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ABSTRACT. In this paper, we consider the Hélder continuity, local linearity, linear indepen-
dence and interpolation problem of the M-band scaling function with its filter having van-
ishing moments two and minimal length, and explicit construction of wavelets. Especially we
find some new properties which is not true when M = 2, such as local linearity, local linear
dependence, differentiability at adjoint M-adic points and interpolation problem at integer
knots.

1. Introduction

Let M > 2 be a fixed positive integer. A compactly supported and square integrable
function ¢ is called a scaling function if it satisfies [, p(x)dx = 1, [, ¢p(x)d(x — k) = &
and a refinement equation

$x) =D crp(Mz — k), (1)

keZz

where {c}} is a sequence with finite length and satisfying >, ., cx = M, and d; is the
Kronecker symbol defined by 0 = 1 when £ = 0 and ¢ = 0 when k # 0. For a sequence
{cx} with finite length, define

H(z) = % chzk.

Then H(z) is uniquely determined by the scaling function ¢ and conversely for an H(z)
there exists a unique solution of (1) with [, ¢(z)dz = 1. So we say that H(z) is the filter
of the refinement equation (1) or the filter corresponding to the scaling function ¢. For
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2 M-BAND SCALING FUNCTION

an integer N > 1, we say that H(z) has vanishing moments N if there exists a Laurent
polynomial H(z) such that

1—2M N
Hz)=|———) H(z).
0= (30sy) 76
For a scaling function ¢, let closed subspaces V, j € Z, of square integrable function
space L2 be spanned by {M7/2¢(M7 - —k);k € Z}. Then {V;}jez is a multiresolution by
elementary wavelet theory (see [BDS] for example), i.e., it satisfies the following conditions:
(i) VjCVjyiforall jeZ, and f €Vjifand only if f(M-) € V44 for all j € Z;
(i) UjezV; is dense in the square integrable function space L? and NjezV; =
{0};
(iii)  there exists a function ¢ in V such that {¢(- — k); k € Z} is an orthonormal
basis of Vj.
Define the wavelet space W;, j € Z, by the complement spaces of V; in V;;;. Then we
have the following wavelet decompostion

L? = @jeZWj =V.+ @jZij.

The wavelet theory when M = 2 can be found in many books on wavelets(for example
[D], [M]). The wavelet theory for general M > 3 is also developed early. Auscher([A])
considered the construction of M-band wavelets in his thesis. Welland and Lundberg
([WL]) constructed M-band wavelets with arbitrary high index of smoothness. Heller ([H]),
independently Bi, Dai and the first author ([BDS]), considered the design of filter with
vanishing moments N and finite length. Bi, Dai and the first author ([BDS]) studied the
asympotic behaviour of regularity of the scaling functions with their filter having vanishing
moments N and minimal length as N tends to infinity for all M > 3. Similar problem was
also considered by Heller and Well in [HW] for M = 3,4. From the asympotic behaviour,
we get that the regularity of that class of scaling functions is about C'In N when M is odd.
It inspired Shi and the first author ([SS]) to construct another class of scaling functions
with their filter having vanishing moments N and with their regularity at least CN for
some positive number C' independent of N. For M = 3, Dai, Huang and the first author
considered in [DHS] local and global linear independence of solutions of the five-coefficient
refinement equation (1), and find some examples of solutions of refinement equations which
are globally linearly independent but locally linearly dependent. In the engineer literature,
the publications on the design of M-band linear phase filter bank by Vaidyanathan and
his group are important contribution to the M-band wavelet theory(see [SVN] and the
references therein).

Let

() = <1J2rz>2 (1 i2\/§+ 1$2x/§z) |

Then it is proved ([D]) that a filter G with vanishing moments two and minimal length
can be written as G(z) = 2H(z)z"* for some integer ¥ when M = 2. The scaling func-

tion ¢o corresponding to the filter (lizz)2 (HT\@ + 1_—2\/5,2) is a very important example
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of scaling function when M = 2 (see [D]). The other scaling function ¢, with its filter

(%)2 (1—T¢§ + 1+T\/§z) is related to ¢o. In particular ¢4 (z) = ¢2(3 —x). Daubechies and

Lagarais ([DL]) considered the Holder continuity of ¢,. Pollen ([P]) studied the differen-
tiability of ¢o at dyadic points.
The scaling function ¢, with its corresponding filter

