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Bi-orthogonal Wavelet System for

High-Resolution Image Reconstruction
Lixin Shen† and Qiyu Sun

Abstract

High-resolution images are often desired but made impossible because of hardware limitation. For

the high-resolution model proposed by Bose and Boo, the iterative wavelet-based algorithm has been

shown to perform better than traditional least square method when the resolution ratio M is two and

four. In this paper, we discuss the minimally supported bi-orthogonal wavelet system arisen from the

mathematical model by Bose and Boo, and propose a wavelet-based algorithm for arbitrary resolution

ratio M ≥ 2. The numerical results indicate that the algorithm based on our bi-orthogonal wavelet system

performs better in high-resolution image reconstruction than the wavelet-based algorithm in the literature

and also the common-used least square method.
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I. INTRODUCTION

High-resolution images are often desired in many situations, such as remote sensing and medical

imaging, but made impossible because of hardware limitations. Then increasing the resolution by image

processing techniques is of great importance. The earliest formulation of the problem of high-resolution

image reconstruction was proposed by Huang and Tsay [1] in 1984, where it was motivated by the need

of improved resolution images from Landsat image data. This work has drawn a lot of research attention

and has been extensively treated in the last three decades [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],

[12], [13], [14], [15], [16], [17]. Applications of high-resolution image construction arise in many areas.

The main idea is to recover a single high-resolution image from a set of low quality images of a true

image.

The model in Bose and Boo [9] concentrates on reconstructing one high-resolution image from multiple

low-resolution, shifted, degraded samples of a true image. That model was first analyzed from a wavelet

point of view for both the case with no displacement error [18] and the case with displacement error [19].

In [18], we followed the approach in [9] and considered the case where the blur is spatially invariant,

i.e., there are no displacement errors in the low-resolution samples. By expressing the true image (high-

resolution image) as a function in L2(R2), we derived an iterative algorithm which recovers the function

completely in the L2 sense from the given low-resolution functions. These algorithms decompose the

function obtained from the previous iteration into different frequency components in the wavelet transform

domain, and then add them into the new iterate to improve the approximation. Wavelet thresholding

methods [20] are applied to de-noise the function obtained in the previous step before adding it to the

new iterate. In [19], we considered the case where there are displacement errors in the low-resolution

samples. The resulting blurring operator is spatially varying and is formed by sampling and summing

different spatially invariant blurring operators. We represented each of these spatially invariant blurring

operators by a tensor product of a low pass filter which associates the corresponding blurring operator

with a multiresolution analysis of L2(R2). That low pass filter is a tensor product of the univariate low

pass filter
1

M

[1
2

+ ε, 1, . . . , 1︸ ︷︷ ︸
M−1

,
1

2
− ε
]
, (1)

where M is the ratio between high and low resolutions. We will refer to the filter of (1) as (M, ε) high-

resolution filter ((M, ε)-HRF). For M = 2 and M = 4, it was shown in [18] and [19] that the sequence

(1) is a primal low pass filter in a bi-orthogonal wavelet system, and that the corresponding wavelet-

based algorithms give better results than the existing method [9], [11] in terms of high output quality
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and low relative errors. In this paper, we design the minimally supported bi-orthogonal wavelet system,

whose prime low pass filter is the (M, ε)-HRF, for arbitrary resolution ratio M ≥ 2 and displacement

error ε ∈ (−1
2 ,

1
2), and we apply the corresponding wavelet-based algorithm to the high-resolution image

reconstruction. The numerical results show that the wavelet-based algorithm with the minimally supported

filters designed in this paper performs better than the least square methods (see for example [21]) in

the image quality and peak signal-to-noise ratio (PSNR), and the similar wavelet-based algorithm with

different filters ([19]) in less artifacts.

This paper is organized as follows. In Section II, we briefly recall the mathematical model for high-

resolution image reconstruction and preliminary theory for the bi-orthogonal wavelets with dilation M ≥
2. In Section III, we first show that the (M, ε)-HRF is the low pass filter associated with a multiresolution

analysis with dilation M . Next, we present a method to design the dual low pass filter of (M, ε)-HRF from

the one of (M, 0)-HRF. Finally we prove the (M, ε)-HRF and its dual are the low pass filters associated

with two bi-orthogonal multiresolution analyses with dilation M . In Section IV, a bi-orthogonal wavelet

filter bank with (M, ε)-HRF as the low pass filter is constructed explicitly. The numerical experiments

for the designed wavelet filter bank are presented in Section V. The conclusion of this paper is given in

Section VI.

Notations: Bold-faced characters indicate vectors and matrices. The matrix LT denotes the transpose of

the matrix L. Symbol I and 0 denote the identity and zero matrices respectively. Throughout the paper,

j will denote
√
−1. For a given function f ∈ L1(R), f̂(ω) =

∫
R
f(x)e−jxω dx will denote the Fourier

transform of f . For a given sequence m, m̂(ω) =
∑

k∈Z
m(k)e−jkω will denote the Fourier series of m.

m̂∗ denotes the complex conjugate of m̂. The Kronecker character δk,l = 1 if k = l and 0 otherwise.

The `2 norm ‖u‖2 of a sequence u := {u(k)}k∈Z is ‖u‖2 =
(∑

k∈Z
|u(k)|2

)1/2. The difference operator

∇ is defined by ∇v(k) = v(k)− v(k + 1), k ∈ Z, where v := {v(k)}k∈Z.

II. MATHEMATICAL MODEL AND BI-ORTHOGONAL WAVELETS

This section includes two parts. In the first part, we briefly describe the mathematical model of

the high-resolution image reconstruction problem, and introduce a wavelet-based high-resolution image

reconstruction algorithm for any given ratio M ≥ 2 and any horizontal and vertical displacement errors

εx, εy in (−1
2 ,

1
2). Preliminaries of the bi-orthogonal wavelet theory is given in the second part.
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A. Mathematical Model

Let the intensity function of an underlying continuous image be f(x, y). The model assumes that

an image at a given resolution is obtained by means of averaging f over the pixels which have size

corresponding to that resolution. The mathematical problem is: given several averages of f at a low

resolution, how can we deduce a good approximation to an average of f at a higher resolution?

