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Abstract

In this paper, we consider certain affine similarity of refinable func-
tions and establish certain connection between some local and global
properties of refinable functions, such as local and global linear in-
dependence, local smoothness and B-spline, local and global Hölder
continuity.

1 Introduction and Main Result

In this paper, we study the relationship between some local and global prop-
erties of the compactly supported integrable function φ which satisfies

φ(x) =
N∑

j=0

cjφ(Mx− j) (1)

and ∫
IR

φ(x)dx = 1,

where M ≥ 2 is a fixed integer and the sequence cj, j = 0, 1, · · · , N satisfies

c0cN 6= 0 and
N∑

j=0

cj = M.
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The equation (1) is known as a refinement equation and the solution of the
refinement equation (1) is called as a refinable function. For the refinable
function φ in (1), it is proved in [2] that φ is supported in [0, N/(M − 1)].

Associated to the refinement equation (1) is the polynomial H defined by

H(z) =
1

M

N∑
j=0

cjz
j, (2)

which is known as its symbol. The polynomial H(z) can be put into the
factorized form

H(z) =
( 1− zM

M −Mz

)ζ0
R(z), (3)

where ζ0 is a nonnegative integer and the polynomial R(z) does not have the
factor (1− zM)/(1− z).

Let N ′ be the minimal integer larger than N/(M−1). For the refinement
equation (1), define

Bl = (cMi−j+l)0≤i,j≤N ′−1, l = 0, 1, · · · , M − 1 (4)

and

Φ =
(
φ(·), φ(·+ 1), . . . , φ(·+ N ′ − 1)

)T
on (0, 1),

where we set cj = 0 if j < 0 or j > N , and AT as the transpose of A. Then
by (1) we have

BlΦ = Φ
( ·+ l

M

)
on (0, 1), ∀ l = 0, 1, . . . ,M − 1. (5)

For the refinable function φ in (1), denote the set of all linear combinations
of integer translates of φ by V0(φ), and the set of all linear combination of
φ(· + j) with j + (0, 1) ∩ (0, N/(M − 1)) 6= ∅ by V(0,1)(φ). The linear space
V0(φ) is an integer shift invariant space and plays an important role in wavelet
analysis. Obviously

V0(φ) =
{ ∑

j∈ZZ

djφ(·+ j)
}
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and

V(0,1)(φ) =
{ N ′−1∑

j=0

djφ(·+ j)
}
.

Let Πs be the set of polynomials with degree at most s − 1 for s ≥ 1,
and let Π0 = {0}. The set of restriction of all polynomials in Πs on (0, 1) is
denoted by Π∗

s. By straightforward computation, we obtain

Πζ0 ⊂ V0(φ) and
∑
j∈ZZ

P (j)φ(x + j) ∈ Πζ0 (6)

for any polynomial P ∈ Πζ0 when H has the factorized form (3).

We say that the integer translates of a compactly supported distribution
f are globally linearly independent if∑

j∈ZZ

djf(·+ j) = 0 on IR implies dj = 0 ∀ j ∈ ZZ.

For s ≥ 0, let Qs be a family of functions on (0, 1) such that

(i) f1, f2 ∈ Qs implies af1 + bf2 ∈ Qs for any real numbers a and b.

(ii) Qs ⊃ Π∗
s.

(iii) f ∈ Qs implies f((·+ l)/M) ∈ Qs for any l = 0, 1, · · · , M − 1.

The typical examples of Qs are Π∗
s, the family of restriction on (0, 1) of all

functions in C∞(IR), the family of functions with Hölder exponent at least
β > 0 on (0, 1), and the family of p-integrable functions on (0, 1) for p ≥ 1.
We say that f has the property Qs if the restriction of f on (0, 1) belongs to
Qs. Obviously any polynomial with degree at most s − 1 has the property
Qs. For the refinable function φ in (1) and the property Qs, let

Qs(φ) =
{
f ∈ V(0,1)(φ); f has the property Qs

}
.

Then Qs(φ) is a finite dimensional linear subspace of V(0,1)(φ).

For refinable functions, there are many properties useful in various ap-
plications, such as orthogonality, compact support, symmetry, smoothness,
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analytic expression, interpolation (see for instance [3]). It has been showed
that Daubechies’ scaling functions φM,N are orthonormal, Hölder continuous
and unsymmetric except φM,1, and B-splines Bk are in the Hölder class Ck−1,
symmetric and not orthonormal except B1, and have analytic expression (see
[1] for precise definition of M band Daubechies’ scaling functions φM,N). In
this paper, we shall prove the following result about Qζ0(φ) and apply it to
establish certain connection between some local and global properties for the
refinable function φ.

