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Abstract

This paper give a construction of biorthogonal wavelets in the set-
ting of P; finite elements spaces for general polygonal domain, with
hierarchical triangulations. The construction is based on the so-called
lifting scheme (or coarse grid correction) with a specific treatment
for the nodes that are near the exceptional vertices and edges asso-
ciated to the coarsest triangulation. Finite element spaces with both
Dirichlet and Neumann boundary conditions are considered. The cor-
responding dual bases have positive Sobolev smoothness §, resulting
in the possibility of characterizing H® spaces for —§ < s < 3/2. Al-
though the analysis of this property is involved, the construction itself
is simple and easy to implement.



1 Introduction

In recent years, there has been a growing interest for the use of wavelets in
numerical simulation. The main motivation for the use of these tools in this
context is twofold:

e The possibility to characterize function spaces from the numerical prop-
erties of wavelet coefficients results into diagonal preconditioners for
elliptic operators when discretized in these bases, which can be viewed
as a variant of multigrid additive (BPX) preconditioners.

e The ability of wavelet bases to adaptively represent functions that are
piecewise smooth with a very high order of accuracy with respect to
the number of parameters.

We refer to [6] and [2] for general surveys on the numerical analysis of wavelet
methods, describing these aspects in more details. Let us simply mention
that, in contrast to area such as statistical signal and image processing,
where the efficiency of wavelet techniques for applications such as compres-
sion and denoising is established, these methods are still at an early stage in
numerical simulation in which it still difficult to compare them with other
more classical discretization, e.g. finite differences, finite elements or spectral
methods. There is at least two reasons for this state of affair. First of all,
while wavelets might have the ability to approximate the solution of a PDE
with high accuracy and low complexity, it takes more work to actually build
a resolution scheme which will indeed produce an approximation in such a
compressed form (in the context of data compression, a simple threshold-
ing algorithm does the job). Secondly, due to the versatility of numerical
test problems that might be considered in benchmarking, a comparison of
wavelets with more classical tools requires in particular that one can at least
adapt the wavelet discretization to the inherent geometry of the problem at
hand, which is not always an easy task.

On this second point, several progresses have been achieved recentely.
There are basically two approaches which are currently being followed in
order to build wavelet bases on general domains Q@ ¢ RY: (i) domain de-
composition into square patches and (ii) multilevel decomposition of finite
element spaces. The first approach, as proposed in e.g. [1] or [7], exploits
the well understood constructions of orthonormal or biorthogonal wavelets



on unit cubes together with a proper “glueing” of the basis functions at the
interfaces between subdomains. The second approach can be more tempting
if one wants to combine the useful properties of wavelets with the structural
simplicity of finite element spaces. In particular, one might be interested to
modify or postprocess a given finite element code, by using a wavelet basis
adapted to the corresponding finite element space.

In the two-dimensional case, this second approach can be summarized as
follows: let €2 be a polygon, convex or not, with boundary 02. We start from
an initial coarse triangulation 7 of 2 and inductively define a triangulation
7; of resolution 277, j > 1 by subdividing each triangle of 7;_; into four
similar triangles. To such triangulations, we associate finite element spaces
V;. In the classical case of Lagrange P, finite elements (continuous piecewise
polynomials of total degree n), these spaces are nested (V; C Vji1) and
one can easily define a first multiscale basis of V; in the following way: we
take the nodal functions at the coarsest level (which span V) to which we
append the nodal functions of Vj,, 7 = 0,1,--+,J — 1 that are associated
to a Lagrange node which is not a node of V; (which thus span for each j a
complement space W, of V; into V). In the case of P, finite elements, the
Lagrange nodes of V; are simply the vertices of the triangulation 7; and this
construction is the classical hierarchical basis, which was firstly considered
in [15] for preconditioning purposes. Note that one can easily append an
homogeneous Dirichlet boundary condition in this construction, provided
that this condition occurs on a part of the boundary which is resolved by the
coarsest grid. Such hierarchical bases can be considered as the simplest finite
element wavelet bases. Their main disadvantage is that they fail to ensure
the characterization of Sobolev spaces H® by the usual norm equivalence
for s < d/2, resulting in mediocre preconditioning properties for second
order problems in dimension d > 2 and ill conditioned mass matrices in any
dimension. This lack of stability is related to the fact that the decomposition
in such bases is inherently related to the Lagrange interpolation operator
I; onto V}, since the component of a function f in W; is obtained as the
difference I f — I;f. The limitation by below on s expresses the fact that
I; is not well-defined on H* for s < d/2, since the dual functionals that are
used in the evaluation of I; are Dirac distributions at the Lagrange nodes.
Another defect of hierarchical basis functions is that in contrast to wavelets,
they do not have vanishing moments, which limitates their ability ot compress
stiffness matrices and data in the context of Galerkin discretizations.



The main idea in order to build more stable finite element wavelet bases
is to start with a hierachical basis and apply a local correction process on
the basis functions at each level, which generates a new complement space
that should be in some sense more orthogonal to V; than the initial ;. This
technique can be viewed as an application of the so-called [lifting scheme in-
troduced in [14] in the case of coarse grid correction of W; by nodal functions
in V;, and of the more general stable completion technique of [4] for more gen-
eral fine grid correction by nodal functions in Vj;;. While such constructions
are usually simple to describe and implement, since the correction process
is local, the analysis of the success of this strategy in terms of allowing a
better range of Sobolev norm characterization is a more difficult task, which
involves the understanding of the dual functions that are inherently built
in place of the initial Dirac distributions. Typically, the new range is now
limited by s > —5 where s is the Sobolev smoothness of these dual functions,
and the correction process should be made in such a way that § is strictly
positive.

Non orthogonal fine grid corrections, which are particularly attractive due
to the very short support of the resulting wavelets, can be proved to result
in strictly positive § (see e.g. [10], [11]). However such results are essentially
available in the restricted context of uniform triangulations, in which case the
analysis benefits of shift invariance and fourier transform techniques, leav-
ing aside the proper treatment of exceptional vertices, edges and boundary
conditions, which is unavoidable when dealing with a polygonal domain. A
possibility that leads to § = 3/2 is to use a fine grid correction which generates
an orthogonal complement to V; as in [12] or more generally to another la-
grange finite element space \7] which satisfies a minimal angle condition with
respect to Vj, as proposed in [8]. In this case, the wavelets are constructed by
an element by element orthogonalization procedure, which allows a proper
treatment of exceptional edges and vertices. In both constructions, the dual
basis is globally supported, which is not a practical problem for applications
such as Galerkin discretizations.