Suppose that the image of a given scene can be obtained from sensors with N1×N2 pixels. Let the actual

length and width of each pixel be T1 and T2 respectively. Our aim is to construct a higher resolution image

by using an array of M1×M2 low-resolution sensors, i.e., we want an image with K1×K2 pixels, where

K1 = M1N1 and K2 = M2N2. Thus the length and width of each of these high-resolution pixels will

be T1/M1 and T2/M2 respectively. To maintain the aspect ratio of the reconstructed image, we consider

only M1 = M2 = M . By reconstructing the high-resolution image, we mean to find or approximate the

values which is the average intensity of all the points inside the (p, q)th high-resolution pixel. In order to

have enough information to resolve the high-resolution image, there are subpixel displacements between

the sensors in the sensor arrays. For sensor (m1,m2), 0 ≤ m1,m2 < M with (m1,m2) 6= (0, 0), its

horizontal and vertical displacements dx
m1,m2

and dy
m1,m2

with respect to the (0, 0) reference sensor are

given by dx
m1,m2

=
(
m1 + εxm1,m2

)
T1

M and dy
m1,m2

= (m2 + εym1,m2
) T2

M . Here εxm1,m2
and εym1,m2

are the

horizontal and vertical displacement errors respectively. For sensor (m1,m2), the values gm1,m2
[n1, n2]

registered at its (n1, n2)th pixel is modeled by the average intensity of all points inside the low-resolution

pixels and contaminated then by noise. The K1 ×K2 observed high-resolution image g is formed from

all the low-resolution images gm1,m2
by assigning g[Mn1 +m1,Mn2 +m2] = gm1,m2

[n1, n2].

The blurring matrix for the whole sensor array is made up of matrices from each sensor:

L(εx, εy) =

M−1∑

m1=0

M−1∑

m2=0

Dm1,m2
L(εxm1,m2

, εym1,m2
).

Here both ε
x and ε

y are M ×M matrices; Dm1,m2
are K1K2 × K1K2 sampling matrices, which are

diagonal matrices with diagonal elements equal to 1 if the corresponding component of g comes from

the (m1,m2)th sensor and zero otherwise; L(εxm1,m2
, εym1,m2

) is the Kronecker product of L(εxm1,m2
) and

L(εym1,m2
), i.e., L(εxm1,m2

, εym1,m2
) = L(εxm1,m2

) ⊗ L(εym1,m2
), where L(εxm1,m2

) is an K2 ×K2 circular

matrix (under periodic boundary condition) with the middle row given by

1

M

[
0, · · · , 0, 1

2
+ εxm1,m2

, 1, . . . , 1︸ ︷︷ ︸
M−1

,
1

2
− εxm1,m2

, 0, · · · , 0
]

(2)

(there are K2 −M − 1 zero components) and similarly for the K1 ×K1 blurring matrix L(εym1,m2
). The
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reconstruction of high-resolution image can be modeled as solving

L(εx, εy)f = g, (3)

where f and g are the column vectors formed by f and g respectively. The blurring matrix L(εxm1,m2
, εym1,m2

)

corresponding to the (m1,m2)th sensor can be considered as a low pass filter acting on the image f .

This low pass filter is a tensor product of the (M, ε)-HRF (see (1) and (2)), where the parameters ε are

different in the x and y directions for each sensor.

To introduce the wavelet-based high-resolution image reconstruction algorithm, we only consider the

case εxm1,m2
= εx and εym1,m2

= εy for all 0 ≤ m1,m2 < M . Moreover, the displacement error satisfies the

physical requirement |εx|, |εy| < 1/2 (see, e.g. [9] and [19]). In that case, the blurring matrix L = L(εx, εy)

in (3) becomes L(εx) ⊗ L(εy), where L(ε) is the matrix representation of the (M, ε)-HRF. Starting

from the low pass filter (M, ε)-HRF, we construct dual low pass filters M,εm̃0, high pass filter bank

M,εmt, 1 ≤ t ≤ M − 1, and dual high pass filter bank M,εm̃t, 1 ≤ t ≤ M − 1, for any ε ∈ (− 1
2 ,

1
2) in

the following two sections. This leads to a perfect reconstruction of that bi-orthogonal wavelet system

L̃T (ε)L(ε) +
M−1∑

t=1

G̃T
t (ε)Gt(ε) = I,

where L̃(ε), Gt(ε), G̃t(ε), 1 ≤ t ≤ M − 1, are the matrix representation of the corresponding dual low

pass filter, high pass filter bank, and dual high pass filter bank, respectively. Define L̃ = L̃(εx)⊗ L̃(εy),

G0t′ = L(εx)⊗Gt′(ε
y), Gt0 = Gt(ε

x)⊗L(εy), and Gtt′ = Gt(ε
x)⊗Gt′(ε

y), where 1 ≤ t, t′ ≤M −1.

Similarly we define G̃tt′ for all 0 ≤ t, t′ ≤M − 1 except (t, t′) = (0, 0). These matrices satisfy

L̃TL +
∑

0≤t,t′≤M−1

(t,t′)6=(0,0)

G̃T
tt′Gtt′ = I

(see [22], [23], [24], [25], [26]). Then the following iterative wavelet-based high-resolution image recon-

struction algorithm is used to approximate the solution of the equation (3):

fn+1 = L̃Tg +
∑

0≤t,t′≤M−1

(t,t′)6=(0,0)

G̃T
tt′T (Gtt′fn) (4)

for n ≥ 0 with the initial f0 = 0, where T is the thresholding operator [20]. When the resolution ratio

M of the reconstruction image is 2 or 4, the above iterative reconstruction algorithm reduces to the

algorithm in [18] and [19]. However, we should point it out that matrices L̃, Gtt′ , and G̃tt′ are different

from those in [18] and [19].
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B. Bi-orthogonal Wavelet System with Dilation M

In this section, we recall some basic theory for bi-orthogonal wavelets necessary for our later exposition.

