a QMF filter, i.e., {Mn, s(Mn)} is a partition of [0, 1). For this we

analyze the intervals of Mn in [0, 1
2 ) and make sure that when we apply s we obtain the converse situation

(so that the QMF condition is satisfied).
First we have [0, a

2 ] inside Mn and s([0, a
2 ]) = [ 12 ,

1
2 + a

2 ] is outside Mn. Then [a
2 , a] is outside Mn and

s([a
2 , a]) = [ 12 + a

2 ,
1
2 + a] is inside Mn.

Then we have the main point closest to 0, which is s(cr). The main point closest to cr and to the right of
cr is r(cr). Applying s we get that the main point closest to s(cr) to the right of it is s(r(cr)). The interval
[ 12 +a, cr+r(cr)

2 ] is in Mn, and its supplement [a, s(cr)+s(r(cr))
2 ] is outside Mn because there are no other cycle

points in this region except maybe s(r(cr)).
Next we consider intervals of the form [a+b

2 , b+c
2 ] where a < b < c are consecutive main points in [0, 1

2 ]
and s(cr) < a, c < cl. If b is a cycle point then this interval is contained in Mn. Its supplement is
[ s(a)+s(b)

2 , s(b)+s(c)
2 ], and s(b) is a supplement. Therefore it is outside Mn. If b is a supplement, then s(b) is

a cycle point and the same argument works.
Then we have the interval [ l(cl)+cl

2 , 1
2 − a] in Mn and, using the argument that we used before for the

interval [ 12 + a, cr+r(cr)
2 ], its supplement is outside Mn.

And finally the intervals [ 12 − a, 1
2 −

a
2 ] and [ 12 −

a
2 ,

1
2 ] can be seen to have the desired property.

This proves that m0 = Per(χMn
) is a QMF filter.

Next, we claim that for each x ∈ [0, 1) its chosen path ω(x) ends in 0, 1 or the infinite repetition of
the finite word associated to Cn. It is enough to prove this for points in Mn, because after the first step
τω1x ∈Mn.

If x ∈ [0, a
2 ] or x ∈ [1− a

2 , 1] the claim is clear, the chosen path is 0 or 1.
Suppose now x ∈ Ic for some c ∈ Cn. Assume first that c 6= cl, cr. Since c is in the cycle Cn, there exists

d ∈ Cn and some i ∈ {0, 1} such that τic = d. We claim that τiIc ⊂ Id. We have that Id = [ l(d)+d
2 , d+r(d)

2 ]

if d 6= cr, cl; if d = cl then Id ⊃ [ l(cl)+cl

2 ,
cl+

1
2

2 ], because 1
2 −

a
2 >

cl+
1
2

2 ; if d = cr then Id ⊃ [
1
2+cr

2 , cr+r(cr)
2 ].

Therefore in all cases Id ⊃ [ l(d)+d
2 , d+r(d)

2 ] where r(cl) := 1
2 =: l(cr). Note also that Id is completely contained

in [0, 1
2 ] or [ 12 , 1] so R(x) = 2xmod1 is injective on Id. Since τic = d, we have that R(x) = 2x− i on Id, so

the inverse of R on Id is τi.
Note that if x is a main point then R(x) is a cycle point. This is clear for cycle points; for supplements, s(x)

is a cycle point, and R(x) = R(s(x)). So if d 6= cr, then R(l(d)) is a cycle. If d = cr then R(l(cr)) = R( 1
2 ) =

0. A similar argument works for R(r(d)) which is a cycle point or 1. Then R( l(d)+d
2 ) = R(l(d))+R(d)

2 =
R(l(d))+c

2 ≤ l(c)+c
2 , because the first is the midpoint between two cycle points (or perhaps 0 and a cycle



ORTHONORMAL DILATIONS OF PARSEVAL WAVELETS 21

point), and the last is the midpoint between two main points. Similarly for R(d+r(d)
2 ) ≥ c+r(c)

2 . This shows
that R(Id) ⊃ Ic. Taking the inverse we obtain τi(Ic) ⊂ Id. Note that when d = cl, we actually have
τi(Ic) ⊂ Ĩcl

:= [ l(cl)+cl

2 ,
cl+

1
2

2 ], and when d = cr, τi(Ic) ⊂ Ĩcr := [
1
2+cr

2 , cr+r(cr)
2 ].

