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Error Analysis of Frame Reconstruction from Noisy
Samples

Akram Aldroubi†∗, Casey Leonetti†, Qiyu Sun#

EDICS Sampling, extrapolation, and interpolation.

Abstract— This paper addresses the problem of reconstructing
a continuous function defined onRd from a countable collection
of samples corrupted by noise. The additive noise is assumed
to be i.i.d. with mean zero and varianceσ2. We sample the
continuous function f on the uniform lattice 1

m
Zd, and show for

large enoughm that the variance of the error between the frame
reconstruction fε,m from noisy samples off and the function f

satisfy var(fε,m(x)−f(x)) ≈ σ2

md Cx whereCx is the best constant
for every x ∈ Rd. We also prove a similar result in the case that
our data are weighted-average samples off corrupted by additive
noise.

Index Terms— Sampling, reconstruction from averages,
frames.

I. I NTRODUCTION

Sampling and function reconstruction have been widely
studied in recent decades, particularly within the setting of
shift-invariant spaces

(
see [1] - [9]

)
. However, the problem of

reconstructing a function in shift-invariant spaces from data
corrupted by noise has not been given as much attention. For
bandlimited functions andL2 with some regularity properties,
Pawlak, Rafajlowowicz and Krzyzak give a reconstruction
algorithms and detailed analyses of the error of reconstruction
for white noise, colored noise and finite samples [23], see
also [21]. In [12], Eldar and Unser provide optimal results
for filtering noisy samples of signals from shift-invariant and
bandlimited spaces. Smale and Zhou reconstruct signals from
noisy data in [25] and give error estimates for the reconstructed
signal. In [24] Rohde et al. show that reconstruction from
noisy data introduces spatial dependent artifacts that are un-
desirable for sub-pixel signal processing. The main problem
is that reconstruction from noisy samples introduces spatially-
dependent (or time-dependent) noise in the reconstructed sig-
nal. Thus, an accurate estimate of the noise at each point of
the reconstructed signal is desirable. For a general review of
reconstruction of functions from noisy samples we refer to
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[22], [8] and the references therein. In this paper, we pro-
vide error estimates for frame reconstruction of a continuous
function from a countable collection of sampled data that is
corrupted by noise, and give an exact formula for the variance
as a function of the positionx, of the oversampling factorm,
and of the signal and sampling models.

In particular, given dataY = {yj}j∈J of the form yj =
f(xj)+εj , we analyze the frame reconstruction algorithm that
produces a continuous functionfε from the noisy samplesY =
{yj}j∈J of a functionf in a shift invariant space. We assume
the noise sequence{εj}j∈J to be a collection of i.i.d. random
variables with E(εj) = 0 and var(εj) = σ2. We consider
uniform sets of sampling of the form1

mZ
d, where m is a

positive integer, and find precise estimates of var(fε,m(x) −
f(x)) which is a function ofx.

We address this problem not only for exact sampling,
but also for weighted average sampling as in [1] and [5].
Specifically, instead of assuming the data{yj}j∈J arise from
exact samples off , we assume the data are of the form
yj = 〈f, ψ(· − xj)〉 + εj , or evenyi

j =
〈
f, ψi(· − xj)

〉
+ εi

j ,
1 ≤ i ≤ s, for some vector functionΨ = (ψ1, . . . , ψs)T . In
this case, the uncorrupted data can be interpreted as weighted
averages off at xj .

We begin this paper by precisely defining and characterizing
the underlying shift-invariant space from which our continuous
signals originate. As is common in much of the current
research

(
see [1]-[5],[14]

)
, our underlying space will be of

the form

V 2(Φ) =





∑

k∈Zd

C(k)T Φ(· − k) : C ∈ (l2)(r)



 (1)

for some real-valued vector functionΦ =
(
φ1, . . . , φr

)T ∈
(L2)(r), where C = (c1, . . . , cr)T is a real-valued vector
sequence such thatci := {ci(k)}k∈Zd ∈ l2, i.e., C ∈ (l2)(r).
Thus

∑
k∈Zd C(k)T Φ(· − k) =

∑r
i=1

∑
k∈Zd ci(k)φi(· − k).

We also introduce definitions and tools crucial to our analysis.
Then the case of exact sampling is considered first, and the
main theorem is stated. While the complete proof is saved for
section V, the main ideas behind the proof are illustrated by
looking at the simpler case in section III-A. Then in section
IV, we address the weighted-average sampling problem and
state the main result there. Once again, the complete proof is
saved for section V, while we illustrate the ideas through a
simpler setting in IV-A.
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II. N OTATION AND PRELIMINARIES

We begin by definingV 2(Φ) more precisely. As mentioned
before, shift-invariant spaces are commonly used in sampling
models. Moreover, it is common to consider continuous shift-
invariant spaces that are subspaces ofL2(Rd) in order to take
advantage of reproducing kernel Hilbert space properties.

Let Φ = (φ1, . . . , φr)T , whereφi : Rd → R is a function
in L2(Rd), and assumeΦ is such that

GΦ(ξ) :=
∑

k∈Zd

Φ̂(ξ + k)Φ̂(ξ + k)
T

= I, a.e.ξ ∈ Rd, (2)

whereI is ther× r identity matrix. Define the shift-invariant
space

V 2(Φ) :=





∑

k∈Zd

C(k)T Φ(· − k) : C ∈ (l2)(r)



 .

Then V 2(Φ) is a Hilbert space,V 2(Φ) is a subspace of
L2(Rd), and {φi(· − k) : 1 ≤ i ≤ r, k ∈ Zd} forms an
orthonormal basis forV 2(Φ) [1], [3]. Assumption (2) insures
that {φi(· − k) : 1 ≤ i ≤ r, k ∈ Zd} is an orthonormal basis
for the spaceV 2(Φ). However, what is important is the space
V 2(Φ) since there are many bases generating the same space.
Some of these bases may be more useful for computational
purposes or for certain applications as we will see below.
Also assumeφi ∈ W 1

0 := W 1 ∩ C0, where C0 is the set
of continuous functions, and

W 1 =



f :

∑

k∈Zd

ess sup
x∈[0,1]d

{|f(x + k)|} < ∞


 .

Under this assumption,V 2(Φ) is a space of continuous func-
tions [3]. Furthermore, with this assumption, for eachx in
Rd, the point evaluation mapf 7→ f(x), from V 2(Φ) to R, is
bounded. To see this, denote the sequenceai

x(k) := φi(x−k),
and notice that for everyx ∈ Rd,

∥∥ai
x

∥∥
l1(Zd)

≤
∥∥φi

∥∥
W 1 . Let

f =
∑r

i=1

∑
k∈Zd ci(k)φi(· − k) ∈ V 2(Φ). Then

|f(x)| ≤
r∑

i=1

∑

k∈Zd

∣∣ci(k)
∣∣ ∣∣φi(x− k)

∣∣

=
r∑

i=1

〈∣∣ci
∣∣ ,

∣∣ai
x

∣∣〉
l2

≤
r∑

i=1

∥∥ci
∥∥

l2

∥∥ai
x

∥∥
l1

≤
(

r∑

i=1

∥∥ci
∥∥2

l2

)1/2 (
r∑

i=1

∥∥φi
∥∥2

W 1

)1/2

≤
(

r∑

i=1

∥∥φi
∥∥2

W 1

)1/2

‖f‖L2 .

We conclude that point evaluation is a continuous linear
functional onV 2(Φ). Therefore, by the Riesz representation
Theorem, for everyx ∈ Rd, there exists a reproducing kernel

Kx ∈ V 2(Φ) satisfying 〈f, Kx〉 = f(x) for all f ∈ V 2(Φ).
In fact, it can easily be shown that

Kx(y) =
r∑

i=1

∑

l∈Zd

φi(x− l)φi(y − l). (3)

Most of signal space models use the assumption thatφi ∈
W 1

0 := W 1 ∩ C0 (e.g., signals modelled with multiresolution
spaces, B-spline spaces of degreen ≥ 1). However, there
are two spaces that are often used that do not satisfy this
assumption. One of these spaces is the space of piecewise
constant case whereφ = χ[0,1) (Obviously this space does not
belong toC0). The other space is the space of bandlimited
functions generated byφ = sinc which does not belong to
W 1 (the bandlimited function space belongs toW p for any
p > 1). However minor modifications show that both of these
spaces can be treated in similar ways). In particular, in both
cases point evaluations are bounded linear functionals, and
the reproducing kernel for the bandlimited case has a simple
expression given byKx(y) =

∑
l∈Zd sinc(x− l) sinc(y−l) =

sinc(x − y). Once the underlying spaceV 2(Φ) is fixed, the
ability to recover a functionf in V 2(Φ) from its samples,
{f(xj)}j∈J , depends on the sampling setX := {xj : j ∈ J}.
Let X be a countable subset ofRd.