For a more complete and rigorous presentation, interested readers may refer to [24], [25], [26] and [27].

We start from a compactly supported scaling function φ and the corresponding multiresolution analysis

with dilation M . An multiresolution analysis with dilation M is a family of closed subspaces {Vn}n∈Z

of L2(R) that satisfies 1)
⋃

n Vn is dense in L2(R) and
⋂

n Vn = {0}; 2) Vn ⊂ Vn+1 and f(·) ∈ Vn if

and only if f(M ·) ∈ Vn+1 for all n; 3) {φ(x − k) : k ∈ Z} forms a Riesz basis of the shift invariant

space V0.

The scaling function φ satisfies a refinement equation

φ(x) = M
∑

k∈Z

m0(k)φ(Mx− k) (5)

and the normalization condition φ̂(0) = 1, where the finitely supported sequence m0 on Z satisfies
∑

k∈Z
m0(k) = 1. If φ ∈ L2(R) and its shifts form a Riesz basis of the corresponding shift invariant space,

then we call φ stable. It is known ([24], [25], [26]) that φ is a scaling function of some multiresolution

if and only if φ is a stable function in L2 and satisfies a refinement equation of the form (5).

Taking the Fourier transform on both sides of (5), we have

φ̂(ω) = m̂0

( ω
M

)
φ̂
( ω
M

)
, ω ∈ R. (6)

We call m̂0 the symbol of the scaling function φ. Very often, we also call m0 or m̂0 the low pass filter.

Applying (6) iteratively for n times yields

φ̂(ω) =
n∏

i=1

m̂0

( ω

M i

)
φ̂
( ω

Mn

)
.

Letting n tend to infinity in the above equation and using the normalization condition of φ, we then

obtain the explicit expression of φ̂ via its corresponding low pass filter m̂0,

φ̂(ω) =
∞∏

i=1

m̂0

( ω

M i

)
.

A function φ̃ ∈ L2(R) is called a dual function of φ ∈ L2(R) if
∫

R

φ(x− k)φ̃(x− k′)dx = δk,k′ ∀ k, k′ ∈ Z. (7)

Often we call φ and φ̃ a dual pair. In the bi-orthogonal wavelet setting, there are two multiresolution

analyses, {Vn} and {Ṽn}, whose scaling functions φ and φ̃ form a dual pair. For a dual pair of scaling
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functions φ and φ̃, it follows from (5) and (7) that their corresponding low pass filters m̂0 and ̂̃m0 satisfy

M−1∑

t=0

m̂0(ξ + ϑt) ̂̃m
∗
0(ξ + ϑt) = 1,

where ϑt = 2πt
M , t = 0, 1, · · · ,M − 1. By matrix extension ([28], [29]), there exist m̂s and ̂̃ms, s =

1, . . . ,M − 1, so that
M−1∑

t=0

m̂s(ω + ϑt) ̂̃m
∗
s′(ω + ϑt) = δs,s′ (8)

for all s, s′ = 0, . . . ,M − 1. This implies the perfect reconstruction for the analysis filter banks m̂s, 0 ≤
s ≤M − 1, and the synthesis filter bank ̂̃ms, 0 ≤ s ≤M − 1:

M−1∑

s=0

m̂s(ω) ̂̃m∗
s(ω + ϑt) = δt,0,

where t = 0, . . . ,M − 1. We mention that filters m0 and m̃0 to be low pass, and that ms and m̃s,

s = 1, · · · ,M − 1, to be high pass, in the sense that

m̂0(ϑk) = ̂̃m0(ϑk) = δk,0,

m̂s(0) = ̂̃ms(0) = 0, s = 1, · · · ,M − 1.

By (7) and (8), the functions ψs and ψ̃s, 1 ≤ s ≤M − 1, which are defined by

ψ̂s(ω) = m̂s

( ω
M

)
φ̂
( ω
M

)
,
̂̃
ψs(ω) = ̂̃ms

( ω
M

) ̂̃
φ
( ω
M

)
,

are multi-band bi-orthogonal wavelets constructed from the multiresolution analyses {Vn} and {Ṽn}.

Therefore starting from a dual pair of scaling functions φ and φ̃, the construction of bi-orthogonal wavelets

ψs and ψ̃s, 1 ≤ s ≤M − 1, reduces to the construction of high pass filters m̂s and ̂̃ms, 1 ≤ s ≤M − 1,

so that they together with the low pass filters m̂0 and ̂̃m0 of the scaling functions φ and φ̃ satisfy the

perfect reconstruction condition (8).

III. THE HIGH-RESOLUTION FILTER AND ITS DUAL

In this section, we show that i) the (M, ε)-HRF is the low pass filter of a scaling function; ii) the dual

filters with displacement error can be deviated from the ones with no displacement error; and iii) the

minimally supported dual filter is the low pass filter of a dual scaling function.