The goal of the present paper is to provide a construction and an analysis
for general polygonal domain based on coarse grid correction, i.e. the lifting
scheme, which has the specificity of resulting in compactly supported dual
functions. This is an advantage for applications where a fast decomposition
algorithm is needed. Another advantage of this approach is that it will not
require solving any local orthogonalization problem. We shall work in the
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setting of P; finite element which is both the simplest and most commonly
used discretization for a 2D polygonal domain. However, one should view
this as a “laboratory case”, and be aware that the construction and analysis
principle that we use could be adapted, with more technical work to other
types of elements. For P; element, we can in addition exploit some exist-
ing results in the translation invariant setting: away from the exceptional
vertices and edges, we obtain the same dual functions which have been intro-
duced in [5]. These functions satisfy a classical refinement equation and are
known to be in H?® for s < 0.44. The correction process is of course slighty
adapted near the the exceptional vertices and edges, resulting in other dual
functions which satisfy nonhomogeneous refinement equations. In all cases,
the correction process is such that the resulting primal wavelets have at least
their first moment vanishing, and uses at most the four neighbouring coarse
grid functions.

This paper is organized as follows: in §2, we give some main notations
for the hierarchical basis and the lifting scheme. We then classify the nodes
of the triangulation 7; and define the lifting matrices accordingly. Then, in
§3 we define and analyze the corresponding dual functions and study their
smoothness. In §4 we prove their biorthogonality properties with respect
to the nodal functions as well as their properties of polynomial exactness.
Finally, we display in §5 the graphs of the various dual scaling functions
obtained near exceptional points or edges.

The analysis in §3 and §4 is not straightforward - it require to study
certain non-homogeneous refinement equations - but necessary to understand
the stability properties of the resulting multiscale basis. In contrast, let us
emphasize on the fact that the concrete implementation of this basis - i.e.
the fast algorithm which connect the nodal and multiscale representation of
a function in the finite element space - is very simple and only involves the
lifting coefficients given in §2.

2 Construction

2.1 The lifting scheme

Using the same notations as in the introduction for the hierarchical trian-
gulations 7; defined on the polygonal domain (2, we also denote by 77, the
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set of all vertices in the triangulation 7;. We denote by 0, the Dirichlet
boundary, on which we impose that the functions of V; vanish. We require
that 0Q2p is a union of closed line segments on 02 with endpoints in Tj.
Let I'; be the set of nodes of T; not on the Dirichlet boundary 0Qp. The
corresponding spaces V; are generated by the nodal basis (¢;,),er;, where
¢~ is the unique continuous, piecewise affine function on each triangle of 7;
such that ¢;,(7') = 6,, 7' € Tj. Obviously, we have T; C T;1, I'; C T'j 1y
and V; C Vjy1. We shall sometimes refer to I'; as the active nodes of Tj
in contrast to the passive nodes represented by T; \ I';. For a node v € T},
let A;(y) be the collection of triangles in 7; with v as a vertex and let
Ti(v) :==T; N Aj(y) — {7} be the neighbours of v in I';. Set A; =T';4\T;.
Then Tj1(y) C Aj C I'j4q for v € I';. The nodal functions ¢;,,v € T'; are
refinable in the sense that ¢; .,y € I'; can be written as linear combination
of ¢ji1,,m € L'ji1. In fact,
1
Pjy = Djary + 9 Z Pj+1- (1)

n€Tj+1(v)

The elements of the hierarchical wavelet basis are defined by

Uix = Dt (2)

for A € A;. Then ¢j11,,n € I'j41 can be obtained as a combination of the
Gy € Ty and oy, X € A, according to

¢J+1777 - { wj,na ! ne Aj- (3)

It follows that the space WJh spanned by w;'l,m A € A; is a complement space
of V; into Vj4,. In particular, we have

Vi=WwoeWyd @ W;_y, (4)

so that {¢o,,7 € To} U {¢).,v € A;,0 < j < J}is a basis of V;. This
hierarchical basis, can be viewed as a particular case of a biorthogonal wavelet
basis, in the following sense. We define the dual scaling functions

by =05 (5)

3y
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for v € I';, where 6, is the Dirac distribution at the node . For A € A; and
(A1, A2) € Tj such that A is the mid-point of these two nodes, we define the

dual wavelet by
~ 1
Ph=h-5 X o (6)
A€l i=1,2
Then, the expansion of a function f € V; in terms of the hierarchical basis
can be expressed by

~ J-1 ~
f = Z <f7 ¢g,7>¢)0,’y + Z Z <f7 ¢§,]>w§,] (7)

v€lp 7=0 AGA]‘

Furthermore {qﬁm,ﬁ/);{/\} and {@ﬁ,, ~§1,X} are generalized biorthogonal —in
the sense of the duality product between continuous functions and Radon
measures

<¢Jm m> Oy va:Y, e Ly,
< JHA? ],'y> 07 Ae F]'7fyl < Fj’
(d)m, M,> =0, yel,Nely,
< 7\ ]/\’> = 6)\7/\'7 A’ )\, S Aj’

It can also be checked that the spaces f/j" and Wj" spanned by the dual func-
tions satisfy relations similar to (4). The hierachical basis is thus inherently
tied to the interpolation operator P]h

Plo=3"(v,,) (8)

v€rL;

This restricts its application to the decompositions of Sobolev spaces H®,
since for o < 1 these spaces are not embedded in C°. In order to obtain a
more stable decomposition for such spaces, we shall use the so-called lifting-
scheme introduced in [14]. We briefly describe this technique in our specific
context. Let

L n=n,
S}-’n =4 1/2, ne Tj+1(7)7
0, otherwise,

foryeI';,n €T and

A — L, n=A
3 0, otherwise,



for A € Aj,n € I';;1. With this notation, (1) and (2) are equivalent to
{ ¢ja7 - ET]GFj+1 S_’]z\,nhqu*}*l,n; fy - F];
?’/\ = Xperyp Gy Pivrmy ¥ € NG

Let
1

svh — o M=
7 0, otherwise,
foryel';,n el and

1, n=2A
d'l‘ _ _1/27 n= >‘17
o —=1/2, n= X, A €Ty,
0, otherwise,

for A € Aj,n € 11, where A, \y are defined as for (6). Then (]3?7 and 1/;;‘/\

satisfy . -
h J— =7 h
{ iy T EWGFJ’+1 Sim Yi+1,m

h Y Th
i EnGFH—I dj,n J+1n:

