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Abstract

Let A be a matrix with the absolute values of all eigenvalues strictly larger
than one, and let Zy be a subset of Z such that n € Zy implies n + 1 € Zy.
Denote the space of all compactly supported distributions by D', and the usual
convolution between two compactly supported distributions f and g by f * g.
For any bounded sequence G, and H,,n € Zy in D', define corresponding

nonstationary nonhomogeneous refinement equation
O, =H,*P,11(4)+ G, for all n € Zy, (%)

where ®,,n € Zj is in a bounded set of D’. The nonstationary nonhomoge-
neous refinement equation () arises in the construction of wavelets on bounded
domain, multiwavelets, and of biorthogonal wavelets on non-uniform meshes.
In this paper, we study the existence problem of compactly supported distribu-
tional solutions ®,,n € Z, of the equation (x). In fact, we reduce the existence

prooblem to finding a bounded solution F, of the linear equations
F, — S, F, = Gy, forall  n € Z,

where the matrices S,, and the vectors én, n € Zg can be contructed explicitly

from H, and G, respectively.
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1 Introduction

Fix a dilation matrix A with the absolute values of its eigenvalues strictly larger than
one, and fix a subset Zg of Z such that n € Z, implies n + 1 € Z,. Define the

convolution f x g between two integrable functions f and g by

Frg= [ FC=vg)dy,

and the one between two compactly supported distributions by usual interpretation.
Denote the space of all compactly supported distributions by D’. The objective of
this paper is to study the existence problem of compactly supported distributional

solutions of the following equation
O, =H, «P,1(A)+ G, foralln e Z, (1.1)

where ®,, and G,,,n € Z, are vector-valued distributions in a bounded set of D', and
H,,n € Zy are N x N matrix-valued distributions in a bounded set of D’. Hereafter a
vector-valued (matrix-valued) distribution belongs to D' means that its components
(entries) belong to D’. Note that any solution of the equation (1.1) can be written
as the sum of a fixed solution of the equation (1.1) and a solution of the following
equations

O, = H, x®,1(A:) forall n e Z. (1.2)

So we call the equation (1.1) as nonstationary nonhomogeneous refinement equations,
and the equation (1.2) as nonstationary refinement equations. The matrix-valued
compactly supported distributions H,,n € Zy and the vector-valued compactly sup-
ported distributions G,,,n € Z, are said to be the masks and the nonhomogeneous
terms of the nonstationary nonhomogeneous refinement equation (1.1) respectively.
Clearly the nonhomogeneous refinement equation

= ¢®2-—j)+G (1.3)

jEZd

in [8, 9, 21], and the continuous nonhomogeneous refinement equation

¢= [ A —y)duy) +G (1.4)

in [16] are special cases of the nonstationary nonhomogeneous refinement equation
(1.1), where ¢;,j € Z¢ is a sequence of N x N matrices such that ¢; = 0 for all but
finitely many j € Z¢, and p is an N x N matrix of finite Borel measures with compact

support.



1.1 Mbotivation

The nonstationary nonhomogeneous refinement equations arise in the construction
of wavelets on bounded domain, multiwavelets and biorthogonal wavelets on non-
uniform meshes ([2, 4, 6, 11, 12, 15, 19, 20, 22]). All these inspire us to study system-
atically various properties of solutions of nonstationary nonhomogeneous refinement
equations.

In the multiresolution approximation on the unit interval [0, 1] proposed by Meyer
([20]) and Cohen, Daubechies and Vial ([4]), the approximation space of scale n
is spanned by interior scaling functions, left boundary scaling functions and right
boundary scaling functions. The interior scaling functions are scaling functions on
the line with their support contained in [0, 1], and these functions satisfy certain
refinement equations. The left and right boundary scaling functions are modified
from the restriction of usual scaling functions on the unit interval, and these boundary

scaling functions satisfy the following nonhomogeneous refinement equations
®=HP(2)+G,

where H is an N x N matrix and G is a vector-valued compactly supported distri-
bution.