The index of the high-resolution filter (M, ε)-HRF, which is formulated in the mathematical model for

the reconstruction of a high-resolution image, starts from −bM
2 c to bM+1

2 c. Here byc denotes the largest

integer not exceeding y. Note that if m̂s(ω), ̂̃ms(ω), 0 ≤ s ≤M − 1, satisfy (8), then so do ejk0ωm̂s(ω),

ejk0ω ̂̃ms(ω), 0 ≤ s ≤M − 1, where k0 ∈ Z. Thus we assume that the index of the high-resolution filter
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(M, ε)-HRF starts from 0 to M instead. We denote that filter by M,εm0, and denote M,0m0 as Mm0

when there is no displacement error. Also notice that M,−εm̂0(ω) = e−jMω
M,εm̂0(−ω), and that if

m̂s(ω), ̂̃ms(ω), 0 ≤ s ≤M − 1, satisfy (8) then so do m̂s(−ω), ̂̃ms(−ω), 0 ≤ s ≤M − 1. Thus we may

further assume that the displacement error satisfies the physical requirement (see [9] and [19])

0 ≤ ε <
1

2
. (9)

A. (M, ε)-HRF is the low pass filter of a scaling function

Define M,εφ by

M,εφ̂(ω) =
∞∏

k=1

M,εm̂0(M
−kω). (10)

We first show that under the assumption of (9), the function M,εφ defined in (10) is Hölder continuous and

hence in L2(R). To this end, we notice that the (M, ε)-HRF can be decomposed into the sum of the filter

(1
2 + ε, 1

2 − ε) with different shifts. For example, for M = 2, 1
2

[
1
2 + ε, 1, 1

2 − ε
]

= 1
2

[
1
2 + ε, 1

2 − ε, 0
]
+

1
2

[
0, 1

2 + ε, 1
2 − ε

]
. In general, in the Fourier domain, we have

M,εm̂0(ω) =

[(
1

2
+ ε

)
+

(
1

2
− ε

)
e−jω

]

× 1

M

[
1 + e−jω + · · ·+ e−j(M−1)ω

]
. (11)

Thus M,εφ is supported in [0, M
M−1 ] ⊂ [0, 2] and

∑

k∈Z

M,εφ(x− k) = 1 ∀ x ∈ R (12)

([24], [25], [26]). Combining (5) and (12), we obtain

M,εφ
( x
M

)
=

(
1

2
+ ε

)
M,εφ(x),

M,εφ

(
x+ 1

M

)
=

(
1

2
+ ε

)
+

(
1

2
− ε

)
M,εφ(x),

M,εφ

(
x+ s

M

)
= 1 for 2 ≤ s ≤M − 1,

where x ∈ [0, 1). So M,εφ is monotone on [0, 1], and

| M,εφ(x)− M,εφ(y)| ≤ C|x− y|α0

for all x, y ∈ R, where α0 = − lnmax(| 1
2
+ε|,| 1

2
−ε|)

ln M and C is a positive constant ([30], [31]). Recall that

|12 + ε|, |12 − ε| < 1 by (9). Then M,εφ is Hölder continuous with Hölder exponent α0 > 0, and therefore

belongs to L2(R).
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For ε ∈ [0, 1
2), α0 = − ln | 1

2
+ε|

ln M , which decreases as ε increases. Thus the scaling function M,εφ becomes

less smooth as ε increases, which can also be seen from the graphs of the scaling functions M,εφ for

M = 2, 3, 4, 5 in Figure 1. Also from those graphs, we observe that the functions M,εφ are infinitely

piecewise constant functions when M ≥ 3. The theoretical proof of the above observation is given in

[31] and [32].

Next, we show that the function M,εφ is stable. It is known that M,εφ is stable if and only if there

exist two positive constants 0 < C1 ≤ C2 < +∞ so that

C1 ≤
∑

k∈Z

| M,εφ̂(ω + 2kπ)|2 ≤ C2 (13)

for all ω ∈ [−π, π] ([22], [24]). The estimate at the right hand side of (13) follows easily from the

Poisson formula

∑

k∈Z

| M,εφ̂(ω + 2kπ)|2 =
∑

l∈Z

e−jlω

∫

R

M,εφ(x) M,εφ(x− l)dx,

and the fact that M,εφ is a compactly supported L2 function. On the other hand, the estimate at the

left hand side of (13) is true since M,εφ̂(ω) 6= 0 for all ω ∈ [−π, π], which follows from (10) and the

observation that M,εm̂0(ω) 6= 0 for all ω ∈
[
− π

M , π
M

]
by (11). This proves the stability of M,εφ, and

concludes that the filter M,εm̂0 is the low pass filter of the scaling function M,εφ.

Theorem 1: The function M,εφ defined by (10) is a scaling function of a multiresolution analysis with

dilation M , and the (M, ε)-HRF is the low pass filter associated with the scaling function M,εφ. Moreover,

M,εφ is supported in
[
0, M

M−1

]
, and Hölder continuous with Hölder exponent α0 = − ln max(| 1

2
+ε|,| 1

2
−ε|)

ln M .

B. Dual low pass filters of the (M, ε)-HRF

In this subsection, we propose a constructive method to design the dual low pass filter M,ε
̂̃m0 of

M,εm̂0 so that
M−1∑

t=0

M,εm̂0(ω + ϑt) M,ε
̂̃m∗

0(ω + ϑt) = 1 ∀ ω ∈ R, (14)

and

M,ε
̂̃m0(ϑt) = 0 ∀ t = 1, . . . ,M − 1. (15)

Also we discuss the construction of dual low pass filter with no displacement error.

By (11), we have M,εm̂0(ω) = Mm̂0(ω)+ ε
M (1−e−jMω). This inspires us to construct M,ε

̂̃m0 from

M
̂̃m0, which is a solution of (14) and (15) with ε = 0. Let

M,ε
̂̃m0(ω) = M

̂̃m0(ω) + e−jk0ωm̂(Mω)
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for some m̂, where 1 ≤ k0 ≤M − 1. Substituting the above expression into (14) and (15), we obtain

ε

M
(1− e−jMω)

M−1∑

t=0

̂̃m∗
0(ω + ϑt) + m̂∗(Mω) = 0

and m̂(0) = 0. Therefore we have

Proposition 1: Assume that the sequence Mm̃0 is the dual low pass filter of Mm̂0 for the case of

no displacement error. Then

M,ε
̂̃m0(ω) := M

̂̃m0(ω)

−e−jk0ω ε

M
(1− ejMω)

M−1∑

t=0

̂̃m0(ω + ϑt) (16)

is a dual low pass filter of M,εm̂0, where 1 ≤ k0 ≤M − 1.