Theorem 1 Let φ be the compactly supported integrable function satisfying
the refinement equation (1), its symbol H have the factorized form (3) and
Qζ0(φ) be defined as above. Assume that the integer translates of φ are glob-
ally linearly independent and

∑M−1
l=0 Blz

l
0 is nonsingular for some complex

number z0. Then dimQζ0(φ) = ζ0 or N ′.

Under the assumption that the integer translates of φ are globally linearly
independent and that

∑M−1
l=0 Blz

l
0 is nonsingular for some complex number

z0, Theorem 1 can be interpreted as either all functions in V0(φ) have the
property Qζ0 or any function which has the property Qζ0 must coincide with
some polynomial in Πζ0 on (0, 1).

The paper is organized as follows. Theorem 1 is proved in Section 2 and
some applications of Theorem 1 are given in Section 3. In fact, we shall choose
the property Qs as polynomial separated property, piecewise smoothness
property and locally Hölder continuous property, and then apply Theorem
1 to obtain some connection between some local and global properties for
refinable functions.

2 Proof of Theorem 1

In this section, we shall give the proof of Theorem 1. To prove it, we need
some lemmas. For any linear subspace V ⊂ IRn, we identify it with a subspace
V(z) of Πn by

V(z) =
{
(1, z, · · · , zn−1)v; v ∈ V

}
.

For any polynomial P and linear space V ⊂ IRn, define linear subspace
P (V) ⊂ IRn+deg P by

P (V)(z) = P (z)V(z).
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For a linear subspace V of IRn, define its characteristic polynomial χ(V)(z)
as the common factor of all polynomials in V(z) with maximal degree and
leading coefficient one.

Lemma 2 Let φ be the refinable function in (1), H be its symbol and Bl, l =
0, 1, · · · , M−1 be as in (4). Assume that

∑M−1
l=0 Blz

l
0 is nonsingular for some

complex number z0 and that the integer translates of φ are globally linearly
independent. Then V 6= {0} is a linear subspace of IRN ′

invariant under
Bl, l = 0, 1, . . . ,M − 1, i.e.,

BlV ⊂ V , ∀ l = 0, 1, . . . ,M − 1

if and only if
χ(V)(z) = (z − 1)κ

for some integer κ less than ζ0 and

V = χ(V)(IRdimV),

where dimV denotes the dimension of the linear space V. Further

κ + dimV = N ′.

Lemma 2 follows easily from the characterization of global linear indepen-
dence of a refinable function by its symbol in [4, 7] and the characterization
of an invariant subspace under Bl, l = 0, 1, . . . ,M − 1 in [10].

Lemma 3 ([4, 7]) Let φ be the refinable function in (1) and H be its sym-
bol. Then the integer translates of φ are globally linearly independent if and
only if there do not exist Laurent polynomials R1 and R2 such that R1(1) 6= 0,
R1 is not a monomial and

H(z) = R1(z
M)/R1(z)×R2(z).

Lemma 4 ([10]) Let H and Bl, l = 0, 1, · · · , M − 1 be as in (2) and (4).
Assume that

∑M−1
l=0 Blz

l
0 is nonsingular for some complex number z0. Then

V 6= {0} is a linear subspace of IRN ′
invariant under Bl, l = 0, 1, . . . ,M − 1

if and only if
V = χ(V)(IRdimV)

and there exists a polynomial R3(z) such that

H(z) = χ(V)(zM)/χ(V)(z)×R3(z).
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Let
W(φ) =

{
d ∈ IRN ′

; dT Φ ∈ Qζ0(φ)
}
.

Lemma 5 Let φ,H(z), Bl, l = 0, 1, · · · , M − 1 be as in Lemma 2 and let
Qζ0(φ) and W(φ) as above. Assume that

∑M−1
l=0 Blz

l
0 is nonsingular for some

complex number z0 and that the integer translates of φ are globally linearly
independent. Then we have

dimW(φ) = dimQζ0(φ).

Proof. Set

S0(φ) =
{
d ∈ IRN ′

; dT Φ = 0 on (0, 1)
}
.

Then it suffices to prove that

S0(φ) = {0}.

By (5), we have

BT
l S0(φ) ⊂ S0(φ) ∀ 0 ≤ l ≤ M − 1.