Let h be the hat function defined by
h(z)=1—|z| if ze€[-1,1] and h(x)=0 if z¢[-1,1],
and w, satisfy the nonhomogeneous refinement equation
we =h(2-—1) + c(w.(2-) + w.(2 - —1)),

where c is a constant. Then (h,w,.)” is a symmetric orthogonal continuous scaling vec-
tor when ¢ = —1/5 , and the pair (h, w.)" and (h, w;)" leads to a family of symmetric
biorthogonal scaling vectors when ¢ = (2¢+1)/(5¢—1) and —1 < ¢ < 1/7 ([11, 12]).
The perturbation of Daubechies’ orthonormal scaling functions and wavelets in [15] is
another example to use a solution of the nonhomogeneous refinement equation (1.3)
and a usual scaling function to construct a new orthonormal scaling vector with any
preassigned regularity.

The nonhomogeneous refinement equation is one of the cornerstones in the con-

struction of biorthogonal wavelet basis on arbitrary triangulation of a polygon from



hierarchical basis in [6], and of biorthogonal wavelet basis on one-dimensional non-
uniform meshes by modifying cardinal primal refinable functions in [22]. The dual
refinable function ¢(z1,z7) in [6] at the intersection of different types of meshes sat-

isfies a nonhomogeneous refinement equation of the form

G(a1,22) = Y ¢;d(2a1 — j,222) + G (w1, 15),

JEZ
and the one at exceptional node satisfies a nonhomogeneous refinement equation of

the form

¢($1, IL'Q) = ¢(2.’L’1, 21’2) + G(l‘l, IL'Q),

where G(z1, ) is a compactly supported function on R?.

1.2 Historical Sketch and Main Result

For the nonstationary nonhomogeneous refinement equations (1.1), the first and most
elementary problem is the existence problem of its compactly supported distribu-
tional solutions. For the nonhomogeneous refinement equations (1.3) and (1.4), the
existence problem of its compactly supported distributional solutions are discussed in
8,9, 16, 21]. In particular, for the nonhomogeneous refinement equation (1.3), Strang
and Zhou ([21]) characterized the existence of its compactly supported distributional
solutions in term of (c;);ez¢ and the nonhomogeneous term G for one-dimensional
and scale-valued case (i.e., d =1 and N = 1), and Dinsenbacher and Hardin ([8, 9])
reduced the existence problem to finding polynomial solutions of a related nonho-
mogeneous polynomial refinement equation. For the continuous nonhomogeneous
refinement equation (1.4), Jia, Jiang and Shen [16] gave some necessary and suffi-
cient conditions to the existence of its compactly supported distributional solutions.
For the nonstationary refinement equation (1.2), there is a much literatures for the ex-
istence, regularity and its applications to the constructions of nonstationary wavelets
(see for instance [1, 5, 7, 10]).

For the nonstationary nonhomogeneous refinement equation (1.1), define corre-

sponding cascade operators T),,n € Zg by
T.F =H,xF(A). (1.5)

In this paper, we reduce to the existence problem to finding appropriate initials



E,,n € Zy of the cascade operators 1,,,n € Z, such that

Z TnTn+1 e Tn+m71én+m

m=1
converges in distributional sense, where

Gn :Gn—Fn+TnFn+1, n € Z().
Let 7 be the minimal nonnegative integer such that
1. (0)[|p(A )™ < ro| det A|

for all n € Zy and some constant 0 < 9 < 1 independent of n € Zg, and let p(B)
denote the spectral radius of a matrix B. Precisely, we shall choose the initials

F,,n € Zy such that F,,,n € Zg is in a bounded set of D', and

~

Gal€) = Ful€) + (det A) HA(ATOFn (AT < Ol Vg <1 and ne o,

(1.6)
where f denotes the Fourier transform of a tempered distribution f, and C is a
positive constant independent of n and £ (see Theorem 2.1 for detail). Also we apply

the assertions in Theorem 2.1 to study the stationary refinement equation
U=H=xU(A). (1.7)

Thus the exact dimension of the linear space of all compactly supported distribu-
tional solutions of the refinement equation (1.7) is computed (Corollary 3.1), and the
existence of compactly supported distributional solution ¥ of (1.7) with W(0) # 0 is

also characterized (Corollary 3.3).