Notice that
∑M−1

s=0 e−jk(ω+ϑs) = Me−jkω if k is a multiple of M ; 0, otherwise. Thus the difference

between M,εm̃0 and Mm̃0 is ε [ Mm̃0(kM)− Mm̃0((k + 1)M)] occurring at indices kM + k0 for

possible k. For example, for M = 2,

2
̂̃m0(ω) = −1

8
ejω +

1

4
+

3

4
e−jω +

1

4
e−2jω − 1

8
e−3jω

is a dual low pass filter of 2m0 [22]. Applying Proposition 1,

2,ε
̂̃m0(ω) = −

(
1

8
− ε

4

)
ejω +

1

4
+

3

4
e−jω

+
1

4
e−2jω −

(
1

8
+
ε

4

)
e−3jω (17)

is a dual low pass filter of 2
̂̃m0 ([19]).

Now we turn to discuss the construction of dual low pass filter with no displacement error. A filter m̂

is called interpolatory low pass filter if

M−1∑

t=0

m̂(ω + ϑt) = 1 ∀ ω ∈ R,

and

m̂(ϑt) = δt,0, t = 0, . . . ,M − 1.

For the pair of the low pass filter Mm̂0 and its dual low pass filter M
̂̃m0, the filter m̂ defined by

m̂(ω) = Mm̂0(ω) M
̂̃m∗

0(ω),

is an interpolatory low pass filter, and satisfies

m̂(ϑt) = m̂′(ϑt) = 0, t = 1, . . . ,M − 1. (18)
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Moreover,

m̂′′(π) = 0 (19)

if M is even, and

m̂(π) = 0 (20)

if M is odd. It is known that any interpolatory low pass filter m̂, which satisfies (18), can be written as

m̂(ω) =
(1− ejMω)(1− e−jMω)

M2(1− ejω)(1− e−jω)

+(1− ejMω)(1− e−jMω)
M−1∑

t=1

e−jtωRt(Mω) (21)

for some Rt(ω), 1 ≤ t ≤M − 1 ([33], [34], [35]). Substituting (21) into (19) and (20), we obtain

M−1∑

t=1

(−1)tRt(Mπ) = − 1

4M2
. (22)

The general procedure to construct interpolatory low pass filters with preassigned zeros is discussed in

[36] when M = 2. By (21) and (22), we get

Proposition 2: Let M
̂̃m0 be the dual low pass filter of Mm̂0. Then

M
̂̃m0(ω) =

1− e−jMω

M −Me−jω

[1 + e−jω

2

+(1− e−jω)(1− ejω)
R(ω)−R(π)

1 + ejω

]
,

where R satisfies R(π) = − 1
2 and

∑M−1
t=0 R(ω + ϑt) = 0.

In order to obtain a dual low pass filter M
̂̃m0 with minimal length, R(ω)−R(π)

1+ejω should be a constant,

i.e., R(ω) = −1
2 + c(1 + ejω). Since

∑M−1
t=0 R(ω + ϑt) = 0, it yields c = 1

2 . Thus, R(ω) = 1
2e

jω. By

Proposition 2, we obtain the dual low pass filter Mm̃0 with minimal length,

M
̂̃m0(ω) = − 1

2M
ejω +

1

M
+ · · ·+ 1

M
e−j(M−2)ω

+
3

2M
e−j(M−1)ω.

Taking k0 = M − 1 in Proposition 1 and using the above filter as the dual low pass filter with no
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displacement error, we get a dual low pass filter M,ε
̂̃m0 with minimal length and vanishing moment 1,

M,ε
̂̃m0(ω) =

1

M

[
1 + · · ·+ e−j(M−1)ω

]

×
[
−
(

1

2
− ε

)
ejω +

(
3

2
− ε

)]

= −
(

1

2M
− ε

M

)
ejω +

1

M
+ · · ·

+
1

M
e−j(M−2)ω +

(
3

2M
− ε

M

)
e−j(M−1)ω.

(23)

For instance, the above dual low pass filter M,ε
̂̃m0 becomes

−
(

1

4
− ε

2

)
ejω +

1

2
+

(
3

4
− ε

2

)
e−jω

when M = 2,

−
(

1

6
− ε

3

)
ejω +

1

3
+

1

3
e−jω +

(
1

2
− ε

3

)
e−2jω

when M = 3, and

−
(

1

8
− ε

4

)
ejω +

1

4
+

1

4
e−jω +

1

4
e−2jω +

(
3

8
− ε

4

)
e−3jω

when M = 4.

C. Dual low pass filter of a dual scaling function

In this subsection, we first show that the dual filter M,ε
̂̃m0(ω) in (23) is the low pass filter associated

with a multiresolution analysis with dilation M .

Theorem 2: Let either M ≥ 3 and ε ∈
[
0, 1

2

)
, or M = 2 and ε ∈

(
1−

√
3

2 ,
1
2

)
, and let M,εφ̃ be the

solution of a refinement equation (5) with the symbol M,ε
̂̃m0 in (23). Then M,εφ̃ is a scaling function

of a multiresolution analysis with dilation M .

Proof: We first prove the function M,εφ̃, which is defined by

M,ε
̂̃
φ(ω) =

∞∏

n=1

M,ε
̂̃m0(M

−nω),

is a function in L2(R). To this end, define the subdivision operator S corresponding to the low pass filter

M,εm̂0 by

Su(k) =
∑

k′∈Z

M,εm0(k −Mk′)u(k), k ∈ Z,
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where u := {u(k)}. By calculation, the Fourier series of the sequence ∇Snδ is

(
1− e−jMnω

) n−1∏

i=0

(
−
(

1

2
− ε

)
ejM

iω +

(
3

2
− ε

))

for any n ≥ 1, where δ is the usual delta sequence. Thus

‖∇Snδ‖2
2 = 2

((
1

2
− ε

)2

+

(
3

2
− ε

)2
)n

= 2

(
1

2
+ 2(1− ε)2

)n

,

which implies that

‖∇Snδ‖2
2 ≤ 2Mn ∀ n ≥ 1,

for either M ≥ 3 and ε ∈
[
0, 1

2

)
, or M = 2 and ε ∈

(
1 −

√
3

2 ,
1
2

)
. Thus M,εφ̃ is a function in L2(R)

([24], [37]). Following the proof of Theorem 1 leads to the stability of M,εφ.

