THE MATRIX-VALUED RIESZ LEMMA AND LOCAL
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ABSTRACT. We use the matrix-valued Fejér-Riesz lemma, for Lau-
rent polynomials to characterize when a univariate shift-invariant
space has a local orthonormal shift-invariant basis, and we apply
the above characterization to study local dual frame generators,
local orthonormal bases of wavelet spaces, and MRA-based affine
frames. Also we provide a proof of the matrix-valued Fejér-Riesz

lemma for Laurent polynomials.

1. INTRODUCTION

Let ¢y denote the set of all real-valued finitely supported sequences
u = (ulk])gkez on Z. For u € f, the symbol U(z) is the Laurent
polynomial defined by Y, , u[k]z*. If u € (N*N" then the symbol
U(z) is similarly defined. We let £ denote the set of all such Laurent
polynomials

L= {Zu[k]zk‘ (ulk])kez € eo} .
keZ

Let T denote the unit circle {z € C : |z| = 1}. If P € L is
such that P(z) > 0 for z € T then there is some @ € L such that
P(z) = Q(2)Q(1/z), or equivalently, such that P(z) = |Q(z)|* forz € T

(since @ is a Laurent polynomial with real coefficients it follows that
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Q(z) = Q(1/2) for all z # 0.) This factorization is known as the (real-
coefficient) Fejér-Riesz Lemma ([7, 30]) and many different approaches
to that factorization have been developed (see [15, 28] and references
therein). The Fejér-Riesz lemma plays an important role in classical
function theory (see [27] and references therein), the prediction problem
([18, 26]), and the construction of compactly supported orthonormal
wavelets with arbitrary regularity ([6, 7]).

Here we are interested in a generalization of the Fejér-Riesz lemma to
matrix-valued Laurent polynomials and its applications to the study of
wavelets and framelets. Recall that a square matrix A := (a;j)1<ij<n €

CN*N is said to be positive semi-definite if

' Ax = Z Tiagr; >0 Ya=(z,...,zy)" € CV\{0},
1<ij<N
and A is said to be positive definite if 77 Az > 0 for all z € CV\{0}.
A matrix A(z) € LV*V is said to be positive (semi-)definite on
T if A(z) is positive (semi-)definite for any z € T. For a matrix
B(z) € LY*N it is obvious that the matrix B(1/2)T B(z) is positive
semi-definite on T since WT = B(1/z)T for 2 € T. The converse

problem is the subject of the well-known matrix-valued Fejér-Riesz

lemma.

Theorem 1.1. Let N > 1. Suppose that A(z) € LN*N is positive
semi-definite on T. Then there exists a B(z) € LN*N such that

(1.1) A(z) = B(1/2)TB(2).

If A(z) is positive definite on T then Theorem 1.1 may be found in
[13, 18, 26, 31]. If the matrix coefficients of B are allowed to have com-
plex components then a factorization of the form (1.1) (with B(1/2)T
replaced by B, (z) =, mTz’”) is known in great generality (see [27,
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Theorem 6.6]). In applications to wavelets and shift-invariant spaces,
however, one requires real coefficients. We thank L. Baratchart and C.
A. Micchelli for pointing out to us that semidefinite (real-coefficient)
case of Theorem 1.1 follows from results for the “continuous time spec-
tral factorization” given in [12, 32, 33]. In particular, the Fejér-Riesz
lemma in Theorem 1.1 and the “continuous time spectral factorization”
given in [32] are equivalent to each other ([24, 33]). We also thank one
of the anonymous referee for providing references [2, 5, 19, 20, 25] from
the EE literature in which Theorem 1.1 appears under the name “dis-
crete time spectral factorization”.

The first topic of this paper concerns the characterization of shift
invariant spaces with local orthonormal bases or with local dual frame
generators in shift-invariant spaces. The matrix-valued Fejér-Riesz
lemma plays essential roles in those characterizations. Another appli-
cation of the matrix-valued Fejér-Riesz lemma is on the construction
of tight frames from a given multiresolution with dilation M > 2 ([4]).

The second topic of this paper is to provide a constructive proof for
the matrix-valued Fejér-Riesz lemma. This proof was developed before
the authors became aware of prior works in the EE literature referenced
above. We include the proof in order to make the paper self-contained
and for the convenience of the readers. This proof uses only the scalar-
valued Fejér-Riesz factorization and some linear algebra techniques. It
proceeds in two steps: (1) first obtain a factorization of the form (1.1)
for a matrix B, (z) with rational polynomial entries, and (2) find a
rational polynomial matrix E(z) such that (a) E(1/2)TE(z) = I and
(b) B(z) = E(2)Brat(2) is Laurent polynomial.