Defining the matrices, A; = (s],)yer;ner;., Bj = (d;‘,};l)/\e/\j,nerﬁl, A5 =
(537-7’:)7@]. el and B = (Cié-,n)AeAj,neFjH, we see that the coordinates change
from (resp. to) the basis {¢; i1, }yer;,, to (resp. from) {;, ¥} yer; aen;
are operated by the matrix (AT, BY) (resp. (AT, BI)7), so that we have

J

(5 ) et )

Thus

A AT . AT Ty _
(Bj_CjAj>(Aj+BjCj,Bj)—I (10)

for any matrix Cj = (¢} )aea, yer;, which we call as lifting matriz. The
above identity expresses that we have modified the hierarchical functions
;‘,)\ according to a coarse grid correction v;j, A = ;-f/\ — c?‘ﬁqﬁm, resulting
in a new complement space ;. While, it is clear that we obtain another
multiscale basis (which will also allow fast local computations, provided that

C; has a banded structure), understanding the stability of this new basis
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with respect to Sobolev spaces, requires that we understand the nature of
the corresponding dual functions. For this, we set

- ~7,h
8},77 = 317',71 + Z ¢, vdgn’ (11)
’UGA
and
Ak
J,n = djy — Z Cipy J,n (12)
vET

Then, while we clearly have

Giy = D Sipbisrn and Yin= > d} diiiy, (13)

nelj+1 nElj4+1

we expect the dual scaling functions and wavelets to be solutions of

Gy =Y 8l bjr1y and Yjn= > d}, diiiy (14)

nelj+1 neElj+1

We shall thus build the lifting matrix in order to ensure that the solutions
of the above equations are well defined and are more regular than the initial
Dirac distributions. In the case of a uniform triangulation on the whole IR?,
the construction described in [5], which corresponds to a simple local lifting
matrix, ensures that the dual functions are in H® for s < § &~ 0.44. While
we shall use this correction process in the regions where the triangulation
is locally uniform, we shall need a particular treatment near the exceptional
edges and vertices, as well as near the boundary 0€2. Therefore, our first step
is to classify the nodes of the triangulation into different categories.

2.2 Classification of Nodes

From the initial triangulation we obtain a union of line segments after delet-
ing all common sides of two triangles of the initial triangulation such that
the quadrangle composed by these two triangles is a parallelogram. We call
the union of those line segments as the frame of the initial triangulation or
the frame for simplicity. Thus the boundary 02 is contained in the frame.
This initial step is shown on Figure 1.



0N

0Qp

oQp 0y

Figure 1. [Initial triangulation (left) and frame (right)

We classify the nodes of T} into three classes: exceptional nodes, frame nodes
and inner nodes. A node is called an ezceptional node if it lies on the inter-
section of different line segments of the frame or on the intersection of the
the Neumann boundary 0Q\0Q2p and the Dirichlet boundary 0€2p. Recall
that 0€Q2p is a union of closed line segments on OS2 with endpoints in 7, so
that all the exceptional nodes are in 7. A node is called a frame node if
it lies on the frame and if it is not an exceptional node. All other nodes are
called inner nodes. The construction of the lifting matrix that we propose
in the next subsection will use the above classification. We shall define this
construction at a minimal refinement level which ensures that the exceptional
nodes are “well separated” by the uniform mesh of frame and inner nodes.
We express this as follows: the triangulation 7; of the polygon Q is lifting
scheme separable if for any node v of the triangulation the following two
conditions hold

(1) At most one exceptional node or exceptional boundary node belongs
t0 4;(7).

(2) There are no two line segments of the frame which are parallel to each
other and have nonempty intersection with A;(~).

The following result can be easily checked.
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Proposition 2.1 For any initial triangulation Ty, all triangulations T; are
lifting scheme separable for j > 2.

2.3 Lifting Matrix

In this subsection we shall construct the matrix
Cj = (CQ,U)UEAJ',UEFJ‘

in the lifting scheme for j > 2 in such way that 7; is lifting scheme sepa-
rable. This will allow us to define the corrected space W; for j > 2. Note
that we can still define Wy and W; by the usual hierarchical basis com-
plement. For any v € A; which is not on the boundary 0f2, there exists
two triangles AA; and A, of the triangulation of scale j such that v lies
at the midpoint of the common side of A; and A, (see Figure 4.a). For
v € Aj N OS2, there exists only one triangle Ay of the triangulation of scale j
with v as the midpoint of the side of A; on the boundary (see Figure 4.b).

U3 U3

(%1 (%] ° v (%)

\ Boundary 0f2

Uy

Figure 4.a. Figure 4.b.

We denote by v;, i = 1,2, 3 the vertices of Ay and by vs the extra vertex of
Ao if v ¢ 09, as illustrated on Figure 4.a and 4.b. Then at least one of v;
is not on the boundary when 7; is lifting scheme separable. The correction
hto derive

process that we shall apply on the hierarchical basis function ¢},
1;,, will only involve these close neighbours of v on the coarse grid 7;: we
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shall set

cg’u =0,
when u # v;,i = 1,2, 3,4. It remains to define ¢j, , i = 1,2,3,4 when v ¢ 0%

and ¢ = 1,2,3 when v € 0€). Several cases will be considered depending on
the position of the nodes v; with respect to the exceptional vertices and the
frame. Hereafter we set

a(v,0) = Joo gl [, 65u(@)de)

for v € T'j41 and u € I';. We shall use the quantities a(v, v;) in order to define
the lifting matrix. Note that when v is sufficiently away from the frame, we
have a(v,v;) = 1/4.

2.3.1 Correction near the exceptional points

Here, we assume that v is such that one of the v; is an exceptional node. On
the other hand, under our assumption j > 2, there is at most one exceptional
node among the v;, « = 1, 4, We denote by v this node. By symmetry,
we can assume that 7 is either vy or vs.

Case 1. 7 is an active node, i.e. v ¢ 02p. In this case, we can use ¢;, to
correct 1/)?71,. If v = vy, we define

v Joalv,y), i=1
v =) 0, i=2,3.4.

If v = v3, we define

v _{ a(v,vg), 1 =3

v =)0, i=1,2,4.

Case 2. v is an passive node, i.e. v € dQp. In this case, we cannot use ¢;
to correct ¢, . If v = vy, we define

v ) oalv,v), i=2
e =)0, i=1,3,4.

If v = v3, we define

v { a(v,vg), 1=4

v =)0, i=1,2,3.
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2.3.2 Correction near the frame

Here, we assume that v is not treated by the previous construction and that
v is such that one of the v; is a frame node. Under our assumption j > 2,
there is at most two frame nodes among the v;, 2 =1,---,4.