As a consequence, the orthogonal complement of S0(φ) in IRN ′
is invariant

under Bl, 0 ≤ l ≤ M − 1. This together with Lemma 2 imply that either

S0(φ) = {0}

or S0(φ) is spanned by

vt = (1, 2t, · · · , N ′t)T , 0 ≤ t ≤ s0

for some integer s0 ≤ ζ0−1. Note that vT
t Φ is a nonzero polynomial on (0, 1)

for any 0 ≤ t ≤ ζ0 − 1 by (6). Then

vt 6∈ S0(φ) ∀ 0 ≤ t ≤ ζ0 − 1.

This shows that S0(φ) = {0}. Hence the assertion follows. 2

Proof of Theorem 1. From (6) it follows that Π∗
ζ0
⊂ Qζ0(φ). Thus

dim Qζ0(φ) ≥ dim Π∗
ζ0

= ζ0.
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This together with Lemma 5 imply that

dim W(φ) = dim Qζ0(φ) ≥ ζ0.

By (5), (iii) in the definition ofQζ0 and the assumption on Bl, l = 0, 1, · · · , M−
1, we obtain

BT
l W(φ) ⊂ W(φ), ∀ l = 0, 1, · · · , M − 1. (7)

Let V(φ) be the orthogonal complement space of W(φ) in IRN ′
. Then

dimV(φ) = N ′ − dimW(φ) ≤ N ′ − ζ0 (8)

and

BlV(φ) ⊂ V(φ) ∀ l = 0, 1, · · · , M − 1.

Thus either

V(φ) = {0}

or

V(φ) = χ(V(φ))(IRdimV(φ)) and χ(V(φ))(z) = (z − 1)κ

for some integer κ ≤ ζ0 by Lemma 2. This leads to either

dim V(φ) = 0 (9)

or

dim V(φ) = N ′ − κ ≥ N ′ − ζ0. (10)

Combining (8)-(10), we get

dimW(φ) = N ′ or ζ0.

Hence the assertion follows from Lemma 5. 2
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3 Remarks

In this section, we shall apply Theorem 1 to establish polynomial separation
property for V0(φ), and to show that a locally smooth refinable function
must be a spline, and that a locally Hölder continuous refinable function
has certain global Hölder continuity under certain additional assumption. In
some sense, it shows certain affine similarity of refinable functions.

Remark 1 (Polynomial Separation Property) In [6], Lemarie in-
troduced separation property of Malgouyres of the space V0(φ), which means
that any function f ∈ V0(φ) vanishing on an open set (a, b) is linear com-
bination of φ(· + j) which are supported in (−∞, E(a)] or in [−E(−b),∞).
Hereafter E(a) denotes the integral part of a real number a. For M = 2,
Lemarie proved that V0(φ) has the separation property of Malgouyres under
the assumption that there is biorthogonal dual (see [6] for precise state-
ment). We may use Theorem 1 to consider more general property. We say
that a function f in V0(φ) is polynomial separated if f ∈ C∞(a, b) for some
interval (a, b) implies that there exist a polynomial Pf such that f − Pf

is linear combination of φ(· + j) which are supported in (−∞, E(a)] or in
[−E(−b),∞). Obviously f ∈ V0(φ) has separation property of Malgouyres if
f is polynomial separated. From the definition of polynomial separation, we
see that there exist a polynomial Pf and two functions f1, f2 ∈ V0(φ) such
that supp f1 ⊂ (−∞, E(a)], supp f2 ⊂ [−E(−b),∞) and f − Pf = f1 + f2,
if f ∈ V0(φ) is smooth on (a, b) and polynomial separated. We say that the
space V0(φ) has polynomial separation property if f is polynomial separated
for any f ∈ V0(φ).

Theorem 6 Let φ and Bl, l = 0, 1, · · · , M − 1 be as in (1) and (4). Assume
that the integer translates of φ are globally linearly independent and that
Bl, l = 0, 1, · · · , M−1 are nonsingular. Then V0(φ) has polynomial separation
property.

For M = 2, it is proved that B0 and B1 are nonsingular if the integer
translates of φ are globally linearly independent ([8, 10]). Therefore V0(φ)
has polynomial separation property if the integer translates of φ are globally
linearly independent for M = 2. This generalizes the separation property of
Malgouyres of V0(φ) in [6].
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To prove Theorem 6, we need to introduce some concepts and an assertion
in [9]. For k ≥ 1, B-spline Bk is the refinable function with its symbol Gk

being

Gk(z) =
( 2− zM − z−M

M2(2− z − z−1)

)k
.

The B-spline Bk can also be defined as the convolution of the characteristic
function on [0, 1] for k times,

Bk = χ[0,1] ∗ χ[0,1] ∗ · · · ∗ χ[0,1] (k times).