The paper is organized as follows. In Section 2, we apply Theorem

1.1 to characterize when a shift-invariant space has a local generator
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with orthonormal shifts (this is part of a project focusing on refinable
shift-invariant spaces cf., [16], [17]). In Section 3, we apply Theorem 2.1
to study the local dual frame generators of a shift-invariant space, local
orthonormal wavelet bases and MRA-based affine frames. In Section 4,

we give a constructive proof of Theorem 1.1.

2. LOCAL ORTHONORMAL BASES

In this section, we study the problem of when a local finitely gener-
ated shift-invariant space has a local generator with orthonormal shifts.
The main theorem of this section is Theorem 2.1.

We call a finite length (row) vector ® = (¢é1,...,¢y) of (compactly
supported) functions ¢; € L?(R) a (local) generator. If ® is a lo-

£N><1

cal generator and ¢ = (¢;[k])gez,iz1,.. N € , the semi-discrete

convolution ® %' ¢ is defined by

Ol ci=Y B(-—k)elk] =D Y ¢i(- — k)eilk].

kEZ keZ i=1

If ¢ € (V%N the semi-discrete convolution is similarly defined. The
shift invariant space generated by @ is the space consisting of arbitrary
linear combinations of the integer translates of the components of ®,

ie.,
S(®) :={D+'c|cec N},

A space V. C L2.(R) is called a local finitely generated shift-
invariant (local FSI) space if V = S(®) for some local generator
.

For generators ® = (¢, ... ,¢y) C LAR)" and ¥ = (¢, ..., ¢¥n/) C
L*(R) N we let (@, ¥) denote the N'x N' matrix ((¢n, ¥n')) 1 <penicnr<ns

where (f, g) denotes the standard inner product of f and g in L*(R).
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If the components of ® and ¥ are compactly supported, we define the

Gram sequence gg .y € £V by
gowlk] = (@, (- + k), k €2,
and the Gram symbol Gg g € LYV by
Gow(2) = goulklsh =D (@, (- + k).

keZ keZ

One may verify by direct calculation that
(2.1) Gowuuen(2) = U(1/2) Gy 4(2)V(2)

whenever u € £)"" and v € Zévl’y.

If ® is a local generator such that the only ¢ € ¢¥*! such that
® «' ¢ =01is ¢ = 0, then we say that ® has linearly independent
shifts. If the collection {¢;(- — j) | 1 <i < N, j € Z} of integer shifts
of the components of ® forms an orthonormal system, then we say ®
has orthonormal shifts. It is well known that any local generator
with orthonormal shifts has linearly independent shifts. Let Gg(z) :=
Go,0(2). The Gram symbol G(z) characterizes when the integer shifts
of ® form an orthonormal basis, precisely, G¢(z) = I if and only ® has

orthonormal shifts.

The following theorem, whose proof is postponed to the end of this

section, characterizes when an FSI space has a local orthonormal basis.

Theorem 2.1. Suppose ® = (¢1,...,¢n) consists of compactly sup-
ported functions in L*(R), i.e., ® is a local generator, and further sup-
pose ® has linearly independent shifts. Then S(®) = S(¥) for some

local generator W having orthonormal shifts if and only if

(2.2) det Go(2) = ¢, z € C' :=C\{0}
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for some nonzero constant c.

Remark 2.2. In [10], Donovan et. al. characterized shift invariant
spaces V' such that V' = S(®) for some generator ® having orthonor-
mal shifts, satisfying a certain local linear independence condition, and
having support in [-1,1]. Theorem 2.1 is therefore a generalization of

the characterization given in [10].

Remark 2.3. T. N. T. Goodman has used essentially the same con-
dition as (2.2) in his construction of a family of piecewise polynomial

refinable generators with orthogonal shifts [14].

2.1. Examples. The following are two examples to use the Gram sym-
bol to construct a local generator with orthonormal shifts. The first

example was first constructed in [9].

Example 1. Let ¢¢(x) := (1—|z|)* and ¢o(z) := (z(1—2))T(2x -1+
a), where a is a constant to be determined and f* denotes the positive
part of f. Since ¢1, ¢1(- — 1), and ¢ are linearly independent on [0, 1],
it follows that ® = (¢y, ¢2) has linearly independent shifts for any a.
We then find

G (2) ((66 + 210a%) + (27 — 35a?)(z + z71))

~ 25200

(we used the computer algebra system Mathematica to assist with the
calculations) showing that S(®) has some generator with orthonormal
shifts if and only if @ = 4,/27/35. Factoring G(z) we obtain an
orthonormal generator (here we take a = —+/27/35) shown in Figure 1.