Case 1 v; and vy are on the frame and are active nodes. In this case, we

define

" _{ %a(v,vi), i=1,2

Jovi 0, 1= 3,4.
Case 2 v; and w3 are on the frame and are active nodes. In this case, we
define

v Joalv,u), i=1

j’”i_{ 0, 1=2,3,4.
Case 3 v; and vz are on the frame and are passive nodes. In this case, we
define

. :{ a(v,v), =2

Jovi 0, 1=1,3,4.

Case 4 v3 is on the frame and is a passive node. In this case, we define

ga(v,vi), i=1,2
e =4 —10(v,v), =4
0, 1=3

Note that cases 2 and 3 apply by symmetry when (vy,vs) is replaced by
(v1,v4), (va,v3) Or (vg,vy4). Similarly vs could be replaced by v, in case 3.
2.3.3 Standard correction

For all other nodes v € Aj;, which are not treated by the two previous con-
structions, we define

v _ %a(v,vi), i=1,2,
—ia(v,vi), i=3,4,

which is exactly the correction corresponding to the construction in [5] for a

uniform mesh. This completes the construction of lifting matrix Cj,n > 0
for lifting scheme admissible triangulation. For the lifting matrix C;, we have
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Remark 2.2 Let the lifting matriz C; = (¢}, )vea; uer; be defined as above
and let

Ciu = Cju

a(v,u).
Then
Y &,=1, forall veA,

UEF]'

3 Smoothness of the dual refinable functions

In this section, we shall define new refinable functions and wavelets from the
previous lifting scheme and study their smoothness. Clearly, the new primal
wavelets ); y are defined from (13) since the nodal functions ¢,, have been
left unchanged. Also the new dual wavelets zﬁj,A are directly defined from
the sz according to (14). Thus our first task will be to study the existence
and smoothness of the new dual refinable functions &m such that the first
equation in (14) hold. Note that solutions of such refinement equations are
defined up to a multiplicative constant which is fixed by the biorthogonality
constraint (¢, -, <;~5j7,,> = 0,,- In the following analysis, we shall give the values
of the coefficients 5], in the dual refinement equations only when they are
necessary for proving our results. Recall that the practical implementation
of the new basis only requires the lifting coefficients which were given in §2.
As in the construction of the lifting matrix, our study will distinguish the
situation for the nodes v away from the frame, near (or on) the frame and
near (or on) the exceptional points.

3.1 Standard dual functions

Here we assume that v € T'; is sufficiently away from the frame so that A;(v)
does not intersect the frame. This also means that it takes at least two line
segments in the triangulation 7; to connect v with a point on the frame. We
denote by S; the set of such “standard nodes”. Note that the frame defines
a partition (€, )m=1,...»s of 2 into connected components. In each of these
connected components, the mesh Tj is uniform. We denote by S7" = 5; N,
the corresponding partition of S;. When v € ST, the computation of the
coefficients 5], of the refinement equation in (13) involves only the part of the
lifting matrix constructed in Case 4 of §2.3.2 and in the standard correction
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of 2.3.3. One can easily check that the resulting refinement equation only
involves at the next levels the functions ¢;1, for n € A;(y) Ny, for
which we also have n € 57} ;. Moreover the coefficients 5]7,77 only depend on
the relative position 7 — 7 on the mesh I';;;. More precisely, after some
computations we obtain

~ 7~ 3 1 ~
¢j,7 = _¢j+1,7 + = Z ¢]+1 n Z ¢]+1 /B Z ¢j+1,na
16 16 16«
n€T;41(y nET n€Tj+1(7)
- (15)
where we have set Tj () = I'j1 N (A;(7) \ &ja(7y)). This allows to look
for a solution of the form

Gjy = 27|det (An)|6(An (27(- — 7)), (16)

where A,, is a linear transformation that maps a triangle of 7oN€2,, (with one
vertex being set to be the origin) onto the reference triangle {(0,0), (0,1), (1,0)}.
The function ¢ is then the solution of the standard multivariate refinement
equation

b(x) = 10 2x+ quzx k—gZQSQx k——ZqﬁQaz k), (17)
with

K, = {(071)7 (170)7 (_170)7 (07 _1)7 (17 1)7( 71)}

Ky = {(0; 2)7 (27 0)7 (_27 0)7 (07 _2)7 (27 _2)7 ( 72)}

KS = {(171)7( 17_1)7(_172)7 _271)7(17_2)7(27_ )}

The smoothness of the compactly supported distributional solution to (17)
has been studied in [5] (using the spectral radius of an associated tranfer
operator), where it is shown that dg(x) is a compactly supported function in
H?® for s < 0.44. As a consequence, the functions gz;m are also in H? for
s < 0.44. The support 0f¢~) is the convex hull of K5, so that ¢~)m is supported
in the convex hull of T;_(v), i.e. in A_;(7). In particular, it is supported in
the uniform region

Q. if v € ST'. Moreover, when normalized according to [ qg(x)da: =1, ¢
is biorthogonal to the hat function ¢ associated with the reference mesh in
the sense that (¢(- — k), ¢(- — 1)) = 6, for any k and [ in 7ZZ*. Taking this
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normalization for ¢, and using that gz;m is supported in §2,,, we derive by a
change of variable that

<q~5j,% ¢j:77> = 5,777 and /éj,'}/ = 1, for ’7 € Sj,"}/ € Fj. (18)

3.2 Dual functions near the frame

Here, we assume that v € I'; is such A;(7) intersects the frame. However,
we assume that it is sufficiently away from the exceptional node in the sense
that Aj(7) does not contains an exceptional node, and that if ¥ is an excep-
tional node, then Aj(vy) and A;(¥) have no common edge. We denote by F
the set of such “frame or near frame nodes”. Note that for v € Fj, there is a
unique edge segment E of the frame such that A;(v) intersects E. Therefore,
similarly to S;, we have a partition F}; := UII,DZIF;’ of F; corresponding to the
edge segments E,, p=1,--+, P of the frame. In order to study the smooth-
ness of the refinable functions near the frame, we shall distinguish three cases.

Case 1. v € FJP is not on the frame, i.e. v ¢ E,, and E, is not a part
of the Dirichlet boundary 0€2p. In this case, the computation of the coef-
ficients 57, of the refinement equation in (13) involves only the part of the
lifting matrix constructed in Case 1 and 2 of §2.3.2 and in the standard cor-
rection of §2.3.3. One can easily check that the resulting refinement equation
only involves at the next levels functions szﬂ,n for which we have n € S;;
(and 7 in the same connected component €2, as 7). Therefore, we can di-
rectly derive from (13) and the result of §3.1 that ¢, has H®-smoothness for
s < 0.44, as the standard dual functions. Moreover the coefficients 517, only
depend on the relative position 7 — v on the mesh I';; ;. This allows to say
that the dual scaling functions have the general

Gjy = 2% det (Ann) |61 (An2’ (- — 7)), (19)

where A, is a linear transformation associated to the connected component
Q, as in §3.1, and ¢, is a finite linear combination of the standard dual
scaling functions ¢(2 - —k).

