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Error Analysis of Frame Reconstruction from Noisy
Samples

Akram Aldroubi*, Casey Leonettl, Qiyu Surf

EDICS Sampling, extrapolation, and interpolation. [22], [8] and the references therein. In this paper, we pro-
vide error estimates for frame reconstruction of a continuous

Abstract—This paper addresses the problem of reconstructing function from a countable collection of sampled data that is
a continuous function defined onR* from a countable collection corrupted by noise, and give an exact formula for the variance

of samples corrupted by noise. The additive noise is assumed ) e .
to be iid. with mean zero and varianceo?. We sample the &S a function of the positiom, of the oversampling factar,

continuous function f on the uniform lattice %Zd, and show for and of the signal and sampling models.

large enoughm that the varignce of the error between the frame In particular, given datd” = {yj}jeJ of the formy; =
;thiosrf';t\:;(;(t}on Jzzg"_f;czr;))ngsggmflf;;g ia;ngqéhsegutr:;“nosr:a{] ) f(z;)+¢;, we analyze the frame reconstruction algorithm that
for every z G’Rd. We also pr(;?/(é a similar result in the case that produces a Contlngous _functl(f_g ffom the noisy samples =

our data are weighted-average samples of corrupted by additive {y; }jG_J of a functionf in a shift mvarlant_ space._ We assume
noise. the noise sequendg; } ;< to be a collection of i.i.d. random
variables with E=;) = 0 and vate;) = o%. We consider
uniform sets of sampling of the forrd-Z<, wherem is a
positive integer, and find precise estimates of( Yay, () —
f(x)) which is a function ofz.

l. INTRODUCTION We address fchis problem not only for exact sampling,
ut also for weighted average sampling as in [1] and [5].
ecifically, instead of assuming the ddtg },c; arise from

Index Terms—Sampling, reconstruction from averages,
frames.

Sampling and function reconstruction have been wide
studied in recent decades, particularly within the setting QAact samples off, we assume the data are of the form
shift-invariant spacegsee [1] - [9). However, the problem of """ (Fob(- — ;) ;ra. or evenyi = (f.4(- — z;)) + &
reconstructing a function in shift-invariant spaces from datd ' J J ) ’ J 7!

) \ ) <i< o = (!, ..., v%)T.
corrupted by noise has not been given as much attention. Eor i < s, for some vector functionk = (v, ..., ¥*)". In

bandlimited functions andi? with some regularity properties,ﬂ%s case, the uncorrupted data can be interpreted as weighted
. : i .’ averages off atz;.

Pawlak, Rafajlowowicz and Krzyzak give a reconstruction R ] o o

algorithms and detailed analyses of the error of reconstruction/Ve begin this paper by precisely defining and characterizing

for white noise, colored noise and finite samples [23], sé'ée underlyw_]g shlft-lnvgrlant space fr_om which our continuous

also [21]. In [12], Eldar and Unser provide optimal result§ignals originate. As is common in much of the current

for filtering noisy samples of signals from shift-invariant andesearch(see [1]-[5],[14), our underlying space will be of

bandlimited spaces. Smale and Zhou reconstruct signals fri#f form

noisy data in [25] and give error estimates for the reconstructed

signal. In [24] Rohde et al. show that reconstruction from

noisy data introduces spatial dependent artifacts that are un-  V?(®) = Z Ck)To(-—k):Ce (F)(T) 1)

desirable for sub-pixel signal processing. The main problem kezd

is that reconstruction from noisy samples introduces spatially-

dependent (or time-dependent) noise in the reconstructed sig-

nal. Thus, an accurate estimate of the noise at each poinf@f some real-valued vector functioh = (¢1, .. .,qbr)T €

the reconstructed signal is desirable. For a general review (&)™), where C = (c',...,¢")7 is a real-valued vector

reconstruction of functions from noisy samples we refer ®equence such that := {c'(k)}reze € 2, i€, C € (1),

_ _ Thus 37, cza C(R)T®(- — k) = 3211 Yopega ¢ (R)$7 (- — k).
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[I. NOTATION AND PRELIMINARIES K, € V?(®) satisfying (f, K,) = f(z) for all f € V2(®).

In fact, it can easily be shown that
We begin by defining/?(®) more precisely. As mentioned y

before, shift-invariant spaces are commonly used in sampling

models. Moreover, it is common to consider continuous shift- Ko(y)=>_ Y ¢'(x—1¢'(y—1). 3)

invariant spaces that are subspace£ ©fR?) in order to take i=11ezd

advantage of reproducing kernel Hilbert space properties. ) _ )
Let & = (¢1,...,4")T, wheregi : RY — R is a function Most of signal space models use the assumption ghat

W¢ :=Ww'nc (e.g., signals modelled with multiresolution
spaces, B-spline spaces of degree> 1). However, there
are two spaces that are often used that do not satisfy this
assumption. One of these spaces is the space of piecewise
constant case wherg= x|o,1) (Obviously this space does not
where! is ther x r identity matrix. Define the shift-invariant belong toC?). The other space is the space of bandlimited
space functions generated by = sinc which does not belong to
W1 (the bandlimited function space belongsié? for any
p > 1). However minor modifications show that both of these
V@) =< > Ck)T®(-—k): Ce ()" 5. spaces can be treated in similar ways). In particular, in both
kezd cases point evaluations are bounded linear functionals, and
the reproducing kernel for the bandlimited case has a simple
expression given by, (y) = ;4 sinc(z — 1) sinc(y—1) =

in L2(R4), and assum@ is such that

Gol(§) =) d(E+k)D Btk =1, aeferl (2)

kezd

Then V2(®) is a Hilbert spaceV?(®) is a subspace of

L*(R%), and {¢'(- — k) : 1 < i < rk € Z%} forms an - 2(dN e fi
' ) 5 =~ ) : nc(z — y). Once the underlying spadé?(®) is fixed, the
orthonormal basis fob*(2) [1], [3]. Assumption (2) insures ability to recover a functionf in V?(®) from its samples,

that {¢'(- — k) : 1 < i < r,k € Z%} is an orthonormal basis d d th ling S&t:— {z. :
for the spacd/?(®). However, what is important is the spac {fg X)i)j:g c;?r?tgblseosnubseef?ilfz]p Ing SEt:= {r; : j € J}-

2
V4(®) since there are many bases generating the same spac iefinition 1: We say that¥ is a set of sampling fo"2(a)
Some of these bases may be more useful for computatlo
ere exist positive constants and 3 such that
purposes or for certain applications as we will see below

Also assumep’ € W} := W nCY whereC? is the set < 4 < ‘ 2
e et o allfllz> < IHf @)}z exlliogn < Bllfllee, ¥ £ € VE(@).