Let M be an integer larger than or equal to 2, and suppose & =
(¢1,...,¢n) is a local generator. Let Dy, S(®) denote the M-dilation
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FIGURE 1. The orthonormal generator ® = (¢, ¢2) con-
sisting of two piecewise quadratic functions in C*(R) from
Example 1. One component has support [-1,1] and the other
has support [0,1].

of S(®), i.e.,

(2:3) DyS(®) ={f(M-) | feS5(®)}.
If there exists some u € )" such that

(2.4) O(-/M)=d+"u

then we say that ® is M-refinable, or refinable for short ([29]). Next,
we use the idea of intertwining multiresolution analysis from [10]
and the Gram symbol to construct a refinable (dilation 3) piecewise

quadratic, continuously differentiable generator.

Example 2. Let ¢; be the C! piecewise quadratic B-spline on [0,3]:

;

z?/2 if z € [0,1]
—(r—3/9)2 if

b (@) = 3/4—(x—3/2)* ifzell,?2]

(v — 3)? if x € [2,3]

0 otherwise.

One may easily verify that V' = S(¢;) is refinable for any integer dila-
tion M, that is, V' C Dy/V. Suppose ¢ € Dy/V and let @ = (¢1, o).
The observation in [10] is that S(®) is refinable since V' C S(®) C
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Dy V' C Dy S(®) (the last inclusion follows by applying Dy, to the

first inclusion). In this example, we choose M = 3 and

¢ = $1(3-) +c101(3 - —1) + 21 (3 - —2) + c31(3 - —3)

so that the support ¢, is in [0,2]. Then (again with the aid of Mathe-
matica) we find

1

det Ga(2) = 75107600

((z? +2%) +6B(z7% +2%) + 37(z7" + 2) + 40)

where

a=—29¢> — 6462 c3 + ¢y (1968 — 29 ¢ + 93 ¢3)

+ ¢ (93 =599 ¢y + 1968 c3)

B =—1077 4 692 ¢,% + ¢5 (7089 + 692 c5) + 30498 ¢4

— 73Tl eyez — 1077 e3® + ¢y (—7371 — 3379 ¢ + 7089 ¢c3)

v = 60996 + 46931 c,* + 46931 o + 6 c5 (22147 + 10166 c3)

— 3¢y (22492 4 19857 ¢3) — ¢4 (59571 + 89431 ¢5 + 67476 ¢5)

and

§ = 117082 ¢;* + 117082 o> — 3¢5 (36859 + 26039 c3)
— ¢ (78117 + 44957 ¢y + 110577 c3)

+9 (11253 4¢3 (10166 + 11253 ¢3)) .

Setting «, 3, v equal to zero and solving numerically we find 4 sets of
solutions for ¢y, ¢, and ¢3. In Figure 2 we show the resulting orthonor-
mal generator for the numerical solution ¢; = 3.247727, ¢o = 0.991937
and c3 = 0.456933.
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FIGURE 2. A refinable (dilation 3) orthonormal generator

® = (¢1, ¢2) consisting of two piecewise quadratic functions

in C1(R) from Example 1.

2.2. Proof of Theorem 2.1. To our aim, we need a result for local

generators of finitely generated shift-invariant spaces (see for instance

21, 22])

Lemma 2.4. Suppose ® = (¢1,...,¢n) is a local generator with lin-
early independent shifts. Then
(a) Gg(2) is positive definite on T; and
(b) if U = (¢1,...,9%n) is a local generator having linearly indepen-
dent shifts such that S(®) = S(¥) then N = N’ and there exists
some matriz-valued sequence u € EéVXN, such that ® =V ' u and

such that det U(z) is a nonzero monomial.

Now we reach the stage to start the proof of Theorem 2.1.

Proof of Theorem 2.1. We first prove the necessity of the condition (2.2).
Suppose ¥ is a local generator with orthonormal shifts such that S(®) =
S(¥). Then V¥ has linearly independent shifts and by Lemma 2.4, there
is some u € )N such that ® = ¥ ' u and det U(z) = ¢z’ for some

c € R\{0} and j € Z. By (2.1), we have
(2.5)  Go(2) = Guawew = U(1/2)"Gu(2)U(2) = U(1/2)"U(2).
Taking determinants of both sides of Equation 2.5 gives

det Gg(2) = det U(1/2)" det U(z) = (cz™7)(cz’) = ¢ # 0.
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This proves the necessity.