1— ZM 2 1 + /2M32+1 1— /2M§—|—1

H(z) = <M—Mz

which has vanishing moments two and minimal length, is also important in M-band wavelet
theory for general M > 3. Inspired by [DL] and [P], we consider in this paper the Holder
continuity, differentiability at M-adic and adjoint M-adic points, linear independence,
interpolation problem of ¢j7, and explicit construction of wavelets. Through this paper, it
is found some new properties of ¢pp; when M > 3 which does not holds for ¢5. In particular,
¢ is locally linear on an open set with full measure and locally linearly dependent when
M >3, QNSM is differentiable at M-adic points when M = 3, and &M is not interpolatable
at Z when M = 11, where ¢pr(z) = ¢(2 + T — ).

In this paper, we will assume that M > 3.

2. Preliminary

From the design of filters in [H|, or [BDS], we see that the filter H(z) of a scaling function
with vanishing moments two and minimal length must be

H(z) = (%ﬁ) (ot o)

and

(@+B2)(a+B27") =1+ (> 0;)2-2-271),

where k is an integer and 0, = 4sin? s7/M,1 < s < M — 1. By the indentity in [BDS]

M

sin® M¢/2 s
m—n(1—498 S1n 5/2),

s=1

and by
sin ME/2 M? -1

2 4
m— ¥ 5+ 0(£7),
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we get
M-1

05

s=1

12

where O(£4) means the term bounded by C¢* for some constant C independent of ¢ when
¢ is sufficiently small. Therefore o and 3 are two roots of the equation

i.e.,

140
2

_1F0

76 2 Y

(0%

where 6 =/ %2“ Denote the scaling function with its filter

1—2M N2 140 1-9
H(z) =
(2) (M—Mz) (5 +

2
by ¢ar. Then the scaling function with its filter H(z) = (A}[__Zﬂl/fwz) (2 + 582)2F is

z)

2
¢m(— 52 + =) and the scaling function with its filter H(z) = (1\14_—Z1\14wz> (152 + LE2)2*

is ¢ M(% — x) by elementary computation. Hereafter we assume that the filter with
vanishing moments two and minimal length is

H(Z):<M—Mz Y o)

1 (1+60)(M —|k=M+1))+ (1 —6)(M — |k — M|)
_MI;) 2"

1— M )2 1460 1-0

2M

Observe that § = 9 when M = 11. Hence the filter with vanishing moments two
and minimal length has rational coefficients. For M = 2, we have not seen examples of
compactly supported orthonormal scaling function except Haar scaling function such that
its filter has rational coefficients to our knowledge.

Obviously ¢ is supported in [0,2+ 5] by the refinement equation (1). Observe that

1+60 1-6 .
%+T61£|§9<M

|
Then ¢y is Holder continuous and its Holder index is at least 1—1In 6/ In M by the criterion

in [D]. In particular, we will show in section 5 that the Holder index of ¢jps is exactly
1—In2/In M.
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3. Basic Properties

In this section, we will give some elementary properties of ¢;.

Proposition 1. Forxz € R, we have

{ > kez 9T — )_ L,
Dorez(l+ Z(M 1) +k)p(r — k) = .

Proof. Recall that the filter of ¢ has the factor (fzz)2 Then ¢y satisfies the

Strang-Fix condition of order two, i.e., pr(2kn) = 0 and (¢ar)'(2km) = 0 holds for all
nonzero integers k, where the Fourier transform f of an integrable function f is defined by

i) = /R e~ f () da

By the definition of ¢, we get

Z/R¢M(37)d$:

Hence there exists a constant ¢ such that

Y dle—k) =1 (3)

keZ

and

Y e+ k)p(z — k) == (4)

kez

Therefore the proof of Proposition 1 reduces to

c=1+ 1 -0
o 2M -2
;From (1)-(3), we get
2M —-1+0 2M —-3+60
su() = 2 )+ 20 g 0)

and



6 M-BAND SCALING FUNCTION

By the above two equations, we have

2M — 0
P (1) 21\4342r
and 1o
M) = o
Hence 1 ¢
c=¢u(l) +20um(2) =1+ 50—

by (4) and Proposition 1 follows. H

Recall that ¢ps is supported in [0,2 + ﬁ] So Proposition 1 can be rewritten as the
following result.