Case 2. v € Ff is on the frame (and thus £, is not a part of 0Qp). In
this case, the computation of the coefficients 5]7,77 of the refinement equation
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in (13) involves only the part of the lifting matrix constructed in Case 1 and
2 of §2.3.2. One can easily check that the resulting refinement equation only
involves at the next levels functions éjﬂ,n for which we have either n € F},,
or 1 € Sj;1. Moreover the coefficients §]7-7n only depend on the relative posi-
tion 7 — 7 on the mesh I'; ;. More precisely, after some computations, we

obtain an equation of the form

g 37 177 1 1 (7 it
Bj = 505410 T 5 (Bitrm + Bjrry)  —15(Dit10s + Digrm)
44
+ EWENj+1(7) Sj,nquﬂ:ﬂ’

(20)

where we have set {7v1,72} := E, N Tj;1(y) the two nearest neighbours of
v on the frame in I';;; and {v3,74} := E, N T;(y) the two next ones. The
set N, y1(7) represents the remaining coefficients for which ¢;.1, is known
to have smoothness H?® for s < 0.44 by the previous analysis of §3.1 and of
Case 1 above. Therefore, we are not much interested in the exact values of
the 5], for n € Njyi(7).

This allows to look for a solution of the form

05y = 27 |det(B,) d2,p(B,2' (- — 7)), (21)

where B, is a linear similarity transformation that maps a the line segment
E, (with one vertex being set to be the origin) onto the reference segment
{(0,0),(0,1)}. The functions ¢,, depend on the line segment E, but all
satisfy an equation of the type

Boal@) = §0p(20) + §(Bap(20 = (LO) + G20 +(LO))
a2 — (2,0)) + by 22+ (2,0))) + Gy (o),

where G,(z) is a compactly supported function which has H*-smoothness
for s < 0.44. Thus, we shall need to study the above non homogeneous
refinement equation in order to understand the smoothness of the functions
<;§27p. Such equations have been considered in various setting. For the purpose
of our present analysis, we shall need a specific result from [13]. For f €
L*(R"), we define the Fourier LP-smoothness exponent s,(f) by

sp = sp(f) :==sup{s € R (1 + [¢])*f(¢) € LP(R™)}. (23)

In particular, we have seen that the standard dual scaling functions satisfy
s2(¢) > 0.44. Note that since ¢ is also in L', we also obtain that s (¢) > 0.

17



A simple manipulation of Hélder inequalities shows that for the intermediate
values 2 < p < oo, we have

2 0.88
5p(9) 2 Zs2(0) = == (24)

Consider now the general nonhomogeneous multivariate refinement equation
in R¢
®(z) = D P2z —n)+ G(x), (25)
neZd
where G is a compactly supported function with some known smoothness
and ¢, a finite sequence. In the Fourier domain the equation has the form

O(&) = M(£/2)0(/2) + G(9), (26)

with M (§) := 2743, c,e ™ the usual symbol of the homogeneous refine-
ment equation. Iterating (26), we see that a natural candidate to be the
compactly supported solution of (25) is given by

. L

(&) =D G2 [ M27"¢). (27)

7>0 k=1

In our case of interest, d = 2 and the summation in (25) is carried over the
unidimensional set (n,0), —N < n < N. Therefore M () is a trigonometric
polynomial M (§) = $H (&) of the first variable of £ = (&,&), where H(w) :=
% ZnEZ C(n,0)€

~in@ is a one dimensional symbol. We now state and prove the
result of [13] concerning the the convergence of the series (27) in the Sobolev

spaces.

Proposition 3.1 Let 1 < r < oo, a > 0. Assume that G is a compactly
supported function with sep(G) > a+1—1/r and that there exists a constant
C independent of 7 such that

) < g

(27 [, 1) HE TPl g
w|<2T

Then for any < o we have

/]R2 27 ﬁ HE ) PIGR76)12(1 + |€)) P de < 0220,
k=1
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Therefore, the series in (27) converges in H? and it thus defines a compactly
supported solution ® to the nonhomogeneous refinement equation

O(z) = Z cn,0)®(2x — (n,0)) + G(x)

nex
such that so(P) > a.

Proof Setting A; = [ | TTh—, H(27&)P|G(277€)2(1 + |€])*dE, we want
to prove that A; < 22/0+8-¢) We define

G (€)= Y |G(E+2km)[2(1 + 27|€ + 2kx])

kex?

Then

Aj = Jie <o | Ty H27H6) PG (277 €)de
< 02201/ a>(f|&‘ <o [Ga (27 dE)
= 0220~ (f\§1|,|fz\57r Go (O de)”
= 02%-a (f\§1|,|fz\S7r |Gﬁ’]( )W dg)l/’
= 2707 ([ e < (Treze | G(E + 2km)[P(1L+ 27|€ + 2k ) )dg) /"
< C2 A )(f\§1|,|§2|§7r(2k6%2 |G(§ + 2k7r)|2(1 + |§ + 2]€7T|)25)Td§)1/7"

where we have used Holder inequality and the assumption on the symbol H.
Remarking that for any sequence (e,),cz2, 7 > 1 and 6 > 0, we have (by
Hoélder inequality)

(3 lea)” < C 32 leal™ (1 + [20m )07,

ne#? ne#?

with C'= C(r,d), we thus obtain

Aj SO (i) ey Dhem |G(€ + 2km) |7 (1 + [€ + 2k )Zro+2r=D+ogg)Lr
= C2IWHI)(foa [G(E) P (1 + [€])>rP 2 Do),

Taking 0 < 0 < r(« — ), the last integral is finite according to the assump-
tions which concludes the proof. O

In the setting of (22), the symbol H (§) coming from the homogeneous part
of the equation turns out to be well known: it correspond to the univariate
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refinable function @s 5 dual to the B-spline py(z) = (1 —|z]) 4, as constructed
in [3]. In particular, it is known that we have