Conversely, suppose (2.2) holds. Since ® has linearly independent
shifts, we have that G is positive definite on T by Lemma 2.4. By
Theorem 1.1, Gg(2) = B(1/2)" B(z) for some B(z) € LN*N. Therefore
det Go(z) = det B(1/z) det B(z) is a nonzero constant which implies
that det B(z) is a nonzero monomial. Using the cofactor formula for
the inverse of B(z), we have B(z)™' € LM*N. In this case we let
b~ denote the sequence in £y *" whose symbol is B(z)™!. Let ¥ =
® «' b='. Clearly, ¥ consists of compactly supported functions in S(®)
and, since ® = ¥ «’ b, we have S(V) = S(P). By direct computation,
Gy(2) = B(1/2) TGs(2)B(2)"! = I, showing that ¥ has orthonormal
shifts. 0

3. LOCAL DUAL FRAME GENERATORS

In this section, we apply Theorem 2.1 to study the local dual frame
generators for the finitely generated shift-invariant spaces, the local
orthonormal basis of wavelet spaces, and MRA-based affine frames.

The main results of this section are Theorems 3.1, 3.3 and 3.5.

3.1. Local dual frame generators. For a Hilbert space H, the col-
lection {ey, A € A} is called a frame of H if there exist positive con-

stants A and B such that

(3.1) AlFIP <Y K e)* < BIfI, Y feH,
AeA
where || - || and (- , -) are the norm and inner product on H. For a

frame {ex, A € A} of H, there exists another frame {é,, A € A} of H,

which is known as the dual frame, such that

f= Z(f,éx>€x = Z(f,eQéA V feH.

AEA AEA
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We say that @ is a (local) frame generator if the collection {¢, (- —
k) | k € Z,n=1,...,N} of integer translates of the components of

(compactly supported) @ is a frame of the shift-invariant space Sy(®),
S5(®) = {® ' c|ce ()N},

If & and @ are (local) frame generators, and if the following reconstruc-

tion formulas

(3.2 =33 bl = W)l — B)

k€eZ n=1

and

(33) 9= (9. ¢u(- — k))u(- — k)

k€eZ n=1

hold for all f € Sy(®) and g € Sy(®) respectively, then we say that
® and ® are (local) dual frame generators. We remark that the
above reconstruction formulas (3.2) and (3.3) hold for all f € S(®) and
ge s (@) respectively when ® and ® have compact support.

If ® is a local frame generator, then we may choose a dual frame
which consists of the shifts of some functions ¢, ... , ¢y in Sy(®P) such
that ® and ® are dual frame generators, where ® := (¢1,... , o) ([1]).
Moreover, the FSI space Sy(®) is the same as the original FSI space
Sy(®), i.e., So(®) = So(®). Usually, the above functions ¢;, 1 < i < N,
are not compactly supported, and hence ® and ® are not local dual
frame generators.

The first problem to be considered in this section is when Sy(®) has
local dual frame generators. As an application of Theorem 2.1, we show
that Sy(®) has local dual frame generators if and only if it has a local

orthonormal generator.
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Theorem 3.1. Suppose that ® = (¢1,...,¢n) is a local generator,
and suppose further that ® has linearly independent shifts. Then the
following statements are equivalent:
(i) So(®) = S2(¥) for some local generator W with orthonormal shifts.
(i) there exist two local generators © and O consisting of compactly
supported functions in So(®) such that {0(- — k) : 0 € ©,k € Z}
and {0(- — k) : 0 € ©,k € Z} are dual frames of Sy(P).

Remark 3.2. Note that if ® has linear independent shifts, then ® is
M-refinable if and only if S(®) C D,/ S(®). Therefore if the function
® in Theorem 3.1 is assumed to be M-refinable additionally, then the

function ¥ chosen in (i) of Theorem 3.1 is M-refinable too.

Proof of Theorem 3.1. Obviously it suffices to prove the implication
of (ii) = (i). Suppose © = (6;,...,0;) and © = (0y,...,0;,) are
local dual frame generators of the shift-invariant space Sy(®). Then
O = & %' a for some sequence a € ééVXL, where we have used the facts
that © C S3(®), ® has linear independent shifts and © has compact
support. Applying the reconstruction formula to the components of ®

implies

(I) = @ *I gé,q;. = (I) *, (CL X g(:),cp) = (I) *I gé*’dT,(b‘
Since ® has linearly independent shifts, this shows that
(3.4) Gio(2) =1,

where ® := ©%'a”. By ® € S5(®) and the linear independent shifts of

®, we have & = & %’ for some u € YV Thus

(35) GQ,&,(Z) = Gq;.@*/u(Z) = Gq;. (Z)U(Z)
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Combining (3.4) and (3.5) implies that det G¢(z) is a nonzero mono-
mial. This together with Theorem 2.1 leads to the existence of local