Proposition 2. For 0 <x <1, we have

¢M(x) _¢M(x+2) =T — 2]1\/;_927
dr(x+1) + 200 (7 +2) = —x + 1+ 5272,
200 (2) + pu(z + 1) =2+ 1 — 372

Proposition 3. For 0 <ax <1, we have

( bu(3g) = shrdum(2),
ouCt) = ot i 4
z - M—3+6)(2M—1—9

w1+ ) = 501 +2) + difa + CUZAANGIZ0, g

(1+$—1\J/r[1) ¢M(1+x) by 4 ST

(@t ) = 1+9¢ 2+ )~ Sfo + CRM,

and for x € |57, 1], we have
_ -6

QS(;U) =T — 2]1\4_27
plz+1)= -+ g5 +1, (6)
d(z+2)=0.
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Proof. The first and second formulas in (5) follows easily from the refinement equation
(1) and the third formula in Proposition 2. The other formulas in (5) follow from the first
and second formulas and Proposition 2. Recall that ¢y is supported in [0,2 + ﬁ] By
the first formula in Propositon 2, we get the first and third formula in (6). The second
formula in (6) follows from the first one and Proposition 2. W

Using the first two formulas in (5) for k times, we get

Propsotion 4. Let¢; € {0,1} for all 1 < i < k. Then we have

k
o (D % + %) = afer, -, ex)p(@) + Bler, - )T + P

1=1 =1

S|

where

Y

1 - 9)2221 €j (1 + 9)’6—2?:1 €j

a(flv"'vfk):M_k( 2 2

1-0

k

i—1 € 1 9 1—1— i—1 €

6(617"' 76k):M—k—HB(El)+M—k+1zﬁ(€i)(_)zjzl J( + ) -3 3
1=2

2 2

and B(0) =0, B(1) = £2.

4. Local Linearity

We say that a function is locally linear on an open set if it is a linear function on its
every connected components.

Theorem 1. Let M > 3. Then there exists an open set A C (0, 2+ﬁ) with Lebesgue

1
M-1

measure 2 + such that ¢pr is locally linear on A.

Proof. For (€1, -+ ,¢x) € {0,1}F, define

k k
€; 1 €; 1
Aler, - vee) = O i (M_I)MkHvZWJr—MkH) c (0,1).

1=1 =1

Then any two elements of the set
{A(€e1,-+ - ,ex);6, € {0,1},1 <i<k,k=1,2,---}

of intervals have empty intersection. Also it is easy to check that A(eq,--- ,€) has empty
intersection with (m, +) and (g7=7,1). Define

Ay

~) U ( UIC;OZ]. U(61,~~~ ,Ek)E{O,l}kA(E]J e 76k))'

I
S
|
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Then Ay C (0,1) and

M —2 M —2 M-2 2
A = > (7
1

M—1 MM—-1)

Furthermore ¢j; is a linear function on (m, ﬁ) and (77— 77— 1) by the first formula in

(5) and (6), and is also a linear function on A(eq,--- ,€x) when ¢; € {0,1},1 <4 < k since
oul0) = Sl e, i (M- 3 )
M(E) = o577 15 m( 2
e b
k i 2
+ M x B(er, -+, € ZMI +¢M2Mi)

=1 i=1

when = € A(eq -+ - ,€x) by Proposition 4 and (6). Then ¢y is locally linear on A;.
Define

A=AU (A1 +1)U((A1n(0, ) +2).

M -1

Then A C (0,2 + 57— ) and |A| = 2+ 3/~. Moreover ¢y is locally linear by Proposition
2.1

5. Holder Continuity

Denote the set of all M-adic points in [0,2 + ﬁ] by Dy, i.e.,

k
DMZ{:U:ZAG/[ [02+M1 1] e; € {0,1-- —1},k:0,1727...}.
i=0

We say that x € [0,2 + Ml—l] is adjoint M -adic if 2 + ﬁ — z is M-adic. Denote the set
of all adjoint M-adic points in [0, 2 + ﬁ] by D’,. For Dy, we further decompose it as
the union of D}, and D3%,, where

; 1
D}W:{xzuzﬂz 0,24+ i1 €0,1,2,¢; € {0, 1}, k= 1,2, -}

and
D%, = Dy/\Dj,.