The dual scaling functions M,εφ̃ for M = 3, 4, 5 are shown in Figure 2. The dual scaling functions

M,εφ̃ are not Hölder continuous. In particular, the Hölder exponent of the dual scaling functions M,εφ̃

is − ln( 3

2
−ε)

ln M and thus negative for any ε ∈ [0, 1
2). But as seen from the graphs, the dual scaling functions

M,εφ̃ becomes less irregular as ε increases.

The rest of this section is devoted to show that the pair of scaling functions M,εφ and M,εφ̃ is a

dual pair, where the symbols of the scaling functions M,εφ and M,εφ̃ are defined as in (11) and (23)

respectively. Our result is the following:

Theorem 3: Let M,εφ and M,εφ̃ be the scaling functions with their corresponding low pass filters as

in (11) and (23) respectively. Assume that either M ≥ 3 and ε ∈ (0, 1
2), or M = 2 and ε ∈

(
1−

√
3

2 ,
1
2

)
.

Then M,εφ̃ is the dual of M,εφ.

Proof: Let m̂(ω) := M,εm̂0(ω) M,ε
̂̃m∗

0(ω), and let M,εΦ be the solution of the refinement equation

(5) with symbol m̂. Clearly m̂ is an interpolatory low pass filter, and

M,εΦ̂(ω) = M,εφ̂(ω) M,ε
̂̃
φ
∗
(ω).

By Theorems 1 and 2, both M,εφ and M,εφ̃ are compactly supported functions in L2, and hence M,εΦ

is a compactly supported continuous function. By (11) and (23), both M,εm̂0(ω) and M,ε
̂̃m0(ω) are

nonzero for all ω ∈
[
− π

M , π
M

]
. Thus the stability of M,εΦ follows by the same procedure as used in the

proof of Theorem 1. Therefore M,εΦ satisfies interpolatory condition, that is, M,εΦ(k) = δk,0, k ∈ Z

([24], [33], [38]). This proves the dual property between M,εφ and M,εφ̃.

Remark: For M = 2, if the displacement error 0 ≤ ε ≤ 1−
√

3
2 , we can use the dual filter (17) instead

of the one in (23) to obtain a dual scaling function in L2(R).
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IV. BI-ORTHOGONAL WAVELET FILTER BANK

In this section, we consider the construction of bi-orthogonal wavelet filter bank with low pass filter

and the dual low pass filter given in (11) and (23), that is, to find high pass filters M,εm̂t, 1 ≤ t ≤M−1,

and dual high pass filters M,ε
̂̃mt, 1 ≤ t ≤M − 1, so that

M−1∑

s=0

M,εm̂t(ω + ϑs) M,ε
̂̃m∗

t′(ω + ϑs) = δt,t′ (24)

for all t, t′ = 0, . . . ,M − 1, and

M,εm̂t(0) = M,ε
̂̃mt(0) = 0 (25)

for t = 1, . . . ,M − 1.

The equation (25) follows from taking ω = 0 in (24) and using the low pass filter properties of the

filters M,εm̂0 and M,ε
̂̃m0. To solve the equation (24), we need the polyphase decomposition of the filters

M,εm̂t and M,ε
̂̃mt, 0 ≤ t ≤M − 1. Let

M,εm̂t(ω) =
M−1∑

s=0

e−jsω
M,εm̂t,s(Mω) (26)

for 0 ≤ t ≤M − 1, and set

H(ω) =




M,εm̂0,0(ω) · · · M,εm̂0,M−1(ω)
...

. . .
...

M,εm̂M−1,0(ω) · · · M,εm̂M−1,M−1(ω)


 . (27)

Similarly let

M,ε
̂̃mt(ω) =

M−1∑

s=0

e−jsω
M,ε
̂̃mt,s(Mω) (28)

and set

H̃(ω) =




M,ε
̂̃m0,0(ω) · · · M,ε

̂̃m0,M−1(ω)
...

. . .
...

M,ε
̂̃mM−1,0(ω) · · · M,ε

̂̃mM−1,M−1(ω)


 . (29)

Then we may write (24) as

H(ω)H̃(−ω)T =
1

M
I. (30)

By (11) and (23), the first row of H is

a0 + b0e
−jω :=

1

M

[(
1

2
+ ε

)
+

(
1

2
− ε

)
e−jω, 1, · · · , 1

]
,
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and the one of H̃ is

ã0 + b̃0e
jω :=

1

M

[
1, · · · , 1,

(
3

2
− ε

)
−
(

1

2
− ε

)
ejω
]
.

We do not intend to find all solutions of the equation (30) (see [28], [29] for general results), but here

we try to find some solutions of the form

H(ω) = H1 + H2e
−jω (31)

and

H̃(ω) = H̃1 + H̃2e
jω, (32)

where H1,H2, H̃1 and H̃2 are square matrices with real entries.