generator of Sy(®) with orthonormal shifts. O

3.2. Local orthonormal wavelet basis. Suppose ® = (¢1,...,¢n)
is an M-refinable local generator. Then So(®) C Dy S2(®P), where
D S5(®) is defined in (2.3). Denote the orthogonal complement of the
space Sy(®) in Dy S2(P) by Wy, which is known as the wavelet space
in the wavelet literature ([7, 29]). It is well known that if ® is a local
generator with orthonormal shifts, then Wy = Dj;S5(®) © So(P) has a
generator ¥ of compactly supported functions with orthonormal shifts.
Therefore in the case that ® has orthonormal shifts and is refinable,
we can find local dual generators for the shift-invariant space Wj.
The second problem to be considered in this section is the corre-

sponding converse problem.

Theorem 3.3. Let M > 2 and suppose ® = (¢1,...,dn) is an M-
refinable local generator with linearly independent shifts. If there exists
a local orthonormal basis of Wy := Dy S2(®) © Sa2(®P), then there exists

a local orthonormal basis of Sa(®P).
As an easy consequence of Theorems 3.1 and 3.3, we have

Corollary 3.4. Let M > 2, and ® be a local generator. Assume that
® is M -refinable and has linear independent shifts. Then the existences
of local dual frame generators of So(®) and of Dy Sa(P) © So(P) are

equivalent to each other.

Proof of Theorem 3.3. Let ¥ has orthonormal shifts and Sy(¥) = W,
By Wy C Dy Ss(®),

(3.6) U(-/M) =« h*
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for some matrix sequence h* = (h?% [k])gez € (YN, Set wy, = 2m/M

and let H"(z) denote the symbol of h*. Then it follows from (3.6) that
U((z+35)/M) = Z@ x — k)h[k + j] = @« h[- + 7).

One may verify directly that

M-1
MQG\I, E G‘I,ﬂ wMz
M
J=0

Then the previous two equations together with (2.1) show that

M—1
(3.7) HY (2w, ) G (2wl VH” (20,) = MGy (2M) = M?1.
7=0

By the refinability of ®,
(3.8) O(-/M) =3 «"h’

for some sequence h® = (hS ,[k])rez € €37. Then, as in (3.7), the
refinement equation (3.8) implies

M—1
(3.9) H* (2 2w, )T Gy (2w, ) HE (20,) = M2Gg(2M),
7=0

where H?*(z) denotes the symbol of h°. Furthermore, using the same

argument as the one in the proof of the equation (3.7), we obtain
(3.10) > H"(z 'wy)) Go (2wl H (2w))) = M*Gy o(2M) = 0.
=0

Set
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Then combining (3.7), (3.9) and (3.10), we obtain

H(z"")"diag (Go(2),... ,Ge(zwy; ")) H(z)

(3.11) = M’diag (Go(z"),1,...,1).

Note that Dy, S(®) is a shift-invariant space generated by the integer
shifts of @y = {¢(M - —j) | j € {0,1,--- ,M — 1},¢ € @} and that
®,; has linearly independent shifts since ® does. Thus by Lemma 2.4,
N’ = (M — 1)N, which implies that H(z) is an MN x MN square
matrix. Taking the determinant of both sides of the equation (3.11),

we have
M-1 '
H det Go(zw?l,) x det H(z) x det H(1/z)
=0

(3.12) = M*N det Gg(2M).

Noting that Hjjvigl det G (2w,) and det Gg(2™) are Laurent polyno-

mials of the same degree leads to
(3.13) det H(z) x det H(1/z) = ¢ # 0.

Let p(z) = det Go(z), then (3.12) and (3.13) show that p(a™) = 0
whenever p(a) = 0 for some a € Z. Hence, any zero of p(z) = det Go(2)
must lie on T. By the linearly independent shifts of @, G(2) is positive
definite on T, and hence det Gg(z) > 0 for all z € T showing that p
has no zeros in C'. Therefore det Gg(z) is a nonzero monomial and
the assertion follows from Theorem 2.1 and the fact that Gg(z) =

G@(Zfl). ]

3.3. MRA-based affine frames. Let ¢ be a compactly supported
M-refinable (scale-valued) function in L?, and have linear independent

shifts. Then there exists a local generator W = (¢y,... %) with
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Y € DySa(¢),1 <1 < L, such that {¢y;x: j,k€Z,1<I<L}isa
tight frame of L?(R), i.e.,

L
(3.14) F=2 > (Fvymntgs ¥ feL’®)

k€L 1=1
where 9.5 := M%) (M7 - —k) (see [3] for M = 2 and [4] for M > 3).
The functions ¢;,1 < [ < L, are MRA-based affine frames, here
the MRA (multiresolution) is generated by the refinable function ¢ (see
[3, 8, 23] for more information on MRA-based affine frames).
The third problem to be considered in this section is whether the
above functions ¢, 1 <1 < L, can be chosen in Dy;S5(4) © Sa(9).