Definition 1: We say thatX is a set of sampling forV 2(Φ)
if there exist positive constantsα andβ such that

α||f ||L2 ≤ ||{f(xj)}xj∈X ||l2(J) ≤ β||f ||L2 , ∀ f ∈ V 2(Φ).
(4)

Notice that if X := {xj : j ∈ J} is a set of sampling
for V 2(Φ), then the collection{Kxj}j∈J forms a frame for
V 2(Φ), which gives us the following stable reconstruction
formula for f ∈ V 2(Φ):

f =
∑

j∈J

〈
f,Kxj

〉
K̃xj , (5)

where{K̃xj}j∈J is the canonical dual frame associated with
{Kxj}j∈J . Namely,K̃xj := S−1Kxj , whereS is the frame
operator onV 2(Φ) associated with the frame{Kxj}j∈J , i.e.

Sf =
∑

j∈J

〈
f,Kxj

〉
Kxj . (6)

The operatorS is positive and invertible. Moreover, given any
sequencec ∈ l2(J), the function

∑
j∈J c(j)K̃xj is in V 2(Φ).

See [10] and [15] for more information and background on
frames.

With data{yxj} of the form yxj = f(xj) + εxj , we can
estimatef by fε, given by

fε :=
∑

j∈J

yxj K̃xj .

Notice thatfε = f precisely when there is no noise, i.e. when
εxj = 0 for all j ∈ J . In this paper, our goal is to give
estimates on the error|fε(x)− f(x)| in terms of the noise
sequence{εxj}.
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A. Fourier Analysis

Our analysis will heavily rely on the Fourier transform and
its properties. We denote the Fourier transform of a function
f ∈ L2(Rd) by f̂ and define

f̂(ξ) =
∫

Rd

f(x)e−i2πx·ξ dx a.e.ξ ∈ Rd, (7)

where i =
√−1. The function f̂ is also in L2(Rd), and

‖f‖L2(Rd) = ‖f̂‖L2(Rd). Similarly, we denote the Fourier
series of a sequencec ∈ l2(Zd) by ĉ and define

ĉ(ξ) =
∑

k∈Zd

c(k)e−i2πk·ξ a.e.ξ ∈ [0, 1]d. (8)

The functionĉ is in L2([0, 1]d), and‖c‖l2(Zd) = ‖ĉ‖L2([0,1]d) .
The following properties of the Fourier transform will fre-
quently be used.

(i) τ̂yf(ξ) = e−i2πy·ξ f̂(ξ) whereτyf = f(· − y).
(ii) ˆ̂

f = f∨ wheref∨(x) = f(−x).
(iii) f̂∨ = f̂ if f is real-valued.
(iv) f̂ ∗ g = f̂ ĝ.

For vector functionsF = (f1, . . . , fn)T , the notationF̂ will
represent the vector(f̂1, . . . , f̂n)T .

Another valuable tool from Fourier analysis is the Poisson
Summation Formula. If

∑
k∈Zd f(x + k) ∈ L2([0, 1]d), and if

∑
k∈Zd

∣∣∣f̂(k)
∣∣∣
2

< ∞, then

∑

k∈Zd

f(x + k) =
∑

k∈Zd

f̂(k)ei2πk·x a.e.x ∈ Rd. (9)

More often we will use the equivalent version
∑

k∈Zd

f̂(ξ + k) =
∑

k∈Zd

f(k)e−i2πk·ξ a.e.ξ. (10)

Notice the right-hand side of the equation is the Fourier
series of the sequence whose terms are samples off on the
integer lattice. See [15] for an extensive review of the Fourier
transform and its properties.

B. The Zak Transform

The Zak transform of a functionf is denotedZf and
defined as

Zf(t, ξ) =
∑

k∈Zd

f(t− k)ei2πk·ξ. (11)

If f ∈ L2(Rd), thenZf is well-defined almost everywhere in
Rd × Rd. If f ∈ W 1

0 , thenZf is a well-defined, continuous
function onRd × Rd [17]. A simple exercise shows also that
(9) implies

Zf(x, ξ) = ei2πx·ξ Zf̂(ξ,−x). (12)

For a vector functionF = (f1, . . . , fn)T , we denote byZF
the vector(Zf1, . . . , Zfn)T .

III. E XACT SAMPLING

Here we sample on the lattice1mZ
d, i.e., we assume our

data are of the form
{
yk+j/m = f(k + j/m) + εk+j/m : k ∈ Zd, j ∈ Ωd

m

}

for some functionf ∈ V 2(Φ). For the sake of simplicity, we
denote the finite setΩd

m := Zd ∩ [0,m− 1]d, and we use the
notationj/m for 1

mj, wherem is a positive integer andj is
a vector inΩd

m. We also assume that form ≥ 1, the lattice
1
mZ

d is a set of sampling forV 2(Φ), i.e., there exist positive
constantsαm andβm satisfying

αm ‖f‖2L2 ≤
∑

j∈Ωd
m

∑

k∈Zd

|f(k + j/m)|2 ≤ βm ‖f‖2L2 , (13)

for all f ∈ V 2(Φ). Thus the collection of reproducing kernels
{Kk+j/m : k ∈ Zd, j ∈ Ωd

m} forms a frame forV 2(Φ), and
f ∈ V 2(Φ) is uniquely determined by its samples{f(k+ 1

mj) :
k ∈ Zd, j ∈ Ωd

m}.
Remark 2: It is reasonable to make the assumption that (13)

holds. From the results in [5], we know that there exists an
M ∈ N such that positiveαm and βm satisfying (13) exist
for all m ≥ M . Moreover, if positiveα1 andβ1 exist (i.e., if
Zd is a set of sampling forV 2(Φ)), then positiveαm andβm

exist for all m ∈ N.
Recall from the previous section thatf can be recovered from
its samples as follows:

f =
∑

j∈Ωd
m

∑

k∈Zd

〈
f, Kk+j/m

〉
K̃k+j/m (14)

=
∑

j∈Ωd
m

∑

k∈Zd

f(k + j/m)K̃k+j/m.

Given data{yk+j/m = f(k + 1
mj) + εk+j/m}, we define

fε,m :=
∑

j∈Ωd
m

∑

k∈Zd

yk+j/mK̃k+j/m.

The expected value and variance of the error between the
frame reconstructionfε,m and the exact functionf is a
function of the positionx, the oversampling factormd, and
the noise varianceσ2. The precise estimates and best constants
are given by the following theorem.

Theorem 3:Let Φ = (φ1, . . . , φr)T satisfyGΦ(ξ) = I a.e.
ξ, andφi ∈ W 1 ∩ C0, 1 ≤ i ≤ r. For m ∈ N, let αm, βm >
0 satisfy (13). Assume, for allk ∈ Zd and j ∈ Ωd

m, that
yk+j/m = f(k + j/m)+ εk+j/m for somef ∈ V 2(Φ), where
{εk+j/m} is a collection of i.i.d. random variables satisfying
E(εk+j/m) = 0, var(εk+j/m) = σ2 and εk+j/m ∈ [−N, N ]
for someN < ∞. ThenE(fε,m(x)− f(x)) = 0, and

var(fε,m(x)− f(x)) =
σ2

md
Cx(m),

whereCx(m) is given by (35), and we have

Cx(m) m→∞−→
r∑

i=1

∫

[0,1]d

∣∣∣Zφ̂i(−ξ,−x)
∣∣∣
2

dξ.

Remark 4: In the proofs of section III-A we show that
we can also obtain slightly suboptimal estimates that are
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independent ofm or x. In particular, for anyε > 0, there
exists a numberM ∈ N such that for allm ≥ M

var(fε,m(x)− f(x)) ≤ (1 + ε)σ2

md

(
r∑

i=1

∥∥φi
∥∥2

W 1

)

for all x ∈ Rd.

A. Exact Sampling inV 2(φ)

Before presenting the proof of the theorem above, we
illustrate the simpler case wherer = 1. In other words, our
underlying shift-invariant space has only one generatorφ. This
will also serve to lay the groundwork for the proof of Theorem
3.