/w<2jn [H(w) - H(2 w)['dw < C(p),

for some constant C(p) independent of j for all p > 1 (this reflects the fact
that the function @, ,(w) = [Ty H(2 *w) is in L” for all p > 1). This allows
to apply Proposition 3.1 with an o and some 7 such that s,,(¢) > a+1—1/r
and 200 < 1 —1/r. As we already noted s, (¢) > s2(¢)/r, so it suffices that
so(¢)/r>a+1—1/rand 20 < 1 — 1/r. Imposing 2cc = 1 — 1/r, we obtain

the maximal value of a by solving s5(¢)(1 — 2a)) = 3. We thus obtain that

() > 20 o114

-3 + 282((]5)

Case 3. v € Ff and FE), is a part of the Dirichlet boundary 0€2p. In this
case, the computation of the coefficients 537-7,7 of the refinement equation in
(13) involves only the part of the lifting matrix constructed in Case 3 and
4 of §2.3.2. One can easily check that the resulting refinement equation
only involves at the next level functions ¢~)j+1,7] for which either n € F]p 41 Or
n € Sji1. Moreover the coefficients 5177 only depend on the relative position
n — on the mesh T'; ;. More precisely, after some computations, we obtain
an equation of the form

N 1 - N .
Pjy = Z(¢j+1,71 + Gir1n) + Y, SlPirim (28)
nEN;+1(7)

where we have set {71,7} := F},; NTj,1(7) the two nearest neighbours of y
near the frame in I'; ;. The set N,;;(y) represents the remaining coefficients
for which éjJrl,n is known to have smoothness H? for s < 0.44 by the previous
analysis of §3.1 and of Case 1 above. Here again, we are not much interested
in the exact values of the §7, for n € N;yi(y). This allows to look for a

Jm
solution of the form

01y = 27 |det(B,) 03,5(Bp2' (- = 7)), (29)

where B, is a linear similarity transformation that maps the line segment
E, (with one vertex being set to be the origin) onto the reference segment
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{(0,0),(1,0)}. The functions ¢s, depend on the line segment E, but all
satisfy an equation of the type

02,p(7) = $,p(22) + Po,p(22 — (L1, 0)) + Gy(), (30)

where G,(x) is a compactly supported function which belongs to H® for
s < 0.44. Here the symbol H (&) coming from the homogeneous part of the
equation is even more simple than in the previous case since it correspond
©o = Xo,]- In particular, it is known that we have

/|| [H(w) - H(2 w)Pdw < C(p),

for some constant C'(p) independent of j for all p > 1 (this reflects the fact
that (¢, which behaves like a cardinal sine, is in L? for all p > 1). We thus
reach the same conclusion as in the previous case, i.e.

S2(ap) > %i)(qs) ~ 0.114.

3.3 Dual functions near the exceptional points

It remains to treat the case of the nodes v which are close to the exceptional
nodes in the sense that they are not in S; U Fj. For such a v € I'; \ (S; U F})
there exists a unique exceptional node ¥ such that either ¥ € A;(y) or A;(7)
and A;(¥) have a common edge. In order to study the smoothness of @-,7,
we shall again distinguish two cases.

Case 1. 7 is an active node (i.e. ¥ € I';) and v # 7. In this case, the
computation of the coefficients 57, of the refinement equation in (13) in-
volves only the part of the lifting matrix constructed in Case 1 of §2.3.1,
Case 1 and Case 2 of §2.3.2 and in the standard correction of §2.3.3. One
can easily check that the resulting refinement equation only involves at the
next levels functions gz~$j+1,,7 for which we have n € S;41 U Fj;1. Therefore,
we can directly derive from (13) and the result of §3.1 and §3.2 that &7 has
H?-smoothness for s < 0.114 as the previously constructed dual functions.
Because we are near an exceptional point there is no translation invariant
formula for these scaling functions, however they are invariant with respect
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to a change of scale: setting ¥ := 0 as the origin, they will have the general
form

éjﬁ = 22]&70(2]")7 (31)
where vy = 2/ and ¢~)70 is the corresponding dual scaling function at scale
j=0.

Case 2. v = 7 is an active node or ¥ is a passive node (i.e. 7 ¢ I';).
In this case, if we set 4 := 0 as the origin, one can easily check that the
refinement equation in (13) has the form

N 1- .
Gjy = Z¢j+1,7/2 + Y 5P (32)
NEN;j+1(7)

where the set N;1(7) corresponds to functions qgjﬂm which have been treated
in the previous cases, and therefore have H*-smoothness for s < 0.114. The
fact that 5]7’7/2 = 1/4 is immediate in the case where ¥ is a passive node, in
view of the construction in Case 2 of §2.3.1. In the case where v = 7 is an
active node, the construction in Case 1 of §2.3.1 shows that

§Z;y =1- % Z a(y,n). (33)

Therefore, we can look for a solution of the form
éjﬁ = 22j$70(2j')7 (34)

where 79 = 2/ and ¢~)70 satisfies a nonhomogeneous refinement equation of
the form

0o (1) = o (22) + Gy (), (35)
where G, (x) is a compactly supported function which belongs to H*® for

s < 0.114. Here we do not need a sophisticated analysis, since it is immediate
to check that the series

Oy (7) = 3 Gog (), (36)

j20

converges in H?® for s < 0.114 and thus defines a compactly supported solu-
tion to (35) with the same smoothness.
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In summary, all dual scaling functions have some positive Sobolev smooth-
ness and moreover can be derived by a change of scale from a finite number
of compactly supported functions corresponding to each case. This allows to
state the following result.

Theorem 3.2 For all j > 0 and v € T';, the function gz;m 1s i H® for
s < 0.114. Moreover, it is locally suppported, like the function ¢;., in a
ball {|z — | < C277} with C independent of j and . We also have for
0<s5<3/2and0<35<0.114 the estimates

@i llme < C27CD and ||y, || gs < C27EHY, (37)

with C independent of j and .

4 Biorthogonality and polynomial exactness

In this section, we shall prove that the new functions (¢j,7,$j,7,1/)j,>\,1;j,x)
satisfy the same biorthogonality relations as those stated in §2.1 for the
hierarchical basis. We shall also prove that the dual multiresolution analysis
f/j reproduces constants. Together with the smoothness properties of the
scaling functions, such properties imply that the new wavelet basis allows
to characterize Sobolev spaces H® for —0.114 < s < 3/2 (see e.g. [6] or [2]
for an introduction to the general mechanism of characterizing smoothness
through wavelet decompositions).