4)
Notice that if X := {z; : j € J} is a set of sampling
wt={r: Z ess sup {|f(z+k)|} <ooy. for V2(®), then the collection{ K, } jc s forms a frame for
kezd  TE0,1]7 V2(®), which gives us the following stable reconstruction
formula for f € V2(®):
Under this assumptiori/?(®) is a space of continuous func-
tions [3]. Furthermore, with this assumption, for eachn f= Z (f,K.,) K., (5)

R4, the point evaluation mag — f(z), from V2(®) to R, is Jer
bounded. To see this, denote the sequenice) := ¢'(x —k),

and notice that for every € R, ||a;||ll(zd) < 6|y - Let where{K,,}c; is the canonical dual frame associated with

f= 23:1 > rezd & (k)p' (- — k) € V2(®). Then {Kq,}jes. Namely, K, = S~ 1Km , where S is the frame
) operator onV/?(®) assomated with the framgi,; }jes, i€
z)| < |¢'(k)| |6z — k)] _
;kgz:d Sf_;<f7KIj>sz’ (6)
J
= Z | ]az])e The operatolS is positive and invertible. Moreover, given any
N sequence < I*(J), the function}_ . ; c(; VK, is in V(®).
< Z HClH |ai H See [10] and [15] for more information and background on
— l2 ll
, frames.
- ) /2 , ., , 1/2 With data {y,, } _of the formy,, = f(z;) + ,,, we can
< (Z ||CZHz2> (Z Hd)ZHWl) estimatef by f., given by

r 1/2 fe ::Zymjkmj-
il|2 ,
(Z 2 HW1> 14 ze
=t Notice thatf. = f precisely when there is no noise, i.e. when
We conclude that point evaluation is a continuous linear, = 0 for all j € J. In this paper, our goal is to give
functional onV2?(®). Therefore, by the Riesz representatioestimates on the errdif.(z) — f(x)| in terms of the noise
Theorem, for every: € R?, there exists a reproducing kernebequencege,, }.

IN
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A. Fourier Analysis I1l. EXACT SAMPLING

Our analysis will heavily rely on the Fourier transform and Here we sample on the latticé Z%, i.e., we assume our
its properties. We denote the Fourier transform of a functigfata are of the form

€ L2(R%) by f and define ' .
! SRR {yk+j/m:f(k+.7/m)+5k+j/m:keZd,jlen}

O = fla)e2m€ dy ae.f eRY, (7) for some functionf € V?(®). For the sake of simplicity, we
R denote the finite se®?, := Z¢ N [0,m — 1]¢, and we use the
wherei = /—1. The functionf is also in L2(R%), and notationj/m for %j, wherem is a positive integer angd is

a vector inQ% . We also assume that fen > 1, the lattice
L7% is a set of sampling fob?(®), i.e., there exist positive
constantsy,, and 3, satisfying

1fllp2®ay = | £]l 2 may- Similarly, we denote the Fourier
series of a sequeneec 12(Z%) by ¢ and define

ae) =D clk)e™™ aece0AU @ o< 3 S 1S+ /m < Bull Sl (13)

d
keZ jeEQd kezZd

m

The functioncis in L*([0, 1]%), and||el| 2z = I[€ll 120,114y - for all f € V(). Thus the collection of reproducing kernels
The following properties of the Fourier transform will 1‘re-{Kk+j/m ck ez jeQdl forms a frame forV’2(®), and

quentlz\be used. R f € V2(®) is uniquely determined by its samplgs(k+ L) :

() 7, f(&) =e @ Ef(€)  wherer,f = f(-—y). kezdjeag}.

(i) f=f" where ¥ (z) = f(—z). Remark 2:Itis reasona_ble to make the assumption th_at (13)
(i) f/\v _ ? if f is real-valued. holds. From the result_s. in [5], we know _tha.t there eX|§ts an
(iv) m - f’g M € N such that positivev,,, and (3,,, satisfying (13) exist

' N for all m > M. Moreover, if positivea; and 3, exist (i.e., if

For vector functions” = (f',..., f*)", the notationF” will 74 is a set of sampling fob2(®)), then positivex,,, and 3y,
represent the vectdrf?, ..., f*)7. exist for allm € N.

Another valuable tool from Fourier analysis is the PoissdRecall from the previous section thAtcan be recovered from
Summation Formula. 15", ;. f(x + k) € L*([0,1]%), and if its samples as follows:

—~ 2
> kezd f(k)‘ < o0, then [ = Z Z (f Kitjm) Kitiym (14)
~ JEQL ke
k) = k)ei2mh-x ezeRY (9 ~
LI h= Dot aeacrt @ S YD ST
JEQL ke

More often we will use the equivalent version ) - )
Given data{yy;/m = f(k+ 5-J) + €ptj/m ), We define

Y _ —i2wk-& -
S FE+k) = flk)e aet  (10) o= S vs s

kezd kezd ,
JjeQd kezd

Notice the right-hand si f th tion is the Fouri .