Recall that the inequality (13) implies that{Kk+j/m : k ∈
Zd, j ∈ Ωd

m} is a frame forV 2(φ), where

Kk+j/m(x) =
∑

l∈Zd

φ(k + j/m− l)φ(x− l), (15)

and f can be reconstructed from its samples on the lattice
1
mZ

d as shown

f =
∑

j∈Ωd
m

∑

k∈Zd

〈
f, Kk+j/m

〉
K̃k+j/m

=
∑

j∈Ωd
m

∑

k∈Zd

f(k + j/m)K̃k+j/m.
(16)

Because our sampling set is uniform, we can find the Fourier
transform ofK̃k+j/m = S−1

m Kk+j/m explicitly. Recall, for
any f ∈ V 2(φ), that

(Smf)(x) =
∑

j∈Ωd
m

∑

k∈Zd

〈
f, Kk+j/m

〉
Kk+j/m(x). (17)

Notice that

Kk+j/m = Kj/m(· − k) for all k ∈ Zd.

We then apply the Fourier transform to (17), and get

(̂Smf)(ξ) =
∑

j∈Ωd
m

∑

k∈Zd

(
f ∗K∨

j/m

)
(k) e−i2πk·ξK̂j/m(ξ),

whereK∨
j/m(x) = Kj/m(−x).

Notice
∑

k∈Zd

(
f ∗K∨

j/m

)
(k) e−i2πk·ξ is the Fourier series

of the sequence whose terms are samples of the functionf ∗
K∨

j/m on the integer lattice. Thus, by (10) and properties (iii)
and (iv) of the Fourier transform, we have

(̂Smf)(ξ) =
∑

j∈Ωd
m


 ∑

k∈Zd

f̂(ξ + k)K̂j/m(ξ + k)


 K̂j/m(ξ).

For anyf =
∑

l∈Zd c(l)φ(·− l) in V 2(φ), we can use the fact
that convolution becomes multiplication in the Fourier domain
to expressf̂(ξ) = ĉ(ξ)φ̂(ξ). Thus we can use (8) and (15) to

showK̂j/m(ξ) = Zφ(j/m,−ξ)φ̂(ξ). Then we can write

(̂Smf)(ξ) =
∑

j∈Ωd
m

ĉ(ξ)


 ∑

k∈Zd

∣∣∣φ̂(ξ + k)
∣∣∣
2




× |Zφ(j/m,−ξ)|2 φ̂(ξ)

=


 ∑

j∈Ωd
m

|Zφ(j/m,−ξ)|2

 f̂(ξ) a.e.ξ.

Thus, for anyf ∈ V 2(φ), we have

̂(S−1
m f)(ξ) =


 ∑

j∈Ωd
m

|Zφ(j/m,−ξ)|2


−1

f̂(ξ) (18)

Specifically, for fixedj ∈ Ωd
m,

̂(S−1
m Kj/m)(ξ) =

( ∑

j′∈Ωd
m

|Zφ(j′/m,−ξ)|2
)−1

×Zφ(j/m,−ξ)φ̂(ξ). (19)

Using (18) and the fact that translation corresponds to mod-
ulation in the Fourier domain, it can easily be verified that
K̃

k+j/m
= S−1

m Kk+j/m = (S−1
m Kj/m)(· − k) = K̃

j/m
(· − k).

Remark 5:Using equation (13), one can verify that
0 < αm ≤ ∑

j∈Ωd
m
|Zφ(j/m,−ξ)|2 for all ξ, and hence

that the formulas (18) and (19) are well defined. In the
proof of Theorem 3, we will prove the stronger result
that whenm is large, there is a positive lower bound for
1

md

∑
j∈Ωd

m
|Zφ(j/m,−ξ)|2 that does not depend onm.

Given data{yk+j/m = f(k + 1
mj) + εk+j/m}, we define

fε,m :=
∑

j∈Ωd
m

∑

k∈Zd

yk+j/m(S−1
m Kk+j/m)

=
∑

j∈Ωd
m

∑

k∈Zd

yk+j/m(K̃j/m)(· − k).

We assume that the error{εk+j/m} is a collection of i.i.d.
random variables with mean zero and varianceσ2. A simple
calculation shows that

E(fε,m(x)−f(x)) =
∑

j∈Ωd
m

∑

k∈Zd

E(εk+j/m)(K̃j/m)(x−k) = 0.

We can compute var(fε,m(x)− f(x)).
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var(fε,m(x)− f(x))

= var


 ∑

j∈Ωd
m

∑

k∈Zd

εk+j/mK̃j/m(x− k)




= σ2
∑

j∈Ωd
m

∑

k∈Zd

∣∣S−1
m Kj/m(x− k)

∣∣2

= σ2
∑

j∈Ωd
m

∫

[0,1]d

∣∣∣∣∣∣
e−i2πx·ξ ∑

k∈Zd

ei2πx·k ̂S−1
m Kj/m(k − ξ)

∣∣∣∣∣∣

2

dξ

= σ2
∑

j∈Ωd
m

∫

[0,1]d

∣∣∣∣∣∣
∑

k∈Zd

ei2πx·k ̂S−1
m Kj/m(k − ξ)

∣∣∣∣∣∣

2

dξ

= σ2
∑

j∈Ωd
m

∫

[0,1]d

∣∣∣∣∣∣
∑

k∈Zd

ei2πx·k Zφ(j/m, ξ)φ̂(k − ξ)∑
j′∈Ωd

m
|Zφ(j′/m, ξ)|2

∣∣∣∣∣∣

2

dξ

= σ2

∫

[0,1]d

∑
j∈Ωd

m
|Zφ(j/m, ξ)|2

∣∣∣Zφ̂(−ξ,−x)
∣∣∣
2

∣∣∣∑j′∈Ωd
m
|Zφ(j′/m, ξ)|2

∣∣∣
2 dξ

=
σ2

md

∫

[0,1]d

∣∣∣Zφ̂(−ξ,−x)
∣∣∣
2

1
md

∑
j∈Ωd

m
|Zφ(j/m, ξ)|2 dξ

=
σ2

md
Cx(m).

Focusing on the denominator in the above calculation, we
notice

1
md

∑

j∈Ωd
m

|Zφ(j/m, ξ)|2 m→∞−→
∫

[0,1]d
|Zφ(t, ξ)|2 dt

for all ξ ∈ [0, 1]d. By further investigating this denominator,
we find that

Lemma 6:For everyξ ∈ [0, 1]d,
∫
[0,1]d

|Zφ(t, ξ)|2 dt = 1.
Proof:∫

[0,1]d
|Zφ(t, ξ)|2 dt

(12)=
∫

[0,1]d

∣∣∣Zφ̂(ξ,−t)
∣∣∣
2

dt

=
∫

[0,1]d

∣∣∣∣∣∣
∑

k∈Zd

φ̂(ξ + k)ei2πt·k

∣∣∣∣∣∣

2

dt

=
∑

k∈Zd

∣∣∣φ̂(ξ + k)
∣∣∣
2 (2)= 1 a.e.ξ

BecauseZφ is continuous,
∫
[0,1]d

|Zφ(t, ξ)|2 dt is a contin-

uous function ofξ. Therefore
∫
[0,1]d

|Zφ(t, ξ)|2 dt = 1 for
everyξ ∈ [0, 1]d.

¤
Now, for each positive integerm, define the function

gm(ξ) :=
1

md

∑

j∈Ωd
m

|Zφ(j/m, ξ)|2 ξ ∈ [0, 1]d.

Lemma 6 tells us thatgm(ξ) → 1 pointwise. In fact, it will be
shown in the proof of Theorem 3 thatgm converges uniformly
to the constant function 1 on the unit cube[0, 1]d.

Therefore, for anyε > 0, there exists a numberM ∈ N
such that for allm ≥ M , sampling on the lattice1mZ

d gives
the estimate

var(fε,m(x)− f(x)) ≤ (1 + ε)σ2

md

∫

[0,1]d

∣∣∣Zφ̂(−ξ,−x)
∣∣∣
2

dξ.

(20)
Using the argument from the above proof of Lemma 6, we
can see that, equivalently, for large enoughm, we have

var(fε,m(x)− f(x)) ≤ (1 + ε)σ2

md

∑

k∈Zd

|φ(x + k)|2

for every x ∈ Rd. In other words, we obtain the slightly
suboptimal estimate that depends onx but does not depend
on m for large m. Also notice that var(fε,m(x) − f(x)) is
periodic with period 1. Then for anyx ∈ [0, 1]d,

∑

k∈Zd

|φ(x + k)|2 ≤

 ∑

k∈Zd

sup
x∈[0,1]d

|φ(x + k)|



2

= ‖φ‖2W 1 ,

(21)
giving the coarser estimate from Remark 4 that does not
depend onx or m.