Denote the set of all adjoint M-adic points of Dg\/[ by D%[,j =1,2. Then

= D;; UDY;
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We define the left(right) local Hélder index of a continuous function ¢ at x by the
supremum of all « such that

6(y) — ¢(x)| < Cly — x|

holds for all y less(larger) than = and a constant C' independent of y, where |y — z| is
sufficiently small. We denote the left(right) local Holder index of ¢ by ar(x)(agr(z)).

Theorem 2. Let M > 3. Then ¢ur is right differentiable at all points in D3, and
D', and not right differentiable at all points in D3,;. Furthermore the right local Holder
inder ap(z) is 1 —In L2 /In M when x € D},.

Proof. First we show that ¢/ is right differentiable at any point in D2,. By Proposition

2, it suffices to prove that ¢,; is right differentiable at Zle i When 2 < < M —1
k

holds for some 1 < i < k. In particular, we will prove that ¢ (>°;_; 17 + ) is a linear
function when 0 < y < M—F=1. Let iy be the minimal number such that 2 < €y < M —1.
Then

i k
€;
QSM(Z MZ +y)_a(€1,-.- 7€i0—1)¢M(Z MZ | _|_MZO 1 )
i=1 =

is a linear function of y by Proposition 4. Recall that ¢y is linear on (3/,1) and

M
1 2 K €
7 1
M—1<M§ZM1 wpr FMETy <1
=10

when 0 <y < M~*~1. Then qSM(Zz i TForT T M~ 1y) is a linear function of y when
0 <y < M~* 1 and ¢y is right differentiable at all points in D3,.

Secondly we show that ¢ps is right differentiable at all points in D%,. For zp = [ +

k
T — Yoie1 1 € Dy, we can rewrite it as

1—6 1 €. 1
.y d — i . S 7
o +Z MF(M — 1) +;MZ+M’“(M—1)’ (™)

where 1,1’ € {0,1,2},¢;,¢; € {0,1,--+ , M — 1}.

When 2 < ¢, < M — 1 holds for some 1 < i < k, we deduce that ¢ps(zo + y) is a linear
function of ¥y when 0 < y < M~%=2 by the same procedure as to prove that ¢s is right
differential at points in D3,.

Therefore it suffices to show that ¢ar(zg + y) is a linear function of y when 0 < y <
M~%=2 and ¢; in (7) satisfies €, € {0,1} forall 1 <i < k. When ¢, =1 for all 1 <i < k
and 0 <y < %, ¢(xo + y) is a linear function of y since zg = I’ + 5;—. Therefore we
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assume that e}, 1 < i < k is not identically 1. Let 1 < iy < k be the maximal index such
that €;, = 0. Then €/ =1 when 49 +1 <7 < k and

io—1 1

/ (3
xo =1+ ; Vi +Mi0(M—1)
is the left endpoint of the interval I’ + A(ey,--- ,€; ;). Therefore ¢ar(zo + y) is a linear
function of ¥ when 0 < y < M~%~2 by the proof of Theorem 1. Thus ¢, is right
differentiable at all points in D’;,.

Finally we prove that ¢ is not right differentiable at any point in D},. Observe that
the right local Holder index of ¢, is at least one at points where ¢, is right differentiable.
Therefore it suffices to prove that the right local Holder index of ¢ar at any point in Dj,
is less than 1.

By the first formula in (5), we get

1 9 146
[par () — o (0)] = I( 2L Ve Lpar (MFE=12)| < C|z|~n 2/ M
when z € (M_k,M_k+1) and
1 1+0.\k 1 1—in 1 /10
out () — o (O] = (o) I ()] > C(5) M,

146
where C' is a constant independent of x and k. Hence 1 — l? =~ < 1 is the right local

Holder index of ¢ at zero point. By Proposition 2 and 4, we know that the right local
Holder index of ¢y at any point in D}, is the same as the one at zero point. W

Theorem 3. Let M > 3. Then ¢y is left differentiable at D3} and Dys, and dar is
left differentiable at D3y when M = 3 and is not when M > 4. Furthermore the left local
Hélder index of ¢pr at DY} is 1 —In 452 >t/In M when M > 4.