1.3  Organization

The main result (Theorem 2.1) is proved in Section 2. We apply the main result to
study stationary nonhomogeneous refinement equation (3.1) in Section 3 (see Corol-

laries 3.1 and 3.3). The conclusion of this paper is given in last section.

2 Main Result

To state our main result, we need to introduce some notation. For an integrable

function f, its Fourier transform f is defined by
R - —ix
f&) = [, f)e .
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For a vector-valued or matrix-valued tempered distribution F', its Fourier transform

F'is interpreted as usual. For any nonnegative integer 7, let
ZfihT:{(sl,...,sd)GZd: S;+--+s4<7—1 and s;>0 Vlgigd}
and Z% = U,»1Z% . Define g, o for s,s' € Z% by

ATeor= S goe

s’€Z‘i,|s’|:\s|
if s,s' € Z% and |s'| = |s|, and g5y =0 if |s] # ||, or ' € Z%, or s ¢ Z%.
Let 7 be the minimal nonnegative integer such that

| H, (0)[| p(A~T)™ < 7ol det A| < | det A, (2.1)

for all n € Zy and some positive constant ry < 1 independent of n € Z,. For any

n € Zy, write

~

Go(§) = D Gus& +0([¢]™) as &—0, (2.2)
sEZ‘j_,TO
and
(det A) L&) = Y Ho & +0(€]™) as € —0, (2.3)
sGZi,TO

where By (&) = By(§) + O(]€]™) as £ — 0 means that there exists a positive constant
C' independent of ¢ such that |Bi(£) — B2(€)| < C|£]™ in a small neighborhood of
the origin. Obviously G, s, H, s, n € Zo are bounded sequences for any s € Zi,m if

G, and H,,n € Z, are in a bounded set of D’.

Set
Su=T—-( Y girvsHay) - (2.4)
tezi . 5,8 +,70
and én = (Gn,s)sEZ§r y L€ Zo. When d = 17N =1land A= 2’
)70

I— o H,,.L’O 0 e 0 0

_%Hn,l I— %Hn,o U 0 0

Sp = : : '

—2_T0+2H'n,,T0*2 _2_7'0+2Hn77_073 e I - 2_T0+2H'n,,0 O
—2_T0+1H'n,,T0*1 _2_TO+1H'n,,T072 e _2_T0+1Hn,1 I - 2_T0+1Hn70’

and G = (Go,--,Gr_1)",n € Zy. In this paper, we shall prove the following result.
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Theorem 2.1 Let G, and H,,n € Z, be in a bounded set of D', and let 19, Sy, G5, Hp 5, 1 €
Zo,s € 29, be defined as in (2.1) — (2.4). Assume that there exist positive constants
Co and 7y such that

sup || H, ()| < Co and  sup [¢]7°||Ho (&) — Ha(0)|| < Cy  for all m € Zo. (2.5)
£€RA [¢1<1

Then the following statements are equivalent:

(i) There exist solutions ®,,n € Zg of the nonstationary nonhomogeneous refine-

ment equations (1.1) in a bounded set of D';

(ii) There exist F,,n € Zy in a bounded set of D' such that

|G(€)—Fo(€)+(det A) T H, (ATTE) F 1 (A7€)| < ClE[™ YV [€] < 1and n € Z,
(2.6)

where C' s a positive constant independent of & and n € Zy;

(iii) There exist F, = (Fn,s)sezi , n € Zo such that E,,n € Zg is a bounded
,TO

sequence and satisfies the linear equation
F,—S,F,1 =G, YncZ, (2.7)
i.e.

d
Fn,s - Z Jt+s',s n+1,tFn+1,s’ = Gn,s Vse Z+77—0 and n € ZO-

d
t,s’€Z+,T0

To prove Theorem 2.1, we need a pointwise estimate.