IV. AVERAGE SAMPLING

Here we assume our data are of the form
{ 〈

f, ψi(· − (k + j/m))
〉

+ εi
k+j/m :

k ∈ Zd, j ∈ Ωd
m, 1 ≤ i ≤ s

}
(22)

for somef ∈ V 2(Φ) and some real-valued vector function
Ψ = (ψ1, . . . , ψs)T , whereΨ ∈ [

L1(Rd) ∩ L2(Rd)
](s)

. We
use the notationψi

k+j/m to denoteψi(· − (k + j/m)). We

continue to assumeΦ ∈ (
L2(Rd)

)(r)
satisfies (2) and that

Φ ∈ (
W 1

0

)(r)
.

In order to recover a functionf in V 2(Φ) from its weighted
averages using shifts of the functionsψi, Ψ must satisfy certain
conditions. We require that the Grammian

GΨ(ξ) :=
∑

k∈Zd

Ψ̂(ξ + k)Ψ̂(ξ + k)
T

be bounded, i.e. there exists a numberη such thatGΨ(ξ) ≤
ηI, a.e.ξ ∈ Rd [5]. Furthermore, we assumeΨ is such that,
for eachm ∈ N, there exist positive constantsαm and βm

satisfying

αm ‖f‖22 ≤
s∑

i=1

∑

j∈Ωd
m

∑

k∈Zd

∣∣∣
〈
f, ψi

k+j/m

〉∣∣∣
2

≤ βm ‖f‖22 (23)

for all f in V 2(Φ). Finally, we also assume

lim
N→∞

sup
ξ∈[0,1]d

s∑

i=1

∑

|k|≥N

∣∣∣ψ̂i(ξ + k)
∣∣∣
2

= 0. (24)

Condition (24) comes from [5] and serves to exclude patholog-
ical examples. Because condition (23) is satisfied,f ∈ V 2(Φ)
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is uniquely determined by, and can be stably reconstructed
from, the collection

{〈f, ψi(· − (k + j/m))
〉

: k ∈ Zd, j ∈ Ωd
m, 1 ≤ i ≤ s}.

Recall thatψi is not necessarily inV 2(Φ), so although (23) is
satisfied, the collection{ψi

k+j/m} does not constitute a frame
for V 2(Φ). As in [1], consider the orthogonal projectionP
from L2(Rd) onto V 2(Φ), and define

θi
k+j/m := Pψi

k+j/m.

Then for allf ∈ V 2(Φ),
〈
f, θi

k+j/m

〉
=

〈
f, Pψi

k+j/m

〉
=

〈
Pf, ψi

k+j/m

〉
=

〈
f, ψi

k+j/m

〉
.

Thus condition (23) implies that{θi
k+j/m : k ∈ Zd, j ∈

Ωd
m, 1 ≤ i ≤ s} forms a frame forV 2(Φ). Furthermore, using

the orthonormality of{φl(· − k)}, we can write

θi
k+j/m(x) =

r∑

l=1

∑

n∈Zd

〈
θi

k+j/m, φl(· − n)
〉

φl(x− n)

=
r∑

l=1

∑

n∈Zd

〈
ψi

k+j/m, φl(· − n)
〉

φl(x− n),

and we see thatθi
k+j/m = θi

j/m(· − k). There exists a dual

frame{θ̃i
k+j/m : k ∈ Zd, j ∈ Ωd

m1 ≤ i ≤ s}, defined by

θ̃i
k+j/m := S−1

m θi
k+j/m,

whereSm is the frame operator onV 2(Φ) corresponding to
the frame{θi

k+j/m}, i.e.

Smf =
s∑

i=1

∑

j∈Ωd
m

∑

k∈Zd

〈
f, θi

k+j/m

〉
θi

k+j/m. (25)

Then for any scalar-valued sequence{ai
k+j/m : k ∈ Zd, j ∈

Ωd
m, 1 ≤ i ≤ s} satisfying

s∑

i=1

∑

j∈Ωd
m

∑

k∈Zd

∣∣∣ai
k+j/m

∣∣∣
2

< ∞,

the function defined by
s∑

i=1

∑

j∈Ωd
m

∑

k∈Zd

ai
k+j/m θ̃i

k+j/m

is in V 2(Φ) [15]. Furthermore, we have the following recon-
struction formula for any functionf ∈ V 2(Φ):

f =
s∑

i=1

∑

j∈Ωd
m

∑

k∈Zd

〈
f, ψi

k+j/m

〉
θ̃i

k+j/m. (26)

Given data{
yi

k+j/m =
〈
f, ψi

k+j/m

〉
+ εi

k+j/m

}
, (27)

we define

fε,m :=
s∑

i=1

∑

j∈Ωd
m

∑

k∈Zd

yi
k+j/m θ̃i

k+j/m. (28)

In the case of average sampling, we arrive at results for
var(fε,m(x) − f(x)) similar to those of Theorem 3. Forξ ∈
[0, 1]d, define the self-adjoint matrix

GΨ
Φ(ξ) :=

s∑

i=1

∑

k∈Zd

Φ̂(ξ + k)Φ̂(ξ + k)
T ∣∣∣ψ̂i(ξ + k)

∣∣∣
2

.

As in Theorem 3, the expected value and variance of the error
between the frame reconstructionfε,m and the exact function
f is a function of the positionx, the oversampling factormd,
and the noise varianceσ2. The precise estimates and best
constants are given by the following theorem.

Theorem 7:Let Φ = (φ1, . . . , φr)T satisfy GΦ(ξ) = I
a.e. ξ, and φi ∈ W 1 ∩ C0, 1 ≤ i ≤ r. AssumeGΨ(ξ) ≤
ηI, a.e.ξ ∈ Rd and also that equations (23) and (24) are
satisfied. Assume, for allk ∈ Zd, j ∈ Ωd

m, and1 ≤ i ≤ s, the
data {yi

k+j/m} are of the form (27) for somef ∈ V 2(Φ),
where {εi

k+j/m} is a collection of i.i.d. random variables
satisfyingE(εi

k+j/m) = 0, var(εi
k+j/m) = σ2, andεi

k+j/m ∈
[−N, N ] for someN < ∞. Then E(fε,m(x) − f(x)) = 0,
and

var(fε,m(x)− f(x)) =
σ2

md
Dx(m),

whereDx(m) is given by (39), and

Dx(m)
m→∞−→

∫

[0,1]d
ZΦ̂(−ξ,−x)

T (
GΨ

Φ(ξ)
)−1

ZΦ̂(−ξ,−x) dξ.

Remark 8: In [5] it is shown that (23) and (24) imply that
there exists a positive numberδ0 such thatδ0I ≤ GΨ

Φ(ξ) for
all ξ. It follows from (21) that there exists a numberδ > 0
and a numberM ∈ N such that for everym ≥ M , we obtain
the suboptimal but uniform estimate:

var(fε,m(x)− f(x)) ≤ σ2

md

(
1
δ

) (
r∑

n=1

‖φn‖2W 1

)

for all x ∈ Rd.

A. Average Sampling inV 2(φ)
Once again, before presenting the proof of the theorem

above, we will lay the groundwork for that proof by illustrating
the simpler case wherer = 1. In other words, our underlying
shift-invariant space has only one generator,φ.

As we did in the example in the previous section, in this
uniform case, we can find the Fourier transform ofθ̃i

k+j/m =
S−1

m θi
k+j/m explicitly.

Let Sm be the frame operator onV 2(φ) associated to the

frame
{

θi
k+j/m : k ∈ Zd, j ∈ Ωd

m, 1 ≤ i ≤ s
}

. Recall that

(Smf)(x) =
s∑

i=1

∑

j∈Ωd
m

∑

k∈Zd

〈
f, ψi

k+j/m

〉
θi

k+j/m(x), (29)

θi
k+j/m(x) =

∑

l∈Zd

〈
ψi

k+j/m, φ(· − l)
〉

φ(x− l), (30)

and also thatθi
k+j/m = θi

j/m(· − k). For anyf ∈ V 2(φ),
we apply the Fourier transform to (29) and rewrite the inner
product as convolution to get

(̂Smf)(ξ) =

s∑
i=1

∑

j∈Ωd
m

∑

k∈Zd

(
f ∗ (ψi

j/m)∨
)

(k) e−i2πk·ξ θ̂i
j/m(ξ),
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where(ψi
j/m)∨(x) = ψi

j/m(−x).

Notice
∑

k∈Zd

(
f ∗ (ψi

j/m)∨
)

(k) e−i2πk·ξ is the Fourier se-
ries of the sequence whose terms are samples of the function
f ∗(ψi

j/m)∨ on the integer lattice. Thus, by (10) and properties
(iii) and (iv) of the Fourier transform, we have

(̂Smf)(ξ) =
s∑

i=1

∑

j∈Ωd
m


 ∑

k∈Zd

f̂(ξ + k)ψ̂i
j/m(ξ + k)


 θ̂i

j/m(ξ).