A compactly supported function f is said to be piecewise smooth if there
exist a1 < a2 < · · · < aK such that supp f ⊂ [a1, aK ] and f coincides with
some function fj ∈ C∞(IR) on (aj, aj+1) for any 1 ≤ j ≤ K − 1. In [9], the
second author proved

Lemma 7 Let φ be the refinable function in (1). Assume that φ is piecewise
smooth and that its integer translates are globally linearly independent. Then
φ is a B-spline.

Proof of Theorem 6. Let Qζ0 be the family of restriction of all func-
tions in C∞(IR) on (0, 1). Then dimQζ0(φ) = ζ0 or N ′ by Theorem 1.

If dim Qζ0(φ) = N ′, then φ(· + j) is the restriction on (0, 1) of some
function in C∞(IR) for any 0 ≤ j ≤ N ′ − 1. Thus φ is piecewise smooth and
a B-spline by Lemma 7. Hence the assertion holds when dimQζ0(φ) = N ′.

If dimQζ0(φ) = ζ0, then Qζ0(φ) = Π∗
ζ0

by (6). Let f ∈ C∞(a, b) be any
element in V0(φ). Without loss of generality we assume that (a, b) ⊂ (0, 1).
Write

f(x) =
∑
j<0

djφ(x + j) +
∑

j≥N ′
djφ(x + j) +

N ′−1∑
j=0

djφ(x + j)

= f1(x) + f2(x) + f3(x).

Then by (6) it suffices to prove that there exists a polynomial Q ∈ Πζ0 such
that

dj = Q(j), ∀ 0 ≤ j ≤ N ′ − 1.
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Let W(φ) be the linear space of all vectors w ∈ IRN ′
such that wT Φ ∈

Qζ0(φ). Then it follows from the definition of Qζ0 and nonsingularity of
Bl, l = 0, 1, . . . ,M − 1 that

BT
l W(φ) = W(φ) ∀ l = 0, 1, . . . ,M − 1. (11)

Let m and n be integers such that [2−nm, 2−n(m + 1)] ⊂ (a, b) and let
ε1, · · · , εn ∈ {0, 1, · · · , M−1} be chosen that m = Mn−1ε1+Mn−2ε2+· · ·+εn.
By using (5) for n times, we obtain

Bε1 · · ·BεnΦ(x) = Φ(2−nm + 2−nx), x ∈ (0, 1). (12)

Thus
BT

εn
· · ·BT

ε1
(d0, · · · , dN ′−1)

T ∈ W(φ)

by (12) and the assumption that f ∈ C∞(a, b), and

(d0, · · · , dN ′−1)
T ∈ W(φ)

by (11). Hence the assertion follows from (6) and Qζ0(φ) = Π∗
ζ0

. 2

Remark 2 (Local Linear Independence) We say that the integer
translates of a compactly supported distribution f are locally linearly inde-
pendent if for any open set A∑

j∈ZZ

djf(·+ j) ≡ 0 on A implies dj = 0 ∀ j ∈ Kf (A),

where j ∈ Kf (A) means that the restriction of f(· + j) on A is not iden-
tically zero. Obviously local linear independence of integer translates of a
compactly supported distribution implies its global linear independence, and
the converse is not true. By the definition, we see that the integer translates
of φ are locally linearly independent if V0(φ) has the separation property of
Malgouyres. Hence by Theorem 6, we have the following result about local
and global linear independence, which is proved by the second author ([8])
for M = 2, and by Wang ([12]) and the second author ([10]) for M ≥ 2.

Corollary 8 Let φ and Bl, l = 0, 1, · · · , M − 1 be as in (1) and (4). Assume
that Bl, l = 0, 1, · · · , M − 1 are nonsingular. Then global and local linear
independence of the integer translates of φ are equivalent to each other.
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Remark 3 (B-Spline) There are close relationship between refinable
function and B-spline. In [5] , it was proved that a refinable function which is
piecewise polynomial must be finitely linear combination of integer translates
of a B-spline. In [9], the second author proved that a refinable function which
is piecewise smooth must be linear combination of integer translates of a B-
spline. By using Theorem 1, we shall prove that a refinable function which
is smooth on some small interval must be B-spline under some additional
assumption. Precisely we have

Theorem 9 Let φ and Bl, l = 0, 1, · · · , M − 1 be as in (1) and (4). Assume
that the integer translates of φ are globally linearly independent and that
Bl, l = 0, 1, · · · , M − 1 are nonsingular. If there exists an open interval
(a, b) ⊂ [0, N/(M − 1)] such that φ ∈ C∞(a, b), then φ is a B-spline.