Lemma 2.1 Let 1y and ry be as in (2.1). Assume that H,,n € Zy satisfy (2.5). Then
for any 6 > 0 there exists a positive constant C' (dependent of 6 and the constant Cj
and o in (2.5)) such that

1HA(AT€) - Hy 1 (A"
< C(+ €N det A|™(rop(A™T)™™ +86)™ ¥Ym>1, n€Zy and ¢ € R

Proof. Set R,(¢) = (det A)"'H,(¢),n € Zo. By (2.5), there exists a positive

constant C'| such that
IR, (&)]] € min(Cp,rop(A™T)™™ +C1[€]™°) VEERY and n € Zy.
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By the fact that A is a dilation matrix, there exist 0 < 7y < ry < 1 and a positive

constant Cy such that

Cytrm < (A1) < Cyr forall €] =1 and m > 1.

Thus for any § > 0, any ¢ € R? with its norm smaller than 2 and m > 1, we have

[Rn(ATE) -+ Ry 1 ((A” ma||<n(rop Ty 4+ Cy|(AT)e))

< (rop(ATT)yT +6)™ [ (1 + 2010y (rop(A~T)™™ + 5)_17'%) < Cs(rop(A~T)™™ 4 6)™,
i=1
where Cj3 is a positive constant independent of m and &.
For any ¢ € R? with [£] > 2, let ky be the minimal positive integer such that

|A~*0¢] < 1. Then there exists a constant C; such that
Ci'lnlé] < ko < Cylnlé] V [€] > 2.
Therefore for kg > m — 1
[RA(ATTE) - Ry 1 (A1) < CTF < O(1+ [€) (rop(A™T) ™™ + 6)™,

and for kg <m —1

||R ( 6 n+m 1(( 7T)m€)||
< OF[|Rano (A71)FE) - Ryt (A7)
< CaCR(rop(ATT) ™ 4 6)" R0 < C(L+ [¢)  (rop(AT) ™ +6)",

)
(

where C' is a positive constant independent of n and ¢ € RY. Hence the assertion

follows. O

Proof of Theorem 2.1. We divide the proof into four steps: (i) = (ii) =
(i) = (i) => (i).

(i)=(ii): Let ®,,n € Z; be in a bounded set of D" and satisfy the nonstation-

ary nonhomogeneous refinement equation (1.1). Taking Fourier transform at each

side of (1.1),
&\)n(g) = (det A)ilﬁn(AiTg)&\)nnkl(AiTg) + @n(ﬁ) for all n € Z(). (28)

Then (2.6) follows by letting F,, = ®,,n € Z.



(ii) = (iii): Let F,,,n € Zg be in a bounded set of D’ and satisfy (2.6). Write

ﬁn(g): Y F&+0(¢") as £—0.

d
sEZJr,TO

Note that Fj, ; is the Fourier transform of (—i)*lp,F,, for any n € Zy and s € Zi,m,
where ¢s(x) = x°/s!l. Then (Fn,s)sezti ,n € Zy is a bounded sequence. By direct
sTO

computation, we have

G(€) = Fu(€) + (det A) T Hy (A7) B (A77€)
= Z (Gn,s - Fn,S)gs + Z Hn,t’Fn+1,8’ (A7T€)5’+t’ + O(|§|TO)

seZd t',s'cZ4

+,70 +,70
- ¥ (Gn,s —Fust+ S geirsHup Fn+1,s,)gs +0(l¢]™) as €—0.
sEZi,TO s’,t’EZi,TO
Thus
Z (Gn,s - Fn,s + Z gs’-l—t’,an,t’Fn-i-l,s’)gs =0
s€Z_d+_,7_0 s’,t’GZi,TO

by (2.6). Hence F = (Fn,s)sezi satisfies the linear equation (2.7), and (iii) follows.
70
(iii)=(ii): Let F, = (Fn,s)sezi ,n € Zo be a bounded sequence and satisfy
70
the linear equation (2.7). Define F), by