Similarly, we can use (30) to show that

θ̂i
j/m(ξ) =


∑

l∈Zd

ψ̂i
j/m(ξ + l)φ̂(ξ + l)


 φ̂(ξ).

Notice that

∑

l∈Zd

φ̂(ξ + l)ψ̂i
j/m(ξ + l)

(10)=
∑

l∈Zd

(φ∨ ∗ ψi
j/m)(l)e−i2πl·ξ

=
∑

l∈Zd

(φ∨ ∗ ψi)(l − j/m)e−i2πl·ξ

=
∑

l∈Zd

(φ ∗ ψi∨)(j/m− l)e−i2πl·ξ

= Z(φ ∗ ψi∨)(j/m,−ξ).

Thus for anyf =
∑

l∈Zd c(l)φ(· − l) in V 2(φ), we have

(̂Smf)(ξ) =
s∑

i=1

∑

j∈Ωd
m

ĉ(ξ)
∣∣∣Z(φ ∗ ψi∨)(j/m,−ξ)

∣∣∣
2

φ̂(ξ)

=




s∑

i=1

∑

j∈Ωd
m

∣∣∣Z(φ ∗ ψi∨)(j/m,−ξ)
∣∣∣
2


 f̂(ξ),

and therefore

̂(S−1
m f)(ξ) =

f̂(ξ)
∑s

i=1

∑
j∈Ωd

m

∣∣Z(φ ∗ ψi∨)(j/m,−ξ)
∣∣2 (31)

provided that the denominator is nonzero. Then for fixedi and
j,

̂(S−1
m θi

j/m)(ξ) =
Z(φ ∗ ψi∨)(j/m,−ξ)φ̂(ξ)

∑s
i′=1

∑
j′∈Ωd

m

∣∣Z(φ ∗ ψi′∨)(j′/m,−ξ)
∣∣2 .

Using (31) and property (i) of the Fourier transform, it can
be verified thatS−1

m θi
k+j/m =

(
S−1

m θi
j/m

)
(· − k). Now we

can use (26) and (28) to begin computing var(fε,m(x)−f(x)).

var(fε,m(x)− f(x))

= var




s∑
i=1

∑

j∈Ωd
m

∑

k∈Zd

εi
k+j/mθ̃i

j/m(x− k)




= σ2
s∑

i=1

∑

j∈Ωd
m

∑

k∈Zd

∣∣∣S−1
m θi

j/m(x− k)
∣∣∣
2

= σ2
s∑

i=1

∑

j∈Ωd
m

∫

[0,1]d

∣∣∣∣∣∣
ei2πx·ξ ∑

k∈Zd

ei2πx·k ̂S−1
m θi

j/m(ξ + k)

∣∣∣∣∣∣

2

dξ

= σ2
s∑

i=1

∑

j∈Ωd
m

∫

[0,1]d

∣∣∣∣∣∣
∑

k∈Zd

ei2πx·k ̂S−1
m θi

j/m(ξ + k)

∣∣∣∣∣∣

2

dξ

=
σ2

md

∫

[0,1]d

∣∣∣Zφ̂(ξ,−x)
∣∣∣
2

∑s
i=1

1
md

∑
j∈Ωd

m

∣∣Z(φ ∗ ψi∨)(j/m,−ξ)
∣∣2 dξ

=
σ2

md
Dx(m).

Focusing on the denominator, we can see that

1
md

∑

j∈Ωd
m

∣∣∣Z(φ ∗ ψi∨)(j/m,−ξ)
∣∣∣
2

m→∞−→
∫

[0,1]d

∣∣∣Z(φ ∗ ψi∨)(t,−ξ)
∣∣∣
2

dt

for eachξ. In the proof of Theorem 7, we will see that this
convergence is uniform on[0, 1]d. Further analysis of this
denominator gives us:

Lemma 9:For everyξ ∈ [0, 1]d,

s∑

i=1

∫

[0,1]d

∣∣∣Z(φ ∗ ψi∨)(t,−ξ)
∣∣∣
2

dt ≥ δ > 0.

Proof:

s∑

i=1

∫

[0,1]d

∣∣∣Z(φ ∗ ψi∨)(t,−ξ)
∣∣∣
2

dt

(12)=
s∑

i=1

∫

[0,1]d

∣∣∣∣Z(φ̂ ∗ ψi∨)(−ξ,−t)
∣∣∣∣
2

dt

=
s∑

i=1

∫

[0,1]d

∣∣∣∣∣∣
∑

l∈Zd

φ̂(l − ξ)ψ̂i(l − ξ)ei2πt·l

∣∣∣∣∣∣

2

dt

=
s∑

i=1

∑

l∈Zd

∣∣∣∣φ̂(l − ξ)ψ̂i(l − ξ)
∣∣∣∣
2

=
s∑

i=1

∑

l∈Zd

∣∣∣φ̂(l − ξ)
∣∣∣
2 ∣∣∣ψ̂i(l − ξ)

∣∣∣
2

.

In [5] it is shown that (23) and (24) imply that
there exists a positive numberδ such that δ ≤∑s

i=1

∑
l∈Zd

∣∣∣φ̂(l − ξ)
∣∣∣
2 ∣∣∣ψ̂i(l − ξ)

∣∣∣
2

for all ξ.

¤

Therefore, using this lemma and (21), we see that there
exists a numberM ∈ N such that for allm ≥ M , average
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sampling on 1
mZ

d gives

var(fε,m(x)− f(x)) ≤ σ2

md

(
2
δ

)
‖φ‖2W 1 for all x ∈ Rd.

V. PROOFS

A. Proof of Theorem 3

We wish to compute the variance of the error as in Section
III-A. First we must findS−1

m Kj/m explicitly. In section III-A
we showed that

(̂Smf)(ξ) =
∑

j∈Ωd
m


 ∑

k∈Zd

f̂(ξ + k)K̂j/m(ξ + k)


 K̂j/m(ξ).

For anyf =
∑

l∈Zd C(l)T Φ(· − l) in V 2(Φ), we then get

(̂Smf)(ξ) = Ĉ(ξ)T


 ∑

j∈Ωd
m

ZΦ(j/m,−ξ)ZΦ(j/m,−ξ)T


 Φ̂(ξ)

a.e. ξ. Notice in the equation above that(∑
j∈Ωd

m
ZΦ(j/m,−ξ)ZΦ(j/m,−ξ)T

)
is a self-adjoint

r × r matrix. Define the matrix

Am(ξ) :=
∑

j∈Ωd
m

ZΦ(j/m,−ξ)ZΦ(j/m,−ξ)T .

Remark 10:It can be shown thatαmI ≤ Am(ξ) for all ξ,
and hence the matrixAm(ξ) is invertible. Instead, for large
m we provide a stronger result in Lemma 11 below. Still,
it should be noted that the following formulas (32) and (33)
make sense as long as (13) holds.
Therefore, we have

̂(S−1
m f)(ξ) = Ĉ(ξ)T (Am(ξ))−1 Φ̂(ξ). (32)

Finally, using (15) and (32), for any fixedj ∈ Ωd
m we have

̂(S−1
m Kj/m)(ξ) = ZΦ(j/m,−ξ)T (Am(ξ))−1 Φ̂(ξ). (33)

Using (32) and the fact that translation corresponds to
modulation in the Fourier domain, it can easily be verified
that S−1

m Kk+j/m = (S−1
m Kj/m)(· − k) = K̃j/m(· − k).

We are now ready to compute the expected value and the
variance of the error(fε,m(x)− f(x)).

E(fε,m(x)−f(x)) =
∑

j∈Ωd
m

∑

k∈Zd

E(εk+j/m)K̃j/m(x−k) = 0

and

var(fε,m(x)− f(x))

= var


 ∑

j∈Ωd
m

∑

k∈Zd

εk+j/mK̃j/m(x− k)




= σ2
∑

j∈Ωd
m

∑

k∈Zd

∣∣S−1
m Kj/m(x− k)

∣∣2

= σ2
∑

j∈Ωd
m

∫

[0,1]d

∣∣∣∣∣∣
e−i2πx·ξ ∑

k∈Zd

̂S−1
m Kj/m(k − ξ)ei2πk·x

∣∣∣∣∣∣

2

dξ

= σ2
∑

j∈Ωd
m

∫

[0,1]d

∣∣∣∣∣∣
∑

k∈Zd

̂S−1
m Kj/m(k − ξ)ei2πk·x

∣∣∣∣∣∣

2

dξ

= σ2

∫

[0,1]d

∑

j∈Ωd
m

∣∣∣ZΦ(j/m, ξ)T (Am(ξ))−1
(
ZΦ̂(−ξ,−x)

)∣∣∣
2

dξ.