seori(:,:: of tehe ie uaneSV\?r?osoe ter?n:i';lz :am Sl g’sc?nf tr?eu The expected value and variance of the error between the
. . d . amp frame reconstructionf.,, and the exact functionf is a
integer lattice. See [15] for an extensive review of the Fou“%nction of the positiorbc the oversampling factom?, and

transform and its properties. the noise variance?. The precise estimates and best constants
are given by the following theorem.
B. The Zak Transform Theorem 3:Let @ = (¢',...,¢")" satisfyGq(¢) =1 ae.
o & andg’! e WInC® 1<i<r. FormeN, leta,,, Bm >
The Zak transform of a functiorf is denotedZf and satisfy (13). Assume, for alk € Z? andj € Q¢ that

defined as Yrrjm = fk+j/m)+exy;/m for somef € VZ(®), where

B o i2nkee {€k+;/m} is @ collection of i.i.d. random variables satisfying
i) =D St~ k)e ' (1D E(ektjym) = 0, var(exrj/m) = 0> andeyj/m € [=N, N]
kezd
for someN < co. ThenE(f. m(x) — f(x)) =0, and
If fe L*(R?), thenZf is well-defined almost everywhere in o2
RY x R, If f € Wi, thenZf is a well-defined, continuous var(fem(v) — f(x)) = mCx(M),
function onR? x R? [17]. A simple exercise shows also that o
(9) implies whereC,(m) is given by (35), and we have
i2rx- Y m—o00 - " 2
Zf(w,€) = €27 Zf(€,~). (12) Cotm) "= Y [ [2d e ae
1= [Ovl]d
For a vector function®” = (f1,..., f™)T, we denote byZF Remark 4:In the proofs of section IlI-A we show that

the vector(Zf*, ..., Zf™)T. we can also obtain slightly suboptimal estimates that are
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independent ofn or . In particular, for anye > 0, there Showk; /(&) = Zé(j/m, —€)b(&). Then we can write
exists a numbed! € N such that for allm > M

1+e)o? [ < ; . ~ )
var(fem(z) — f(z)) < % (Zl [ ||3Vl> Smh)E) = > &9 (Z Bc + 5| )
. jeqd, kezd
for all z € R, " ‘Z¢(j/m,*§)|2$(§)
— o a2 |7
A. Exact Sampling if/2(¢) = (ng |Z¢(j/m, —&)| ) fl§) aed

Before presenting the proof of the theorem above, we
illustrate the simpler case where= 1. In other words, our
underlying shift-invariant space has only one generatdrhis
will also serve to lay the groundwork for the proof of Theorem
3

Thus, for anyf € V2(¢), we have

74,5 € Q) is a frame forV2(¢), where

. -1
Recall that the inequality (13) implies th&f<;, /., : k € (S/;f\f)(g) _ < Z \Zo(j/m, _§)|2) (o) (18)

JjeQd,

Kijym(@) =Y ¢k +j/m—Ngx—1), (15)

lezd Specifically, for fixedj € Q¢,,
alnddf can be reconstructed from its samples on the lattice
m " 28 shown (S Kyn)© = (X 126G m o)
_ o i'eng,
1= 2 2 R ’">~K’““/ " < 26(/m, ~€)3(©). (19)
= Z Z [k +3/m) Ky j/m-
j€Qy, kezd Using (18) and the fact that translation corresponds to mod-

Because our sampling set is uniform. we can find the l:Ouriulation in the Fourier domain, it can easily be verified that
o Png ’ = S Kty ym = (S K jm) (- = k) = K, (- = ).

transform of K1/, = S, Kiti/m explicitly. Recall, for = k+i/m m ifm
any f € V2(¢),k§fétm Frafm Remark 5:Using equation (13), one can verify that

0 < ap < Zjegitwqb(j/m, —&)? for all ¢, and hence
S f)(z) = F K i) Kow i 7m (). 17) that the formulas (18) and (19) are well defined. In the
( ) jezﬁ:d keZZd< ki) Kt (2) () proof of Theorem 3, we will prove the stronger result
that whenm is large, there is a positive lower bound for
Notice that = Zjeﬂdm |Z(j/m, —€)|? that does not depend on.

Kisym = K (- — k) tor all k € 74 Given data{yy;/m = f(k+ L) + €54 /m }, We define

We then apply the Fourier transform to (17), and get _
PpY ( ) g fs.,m = Z Z yk+j/m,(5m1Kk+j/m)

Gl = 3 3 (F#Km) () =K (), e ket
7€Qd, kezd ( ! ) ’ = Z Z Yt jm (K ym) (- — E).
JjEQL kezd

j/m

; Vv —i27k-§ i | . . ..
Notice 3.z (f ¥ Kj/m) (k) e is the Fourier series \ye a5sume that the erdey,/m} is a collection of i.i.d.

of the sequence whose terms are samples of the fungtion rangom variables with mean zero and varianée A simple
KY, . on the integer lattice. Thus, by (10) and properties (iig5jculation shows that
and (iv) of the Fourier transform, we have

WhereKJV/ () = Kj/pm(—x).

CHOEDS (Z f <f+k>m<€+k>> KO B(fm@)£@) = 3 3 Bleunsym) Kyym)a—h) =0,

; d d
JEm \kel jeqd, kezd

Foranyf =", c()¢(-—1) in V2(¢), we can use the fact
that convolution becomes multiplication in the Fourier domaiye can compute V&Y. . (z) — f(2)).

~ o~

to expressf (§) = ¢(£)¢(€). Thus we can use (8) and (15) to
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Therefore, for anye > 0, there exists a humbel/ € N

var(fem(x) = f(x)) such that for allm > M, sampling on the lattice- Z? gives
_ the estimate
=var Z Z Ek—o—j/ij/m((E — ]ﬂ) (1 + 6)0’2 R 2
JEQ, kezd var(fe,m(z) — f(z)) < T/ (¢, *f)‘ dg.
2 [0,1]¢
=a® > > IS Kipmlw — k)] (20)
jeqd, kezd Using the argument from the above proof of Lemma 6, we
2 can see that, equivalently, for large enoughwe have
_ 0_2 / e—i27mc-§ ei2ﬂx‘k5';11/l(\‘/m(k _ f) df 1+¢ 0_2
2o J vartfo () 1@)) < LEDT S o0 4 P
2 kezd
= g2 / Z el2mek g 1[( sm(k—&)| dé for every x € RZ In other words, we obtain the slightly
jeqd 01T 1y cga suboptimal estimate that depends worbut does not depend
2 on m for large m. Also notice that valf. ,,(z) — f(z)) is
T X »
_ 2 / Z pi2rak Z¢(j/m, €)(k — €) de periodic with period 1. Then for any € [0, 1],
jeqd, (0,1 | L c7a Ej’eQdm |Zo (5" /m7§)| 2
. 2|~ 2 $(x+ k) < sup oz + k)| | =65,
Y ooy 1206/m O 76 o] 2 1WerRf< |, s o+ bl = ol
[0,1]4 (21)