For M = 2, one may verify that

H(ω) =
1

2




1
2 + ε 1

−3
2 + ε 1


+

1

2




1
2 − ε 0

1
2 − ε 0


 e−jω

and

H̃(ω) =
1

2


 1 3

2 − ε

−1 1
2 + ε


+

1

2


 0 −1

2 + ε

0 1
2 − ε


 ejω

satisfies (30). Therefore

2,εm̂1(ω) =
1

2

[
−
(

3

2
− ε

)
+ e−jω +

(
1

2
− ε

)
e−2jω

]
(33)

and

2,ε
̂̃m1(ω) =

1

2

[(
1

2
− ε

)
ejω − 1 +

(
1

2
+ ε

)
e−jω

]
(34)

are the high pass filter and dual high pass filter corresponding to the low pass filter 2,εm̂0 and the dual

pass filter 2,ε
̂̃m0 (see Table I for the filter coefficients).

For M ≥ 3, we start from an (M − 2)× (M − 2) square matrix A so that

AAT = I (35)

and

the first row of A is 1√
M−2

[1, . . . , 1]. (36)
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Define

H(ω) =
1

M




2− θ
√
M − 2 0 1

−
√
M − 2 1 0 0

0 0
√
MIM−3 0

−θ 0 0 1




×




1 0 0

0 A 0

0 0 1


 . (37)

and

H̃(−ω) =
1

M


1
√
M − 2 0 θ

−
√
M − 2 2 0 −

√
M − 2θ

0 0
√
MIM−3 0

−1 −
√
M − 2 0 M − θ




×




1 0 0

0 A 0

0 0 1


 , (38)

where

θ =

(
3

2
− ε

)
−
(

1

2
− ε

)
e−jω.

Clearly, H has the form (31) and its first row is a0 +b0e
−jω. Similarly H̃ has the form (32) and its first

row is ã0 + b̃0e
jω. By simply calculation, we may verify that the matrices H and H̃ in (37) and (38)

satisfy (30).

For M = 3, the only matrix A in (35) and (36) is the number 1. Thus the corresponding filter

coefficients for the bi-orthogonal wavelet filter bank are as given in Table II.

For M = 4, the matrix A = 1√
2


 1 1

1 −1


 satisfies (35) and (36). The corresponding filter coefficients

of the bi-orthogonal wavelet filter bank are as given in Table III.

V. NUMERICAL EXPERIMENTS

In this section, we implement the high-resolution image reconstruction algorithm (4) using the bi-

orthogonal wavelet filters constructed in the previous sections. We use the “Boat” and “Bridge” images

of size 260 × 260 shown in Fig. 3 as the original images in the numerical tests. We abbreviate the
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least-square method (see [21]), the wavelet method with the dual filter (17) (see [19]), and the wavelet

method with the dual filter in Tables I, II, III by LSM, WAD, WAM respectively. The periodic boundary

condition [21] is used for all the methods.

In the first test, we use a 2× 2 sensor array with no displacement error, and with displacement error

ε = εxm1,m2
= εym1,m2

= 1
4 , m1,m2 ∈ {0, 1}. Those sense arrays produce four low-resolution images

which are corrupted by white Gaussian noise with different signal-to-noise ratio (SNR). Table IV gives

the PSNR results of the image obtained by LSM, WAD and WAM, while Figs. 4 and 5 depict the

reconstructed high-resolution images for the “Boat” and “Bridge” images with noise at SNR=30 dB and

displacement error ε = 1
4 . From the above table and figures we see that the wavelet algorithm (WAM,

WAD) performs better than the least square method (LSM) does. We also have two interested observations

related to the displacement error. From the Table IV, we see that WAD works better than WAM in the

sense of PSNR when there is no displacement error, and that WAM performs better than WAD when

the displacement error is 1
4 . We think that it is because when |ε| ≤ 1 −

√
3

2 , the corresponding scaling

function M,εφ̃ to the dual low pass filter in Table I is not in L2 and hence is too irregular. A careful

comparison in the Figs. 4 and 5 reveals that the reconstructed images Fig. 4(d) and Fig. 5(d) with the

minimally supported dual filter in Table I have less artifacts than that of Fig. 4(c) and Fig. 5(c) with the

dual filter in (17).

In the second test, a 3 × 3 sensor array with no displacement error and with displacement error

εxm1,m2
= εym1,m2

= 1
4 , m1,m2 ∈ {0, 1, 2}, are considered. In this test, we use the wavelet-based iterative

algorithm (4) with the wavelet filter coefficients in Table II for the high-resolution image reconstruction.

Table V gives the PSNR results for the least-square method and the wavelet method with the dual filter

in Table II, while Fig. 6 depicts the reconstructed high-resolution images for the “Boat” and “Bridge”

images for the case with displacement error 1
4 . Similar to the first test, the wavelet-based algorithm shows

improvement over the least square method in both image quality and PSNR, and also the image quality

improves as the displacement error changes from 0 to 1
4 . We believe that the image quality improvement

comes also from the change of the regularity of the dual scaling function M,εφ̃ as the displacement error

changes from 0 to 1
4 .

In the third test, we have done similar test as the first test. A 4× 4 sensor array with no displacement

error and with displacement error εxm1,m2
= εym1,m2

= 1
4 , m1,m2 ∈ {0, 1, 2, 3}, are considered. We use

the wavelet-based iterative algorithm (4) with the wavelet filter coefficients in Table III for the high-

resolution image reconstruction. Table VI gives the PSNR results of the image obtained by LSM, WAD

and WAM, while Fig. 7 depicts the partial reconstructed high-resolution images for the “Bridge” images

September 19, 2003 DRAFT



ACCEPTED BY IEEE TRANS. SIGNAL PROCESSING (2003) 18

with noise at SNR=30 dB and displacement error ε = 1
4 . We can see that our proposed wavelet-based

algorithms give better denoising performance than LSM.