Consider now Icl
. Since cl is on the cycle Cn, there is some i ∈ {0, 1} and some d ∈ Cn such that τicl = d.

Note that d cannot be cl or cr. It is not cl because cl is not a fixed point, the cycle Cn is longer than 1. It is
not cr because cl starts with .0110 so τicl starts with .00110 or .10110. But cr starts with .1001. We claim
that, with Ĩcl

:= [ l(cl)+cl

2 ,
cl+

1
2

2 ], we have τiĨcl
⊂ Id. As before, we look at R applied to the endpoints of

Id, and we have already seen that R( l(d)+d
2 ) ≤ l(cl)+cl

2 . As before R(d+r(d)
2 ) = R(d)+R(r(d))

2 = cl+R(r(d))
2 and

R(r(d)) is a cycle point to the right of R(d) = cl. Thus R(r(d)) > 1
2 . This shows R(Id) ⊃ Ĩcl

, so τi(Ĩcl
) ⊂ Id.

A similar argument works for cr: if τicr = d for some i ∈ {0, 1} and d ∈ Cn, and if we denote by
Ĩcr

:= [
1
2+cr

2 , cr+r(cr)
2 ] then τi(Ĩcr

) ⊂ Id.
Let Ĩc := Ic for c 6= cl, cr. We have that, if τic = d, then for all x ∈ Ĩc, one has τix ∈ Ĩd ⊂ Mn. This

means that the chosen path of x starts with i, and by induction, the digits of the chosen path will coincide
with the digits that determine the cycle Cn.

The only remaining intervals are Jl := [ cl+
1
2

2 , 1
2 −

a
2 ] and Jr := [ 12 + a

2 ,
1
2+cr

2 ]. If x ∈ Jl then cl < x < 1
2 ,

therefore x starts with .011. If x ∈ Jr then 1
2 < x < cr. Hence x starts with .100. Thus if x ∈ Jl then

τix starts with .0011 or .1011 so it cannot be in Jl or Jr. Therefore, if x ∈ Jl ∪ Jr and ω(x) = ω1ω2 . . . is
its chosen path, then τω1x is in Mn but cannot be in Jl or Jr. This implies that τω1x fits into one of the
previous cases, so its chosen path ends in a repetition of one of the cycles. A similar argument works for Jr.

Hence, every chosen path will end in 0, 1 or the infinite repetition of the word associated to the cycle
Cn. It is also clear that Cn lies in the interior of Mn and the conditions of Proposition 3.16 are satisfied.
Then Theorem 3.14 and the proof of Theorem 3.24(ii) shows that the orthonormal dilation of our Parseval
wavelet set has the representation {U0⊕UCn

, T0⊕TCn
}. With Lemma 3.22, we see that the representations

{UCn
, TCn

} are mutually disjoint. This proves our claims.
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[Sas87] Zoltán Sasvári. On the extension of positive definite functions. Rad. Mat., 3(2):235–240, 1987.
[Spe99] Darrin M. Speegle. The s-elementary wavelets are path-connected. Proc. Amer. Math. Soc., 127(1):223–233, 1999.

[Dorin Ervin Dutkay] University of Central Florida, Department of Mathematics, 4000 Central Florida Blvd.,

P.O. Box 161364, Orlando, FL 32816-1364, U.S.A.,

E-mail address: ddutkay@mail.ucf.edu

[Deguang Han] University of Central Florida, Department of Mathematics, 4000 Central Florida Blvd., P.O.

Box 161364, Orlando, FL 32816-1364, U.S.A.,
E-mail address: dhan@pegasus.cc.ucf.edu

[Gabriel Picioroaga] Department of Mathematical Sciences, Binghamton University, Binghamton, New York
13902-6000, U.S.A.

E-mail address: gabriel@math.binghamton.edu

[Qiyu Sun] University of Central Florida, Department of Mathematics, 4000 Central Florida Blvd., P.O. Box
161364, Orlando, FL 32816-1364, U.S.A.,

E-mail address: qsun@mail.ucf.edu