Theorem 3.5. Let ¢ be a compactly supported M-refinable (scale-valued)
function in L?, and have linear independent shifts. If there exist com-
pactly supported functions ¢y, ... ¢, € Dy Sa(p) © So(d) such that
{rjp = Jk € Z,1 <1 < L} is a tight frame of L*(R), then there
exist compactly supported functions ¥y, ... , y_1 € DySo(¢) © Sa(0)
such that {TLl;j,k c 4 k€ Z,1 <1< M—1} is an orthonormal basis of
L*(R).

Proof. For any f € Dy So(¢)©S2(¢), it follows from the reconstruction
formula (3.14) that

L

(3.15) f= (il = k)wu(- — k).

=1
Thus {¢y(-—k) : 1 <1< L,k € Z} is a tight frame of the shift invariant
space DyrSo(¢) © So(¢). Therefore by Theorem 3.3 and Corollary 3.4,
there exists a local generator of Sy(¢) with orthonormal shifts. Hence

the assertion follows. O
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4. THE REAL MATRIX-VALUED FEJER-RIESZ THEOREM

In this section, we give a constructive proof of Theorem 1.1. In
particular, we will prove the following strong version of Theorem 1.1

instead.

Theorem 4.1. Let N > 1. Suppose that A(z) = Z]L:_L a2l € LNV
is positive semi-definite on T. Then there exists a B(z) = Z]L:o b2l €
LN such that

(4.1) A(z) = B(1/2)TB(2).

To this aim, we first factorize positive semi-definite matrices A(z) €
LV*N in the field RY*YN, where R denotes the field of rational Laurent

polynomials with real coefficients

We say that A(z) € R¥*Y is positive semi-definite on T if A(z)

p(2),q(z) € L and q(z) # 0} .

is positive semi-definite for all z € T where A(z) is defined, that is,
except for poles of A. By Gauss elimination on the matrix and the

scalar-valued Fejér-Riesz lemma ([7, Lemma 6.1.3]), we have

Proposition 4.2. Suppose A(z) € LN*N is positive semi-definite on

T. Then A(z) = C(1/2)"C(z) for some C(z) € RN*N.

Clearly if a rational polynomial has no nonzero pole, then it is a
Laurent polynomial. Therefore it suffices to remove the poles of the
rational polynomial C'(z) € RY*Y in Proposition 4.2, and the product
C(1/2)"C(z) is preserved at the same time.

A matrix E(z) € LYY (or in R¥*Y) is called paraunitary if

E(1/2)TE(z) = I, where I is the appropriate sized identity matrix.
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Proposition 4.3. Suppose that C(z) € RN*Y is such that C(1/2)TC(z) €

LN Then E(2)C(z) € LN for some paraunitary matriz E(z) €

RNXN

Let P denote the space of all polynomials with real coefficients, and
PN*N" he the space of N x N’ matrices with entries in P. For a moment,

we assume that Proposition 4.3 hold, and start to prove Theorem 4.1.

Proof of Theorem 4.1. By Proposition 4.2, there exists C(z) € RY*N
such that A(z) = C(1/2)TC(z). By Proposition 4.3, B(z) := E(2)C(z) €

LY*N for some paraunitary matrix E(z) € RV*Y and
B(1/2)TB(2) = C(1/2)TE(1/2)TE(2)C(2) = A(2).
We set
Py ={B(z) € PN B(1/2)B(z) = A(2)}.

Then P4 # (), since 2¥B(z) € P, for some integer k € Z. Let B; € Py
be so chosen that it has minimal degree in the class of all matrix-
valued polynomials in P4. Denote the degree of By by L. If L < L,
then the proof is done. Suppose, on the contrary, that L > L. Write

Bi(z) = Z]L:o b;z’. By direct calculation,

(4.2) Bi(1/2)"'By(z) = Z ;2

j=—1

and
(4.3) aj = by b;.
Combining (4.2), (4.3), and the assumption B; € P4 leads to

(4.4) by b; = 0.
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Let @ be the projection operator onto the linear space spanned by
the columns of the matrix b;. Then it follows from (4.4) and the

construction of the matrix () that
(4.5) Qb; =b; and Qby = 0.