The matrix(Am(ξ))−1 is self-adjoint because it is the inverse
of a self-adjoint matrix. Next we use the fact thataT Ab =
bT Aa for any vectorsa and b and any self-adjoint matrixA,
and hence

∣∣aT Ab
∣∣2 = aT AbaT Ab = b

T
AaaT Ab. (34)

If
(
aaT

)−1 = A, then we haveb
T
Ab. Now we have

var(fε,m(x)− f(x))

= σ2

∫

[0,1]d

(
ZΦ̂(−ξ,−x)

)T
(Am(ξ))−1

(
ZΦ̂(−ξ,−x)

)
dξ

=
σ2

md

∫

[0,1]d

(
ZΦ̂(−ξ,−x)

)T
(

1

md
Am(ξ)

)−1 (
ZΦ̂(−ξ,−x)

)
dξ

=
σ2

md
Cx(m)

(35)

Lemma 11:For everyε > 0 there is a numberM ∈ N such
that for everym ≥ M

(1− ε)I ≤ 1
md

Am(ξ) for all ξ ∈ [0, 1]d.
We prove this lemma in Section V-B.

Using Lemma 11, we conclude that there is a number
M ∈ N such that for allm ≥ M , sampling on the set1mZ

d

gives

var(fε(x)− f(x))

≤ (1 + ε)σ2

md

∫

[0,1]d

(
ZΦ̂(−ξ,−x)

)T (
ZΦ̂(−ξ,−x)

)
dξ.

=
(1 + ε)σ2

md

r∑

i=1

∫

[0,1]d

∣∣∣Zφ̂i(−ξ,−x)
∣∣∣
2

dξ.

In section III-A, we saw that
∫

[0,1]d

∣∣∣Zφ̂i(−ξ,−x)
∣∣∣
2

dξ

=
∑

k∈Zd

∣∣φi(x + k)
∣∣2 ≤

∥∥φi
∥∥2

W 1

for all x ∈ Rd. Thus whenm is large enough,
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var(fε,m(x)− f(x))

≤ (1 + ε)σ2

md




r∑

i=1


 ∑

k∈Zd

∣∣φi(x + k)
∣∣2







≤ (1 + ε)σ2

md

(
r∑

i=1

∥∥φi
∥∥2

W 1

)
for all x ∈ Rd.

¤

B. Proof of Lemma 11

Notice that, for 1 ≤ n, n′ ≤ r, the (n, n′)-entry of
1

md Am(ξ) is

[
1

md
Am(ξ)

]

(n,n′)

=
1

md

∑

j∈Ωd
m

(Zφn(j/m, ξ))
(
Zφn′ (j/m, ξ)

)

=
1

md

∑

j∈Ωd
m


 ∑

l∈Zd

∑

k∈Zd

φn(j/m− l)φn′ (j/m− l− k)e−i2πk·ξ



=
∑

k∈Zd

e−i2πk·ξ 1

md

∑

j∈Ωd
m


 ∑

l∈Zd

φn(j/m− l)φn′ (j/m− l− k)


 .

Taking the limit asm goes to infinity, we have

lim
m→∞

[
1

md
Am(ξ)

]

(n,n′)

=
∑

k∈Zd

e−i2πk·ξ
∫

Rd

φn(x)φn′(x− k) dx = δn,n′ .

Thus the diagonal entries of the matrix converge to 1 and the
off-diagonal entries of the matrix converge to 0 for eachξ.

Now we will show the collection{[
1

md Am(·)]
(n,n′) : m ∈ N

}
is equicontinuous and conclude

that convergence is uniform on the unit cube[0, 1]d. Recall
that a collectionG of continuous functions on[0, 1]d is
equicontinuous if for everyε > 0 there is aδ > 0 such that
for all g ∈ G, |g(ξ1)− g(ξ2)| < ε for all ξ1, ξ2 ∈ [0, 1]d

satisfying|ξ1 − ξ2| < δ.
Let 1 ≤ n, n′ ≤ r. Let ε > 0. There exists a numberN ∈ N

such that
∑

|l|>N

sup
x∈[0,1]d

|φn(x− l)| < ε

6 ‖φn′‖W 1

.

Then there exists a numberN ′ ∈ N such that
∑

|k|>N ′
sup

x∈[0,1]d

∣∣∣φn′(x− l − k)
∣∣∣ <

ε

6 ‖φn‖W 1

for all l such that|l| ≤ N. Then there exists a numberδ > 0
such that whenever|ξ1 − ξ2| < δ,

∣∣e−i2πk·ξ1 − e−i2πk·ξ2
∣∣ <

ε

3 ‖φn‖W 1 ‖φn′‖W 1

for everyk such that|k| ≤ N ′. Notice

∣∣∣∣∣
[

1
md

Am(ξ1)
]

(n,n′)
−

[
1

md
Am(ξ2)

]

(n,n′)

∣∣∣∣∣

=
∣∣∣ 1
md

∑

j∈Ωd
m

∑

l∈Zd

φn(j/m− l)

×
∑

k∈Zd

φn′(j/m− l − k)
(
e−i2πk·ξ1 − e−i2πk·ξ2

) ∣∣∣

≤ 1
md

∑

j∈Ωd
m

[ ∑

|l|≤N

|φn(j/m− l)|

×
( ∑

|k|≤N ′

∣∣∣φn′(j/m− l − k)
∣∣∣
∣∣e−i2πk·ξ1 − e−i2πk·ξ2

∣∣

+
∑

|k|>N ′

∣∣∣φn′(j/m− l − k)
∣∣∣
∣∣e−i2πk·ξ1 − e−i2πk·ξ2

∣∣
)

+
∑

|l|>N

|φn(j/m− l)|
∑

k∈Zd

∣∣∣φn′(j/m− l − k)
∣∣∣

× ∣∣e−i2πk·ξ1 − e−i2πk·ξ2
∣∣
]

<
1

md

∑

j∈Ωd
m

( ε

3
+

ε

3
+

ε

3

)
= ε.

Thus the collection
{[

1
md Am(·)]

(n,n′) : m ∈ N
}

is equicon-

tinuous, and hence for each pair(n, n′),
[

1
md Am(·)]

(n,n′) →
δn,n′ uniformly on [0, 1]d.

Therefore, for anyε > 0, there is a numberM ∈ N such
that for all m ≥ M∥∥∥∥

1
md

Am(ξ)− I

∥∥∥∥ < ε for all ξ ∈ [0, 1]d.

Hence our lemma is proved.

¤

C. Proof of Theorem 7

Once again, our objective is to compute the expected value
and the variance of

(
fε,m(x)− f(x)

)
, where in this case

f =
s∑

i=1

∑

j∈Ωd
m

∑

k∈Zd

〈
f, ψi

k+j/m

〉
θ̃i

k+j/m

and

fε,m :=
s∑

i=1

∑

j∈Ωd
m

∑

k∈Zd

yi
k+j/m θ̃i

k+j/m.

A simple calculation shows

E
(
fε,m(x)− f(x)

)

=
s∑

i=1

∑

j∈Ωd
m

∑

k∈Zd

E
(
εi
k+j/m

)
θ̃i

k+j/m(x) = 0.

To compute the variance, we first need to computeθ̃i
k+j/m =

S−1
m θi

k+j/m explicitly. In section IV-A, we showed that

(̂Smf)(ξ) =

s∑
i=1

∑

j∈Ωd
m


 ∑

k∈Zd

f̂(ξ + k)ψ̂i
j/m(ξ + k)


 θ̂i

j/m(ξ),

(36)
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and

θ̂i
j/m(ξ) =


∑

l∈Zd

ψ̂i
j/m(ξ + l)Φ̂(ξ + l)




T

Φ̂(ξ). (37)

Define the self-adjoint matrix

[Am]ΨΦ (ξ) :=
s∑

i=1

∑

j∈Ωd
m


∑

l∈Zd

Φ̂(ξ + l)ψ̂i
j/m(ξ + l)




×

 ∑

l′∈Zd

Φ̂(ξ + l′)ψ̂i
j/m(ξ + l′)




T

.

For any f =
∑

l∈Zd C(l)T Φ(· − l) in V 2(Φ), we see from
(36) and (37) that

(̂Smf)(ξ) = Ĉ(ξ)T
(
[Am]ΨΦ (ξ)

)
Φ̂(ξ).