Proof. Let o (x) = dar(2 + 24— — 2). Then dur is also a scaling function with its

filter ( IS
2-4. In particular, the results of Proposition 2-4 hold when ¢, is replaced by <z~5 »m and 6 by
—0 in Proposition 2-4. Then by the procedure used in the proof of Theorem 2, we deduce
that ¢ is right differentiable at any point in D, and D3,., i.e., ¢ps is left differentiable
at all points in Dps and D32/

Observe that ¢y (0) = 0, ¢ar(1) # 0 and QEM(%) = 12;M9<Z~SM(:U) for 0 <z < 1. Then we
get

) (1;29 + l%az) For ¢ s, we can establish corresponding results of Proposition

Gar () — far(0)] < Cla|t =55/ M
when 0 <z < 1/M and

B () — Gaa 0)] > O(7) 70,
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where C' is a constant independent of x and £k > 1. Then the right local Holder index

In

of ¢nr at zero point is 1 — ln%. Observe that (6 — 1)/2 < 1 when M = 3. Hence ¢y
is right differentiable at zero point and consequently at any point in Dj},. Hence ¢y is
left differentiable at any point in D};. Also observe that (§ — 1)/2 > 1 when M > 4.
Then <;~5 M is not right differentiable at zero point and any point in D},. Hence ¢y is not
left differentiable at D3}, and the left local Holder index of ¢ps at all points in D}} is
1-In%t/InM. W

From Theorem 2 and 3, we get

Corollary. ¢y is differentiable at any adjoint M -adic point when M = 3.

Theorem 4. Write xo = Y 0| i +1 € [0,2 + 3/], where ¢; € {0,1---, M — 1},
[ €{0,1,2} and ¢; is not identically M — 1 for sufficiently large i. Then we have

(i) If there exists an index i such that 2 < e¢; < M — 1, then ¢y is differentiable at xo;

(ii) If ¢; € {0,1} for all i > 1, then the right and left local Hélder index of ¢
at zo is at least 1 — max (0, ((zo) In 52 + (1 — a(zo)) n &32) /In M), where a(zo) =

limk_)oo inlek (22:1 61)/1

Proof. At first we prove the first part. In particular we will prove that ¢as(zo + y) is
a linear function of y when y is sufficient small. By Proposition 2 and 3, we can assume
that { = 0,¢; € {0, 1} without loss of generality. Let iy > 2 be the minimal index such that
€i, > 2. Rewrite zg as

Tl x!
(2
To = Z M + Mio—1
i=1
with . < &’ < 1. By Proposition 4, we deduce that ¢ (zo+y) —a(er, -, €io—1)Pnr (2’ +

M*~1y) is a linear function of y when 0 < 2’ + M%~1y < 1. Let y be chosen small enough
that

1 2 : .
< — + My <o + My < 1L
V1M + y<x + Y
Then ¢pr(zo + y) is a linear function of y when ﬁ < o' + Mb~ly < 1 since ¢y in a

linear function on (577, 1). This proves that ¢y is differentiable at zo.

Now we prove the second part. Let y € (M ~*=1 M~*) with k > 2. Then by Proposition
2, we get

s (zo +y) — dar(wo)|

oo oo

§|Oz(51,- .. 76k_1)|‘¢M(Z# +Mk—1y) - (pM(Z W)‘
i=k i=k )

+ |6(617 te 7€k—1)|Mk_1|y|
SC1(|O[(617 e ?6k_1)| + |6(617 T 7€k—1)|)
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where C' is a constant independent of y € (M ~*=1, M—F).
By Proposition 4 and the definition of a(xg) there exists an integer N for any ¢ > 0

koo
such that % > a(xg) — € for all k > N. Then there exists a constant C for any € > 0
such that

lafer, -, €ex—1)|
1 -0,k 140 k—1-SF g
< . i=1 ~? i=1 &t
<y mte  (Lih) |
SCM_k % (%)k(a(wo)—e) > (9;__1)k(1—a(m0)+6),
and
|6(617 U 76k—1)|

0+1
2

k—1
-1 . .
SCM_k 2]:\[(0 > )J(a(mo)—e) > ( )j(l—a(mo)—{—e) +CM—k
j=

Then the right local Holder index of ¢y is at least

61 641
+ (1= afzo)) In ;

1 — max (0, (a(zp) In )/InM).