ﬁn(f) = Z Fn,sfsa ne ZO-

d
sEZJr,TO

Then F,,n € Zgy is in a bounded set of D'. By using the same procedure as in
(ii)==(iii) and the fact that H,,G,,n € Z, are in a bounded set of D' , there exists

a positive constant C' such that
[Ga(€) = Fu(&) + (det )T H (ATTOF (A€ < O™ VIEI <1 and n € Zy.

(ii)==(i): For the nonstationary nonhomogeneous refinement equation (1.1),

define corresponding cascade operators T,,,n € Zg, by
T.,F = H, x F(A).

Let F,,,n € Zy be in a bounded set of D" and satisfy (2.6). For n € Zy and m > 1,

set

Gn=Gp—Fy+ Hyx Fyp1(A) =Gy — Fy + Ty Fyn

and

Gn,m - TnTn+1 T Tn+m71G~n+m- (29)
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Then for any n € Zy and m > 1,
Gpm 1s supported in a compact set K independent of m and n, (2.10)
and

Grm(€) = (det A) ™ H,(ATTE) - Hyp o 1 ((AT)"E) Gy (ATT)™E)  (2.11)

by taking Fourier transform at each side of (2.9). By the assumption on G, F,, and

H,,n € Zy, there exists a positive constant C; such that
[Fa(©) + 1G]+ | Ha(Ol < Cr(1 + €Y forall € R? and n € Z.
This together with (2.6) leads to
Co(©)] < ClgP (L +]¢)? forall €€R' and n e Z,

where () is a positive constant independent of n € Z, and ¢ € R%. It is easy to check

that
(A™TYme] < C3(1 +m)Vp(A~T)™|¢] forall m>1 and €€ RY,

where Cj is a positive constant independent of m > 1 and ¢ € R% Thus by (2.11)

and Lemma 2.1,

7‘0—|—1

[Cum(©)] < O+ €D (=

)" forall¢eRY and m>1,

where C' is a positive constant independent of n,m and &. Thus ¥M_, @nm(ﬁ) con-
verges uniformly on any compactly set and in distributional sense, i.e.,

lim /Rd > Gom(€)f(€)dE =0 for any Schwartz function f.

M—o0 m=M+1

Hence Z%zl Gp,m converges in distributional sense, too. Denote the limit of E%zl Gnom

by > o°_i Gpm. Note that

M R M R
|32 Gunl®)] < X Gum(©)] < C1+1¢])°

for some positive constant C' independent of n € Zy and M > 1. This together with
(2.10) implies that Y00 | Gy, n € Zy, is in a bounded set of D'.
Set .
®, =G+ 1 Fpi1+ Y. Gum 1€ Zy. (2.12)

m=1

10



Then ®,,,n € Zy is in a bounded set of D’. By (2.9),
Gom = 1Gryim—1 Vn€Zy and m > 2.
Thus
by = Gyt TaFoy + Gy + Tu( 3 G
m=2

= G, +T, (GnJrl + Tn+1Fn+2 + Z Gn+1,m)

m=1

— Gn + Tn(pn+1 = Hn * @n+1(A) + GTL

Hence ®,,,n € Zj, is in a bounded set of D’ and satisfies the nonstationary nonho-

mogeneous refinement equation (1.1). O

Remark 2.1 For any &, let D). be the set of all compactly supported tempered

distributions with finite || - ||p; , where
1fllp, = sup [F(E)I(1+[]) "
(ERY

Then D! is a linear topological subspace of D’. By the proof of Theorem 2.1 and
letting ~ be sufficiently large, G, € D), and

|G|l < C2™™ forall neZ, and m>1,

where C' and 6 are positive constants independent of n and m. In other words,
the cascade sequence G, ,,,m > 1 converges in D, exponentially. Such an idea
can be used in finding solutions of the nonstationary nonhomogeneous refinement
equation (1.1) in certain linear topological spaces, such as the space of all p-integrable

functions, Besov spaces, Bessel potential spaces and Triebel-Lizorkin spaces.