) co, 1206 m. 0P|

giving the coarser estimate from Remark 4 that does not

2 ’Zg(—& _x)r depend onc or m.
~md /[071]‘1 T Za‘eﬂfn 1Z6(i/m. )’ h IV. AVERAGE SAMPLING
= %Cz(m)- Here we assume our data are of the form
Focusing on the denominator in the above calculation, we {(f, P = (k4 3/m))) + €y /m :
notice

‘ o ) kezd, jeqd 1<i< s} (22)
o2 X 1Zetimef = [ (zete)
Jeggn (0.1} for some f € V?(®) and some real-valued vector function
U= (¢,...,¢%T, where¥ € [L'(R?) ﬂL2(}Rd)](S). We

for all ¢ € [0,1]¢. By further investigating this denominator, v ;
& < 10,1 By 9ating use the notation; , ., to denotey'(- — (k + j/m)). We

we find that
Lemma 6:For every¢ € [0, 1]¢, Jio.1ja |Zo(t,€)|* dt =1. continue to assumé e (LZ(Rd))(T) satisfies (2) and that
Proof: P c (Wol)(r)
2 . (12) ~ 2 In order to recover a functiofi in V2(®) from its weighted
/[0 174 |126(t,€)I" dt = /[O 174 (&, _t)‘ dt averages using shifts of the function§ ¥ must satisfy certain
’ ’ 2 conditions. We require that the Grammian
d) £+ k i27t-k dt
/[01} gzzd =) U(E+R)T Tk
9 kezd
oy @
= ’¢(5 + k)‘ = 1 aeg be bounded, i.e. there exists a numbesuch thatG'y (£) <
kezd nl, a.e.¢ € R? [5]. Furthermore, we assume is such that,
BecauseZ¢ is continuous fo e |Zp(t,€)|* dt is a contin- for_eaghm € N, there exist positive constants,, and j,,
uous function of¢. Thereforef[O e |26, O dt =1 for satisfying
every¢ € [0,1]4. - i 2
B HED DD I DY (FAT Y I AT
=1 5eQd kezd

Now, for each positive integen, define the function for all f in V2(®). Finally, we also assume
1

gm(€) = —5 > |Ze(i/m.Q)F  €e0.1]". .

jeqd lim sup

— 2
e+m =0 @9
N—=00¢efo,1)d

Lemma 6 tells us thag,,,(§) — 1 pointwise. In fact, it will be =t lklzN

shown in the proof of Theorem 3 that, converges uniformly Condition (24) comes from [5] and serves to exclude patholog-
to the constant function 1 on the unit cufge1]9. ical examples. Because condition (23) is satisfied, V2(®)
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is uniquely determined by, and can be stably reconstructedn the case of average sampling, we arrive at results for

from, the collection var(f. m(x) — f(z)) similar to those of Theorem 3. Fgre
, 0,1]¢, define the self-adjoint matrix
(b~ kb g/m)) ket jeat1<i<sy )
- 2

Recall that) is not necessarily ifV2(®), so although (23) is Z D (E+k)R(E+ k) PiE+ k)‘ :
satisfied, the collectiofiy;, " /m} does not constitute a frame i=1 kezd
for V2(®). As in [1], consider the orthogonal projectiad As in Theorem 3, the expected value and variance of the error
from L2(R?) onto V2(®), and define between the frame reconstructign,, and the exact function

; ; f is a function of the position, the oversampling factan?,

Ori/m = PUkijjm: and the noise variance?. The precise estimates and best

Then for all f € V2(®) constants are given by the following theorem.

Theorem 7:Let & = (¢',...,¢")" satisfy Go(¢) = T

<f,9;+j/m> :<f,Pw,@+j/m> :<Pf7¢;+j/m> :<f,w;'€+j/m>. ae.& and¢’ € WnC0% 1 < i < r. AssumeGy(§) <
4 nl, a.e.£ € R? and also that equations (23) and (24) are

Thus condition (23) implies tha{¢; ;. : k € Z%j € satisfied. Assume, for alt € Z¢, j € Q4 and1 < i < s, the

Q4 1 <i< s} forms a frame for/2(®). Furthermore, using data {yk_H/m} are of the form (27) for som¢g € V2(®),

the orthonormality of{¢'(- — &)}, we can write where {c},;,,} is a collection of i.id. random variables
satlsfyng(ekﬂ/m) 0, Var(sk+/ ) =o? andskJr m €
ot m (@ Z > <9L+]/m,¢ —n)>¢ (x—n) [N, N] for someN < oco. Then E(f. . (z ) — flz )) =0,
=1 nezd and 5
g
_Z 3 <¢kﬂ/m7¢ _n)>¢ (z —n), var(fe,m(2) = f(2)) = 5 Da(m),
=1 nezd where D, (m) is given by (39), and

and we see thaf 9;/m( k). There exists a dual

kea/m = 7 Du(m) "= [ 780 (G3O) 26 —a) de
y 1 d
frame {9k+ jym Pk € L5 5 €yl i< s}, defined by Remark 8:In[0[§] it is shown that (23) and (24) imply that

there exists a positive numbég such thatsoI < G¥(¢) for
all £. It follows from (21) that there exists a numbér> 0
where S, is the frame operator o?(®) corresponding to and a numben/ € N such that for everyn > M, we obtain
the frame{6; , ; ..} i.e. the suboptimal but uniform estimate:

2 1 "
f =Y Y ) g @9 ) = S0 < 5 (5) (Z ||¢"||€V1>

i=1 jeQd, kezd

0 . q—1pi
k+j/m *— Sm 0k+j/m7

, for all z € R,
Then for any scalar-valued sequen@né}wrj/m ckeZdje

Q4 1 <i < s} satisfying A. Average Sampling ifv?(¢)
s ' 9 Once again, before presenting the proof of the theorem
Z Z Z ‘afﬁj/m < 00, above, we will lay the groundwork for that proof by illustrating
i=1 jeQd kezd the simpler case where= 1. In other words, our underlying

shift-invariant space has only one generator,
As we did in the example in the previous section, in this

5 i ~ uniform case, we can find the Fourier transforrrﬁ@jrj Jm =
Z Z Z ktj/m Yk+tj/m

S Ohy i EXplicitly.