If we left out global linear independence of integer translates of φ, the
conclusion of Theorem 9 is not true in general. For example, let φ1 be the
solution of the refinement equation

φ1(x) =
N1∑
j=0

c̃jφ1(2x− j).

Then φ(x) = φ1(x) + φ1(x − 2N1) + φ1(x − 4N1) satisfies the refinement
equation

φ(x) =
N1∑
j=0

c̃j(φ(2x− j)− φ(2x− j − 2N1) + φ(2x− j − 4N1))

and φ(x) ≡ 0 on (N1, 2N1).

In [1, 11], Bi, Debnath, Zhang and the second author showed that for K <
M there exists an open set A ⊂ (0, 1) with Lebesgue measure one for M -band
Daubechies’ scaling functions φM,K such that φM,K are polynomials on (a, b)+
j for any (a, b) ⊂ A and 0 ≤ j ≤ N ′ − 1 (see [1, 11] for precise statement).
Therefore the nonsingularity of Bl, l = 0, 1, · · · , M − 1 in Theorems 6 and 9
can not be left out in general.

Proof of Theorem 9. Let Qζ0 be the family of restriction of all func-
tions in C∞(IR) on (0, 1). Then dimQζ0(φ) = ζ0 or N ′ by Theorem 1.
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If dim Qζ0(φ) = N ′, then φ(· + j) is the restriction on (0, 1) of some
function in C∞(IR) for any 0 ≤ j ≤ N ′ − 1. Thus φ is piecewise smooth and
a B-spline by Lemma 7.

If dim Qζ0(φ) = ζ0, then

Qζ0(φ) =
{ N ′−1∑

j=0

Q(j)φ(·+ j); Q ∈ Πζ0

}

by (6). Let

W(φ) =
{
d ∈ IRN ′

; dT Φ ∈ Qζ0(φ)
}
.

Thus any vector d ∈ W(φ) can be written as

d = (Q(1), · · · , Q(N ′))T (13)

for some polynomial Q ∈ Πζ0 . By the assumption on φ and the procedure
used in the proof of Theorem 6, there exist ε1, · · · , εn ∈ {0, 1, · · · , M−1} and
1 ≤ i0 ≤ N ′ such that

BT
εn
· · ·BT

ε1
ei0 ∈ W(φ),

where ej, 1 ≤ j ≤ N ′ is the vector with j-th component one and other
components zero. Hence

ei0 ∈ W(φ) (14)

by (7) and nonsingularity of Bl for all 0 ≤ l ≤ M − 1. Let Qi0 be the
Langrage interpolation polynomial with degree N ′−1 which takes value zero
at the integer knots 1 ≤ j ≤ N except one at the integer knot j = i0. In
fact,

Qi0(x) =
( ∏

1≤j≤N ′,j 6=i0

(i0 − j)
)−1 ∏

1≤j≤N ′,j 6=i0

(x− j).

By (13) and (14), we have
Qi0 ∈ Πζ0 .

Hence ζ0 = N ′ and φ is a B-spline. 2

Remark 4 (Hölder Continuity and Integrability) By taking Qζ0

in Theorem 1 as the family of all Hölder continuous functions on (0, 1) or all
p-integrable functions on (0, 1) with p ≥ 1, and using the same procedure as
the one used in the proof of Theorem 9, we have
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Theorem 10 Let φ and Bl, l = 0, 1, · · · , M−1 be as in (1) and (4). Assume
that the integer translates of φ are globally linearly independent and that
Bl, l = 0, 1, · · · , M−1 are nonsingular. If φ is Hölder continuous on an open
interval (a, b) ⊂ [0, N/(M − 1)], then φ is Hölder continuous on (j, j + 1) ⊂
[0, N ′] for any 0 ≤ j ≤ N ′ − 1.

and

Theorem 11 Let 1 ≤ p ≤ ∞, φ and Bl, l = 0, 1, · · · , M − 1 be as in (1) and
(4). Assume that the integer translates of φ are globally linearly independent
and that Bl, l = 0, 1, · · · , M − 1 are nonsingular. If φ is p-integrable on an
open interval (a, b) ⊂ [0, N/(M − 1)], then φ is p-integrable.

The refinable function φ in Theorem 10 is not Hölder continuous at integer
knots j, 0 ≤ j ≤ N ′ in general. The characteristic function on [0, 1] is such
an example.
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