DefineBi
j to be the coefficient vector sequence for the function

θi
j/m, i.e., Bi

j =
(
(bi

j)
1, . . . , (bi

j)
r
)T

, where (bi
j)

n(l) =〈
θi

j/m, φn(· − l)
〉

=
〈
ψi

j/m, φn(· − l)
〉

. Then

̂(Smθi
j/m)(ξ) = B̂i

j(ξ)
T

(
[Am]ΨΦ (ξ)

)
Φ̂(ξ). (38)

If [Am]ΨΦ (ξ) is invertible, then

̂S−1
m θi

j/m(ξ) = B̂i
j(ξ)

T
(
[Am]ΨΦ (ξ)

)−1

Φ̂(ξ).

Using property (i) of the Fourier transform, it can easily be
verified that

S−1
m θi

k+j/m = (S−1
m θi

j/m)(· − k) = θ̃i
j/m(· − k).

Remark 12:It can be shown thatαmI ≤ [Am]ΨΦ (ξ) for
almost everyξ, whereαm is the positive lower bound in (23).
Thus, for almost everyξ, [Am]ΨΦ (ξ) is invertible for every
m ≥ 1. However, for large enoughm, we will show a stronger
result below, namely that there is a positive numberδ (that
does not depend onm) such thatδI ≤ 1

md [Am]ΨΦ (ξ) for
everyξ.

We are now ready to compute var(fε,m(x)− f(x)).

var(fε,m(x)− f(x))

= var




s∑

i=1

∑

j∈Ωd
m

∑

k∈Zd
ε

i
k+j/mθ̃

i
j/m(x− k)




= σ
2

s∑

i=1

∑

j∈Ωd
m

∑

k∈Zd

∣∣∣S−1
m θ

i
j/m(x− k)

∣∣∣2

= σ
2

s∑

i=1

∑

j∈Ωd
m

∫

[0,1]d

∣∣∣∣∣∣
∑

k∈Zd

̂S−1
m θi

j/m
(k − ξ)e

i2πx·(k−ξ)

∣∣∣∣∣∣

2

dξ

= σ
2

s∑

i=1

∑

j∈Ωd
m

∫

[0,1]d

∣∣∣∣∣∣
∑

k∈Zd

̂S−1
m θi

j/m
(k − ξ)e

i2πx·k

∣∣∣∣∣∣

2

dξ

= σ
2

∫

[0,1]d

s∑

i=1

∑

j∈Ωd
m

∣∣∣∣B̂i
j(−ξ)

T
(
[Am]

Ψ
Φ (−ξ)

)−1 (
ZΦ̂(−ξ,−x)

)∣∣∣∣
2

dξ.

We notice that the matrix
(
[Am]ΨΦ (−ξ)

)−1

is self-adjoint,
and use the argument (34) from the proof of Theorem 3, along

with the fact that
s∑

i=1

∑

j∈Ωd
m

B̂i
j(−ξ)B̂i

j(−ξ)
T

= [Am]ΨΦ (−ξ),

to get

var
(
fε,m(x)− f(x)

)

= σ2

∫

[0,1]d

(
ZΦ̂(−ξ,−x)

)T (
[Am]ΨΦ (−ξ)

)−1

×
(
ZΦ̂(−ξ,−x)

)
dξ

=
σ2

md
Dx(m).

where

Dx(m) =
∫

[0,1]d

(
ZΦ̂(−ξ,−x)

)T
(

1
md

[Am]ΨΦ (−ξ)
)−1

×
(
ZΦ̂(−ξ,−x)

)
dξ. (39)

Lemma 13:There exists a numberδ > 0 and a number
M ∈ N such that for everym ≥ M ,

δI ≤ 1
md

[Am]ΨΦ (ξ) for all ξ ∈ [0, 1]d.
This lemma is proved in Section V-D. Thus for large

enoughm, we have

var
(
fε,m(x)− f(x)

)

≤ σ2

md

(
1
δ

) ∫

[0,1]d

r∑
n=1

∣∣∣Zφ̂n(−ξ,−x)
∣∣∣
2

dξ

=
σ2

md

(
1
δ

) 


r∑
n=1


 ∑

k∈Zd

|φn(x + k)|2






≤ σ2

md

(
1
δ

) (
r∑

n=1

‖φn‖2W 1

)
for all x ∈ Rd.

¤

D. Proof of Lemma 13

First, for ξ ∈ [0, 1]d, define the self-adjoint matrix

GΨ
Φ(ξ) :=

s∑

i=1

∑

k∈Zd

Φ̂(ξ + k)Φ̂(ξ + k)
T ∣∣∣ψ̂i(ξ + k)

∣∣∣
2

.

We will now show that

1
md

[Am]ΨΦ (ξ) m→∞−→ GΨ
Φ(ξ) for everyξ ∈ [0, 1]d,

i.e., for each ξ ∈ [0, 1]d, each entry of the matrix
1

md [Am]ΨΦ (ξ) converges to the corresponding entry of the
matrix GΨ

Φ(ξ). For 1 ≤ n, n′ ≤ r, we look at the(n, n′)-
entry of the matrix 1

md [Am]ΨΦ (ξ).
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(
1

md
[Am]ΨΦ (ξ)

)

(n,n′)

=
s∑

i=1

1
md

∑

j∈Ωd
m


 ∑

k∈Zd

φ̂n(ξ + k)ψ̂i
j/m(ξ + k)




×

 ∑

k′∈Zd

φ̂n′(ξ + k′)ψ̂i
j/m(ξ + k′)




=
s∑

i=1

1
md

∑

j∈Ωd
m

(
Z( ̂φn ∗ ψi∨)(ξ,−j/m)

)

×
(

Z( ̂φn′ ∗ ψi∨)(ξ,−j/m)
)

m→∞−→
s∑

i=1

∫

[0,1]d

(
Z( ̂φn ∗ ψi∨)(ξ,−x)

)

×
(

Z( ̂φn′ ∗ ψi∨)(ξ,−x)
)

dx

=
s∑

i=1

〈
qn,i
ξ , qn′,i

ξ

〉
L2([0,1]d)

where, for 1 ≤ l ≤ r, ql
ξ is the function on[0, 1]d whose

Fourier coefficientŝql,i
ξ (k) are given by

q̂l,i
ξ (k) = φ̂l(ξ + k)ψ̂i(ξ + k).

Invoking Plancherel identity, we have

s∑

i=1

〈
qn,i
ξ , qn′,i

ξ

〉
L2([0,1]d)

=
s∑

i=1

〈
q̂n,i
ξ , q̂n′,i

ξ

〉

l2(Zd)

=
s∑

i=1

∑

k∈Zd

φ̂n(ξ + k)φ̂n′(ξ + k)
∣∣∣ψ̂i(ξ + k)

∣∣∣
2

=
[
GΨ

Φ(ξ)
]
(n,n′)

Thus 1
md [Am]ΨΦ (ξ) m→∞−→ GΨ

Φ(ξ) for each ξ ∈
[0, 1]d. Now we claim, for fixed (n, n′), the collection{(

1
md [Am]ΨΦ (·)

)
(n,n′)

: m ∈ N
}

is equicontinuous, which

implies that
(

1
md [Am]ΨΦ (·)

)
(n,n′)

converges uniformly to
[
GΨ

Φ(·)]
(n,n′) on [0, 1]d.

In a manner similar to that in the proof of Lemma 11, it
can be verified that

(
1

md
[Am]ΨΦ (ξ)

)

(n,n′)

=
s∑

i=1

1
md

×
∑

j∈Ωd
m

∑

l∈Zd

∑

k∈Zd

(φn ∗ ψi∨)(j/m + l)

×(φn′ ∗ ψi∨)(j/m + l + k)e−i2πξ·k.

BecauseW 1 ∗ L1 ⊂ W 1, we know thatφn ∗ ψi∨ ∈ W 1, and
therefore, the argument from Lemma 11 can be used to show
the collection is equicontinuous.

In [5] it is shown that (23) and (24) imply that there exists
a positive numberδ0 such thatδ0I ≤ GΨ

Φ(ξ) for all ξ. Let

δ = δ0
2 . Because

(
1

md [Am]ΨΦ (·)
)

(n,n′)
converges uniformly

to
[
GΨ

Φ(·)]
(n,n′) on [0, 1]d, there exists a numberM ∈ N such

that for all m ≥ M

δI ≤ 1
md

[Am]ΨΦ (ξ) for all ξ.