Define Q(2) = (I — Q) + Q2. Then Bi(2) := Q(2)By(2) is a matrix-

valued polynomial with degree at most L — 1, because

Bi(z) = (I-Q+z7'Q)(bo+biz+--+b;z")

= I=Q)bo+biz+-+b;_Z" )+ Qb +-+--+b;zl )
by (4.5). Also the matrix B (z) satisfies By (1/2)TB;(z) = A(z) since
Q(1/2)"Q(z) = I. Therefore By is a polynomial in P, having degree

at most L — 1, which is a contradiction. O

The rest of this section is devoted to the proof of Proposition 4.3.

To do so, we need two elementary results about matrices.

Lemma 4.4. Suppose 0 # X\ € R, and W is a linear subspace of CV .
Then there exist N X N matrices QQ1, Q2 and Q3 with real entries so

that

(i) Q1 +2Q2+Q3=1;
(ii) (Qy+3iAQ2)w =0 for all w € W;
(iii) (@3 —iAQq)v =0 for all v e W,

Proof. For the case that the space W is null or full, i.e., W = {0} and
CN, the matrices @1, Q> and Q5 can be chosen trivially. For instance,
for the case that W = {0}, we may let @y = I and Q2 = Q3 = 0. So
we assume that W # {0} and CV hereafter. Let B be a matrix whose

columns form an orthonormal basis of W+. Then the ¢?> (operator)
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norm || B|| of B satisfies || B|| < 1, where ||B|| := max,cen | |jz=1 || B7||

and ||z||*> = 2T2. Thus the matrix

I o 1—1/\iBTB
1
EESY; B'B I

is nonsingular since ||(1 + Mi)"'BTB|| < (1 + A\2)"Y2||B||?> < 1. Let

(X,Y) be the unique solution of the linear equation

(4.6)
T 1 ETE \i \i
(X,Y) I-Xi Sy L "
7 _1-&>\'BTB T I+Xi 71—\

It is easy to check that Y = X. This together with (4.6) leads to
i

(4.7) v iR e MYBTB = 0.
Define

Q) = H(XB' +XB7)
(4.8) Q: = 5=(XB' —XB")

Qs =1 — Q1 —2Q».

Clearly Q1 + 2Q2 + @3 = I, and all entries of )1, Q2,3 are real. By
(48),

Qi +iAQ)w=XB w=0 YweW,

where we have used the fact that all columns of B belong to W+ to

obtain the last equality. By (4.7), we obtain
, 1 =T 1l = r
(Qs—iNQ)B = B—(1+—)XB B+ -XB'B
i Ai
1 1— .,
i i

This proves that (Q3 — iAQs)v = 0 for all v € W, O
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Lemma 4.5. Let a € T be a complex number with nonzero imaginary
part Tm(a), set A\ = 2Im(a)/(1 — |af?), and let Q1,Qs, Q3 be N x N
matrices with real-coefficients. Define the matriz E(z) € RN*N by

Z—a Z—a Z—a 2 —a
_)Q2+ X ~()3.

1—z2a 1-—za l1—za 1-—za

E(Z) = Q1 + <
If Q1 +2Q+ Qs = I and (Q1 +iAQ2)(Qs3 +iAQ2)T =0, then

(4.9) E(1/2)'E(z) = L.

Proof. Set S(z) = E(z)E(1/2)". Then one may verify that a,a, 1/a,1/a
are not poles of S(z). Thus the matrix T'(z) := (1 — za)(1l — za)(z —
a)(z—a)(S(z) —I) of polynomials with their degrees at most 4 satisfies

(4.10) T(a)=T(a")=T(@)=T@") =0.

Note that S(1) = (Q1 +2Q>+ Q3)(Q1 +2Q2+ Q3)T = I, which implies
T(1) = 0. This together with (4.10) shows that T(z) = 0. Therefore
S(z) =1, and E(z) is a paraunitary matrix. O

For T(2) € RV*N and a € C' := C\{0}, let k(T a) denote the order
(possibly zero) of the pole of T'(2) at a (by order of the pole we mean
the maximum of the order of the poles of the entries of T'(z) at a). If
a € C' and a # +£1, then we find it convenient to express the Laurent

expansion about a in terms of the variable w = (z — a)/(1 — za):

w1 = (F72) T (R (14 00

for some Ry, € CV*N\{0} and some Qr,4(z) € RV*YN that is analytic

in a neighborhood of a.

Next we start to prove Proposition 4.3.