4.1 Biorthogonality

We already have seen with (18) in §3.1 that for v € I'; and ¥ € S;, we have
(D ¢~)m> = §,5. In order to show that this property holds for all ¥ € T';,
we shall progress as for the smoothness analysis of the previous section. At
first, we remark that for [ > 0 and v,% € I';, the functions ¢;, and QEM are
linear combination of ¢;4,,,n € I';4; and q~5j+l,n, n € I'j 4, according to

lv 7 7 — ~l7~~
Din = Y Sindisiy and dj5 = > 57 dii. (38)

nelj nelj
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The coefficients s and s are obtained by iteration of the refinement equa-
tions, which amounts in the subdivision algorithms

l+1,7 Ly l+1,7
Sim Z SJ+lnSJu and s Z J+l,n JM’ (39)
MEF]+I I’LGF]+l

with the inital fundamental data 527’,7 = 0y, and 3, ’7 = 05, Clearly, we have

at the first step s;7 = s),,, and &) = &I, . Form (10), we know the
discrete biorthogonality relation
D SteinSiein = 0r (40)
nelj1

It is easy to check (by induction on [ using formula (39) that this generalize

to
b l’
Z 5377 377 = 0y (41)

"EF]+I

4.1.1 Biorthogonality near the frame

Assuming that 7 € F} for some p, we consider the three cases that were
discussed in §3.2.

Case 1. 7 € F]@" is not on the frame, i.e. 5 ¢ E,, and E, is not a part
of the Dirichlet boundary 0€2p. In this case, we can write

Gis= D SliiyPitim (42)

neS;jt1

since 5;7-“7,7 is zero when 1 ¢ S;;;. Using the refinement equation for the
primal function, we thus obtain

it _ SO t
<¢)j,’77 d)]ﬁ> - EWEF]‘HJ?GS]‘H ‘S:j+1:778j+1,77<¢j+1’”’ ¢j+1’ﬁ>
_ Y 37 _
- ETIESJ'-H Si+1nSit1n = 6%“?’

where we have used the known biorthogonality <¢j+1,m¢~5j+1,ﬁ> = 0y, for
7 € Sj41 and the discrete biorthogonality.
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Case 2. 7 € F]@" is on the frame. In this case, according to the remarks
in §3.2, we can split the generalized refinement equation (38) according to

¢jﬁ: Z ¢J+l,n+ Z ]Tld)]‘i‘l:n’ (43)
e}, ENj+

where E7,, = [';;; N E), are the mesh point on the frame and N;; is a subset
of S UF},\ E},;. We now write

7 I, l,
<¢)jm¢m> = ZneFHl,ﬁeFHl 33,77 377<¢J+l,n7¢3+lm>

Ly b
= ZWEF +zﬂ7€N w1 Sim y,n(d)]-i-lm’ ¢]+l,77> + ZWEF i+1,NEE? H Sim y,n(d)]-l-lm’ ¢]+l,77>

7~l7 Iy
- Zne -+ 3,777 3,777 + ZneF]H,neE 183’,77 ]77<¢)]+l7777¢)]+l777>

Ly ~l,7
- ‘577 + ZneFJH,neE il 5]77 ],n(<¢3+l,m ¢J+lﬂ7> 577, tn)a

where we have used the known biorthogonality (@; 1., ®ji15) = Ops When
) € Nj4; (from the standard case and the previous Case 1), together with the
generalized discrete biorthogonality (41). In order to prove that (¢;,, <;~5M> =
95,5, we shall simply show that the second term in the last expression tends to
zero as [ goes to +00. For this we first note that the coefficients s; ’7 = 0j,(n)
are uniformly bounded by 1. In view of (20), the coefficients sén, ne EY,,
are obtained by iteration of the homogeneous part of the refinement equation,

so that standard arguments yield

SR < (27r)—12—3l/ |H H(27") 2dw,

. 20
P
ne E]. ! k=1

where H(w) is the symbol associated to tht homogeneous part in (22). We

have already remarked that [~ 2;% ITT4_, H(27%)|?dw is uniformly bounded
independently of [ so that, remarking that the above sum has O(2!) non-zero
terms and using Schwarz inequality, we obtain

3 ~l’7 < 27!

el P
ek

From the local support properties and the L2-bounds of the primal and dual
refinable functions expressed in Theorem 3.2, there exists a uniform constant
C such that

> Ujstm Sja) < C,

nelj
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independently of j, [ and 7. Therefore, we conclude that

Ly <17 b -
>SS (B G — Ona)| < C27,

77€Fj +1 7776E§J+l

and thus tends to 0 as [ goes to +oo.

Case 3. 7 € F]@" and £, is a part of the Dirichlet boundary 0€2p. This
case is treated exactly in the same way as the previous one, since it is de-
scribed by a similar non-homogeneous refinement equation.

4.1.2 Biorthogonality near the exceptional points

Assuming that ¥ is not in S; U F}, we again consider the two cases that
were treated in §3.3, denoting by 7* the exceptional node such that either
v € Aj(§) or Aj(§) and Aj(7*) have a common edge.

Case 1. ~* is an active node (i.e. 7* € I';) and ¥ # ~*. In this case
we can write

¢jﬁ = Z §}+1,n¢j+l,na (44)

n€Sj+1UFj 41

since §;’+1,n is zero when n ¢ S;41 U Fj41. Using the refinement equation for
the primal function, we thus obtain

- B R -
<¢)j”7’ d)j,’~7> - ZTlEFj+1,ﬁ€5j+1UFj+1 ‘5:j+1,nsj+1,ﬁ<¢j+1,77’ ¢j+1,ﬁ>
_ v A
= 2ones;1UF 41 Si+1mditin = Ov
where we have used the known biorthogonality (¢; 1., ¢j11) = 0,5 for

n € Sjy1 U Fj4q and the discrete biorthogonality.

Case 2. 4 = 7" is an active node or ¥* is a passive node (i.e. v* ¢ I';).
In this case, if we set v* := 0 as the origin, the particular form (32) of the
refinement equation show that we can split (38) into

Gjs=4"bj a5+ Y. bk (45)
nEN; +1()

where the set N;;(¥) corresponds to functions éjJrl,n which have been treated
in the various previous cases and are therefore known to be biorthogonal to
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the ¢j11, n € I'j4. We now write

<¢J’m é]’,ﬂﬂ - ZneF]H,neF]H 3;’,77 %(@Hma ¢J+l,n>
- ZneF]H,neN +z 5;’7; ;,n<¢1+l,na ¢]+l:77> +47 ZneF]H Jn<¢3+l,m ¢J+l2 Iy >
- Zne i+ én J77+4 EneFHz ]77<¢J+la777¢J+l2 1y >
- 5%7 +47! ZneF il g,n(<¢3+l,m¢y+l2 ’7> 57,2 ’7)

where we have used the known biorthogonality (¢j+ly,,,q3j+ly,~,> = 0,,; when
7 € N4, together with the generalized discrete biorthogonality (41). Here
it is immediate that the second term in this last expression is bounded by

_ I ~ _
|4 : Z Sj,’;(<¢j+l,ﬂ7¢j+l,2_l“?> - ‘5n,2—li)| <C4 l:

neEr;

ant thus tends to 0 as [ goes to +0oo. We thus have proved (¢;, ¢;js) = 6,5
for all 7,7 € I';. As in the usual construction of biorthogonal wavelet basis,
we can then derive more general biorthogonality relation for the functions
{bjs Vin, &jm 1/~)ij}, by combining the definition of these functions in terms
of the ¢;i1, and Q;j+1’77, n € I'j41 and using the discrete biorthogonality
relations in (10). We summarize these statements below.