¤

VI. D ISCUSSION AND EXAMPLES

A. Computational aspects

Theorems 3 and 7 give the exact values of the variance of
the reconstruction error in term of the positionx. These values
depend on the termsCx(m) andDx(m) that involve integrals
of expressions in the Zak transforms of the generatorΦ and
the samplerΨ. Although the computations can be obtained by
numerical calculations and integrations, several observations
can simplify these calculations and render them more precise.
In particular,Cx(m) in Theorem 3 whose expression is given
by (35) can be computed using any generatorΦ≈ generating
the same space asΦ, i.e.,V 2(Φ≈) = V 2(Φ). Moreover, using
(12), we can writeCx(m) as

Cx(m) =
∫

[0,1]d

(
ZΦ≈(x,−ξ)

)T
(

1
md

A≈m(ξ)
)−1

× (ZΦ≈(x,−ξ)) dξ,

where

A≈m(ξ) :=
∑

j∈Ωd
m

ZΦ≈(j/m,−ξ)ZΦ≈(j/m,−ξ)T .

We can also write an equivalent expression forCx(m) (thanks
to (12)) by replacingΦ≈ by Φ̂≈ in the two equations
above. If we know thatV 2(Φ) can be generated byΦ≈ =
(φ1, . . . , φr)T , where all theφis have compact support, then
the infinite sums in the Zak transforms become finite sums,
and no truncation is necessary. For this case, the terms
appearing in the integrand are trigonometric polynomials, and
the computation ofCx(m) become easier, more accurate and
precise, as in the example in Section VI-B below.

Similarly, the computation ofDx(m) can be obtained by a
similar formula

Dx(m) =
∫

[0,1]d

(
ZΦ≈(x,−ξ)

)T
(

1
md

[Am]ΨΦ≈ (ξ)
)−1

× (ZΦ≈(x,−ξ)) dξ,

where

[Am]ΨΦ≈ (ξ) :=
s∑

i=1

∑

j∈Ωd
m

(ZΦ≈ ∗ ψi(j/m,−ξ))

× (
ZΦ≈ ∗ ψi(j/m,−ξ)

)T
.
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We can also write an equivalent expression forDx(m) (thanks
to (12)) by replacingΦ≈ ∗ ψi by Φ̂≈ψ̂i in the two equations
above. However if we wish to compute the the limit ofCx(m)
or Dx(m) from their given expression in Theorems 3 and 7,
we must use a generatorΦ that generates an orthonormal basis
and not any generatorΦ≈.

B. Examples

For a single generatorφ, i.e., r = 1 which is often the case
in applications, the formula forCx(m) is given by

Cx(m) =
∫

[0,1]d

|Zφ(x,−ξ)|2
1

md

∑
j∈Ωd

m
|Zφ(j/m, ξ)|2 dξ.

ThereforeCx(m) is a periodic function ofx, i.e.,Cx+1(m) =
Cx(m). For the spline space models,Cx(m) can be easily
computed usingφ≈ = βn, n ≥ 1 which are compactly
supported generators. In fact for the spline space models,
explicit formulae can be obtained. In particular, for the linear
spline space (i.e.,n = 1) we have that

Cx(m) =

∫ 1

0

1− 4x cos2 πξ + 4x2 cos2(πξ)

1− 2(1− 1
m

) cos2 πξ + 2
3
(1− 1

m
)(2− 3

m
) cos2(πξ)

dξ

and

Cx(∞) = lim
m→∞

Cx(m)

=
∫ 1

0

1− 4x cos2 πξ + 4x2 cos2(πξ)
1− 2 cos2 πξ + 4

3 cos2(πξ)
dξ

wherex ∈ [0, 1], while for the quadratic spline model space
(i.e., n = 2),

Cx(m) =
∫ 1

0

P1(x, ξ)
m−1

∑m−1
j=0 P1(j/m, ξ)

dξ

and

Cx(∞) = lim
m→∞

Cx(m) =
∫ 1

0

P1(x, ξ)
11
10 + 13

15 cos 2πξ + 19
30 cos 4πξ

dξ

wherex ∈ [0, 1] andP1(x, ξ) = (1+3x2−6x3 +3x4)+(1−
4x2 +8x3−4x4) cos 2πξ +(x2−2x3 +x4) cos 4πξ. Similarly
for the cubic spline model (i.e.n = 3), we obtain that

Cx(m) =
∫ 1

0

P2(x, ξ)
m−1

∑m−1
j=0 P2(j/m, ξ)

dξ

and

Cx(∞) = lim
m→∞

Cx(m)

=
∫ 1

0

P2(x, ξ)
604
35 + 211

70 cos 2πξ + 12
7 cos 4πξ + 1

70 cos 6πξ
dξ

whereP2(x, ξ) = (18−18x2 +16x3 +42x4−60x5 +20x6)+
(16+24x2−18x3−66x4+90x5−30x6) cos 2πξ+(2−6x2+
30x4−36x5+12x6) cos 4πξ+(2x3−6x4+6x5−2x6) cos 6πξ.

Figures 1 showCx(m) for various values of the oversam-
pling parameterm, while Figure 2 shows the value ofDx(m)
for several values ofm for the case of average sampling. In
all cases the functionCx(m) and Dx(m) approach a limit
predicted by the theory.

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
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0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Fig. 1. Polynomial spline models for ideal sampling: (a) The function
Cx(m) for polynomial splines of degree one:m = 255 continuous line;
m = 4 dashed line;m = 2 dotted line. (b) The functionCx(m) for
polynomial splines of degree three:Cx(∞) continuous line;m = 4 dashed
line; m = 2 dotted line. Notice that at this scale, the two curves are almost
indistinguishable.

0 0.2 0.4 0.6 0.8 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Fig. 2. Polynomial spline of degree three: The functionDx(m) for
polynomial splines of degree three with average samplerψ = χ[0,1): Dx(∞)
continuous line;m = 4 dashed line;m = 2 dotted line. Notice that at this
scale, the three curves are almost indistinguishable.

For spaces that do not have any generator with compact
support, we can approximate the the infinite sums in the
formula by finite sums since the generatorφ has decay (recall
that we assume thatφ ∈ W 1), and the value ofCx(m) can
be found by numerical integration.

For the bandlimited case, the integrand is equal to1 for
all values ofx and ξ ∈ [0, 1). Thus for this caseCx(m) is
independent ofx and the variance of the error isσ

2

md .

Finally for the case of piecewise constants we have that the
variance of the error is independent ofx and it is given by
σ2

md .
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C. L2-estimates

The variance of the error between the reconstructed function
and the original function is given pointwise for eachx. The
knowledge of this pointwise variance is important in some
applications as in [24]. However, in other applications,L2

estimates are more appropriate, see e.g., [21]. Since our
assumption is that the noise{εk+j/m} is a collection of i.i.d.
random variables satisfyingE(εk+j/m) = 0, var(εk+j/m) =
σ2, the variance of theL2(Rd)-norm of the error is infinite
for eachm. This problem may be circumvented by assuming,
the more practical situation in which we have only a finite
number of samplesn. This type of analysis has been done for
the case of bandlimited functions by Pawlak, and Rafajlowicz
in [21] yielding an error estimate of orderO(n−1/3). We do
not analyze this situation in this paper. However, because of
the variance of the error isZd-periodic, it is natural to compute
the variance of theL2 error over a cube of side length1. Using
the assumption that the added noise is an i.i.d random variable,
it can be checked that this error can be computed directly from
the pointwise estimate and we get that

var(‖fε,m(x)− f(x)‖2L2(I)) =
σ2

md

∫

[0,1]d

Cx(m)dx,

where I is any unit cube inRd. Similarly, for the case of
reconstructions from averages we get

var(‖fε,m(x)− f(x)‖2L2(I)) =
σ2

md

∫

[0,1]d

Dx(m)dx.

VII. C ONCLUDING REMARKS

We have analyzed the frame reconstruction of a function
from its noisy samples. In our analysis, it is assumed that
the sampled functionf belongs to a shift invariant space
V 2(Φ) yielding an estimated reconstructed functionfε,m(x)
which is unbiased. It would be interesting to assume that
f does not belong to the reconstructed spaceV 2(Φ) (e.g.,
f belongs to some Sobolev space), and only finitely many
samplesn are available. Methods similar to the ones used by
Pawlak, Rafajlowicz, and Krzyzak in [23] may be possible
for such analysis. We also assume that the noise{εk+j/m} is
bounded. This technical assumption insures the convergence
of the infinite series in the frame reconstruction. However
formally, unbounded Gaussian noise yields the same exact
result, but a more technical mathematical justification would
be needed for the argument. Another interesting and important
situation is when the noise is colored. Such analysis for the
case of bandlimited signals as well as forL2 signals with some
regularity properties has been done in [23]. This situation is
not covered in this paper.
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