Let S,, be the frame operator o¥Vi?(¢) associated to the

is in V2(®) [15]. Furthermore, we have the following reconframe {9 keZdjed 1<i< 5} Recall that
struction formula for any functiorf € V2(®):

s . ~. Smf xr) = f7,¢l i/m 91 (@), (29)
f=2 2 Z<f,¢,§+j/m>9;€+j/m_ (26) () Z 2 Z< 27, > btj/m (2)

i=1 jeQd kezd

the function defined by

i=1 jeQd, kezd

k+j3/m *

i=1 jeQd, kezd

Given data Pisml2) = zez:zd <wk+j/m’ o - l>> ol —1),  (30)
{ylic-&-j/m = <f, ¢Iic+j/m> +€Z+j/m}7 (27) and also tha¥, ;,, = 0i,,(- — k). For any f € V?(¢),
. we apply the Fourler transform to (29) and rewrite the inner
we define product as convolution to get

:Z Z Z yi#?/m gliﬂrj/m' (28) (Sm Z Z Z ( w]/m )( )e_IQWk 59;/m(€)7

i=1 jeQd keZd i=1 jed kczd
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where (V5 )" (2) = v (=2). var(fo () ~ /(@)

Notice 3z (f ( §/m)v) (k) e~i27k¢ is the Fourier se- ) T

ries of the sequence whose terms are samples of the function ,, (i: Z Z b (@ — k:))
g/ mY3/m

I* (W m) on the integer lattice. Thus, by (10) and properties

=1 jeQd kezd
(iii) and (iv) of the Fourier transform, we have

3D D Sl o e

s - o = IJEQd keZd
— 7 2
a Z Z (Z f §+k §+k)) 0J/m<§) 2 l27'rz<§ i2ra-k /IT

i=1 jead, \kez =0 Z > > TSR €+ R)

d
=1 JGQd [0,1] kezd

dg

Similarly, we can use (30) to show that 2
=0 Z > / ek S 10;/m(§+k) d¢
=1 JGQd 0, 1] kEZd
]/m (Z wj/m E+ D)o §+l)) ‘E(g) o2 / ‘Z(;Ab(ﬁ,—a:)r
lezd = — —— d¢
© m o S0y A ¥ ens [Z(6x 1Y) (G/m, )|
. 2
Notice that — %Dw(m).
Z ¢ €+l tm(E 1) Focusing on the denominator, we can see that
lezd
0O S (¥ i, (1) S [y m, 0|
ez ]eﬂd
i ] —i2nl m— o0 ; 2
= 37 (6 # 0) (U — j/m)e 2 e 26+ 9™)(t,~€)| di
lezd [0,1]4
=> (6= W) (G /m — D2 for each¢. In the proof of Theorem 7, we will see that this
lezd convergence is uniform of0, 1]4. Further analysis of this
= Z(¢* wiv)(j/m —£). denominator gives us:

Lemma 9:For every¢ € [0, 1]¢,

Z/oud

Thus for anyf = >, .. c(l)¢(- — 1) in V3(¢), we have 9
(6 i), —5)‘ dt > 6> 0.

- s - Proof:
SO =32 3 @) |26+ )6i/m, =) 6(¢) 2
i=1jeQd, bt
s 2 Z/W (6= 0™)(t,~0)|
= Z(g ) (i/m,—€)| | F(©), 2
(;;’ ! ’) ‘12)2/ Z(@ i) (—&,—1)| dt

and therefore ?
_2/01 Zd)l_ W _5)127”1 dt
-0 £ lezd
(Sl 1)(€) = — © . @D o
Sict Ljean | Z(@x41)(j/m, =£)] - Z 3 [d— i —¢)
i=1]ezd
provided that the denominator is nonzero. Then for fikedd
3 —ZZ\W— | [7a-o "
i=1]ezd
Z(¢ bt ) (5 /m, —€)B(€) In [5] it is shown that (23) and (24) imply that

(Sim 192/7”)(5): s - 2°  there exists a positive numbed such that § <
! i Yean |Z(¢ %0 ) (' m, —€)] P =

~ 2|~ 2
S0 Sieza [0 = )] [0~ ) for all ¢.
Using (31) and property (i) of the Fourier transform, it can O
be verified thatS,.'0; ;. = (5.'0;,,,)(- — k). Now we
m m — \"m 7j/m . .
can use (26) and (28) to begin computing(yar,, (z) — f(z)). Therefore, using this lemma and (21), we see that there

exists a numbetM/ € N such that for allm > M, average
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sampling on-1Z? gives
var( fe.m(x) — f(z))

2
var(fe m(z) — f(z)) < 7(777 () 6]71 for all z € R%. _var< D> rriymKjmla — k))

jEQd kezd
2
= 2 Z Z !S /'m - )’
V. PROOFS jeay, kezd
2
_ —127mc 3 i27k-x
A. Proof of Theorem 3 =0 > / > Sl Ky (b — €)e dg
jeqd, kezd
We wish to compute the variance of the error as in Section ?
I1I-A. First we must findS,,' K ,,, explicitly. In section Ill-A = o’ Z / Z S K, Kjjm(k — €)™ de
we showed that jead, TN peza
~ 2
=0t [ 3 |zali/m o (4n(©) " (28(-¢ )| e
— —_\ .14 jcqa
SmhHE) = D | X FE+RE jm(€+E) | Kjym(©).
jeqd, \kezd The matrix(A,,(¢))”" is self-adjoint because it is the inverse

of a self-adjoint matrix. Next we use the fact thatt Ab =
Foranyf =3,c,: C()T®(- —1) in V(®), we then get b7 Aa for any vectorsa andb and any self-adjoint matrix,
and hence

. N R 2 — T . _

(Smf)(€) = C(¢ ( S Z8(j/m, —€)Z9(j/m, _§)T> B(¢) la” Ab|” = aT Aba™ Ab =b" Aaa” Ab. (34)
jeQd, B

If (aaT)71 = A, then we havé’ Ab. Now we have

a.e. & Notice in the equation above that
(Zjeﬂd Z@(j/m,—&)Z(b(j/m,—&)T) is a self-adjoint var(fe,m(z) — f(2))

r x r matrix. Define the matrix _ 02/ (za(, _x))T (Am(©)* (28(-¢. —2)) de
[0,1)4
= 0'2 . —=— -1 ~
An(&) =Y Z8(j/m, =2 (j/m, )" = 72 ) PFCE0) " (5An©) (786 —2) ae
jend, 2 o
Remark 10:1t can be shown that,,, ] < A,,(¢) for all £, (35)

and hence the matrix,, (¢) is invertible. Instead, for large L€mma 11:For everye > 0 there is a numbed/ € N such
m we provide a stronger result in Lemma 11 below. Stilfhat for everym > M

it should be noted that the following formulas (32) and (33) 1 4
make sense as long as (13) holds. I-al < —54n(§)  forall £e[0,1)%
Therefore, we have We prove this lemma in Section V-B.