Theorem 4.1 The functions (¢;, Vi, Gjns ¥j0) are biorthogonal, in the
sense that

<¢Ma¢y,7> = 05, 7,7 €Ly,
<,¢)],/\7 ¢],fy> = 0, A€ Aj,jf € Fj,
(Gion 5 = 0, yETH A€ A,
Wi i) = Gs  AAEN,

[ (Y g)\> = 0;;0,5 AMAEN; 5,7>0.

Remark There are some flexibility in the construction of the lifting matrix,
resulting in more general dual functions with the same type of analysis. In
particular, we may have used more general corrections near the frame, by
taking
(1—=1t)a(v,vy), i=1
Ci,, =4 ta(v,v3), i=3
0, otherwise
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for Case 2 in Section 2.3.2 and

(]' - S)G(Ua UZ)) =2
Ci,, =19 sa(v,vs), i=4
0, otherwise,

new correction for Case 3 in Section 2.3.2, where ¢ and s are parameters that
only depend on the frame where v; and w3 lies. Obviously the correction
near the frame with the parameters £ = 0 and s = 0 are the one we have
discussed. With this more general lifting matrix, we may still discuss the
smoothness and biorthogonality of dual refinable functions gz;m by similar
procedures, with the equations (20) and (28) replaced by

o 3492t 1 - : 144t - : o
Djy = T¢j+1,v+§(¢j+1,vl+¢j+1,72)—T6(¢j+1,vg+¢j+1m)+ Y i
nEN;+1(7)
and
- 1—s5,- - 5 ~ ~ 7
Gjy = T(d)ﬁlm + Gjt1) + 1(¢j+1,73 + Giri) T D Saitin

NENj+1(7)

where {y3, 74} = F7yp 0 A(7) N (Aji\Tj1(y)). Similarly the equations
(22) and (30) should be replaced by

Boplr) = (5 +20day(20) + 5 (a2 — (1,0)) 4 boyp(22 + (1,0)))

(G 1(Bapl22 — (2,0)) a2+ (2,0))) + Gy (a)

and

Gaplr) = (1= 5)d2p(20) + (1= 8)Bnp 20 — (1,0))
+502,p (22 + (1,0)) + 562,22 — (2,0)) + G, ().

Then, one can check that for a choice of parameters such that

2v2 +3 442 —5 V2 -1 V241
_EVE T e 2V T and —
g <i<—pp— an g <5<
the same estimates apply as in the analysis for s = ¢ = 0, so that the dual

functions have smoothness s > 0.114.
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4.2 Polynomial exactness

We conclude by some properties that are easily derived from our construc-
tion, in particular the fact that the dual scaling functions reproduce con-

stants. Let V;, W, V}-,NWJ- be the spaces spanned by {¢;.,7 € I';}, {¢j\, A €

A Ay € Tih {thja, A € A;} respectively. Theorem 4.1 allows to say
that the operators defined by

P = Y (0,005,

’YEF]‘

Qv = Z(Uﬂ/;j,,\Wj,A,

/\GA]‘

Pjv = Z <Ua¢j,’7>¢~)j,’7’

’YEF]‘

Qiv = D (v, )i

)\GFJ'

are projectors onto each of these spaces with the usual relations f’] = P,

Qj = Q; and . - .
Pii1=PF;+Qj, and P =P+ Q;.
From the local support properties and the L?-bounds of the primal and dual

refinable functions expressed in Theorem 3.2, these projectors are uniformly
stable in L?(€2) in the sense that

1P+ [1B5]] + Q51 + 119511 < €,

with C independent of j.
From the density of the spaces V; in L*(2) and the uniform L*-stability
of P;, we obtain that

Jim [1f = P fllz2) =0,

for all f € L*(Q2) (we simply remark that if P is a projector onto some
subspace V, we always have ||f — Pf|| < (1 + ||P||)infyev ||f — g¢]|). The
same holds for P; by the following argument: if a function f € L*() is such
that (f,$;,) =0 for all j > 0 and v € T}, then Pjf = 0 for all j > 0 so that
f =0 by letting j go to +00. Therefore the spaces V] are dense in L?(Q) so
that

Jim [1f = fllz2) =0,
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for all f € L?*(©2). From the construction of the lifting matrix in §2, we
remark that [, = 0 for all A € A;. Therefore ;1 = 0 for all j > 0, so
that . . .

Pl=Pil=---= ll}iinooﬂl =1.
Therefore ﬁj reproduces constant functions. Note that in contrast, P; does
not fullfill this property in the neighborhood of 92p, due to the homogeneous
condition imposed on the functions of V. We still have P;j1 = 1 at some
distance of order 277 from dQp, which also means that [ ¢;, = 1 and [, =
0 for all vy € I'; and A € A; sufficiently away from 0Qp.

5 Annex

In this annex, we display the graphs of various dual scaling functions. We
start by the standard function described in §3.1. which can also be found in
[5].

We next display the special functions near the frame described in §3.2.
Since the dual functions of case 1 are simple combinations of standard ones,
we only present two functions of case 2, respectively corresponding to v on
the inner frame and on the Neumann boundary, and one function of case
3, corresponding to v on the Dirichlet boundary. It is interesting to note
that the aspect of the trace of the Neumann and Dirichlet boundary dual
functions are very similar to the 1D functions ¢, and Xjo 1], which exactly
correspond to the homogeneous part of their refinement equation.

We end by the graphs of the special functions near the exceptional points.
Since the dual functions of case 1 are simple combinations of standard or
frame ones, we only present one function of case 2, corresponding to an
exceptional inner node 7.
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Standadr dual function (3.1)
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-15.]

Inner frame function (case 2 of 3.2)

Neumann function case 2 of 3.2)
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Dirichlet function ( case 3 of 3.2)

Exceptional inner node function (case 2 of 3.3
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