Remark 2.2 By the proof of Theorem 2.1, 7,7, 1 -+ T}, n@®nim tends to zero in
distributional sense as m tends to infinity if ®,,n € Z, is in a bounded set of D’
satisfying

13,(6)| < Cle[™ forall || <1 and n € Z,

where C' is a positive constant independent of n and £&. Thus there is one-to-one
correspondence between compactly supported distribtuional solutions ®,,,n € Zg of

(1.1) in a bounded set and bounded solutions F,,n € Zy of the linear equation (2.7).

11



3 Applications

In this section, we apply the results in the previous sections to investigate the follow-

ing stationary nonhomogeneous refinement equation
®=HxP(A)+G (3.1)
and the stationary refinement equation
U=H=xWU(A). (3.2)

For the nonhomogeneous refinement equation (3.2), there is a much large literatures
for the existence and regularity, and as well as the applications of its solutions ([3,
11, 13, 14, 15, 17, 18]). For the nonhomogeneous refinement equation (3.1), let 75 be
the minimal nonnegative integer satisfying p(H(0))p(A~T)™ < |det A|. Write

(det A)TH(E) = Y HL+0(E™) as £€—0

sGZi,TO
and
S=1- ( > gt+s,’sHt)ss’€Zl-i+— ’
d ? »TO
tezd

where we define H; = 0 when s & Zi,m. By Theorem 2.1 and Remark 2.2, we have

Corollary 3.1 Let G be a vector-valued compactly supported distribution, H be a
N x N matriz-valued compactly supported distribution such that ﬁ(f) 15 bounded, and

let 79, S and Hy, s € Zi,m be as above. Then the following statements are equivalent:

(i) There exists a compactly supported distribution ® satisfying the stationary non-

homogeneous refinement equation (3.1);

(ii) There exists a compactly supported distribution F' satisfying

~

G(&) — F(&) + (det A) T H(ATTOF(ATTE) = O(I¢]") as & — 0

(iii) The rank of S is the same as the one of its augmented matriz S, ie.,

where S = (S, Q) is the augmented matriz of S, G = (Gy)yege  and

+,70

G = Y G&+O0(l) as €—0.

d
sEZJr,TO
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For the stationary refinement equation (3.2), the dimension of the linear space of
all compactly supported distributional solutions of the refinement equation (3.2) is
NpB(19,d) —1(S), where 3(10,d) denotes the dimension of the space of all polynomials

in R with degree at most 1y — 1.
Remark 3.1 Note that S is a block lower triangular matrix with diagonal blocks
I— (det A)_l(gs,s’ﬁ(o))|s\=|s’\:la 0<I< o — 1.

Then S is singular if and only if one of diagonal blocks is singular. Hence by Corollary
3.1, there exists nonzero compactly supported distributional solution of (3.2) if and
only if I — (det A)_l(gsysrﬁ(()))|s‘:|s/‘:l is singular for some 0 <! < 75 — 1. For the
refinement equation

U=> ¢VU2 —j), (3.3)

JEZ!
where ¢; = 0 for all but finitely many j € Z%, the assertion above was proved in

17, 23].