Using Lemma 11, we conclude that there is a number
M € N such that for allm > M, sampling on the se;%Zd
gives

(Sml F)(€) = CE)T (A (€)' B(€). (32)

Finally, using (15) and (32), for any fixede Q4, we have
var(fe(z) — f(z))

— ~ 2 S

(S Kj/m)(€) = Z20(j/m, —&)" (Am (&) @(¢). (33) < %/ (Zc%(—g,—x))T (28(-¢. ) de.
m [0,1)¢

Using (32) and the fact that translation corresponds to_ 1+6 i/

modulation in the Fourier domain, it can easily be verified 0,1)4

that S, Ky jm = (S5 K m) (- = k) = Kjym (- — k).

We are now ready to compute the expected value and thesection IlI-A, we saw that

variance of the erroff. .. (z) — f(x)).

2
Zi(— az)‘ de.

/ A‘(—g,—x)f de
Z Y E (z—k)=0 o1
(fe-:m Ek /m /m - - _ l i
= = S ol <1l

and for all 2 € R?. Thus whenm is large enough,
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var(fe, m(w) - f(2))

< (1+6 Z Z |¢z +I€
i=1 \ kezd
2 T
< % (Z I|<z§’||ivl> for all z € R%.
=1

B. Proof of Lemma 11
Notice that, for1 < n,n’ < r, the (n,n')-entry of

L AL(€) s

[iAm(f)}
m (nnf)

— Y (26"Gi/m. ) (267 (i/m. )

JEQd

:md > (Z > ¢”(j/m—l)¢"’(j/m—z_k)ei2wk»5)

jeqd, \lezd kezd
_ 1 . r,
=D e Y (Z ¢"(j/m —D¢" (J/mlk)>~
kezd ]eQm lezd

Taking the limit asm goes to infinity, we have

| | An() e )] .
= [ Y Y em-y

JEQL leZd
% Z ¢n’ G/m—1—k) (e—izwk.gl _ e—i2nk-52) ‘
kezd
1 .
< > | X lenm )
jeqQd, <N
X( Z gb"/ (j/m - k)‘ |e—i27rk‘§1 N e—i27rk{2‘
kI<N”
+ Z ’¢n’ G/m—1— k)’ |e—i27rk-£1 _ e—i27rk-£2’)
|k|>N"
+ 310 Gm =Y |67 G/m =1 k)
|l|>N keZa
v |67i27rk-.£1 _ 67i27rk-£2|}

< 2 (55v) = e

Thus the coIIection{ [#Am(')](n py i E N} is equicon-
tinuous, and hence for each pair,n’), [ﬁAm(-)](" oy

Sn.n uniformly on [0, 1]%.
Therefore, for anyg > 0, there is a numbef/ € N such

lim [ZAm(g)} that for allm > M
m—oo | ™M
(n,n’) 1
— A (&) —1I||<e forall €e]o0,1]%
Z 6—127'rk§/ ¢n ) dr — 5nn md (5) 5 [ }
kezd Hence our lemma is proved.
Thus the diagonal entries of the matrix converge to 1 and the 0O

off-diagonal entries of the matrix converge to O for egch
Now we will show the

that convergence is uniform on the unit culge1]?. Recall
that a collectionG of continuous functions or0,1]¢ is
equicontinuous if for every > 0 there is aj > 0 such that
for all g € G, |9(&1) —g(&2)] < e forall &,& € [0,1]7
satisfying|&; — & < 4.

Letl <n,n’ <r.Lete > 0. There exists a numbéy € N
such that

€

616" [l

sup
|)|> N €[0:1]7

l¢"(z = D] <

Then there exists a numb@f € N such that

& (z sz)’ <

€

su S rTE—
g 616" oo

‘k|>N,x€[O,l]d

for all [ such that|l| < N. Then there exists a numbér> 0
such that whenevee; — &| < 4,

—i2nk-&5 €

311 s 110 [l
for everyk such thatk| < N’. Notice

—i2nwk-&;

’e —e ‘<

collection C. Proof of Theorem 7
{[WAm(')] (nnry - € Ny is equicontinuous and conclude  once again, our objective is to compute the expected value

and the variance of f-,,,(z) — f(xz)), where in this case

f*i Z Z <f77/}lic+j/M>§L+j/m

1=15eQd keZd

m

=2 > 2 Yhrism iy

i=1 jeQd, kezd

and

A simple calculation shows
E(fe,m(x) - f({E))
Z Z Z E <871;<:+j/'m> glif-‘rj/'m(‘r) =0.
1=1 jeQd, kezd

To compute the variance, we first need to com@g@j/m =
S1o explicitly. In section IV-A, we showed that

k+j/m
SID (Zféﬂf J/m£+k)> 6, (6),

i=1jeqQd \kezd
(36)

m f
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and

J/m (Zwﬁm E+0)9
lezd

Define the self-adjoint matrix

[Anm Z > (Z E+1) ]/m(£+l))

=1 jeqd,

| D@
l'ezd

Forany f = >, C()T
(36) and (37) that

(Smf) (&) =

(¢ + l)) o(6). (37

T
O+ 1), (€+l)) :

®(- — 1) in V2(®), we see from

Define B to be the coefficient vector sequence for the functiob
% (m)