Proof of Proposition 4.3. If C'(z) has no pole in C’' := C\{0}, then the
assertion follows by letting E(z) = I. Otherwise, suppose C'(2) has a
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pole at a € C" with £(C,a) > 0 (recall the definitions of k(C,a) and
R, given in (4.11)). Then it suffices to construct a paraunitary factor
E(z) to cancel the pole of C(z) at a. By C(1/2)7C(z) € LN*N | we

have
(4.12) R, juRea = 0.

Note that R¢,1/ = R, for |a| = 1. Thus a ¢ T by (4.12).
First suppose that a is real. Note that the orthogonal projection P

onto the column space of R¢, satisfies PRc, = Rc, and PRej1/, = 0.

Then the matrix E(z) := I — P + =% P is a paraunitary matrix in
RN*N_ Let C(z) := E(2)C(z). We now show that k(C,w) < k(C,w)
for all w € C’ with strict inequality for w = a, i.e., k(C,a) < k(C, a).
Since F(z) is analytic for 2 # 1/a we have k(C,w) < k(C,w) for any

w # 1/a. In the neighborhood of z = 1/a, we have

~ —1/a —k(C,1/a)
C(Z) = < / > (RC,I/a +PQC,1/a(z)

1—2z/a
(4.13) +(lz—_zaa) (I — P)QC,I/a(Z))a

which leads to k(C,1/a) < k(C,1/a). Lastly in the neighborhood of

z = a, we obtain

~ s —a —k(C,a)+1 s —a
C(z) = < ) <Rc,a + <I — P+ 1 zaP) Qcya(z)) ,

1—za

which implies that C'(z) has a pole at a of order at most k(C,a) — 1.
Now suppose Im(a) # 0. We again construct a paraunitary factor
E(2) to cancel the pole of C'(2) at a, however the construction is more

complex in the complex case. Similarly we write

C(Z) = (lz—_zaa)ik(cya) (RC:”' + (lz—_zaa) QC’,a(Z))
—k(C,1/a
C(Z) _ (zfl/a) (C,1/a) (Rc,l/a + (1z:zaa) QC,I/a(Z)) ,

1-z/a
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where k(C,a),k(C,a*) > 0, and 0 # Reye, Rejija € CYV*N. Let W be
the complex space spanned by all columns of R¢,, and let ()1, Q2, @3
be square matrices as in Lemma 4.4 with A\ = 2Im(a)/(1 — |al?) # 0.
Therefore the kernel of Q3 — iAQ, contains W, which implies that
the range of (Q3 +iAQ2)" is contained in W. This together with the

second equation in Lemma 4.4 leads to

(4.14) (Q1 +iMQ2)(Q3 +iAQ9)T = 0.
Define
zZ—a zZ—a zZ—a zZ—a
E(z) =G + (l—za 1—zd>Q2+ 1—za % l—de?"

Then it follows from (4.14), Lemmas 4.4 and 4.5 that E(z) is a parau-
nitary matrix in RV*N. Set C'(2) := E(2)C(2). Recall that E(z) has
poles only at 1/a and 1/@. Then it remains to prove that k(C,a) <
k(C,a) and k(C,a) < k(C,a), and that k(C,1/a) < k(C,1/a) and
k(C,1/a) < k(C,1/a). Note that k(R,w) = k(R,w) for any R €
RN*N and nonzero complex number w. Therefore it suffices to com-

pare the orders of the pole of C'(z) and C(z) for z = a and a~'. In the

neighborhood of 2z = a,

Clz) = (=2 e (Q1 +iA@2)Rey + ( —— ) R(z)
(=)

1—za 1—za
—k(C,a)+1
zZ—a
= R
<1 — za) (=)

for some R(z) € RV*Y analytic at a neighborhood of 2z = a, where the
last equality follows from Lemma 4.4 and the fact that every column
of R¢,, belongs to W. This proves that k(C,a) < k(C, a).

By (4.12), each column of R/, belongs to WL, Therefore

(4.15) (Qs + iAQ2)Re1ja = 0



24 DOUGLAS P. HARDIN, THOMAS A. HOGAN, AND QIYU SUN

by Lemma 4.4. In the neighborhood of z = a ™!,

o) = (1 — za) —k(C,1/a)—1 {(Q2 () Oy R + IZ__Z&R(Z)}

Z—a a
1_ —K(C,1/a)

_ ( za) R(2)
Z—a

for some R(z) € R¥*Y analytic on a neighborhood of z = 1/a, where
we have used (4.15) to obtain the last equation. This shows that
k(C,1/a) < k(C,1/a). O
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