The nonhomogeneous refinement equation below is an important type of nonho-

mogeneous refinement equations
®=Hd(2)+G, (3.4)

where H is an N x N matrix. Such a nonhomogeneous refinement equation appeared
in [4, 6, 19, 20, 22]. Note that H = U~'TU for some nonsingular matrix U and block
diagonal matrix T = diag(E(\1), - - -, E(\,)), where

A\ 0
1A

E(\) = o L 1<I<l,
0 DY

Then the nonhomogeneous refinement equation (3.4) is essentially the combination

of the following two types of nonhomogeneous refinement equations,
Type I. ® = \®(2:)+ G, N=1;
Type IL: & = E(\)®(2-) + G.

13



By Corollary 3.1, we have

Corollary 3.2 Let nonhomogeneous refinement equations of type I and of type II be
defined as above. Then

(i) The nonhomogeneous refinement equation of type I is solvable in D' if and only
if X # 2174 for all nonnegative integers I, or A = 21*¢ and D'G(0) = 0 for some

nonnegative integer [.

(i) The nonhomogeneous refinement equation of type II is solvable in D' if and only
if X\ # 2% for all nonnegative integer 1, or X\ = 24 and D'G1(0) = 0, where
GG denotes the first component of G.

In some applications, the compactly supported distribution ¥ of the refinement
equation (3.2) need satisfy W(0) # 0. It is obvious that W(0) is an eigenvector of
H (0) with eigenvalue det A. However, such a solution does not exist in general even
when det A is an eigenvalue of H (0). For example, (0,v8")T, v € C are all compactly

supported distributional solutions of the following refinement equation

2 0 0 0
U= v(2) + (2. 1),
—2 4 2 0

where ¢’ denotes the derivative of the delta distribution, but

N 2 0
H(0) = p
—2 4 2% 4

has eigenvalue 2.

Corollary 3.3 Let Hy,s € Z% _ and S be as above. Set

S*=1-— ( > gt+s’,sHt)

d
tezd

d a
s,s’€Z+,7_0\Z+,1

Then there exist a compactly supported distributional solution U of the refinement

equation (3.2) with ¥(0) # 0 if and only if r(S) < r(S*)+ N — 1.

Proof. <=: On the contrary, 7(S) = r(S*) + N. Then I — (det A)"LH(0) is

nonsingular since
I — (det A)"'H(0) 0
B* S*

14



for some matrix B*. Recall that

— ~

H(0)¥(0) = det A ¥(0)

for any compactly supported distributional solution ¥ of the refinement equation

~

(3.2). Thus ¥(0) = 0, which is a contradiction.

=—: Assume that 7(S) < r(S*) + N — 1. Note that the dimension of the linear
space of solutions F of the linear equation SE = 0 with the first block zero is
N(B(rp,d) — 1) — r(S*), and that the dimension of the linear space of solutions F
of the linear equation SEF = 0 is NG(ry,d) — r(S). Thus by the assumption there
exists F = (Fs)sez‘i,ro satisfying SF = 0 and Fy, # 0. Let compactly supported
distributions F' and ¥ be defined by F(§) = Ysezd Fo&* and

W) = lim (det A)™H(A™TE) - H((AT )" F((AT)mE).

m—00

Then U satisfies the refinement equation (3.2) and ¥(0) = Fy # 0. O

Remark 3.2 The assertion in Corollary 3.3 was proved in [17, 23] for the refinement

equation (3.3) under additional assumption that S* is of full rank.

4 Conclusion

In this paper, we reduce the existence of compactly supported distributional solutions

of the nonstationary nonhomogeneous refinement, equations,
¢, =H,xP,1(A)+ G, forall n e Z, (4.1)
to finding appropriate initials F},, n € Zg of the cascade operators T,,,n € Z,, where
T.F =H,xF(A).

Further we can construct the appropriate initials F},,n € Z, through solving certain
linear equations. The ideas in the proof of our main result can be used in find-
ing solutions of nonstationary nonhomogeneous refinement equation (4.1) in certain

topological spaces, such as Besov spaces and Bessel potential spaces.
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