()", (6))", where (b)"(1)
(43 #"(- = 1)). Then

Hl/m, ie., B]7
< j/ma¢n('_l)> =

—

(Smbl)(&) = Bi(©)" ([4n]

(SIS

(38)

If [Am]if (&) is invertible, then
S18,,0(6) = BI©)" (14nlE ©) $(6).
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with the fact that

> Y BoB-o

=1 JeQd

to get

where

Anl ()

(39)

—_— T 1
— ZH(—E. — —
_/[0,1]d< ( f’ w)) (md
x (Zci(fg, fg:)) de.
Lemma 13:There exists a number > 0 and a number

M € N such that for everyn > M,

§I < id [Ane (6)  forall ¢ e [0,1]%

This lemma is proved in Section V-D. Thus for large
enoughm, we have

Using property (i) of the Fourier transform, it can easily be

verified that

Remark 12:It can be shown thaty,, I < [Am]g (&) for
almost eveng, wherea,, is the ‘EOSIIIVG lower bound in (23).
Thus, for almost every, [A,,]; (£) is invertible for every
m > 1. However, for large enough, we will show a stronger
result below, namely that there is a positive numbe(that
does not depend om) such thatél < —L; [Am]f}f (&) for

every¢. "
We are now ready to compute Vg, () — f(z)).

k>>

S 10k+]/m

f(@))

_var(z > ¥ 87;6+j/WL§;/"L(z_

i=1jeqd kezd

var(fe,m(z) —

—Y Y Y [sa0lne - b

=1 jeqd kezd

2

:0'22 Z Z S 10L/ (k f) i27z-(k—¢) d§

=1 jeqa Y1004 |

s 2
—022 Z Z S 19@ (k e i27ax-k de

i=1;eqd 710 nd |

Bi v -1 ~ 2

=0 /0 Ja Bi(-&)T ([Am]q, (—5)) (Z(I)(—g, _x)) de.

i=1, end

-1
We notice that the matriﬁ[Am]i (=8 is self-adjoint,

and use the argument (34) from the proof of Theorem 3, aloegtry of the matrix#

o2 1 T Py 2
<2 (5 /WT;W (& —a)| de
= % (Z (Z |¢”(m+k>2))

kezd

D. Proof of Lemma 13
First, for ¢ € [0,1)¢, define the self-adjoint matrix

ZZ@&M

1=1 kezd

ek [vien|

We will now show that

1 m— 00
— Al () =GR foreveryg € [0,1)%,
i.e., for each¢ € [0,1]%, each entry of the matrix

# [Am]g (&) converges to the corresponding entry of the
matrix G (¢). For1 < n,n’ < r, we look at the(n,n’)-

4
[Amlg (£)-
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(1 [An]y (@) BecauseV! « L' ¢ W, we know thats™ x ¢’ € W', and
m? (n,n’) therefore, the argument from Lemma 11 can be used to show
the collection is equicontinuous.
i ( In [5] it is shown that (23) and (24) imply that there exists
= Z DI DICAER) g/m(5+ k) a positive numbe#, such thatd,I < G¥(¢) for all ¢. Let
]EQd kezd K3 1 o .
§ = 3. Because(m (Al (-))( , converges uniformly
% Z o' (€ + k’)qﬁ\(g K to [GE (- )}(nn) on [0, 1]¢, there exists a numbe¥/ € N such
Pt gfm that for allm > M
s 1
1 — . < v
=3 2 (2t e i) s falAnle € forall&
=1 jend
x (Z(w w”)(g,—j/m)) D
m—co Z/ < ¢,n w1piY) (€, _@) VI. DISCUSSION AND EXAMPLES
0,1] A. Computational aspects
% (Z(gb"’ % wiv)(g, w)) dx Theorems 3 and 7 give the exact values of the variance of
the reconstruction error in term of the positionThese values
N/ i i depend on the termS,(m) and D, (m) that involve integrals
- Z< Qe+ >L2 [0,1] of expressions in the Zak transforms of the generdtand

the sampler. Although the computations can be obtained by
where, forl < [ < X q£ is the function on[0, 1]¢ whose numerical calculations and integrations, several observations
can simplify these calculations and render them more precise.
In particular,C,,(m) in Theorem 3 whose expression is given
o ~ —_— by (35) can be computed using any generattr generating
q¢" (k) = ¢H(§ + k)i (€ + k). the same space ds i.e., V2(®~) = V2(®). Moreover, using
(12), we can writeC,,(m) as

Fourier coefﬂments; ( ) are given by

Invoking Plancherel identity, we have
—1

——\T (1 .
o Calm) = /W (76~(2,—9)) (mdA;(f))
;@5 e >L2<[o,11d> x (297 (x,—¢)) dE,
Ny /n\z where
_;@ - >12<Zd) A5(E) = Y ZO(j]m, —€)28(j/m, )",
s —_— 2 jeqd,
- i— %:d e ¢n €+ k) e+ k)‘ We can also write an equivalent expressiond(m) (thanks

)] to (12)) by replacing®® by ®~ in the two equations
(n.n/) above. If we know that/?(®) can be generated b®~ =

L o Moo v (¢',...,¢")T, where all theg’s have compact support, then
Thusd w7 [Amla () : .G‘I’ (©) 1:or each ¢ € the infinite sums in the Zak transforms become finite sums,
[0,1]*. Now we claim, for fixed (n,n’), the collection

= [G3(

and no truncation is necessary. For this case, the terms

(# [Am]g; (-)) im € N} is equicontinuous, which appearing in the integrand are trigonometric polynomials, and
o (rn?) - the computation of”;(m) become easier, more accurate and
implies that (# [Am]e (‘))(n oy COMVErges uniformly 10 precise, as in the example in Section VI-B below.

[G%()]( , on [0,1]. Similarly, the computation oD,.(m) can be obtained by a
In a manner similar to that in the proof of Lemma 11, igimilar formula
can be verified that _ /1 . -1
Dd,(m) = / (Z(b"‘(]}, _5)) <d [Am]q)~ (5))
[0 1]d m
1 v X (Z9(x, =) dE,
(md [Amle (§)> () where
= Z X 33D @ )G /m D) [Anle= (€) = > > (Z8%%4i(j/m,~5))
JjEQY, 1€z ke i=1jeQd

(" % i) fm 4+ 1+ k) 2mER, X (2 % (j/m, —€))"
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We can also write an equivalent expressionffor(m) (thanks 2
to (12)) by replacingb™ = 1)* by >4t in the two equations
above. However if we wish to compute the the limit@f(m)

or D,(m) from their given expression in Theorems 3 and 7,
we must use a generat@rthat generates an orthonormal basis
and not any generatap™.