In the forth test, we let the 4× 4 sensor array have displacement error

ε
x =




0.1548 0.0984 0.0242 0.0607

0.0843 0.2317 0.0535 0.1590

0.1952 0.1873 0.1892 0.1141

0.0054 0.1428 0.1491 0.2194




and

ε
y =




0.2043 0.0021 0.0074 0.0904

0.1759 0.1693 0.1266 0.0302

0.2351 0.1742 0.0829 0.1671

0.1953 0.0071 0.0075 0.0840



,

and use the coefficients of the bi-orthogonal wavelet filter bank in Table III. The low-resolution 64× 64

frames from (0, 0)th sensor are shown in Figs. 8(a) and (b) for the “Boat” image and “Bridge” image

respectively. Accordingly, the observed high-resolution images with white Gaussian noise SNR of 30 dB

are shown in Figs. 8(c) and (d), and the reconstructed high-resolution images are shown in Figs. 8 (e)

and (f). The values of PSNR with LSM and WAM for “Boat” image are respectively 24.96 dB and 27.37

dB while The values of PSNR with LSM and WAM for “Bridge” image are respectively 23.93 dB and

24.03 dB. Again, we can see that the wavelet-based algorithm works better than the least-square method

in the sense of PSNR.

VI. CONCLUSIONS

The high-resolution filter (M, ε)-HRF (1) is formulated from the mathematical model for high-resolution

image reconstruction ([9]), where M ≥ 2 is the resolution ratio and ε ∈ (− 1
2 ,

1
2) is the displacement

error of the sensors. In this paper, we first observe that the high-resolution filter (M, ε)-HRF is the

low pass filter of a multiresolution analysis (Theorem 1); Then we construct the minimally supported bi-

orthogonal wavelet system, whose primal low pass filter is the (M, ε)-HRF, explicitly (Theorems 2 and 3,

and Section IV); Finally we introduce a wavelet-based iterative algorithm (4) and do some numerical

experiments. From our numerical experiments, the iterative algorithm corresponding to the bi-orthogonal

wavelet system designed in this paper shows improvement over the common-used least square method

(see for instance [21]) in output image quality and PSNR, and over the similar wavelet-based algorithm

with different wavelet filters ([19]) in less artifacts.
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Figure Captions

Figure 1. The plots of the scaling function M,εφ with ε = 0 (left column) and ε = 1
4 (right column)

corresponding to M,εm0 with M = 2, 3, 4, 5 (from top to bottom).

Figure 2. The plots of the dual scaling function M,εφ̃ with ε = 0 (left column) and ε = 1
4 (right column)

corresponding to M,εm̃0 with M = 3, 4, 5 (from top to bottom).

Figure 3. (a) The original “Boat” image; (b) The original “Bridge” image.

Figure 4. Numerical result for “Boat” image with displacement error 1
4 : (a) Observed high-resolution 256×256

image (with white noise at SNR=30dB added); (b) Reconstructed 256× 256 image from LSM; (c)

Reconstructed 256× 256 image from WAD; (d) Reconstructed 256× 256 image from WAM.

Figure 5. Numerical result for “Bridge” image with displacement error 1
4 : (a) Observed high-resolution 256×

256 image (with white noise at SNR=30dB added); (b) Reconstructed 256× 256 image from LSM;

(c) Reconstructed 256× 256 image from WAD; (d) Reconstructed 256× 256 image from WAM.

Figure 6. For the case with displacement error 1
4 , the images (from top to bottom) are observed high-resolution

256×256 images, reconstructed high-resolution images from LSM, and reconstructed high-resolution

images from WAM, respectively. The left column is for “Boat” image, while the right column is for

“Bridge” image.

Figure 7. Zoom of numerical result for “Bridge” image with displacement error ε = 1
4 : (a) Original high-

resolution; (b) Reconstructed image from LSM; (c) Reconstructed image from WAD; (d) Recon-

structed image from WAM.

Figure 8. The images (from top to bottom) are the low-resolution 64 × 64 images from the (0, 0)th sensor,

reconstructed high-resolution images from LSM, and reconstructed high-resolution images from

WAM, respectively. The left column is for “Boat” images, while the right column is for “Bridge”

images.



Table Captions

Table I The coefficients of the bi-orthogonal wavelet filter bank for M = 2 and ε ∈
(
1−

√
3

2 ,
1
2

)
.

Table II The coefficients of the bi-orthogonal wavelet filter bank for M = 3 and ε ∈ [0, 1
2), where δ1 = 1

6− ε
3

and δ2 = 1
2 − ε

3 .

Table III The coefficients of the bi-orthogonal wavelet filter bank for M = 4 and ε ∈ [0, 1
2), where δ3 = 1

8− ε
4 .

Table IV The PSNR results for the 2× 2 sensor array.

Table V The PSNR results for the 3× 3 sensor array.

Table VI The PSNR results for the 4× 4 sensor array.
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ε = 0 ε =
1

4

Image SNR LSM WAD WAM LSM WAD WAM

20 29.15 32.04 31.55 28.32 31.28 31.12

Boat 30 30.02 32.68 32.13 29.09 31.85 32.65

40 30.40 32.93 32.36 29.42 32.05 32.85

20 27.98 28.60 28.05 28.19 28.11 29.10

Bridge 30 28.64 29.07 28.42 28.96 28.52 29.56

40 28.94 29.25 28.60 29.32 28.68 29.74

Table 4



ε = 0 ε =
1

4

Image SNR LSM WAM LSM WAM

20 26.38 28.32 25.75 29.18

Boat 30 26.61 28.47 26.00 29.32

40 26.69 28.52 26.09 29.37

20 25.47 25.52 25.51 26.18

Bridge 30 25.68 25.64 25.80 26.32

40 25.76 25.69 25.92 26.36

Table 5



ε = 0 ε =
1

4

Image SNR LSM WAD WAM LSM WAD WAM

20 25.01 27.40 27.19 24.91 27.28 27.38

Boat 30 25.12 27.53 27.32 25.05 27.40 27.49

40 25.16 27.57 27.36 25.10 27.44 27.54

20 24.04 24.51 24.20 24.21 24.39 24.57

Bridge 30 24.16 24.57 24.27 24.38 24.46 24.65

40 24.21 24.60 24.30 24.45 24.48 24.68

Table 6
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