B. Examples

For a single generata#, i.e.,» = 1 which is often the case 045 oz o o5 os 1
in applications, the formula fo€,,(m) is given by
Z - 2 1.25
= |
[0,1])¢ md Z]eﬂd |Z¢(]/m §)| 115F \\\ //

ThereforeC, (m) is a periodic function of, i.e.,C,1(m) = /
C,(m). For the spline space model€,.(m) can be easily i /

computed usings., = (",n > 1 which are compactly I
supported generators. In fact for the spline space models, 095y \ /
explicit formulae can be obtained. In particular, for the linear os}
spline space (i.en = 1) we have that ossl A\ /
Cz (m) _ /1 1—4x COS2 7l'§ + 4$2 COS2( 5) d 08 02 0a — 06 08 1

0o 1=2(1—L)cos?m&+ 2(1— L)(2— 2)cos?(n§)

Fig. 1.  Polynomial spline models for ideal sampling: (a) The function

and Cz(m) for polynomial splines of degree onexz = 255 continuous line;

. m = 4 dashed line;m = 2 dotted line. (b) The functiorCy(m) for
C’I‘(OO) = lgn Cx(m) polynomial splines of degree thre€; (co) continuous lineyn = 4 dashed
m 100 9 9 9 line; m = 2 dotted line. Notice that at this scale, the two curves are almost
_ / 1 — 4z cos?® m€ + 4z cos? (7€) indistinguishable.
0

1 — 2cos? 7€ + 5 cos?(m¢)

dg

wherez € [0, 1], while for the quadratic spline model space

(e, n=2),
18 N / b
/ Pl l‘ f) df 170 \\‘ ‘//
m—l Z 1(]/m,€) 16F \\\ ///
15t \ /
and 14 \\ /’/
1 | \ /
) P T 13 \ /
Cr(00) = lim Cy(m) = / il | 5) dg 2} \ /
m—o0 0I5 + cos 2m€ + cos A€ | / |
wherez € [0,1] and Py (z,€) = (1+32 — 62° +32) + (1 — e
42% + 823 — 42*) cos 27m€ + (22 — 223 + x*) cos 4n&. Similarly
for the cubic spline model (i.ex = 3), we obtain that Fig. 2.  Polynomial spline of degree three: The functién, (m) for
polynomial splines of degree three with average sampler x[g 1y Dq(00)
m P2 QE f) d continuous line;n = 4 dashed lineyn = 2 dotted line. Notice that at this
- m—1 Z P2 (j/m E) scale, the three curves are almost indistinguishable.
and

Co(00) = nllgnoc Cx(m) For spaces that do not have any generator with compact
1 pQ(x €) support, we can approximate the the infinite sums in the
= /0 @ i 211 cos 2mE + 12 cos47r§ + L cos 67r§d£ formula by finite sums since the generatohas decay (recall
that we assume that € W!), and the value of’,(m) can
wherePy(x,¢) = (18 — 1822 4 1623 +422* —60$5+20x6)+ be found by numerical integration.

2 3 4 5 2
(16+240® - 182° — 6% +902° — 30z° )COb 27T§+(2 6"+ For the bandlimited case, the integrand is equall tfor

30x*—362°+122%) cos dm&+ (222 —62* + 625 —225) cos 67¢. . :
Figures 1 showC, (m) for various values of the oversam-.aII values ofz and £ € [0,1). Thus for this cas&, (m) is

. 2
pling parametern, while Figure 2 shows the value @,.(m) independent ok and the variance of the error fg;.
for several values ofn for the case of average sampling. In Finally for the case of piecewise constants we have that the
all cases the functio’,(m) and D, (m) approach a limit ve;riance of the error is independent ofand it is given by
predicted by the theory.

md”
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C. L?-estimates

The variance of the error between the reconstructed functiq@]

and the original function is given pointwise for eachThe
knowledge of this pointwise variance is important in som
applications as in [24]. However, in other applicatiods,
estimates are more appropriate, see e.g.,
assumption is that the noige ;/,, } is a collection of i.i.d.
random variables satisfying(cj;/m) = 0, var(ex4j/m) =

o2, the variance of thd.?(R%)-norm of the error is infinite [7]
for eachm. This problem may be circumvented by assuming
the more practical situation in which we have only a finite
number of samples. This type of analysis has been done for
the case of bandlimited functions by Pawlak, and Rafajlowic!

in [21] yielding an error estimate of ord&(n~'/3). We do

not analyze this situation in this paper. However, because [0f]

the variance of the error B¢-periodic, it is natural to compute
the variance of thé? error over a cube of side length Using

the assumption that the added noise is an i.i.d random varialjie]
it can be checked that this error can be computed directly from
the pointwise estimate and we get that [13]

/ o [14]

[15]
where I is any unit cube inR%. Similarly, for the case of :

var([| fo,m (x) = f(2)l[72(r)

[01

reconstructions from averages we get

var(|| fe,m(x) — f($)||%2(1))

[0,1]4

(19]

VIl. CONCLUDING REMARKS

We have analyzed the frame reconstruction of a functidf]
from its noisy samples. In our analysis, it is assumed that
the sampled functionf belongs to a shift invariant space[zl]

V2(®) yielding an estimated reconstructed functign,, (x
which is unbiased.
f does not belong to the reconstructed spacd®) (e.g.,

f belongs to some Sobolev space), and only finitely mafg?!
samplesn are available. Methods similar to the ones used by
Pawlak, Rafajlowicz, and Krzyzak in [23] may be possiblg4]

for such analysis. We also assume that the néise /., } is

bounded. This technical assumption insures the convergepgg
of the infinite series in the frame reconstruction. However

formally, unbounded Gaussian noise yields the same ex&é&l
result, but a more technical mathematical justification woujg,
be needed for the argument. Another interesting and important
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