To estimate the left local Holder index of ¢y, we suffice to estimate the right local Holder
index of ¢ps, where ¢ps is defined as in the proof of Theorem 3. Observe that

1 = € “1—¢
2 -1 - 2—1
a2 - B0 g

when ¢; € {0,1}. Therefore by the same procedure as the one to gstirnate the right local
Holder index of ¢ps, we get that the right local Holder index of ¢ at 2 + ﬁ — xp i8S
at least 1 — max (0, (a(zo) In 45 + (1 — awo)) In &) /In M), when o = > 50, £ and
e; € {0,1} foralli>1. W

The global Holder index, or simply Holder indez, of a continuous function ¢ is defined
as the supremum of « such that

¢(z +y) — d(x)| < Cly[*

holds for all =,y and a constant C' independent of x and y.

n 116
Theorem 5. Let M > 3. Then the Holder index of ¢ppr is 1 — lln]@ .

Proof. By Theorem 2, Proposition 2-3, it suffices to prove that

1
|par(z +y) — par(x)] < Cly|t0 = /M
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holds for all 0 < x < 2/M and 0 < y < 1/M3. Let k be the integer such that y €
(M=k=1 M~*) and let ¢; € {0,1,--- ,M —1},1 < i < k — 1, be chosen that

k—1

k—1
€5 €; 1
DS TR =t
=1

1=1

Then by Proposition 4 and (6) we get

k—1

par (@) — dar (D ]\Zi” < COM T Haler, - es—1)| +[Bex, -+, es1)|) € 2C (=5

=1

where s is defined as the minimal index such that ¢, > 2 if such an s exists, otherwise as
k, and C' is a constant independent of z.
Let €, € {0,1,--- ,M —1},1 <i <k — 1, be chosen that

k

Lo i 1
Mz§$+y<ZM1, Mkl

=1

Similarly there exists a constant C' independent of 2 and y such that

k-1 6/ 140

Dar(@+9) — dur (3 25| < Ol )

=1

If ¢, = €; holds for all 1 <4 < k — 1, then the result follows from the inequality

a0 @ +9) — @) < [baele +9) — 620 (X )]+ ar (@) — dar (X o)l

Then the matter reduces to the case ¢; # €, for some 1 <4 < k — 1. In this case, we have

k—1 k—1

€; 1 €;
When €¢; > 2, we have
k—1 ¢ el
. ? M—k 1
|¢M(lz_: Ml) ¢M(iz:: Ml)|

Thus it suffices to prove the result when ¢; = 0 or 1. By Proposition 4, we get

it i

=1 =1 (10)

140

S611\4_164_1.0_1(|O‘/(617 e 76120—1)| + |6(617 te 76120—1)|)) S C( Wi )ka
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where 7y is the minimal index such that ¢;,_; > 2 if it exists, otherwise £ — 1. Then
Theorem 5 follows from (8)-(10). W

6. Linear Independence

We say that a nonzero compactly supported distribution ¢ is locally linearly independent
if for every open set O the statement ), _, dp$(x —k) = 0 holds on the open set O implies
dy, = 0 for all indices k& which satisfy that ¢(- — k) is not indentically zero on O. Otherwise
we say that ¢ is locally linearly dependent. If the statement ), _, dp¢(z — k) = 0 holds for
all real  implies d, = 0 for all k£ € Z, then we say that ¢ is globally linearly independent.

In [DHS], we constructed examples of solutions of the refinement equations (1) when
M = 3, which are globally linearly independent, but locally linearly dependent. To our
surprise, we will show that ¢ is locally linearly dependent when M > 3. When M = 2,
it is proved that local and global linear independence of compactly supported solutions of
refinement equations are equivalent to each other.

Theorem 6. Let M > 3. Then the scaling function ¢pr is globally linearly independent
but locally linearly dependent.

Proof. The global linear independence of ¢p; follows easily form the orthonomality of

{¢M( —k) kEZ} ie. fR¢M ¢M($—k)d$:5k
To prove local linear dependence of ¢z, it suffices to find an open set O C (0, 1) nonzero
numbers a, b and ¢ such that ¢y (x + j) is not identically zero on O when j =0,1,2, and

ap(z) +bp(z+ 1) +cp(z+2) =0

holds on the open set O. Let O = (m, )a=(1-0)M/2+ (M?*-1)/6 #0,b=
(M2 —1)/6 #0,c= (1+0)M/2+ (M? —1)/6 # 0. By the refinement equation (1) and
the fact that ¢, is supported on [0,2 + ﬁ], we get,

p(x) = oy (Mz),
d(z+1) = 0y (Mo + 1) + 2E=2 ¢y (M),
o +2) = S0ne (M + 1),

1
M—1)°

when z € ( +). Hence

apu(z) +bpp(xz + 1)+ copm(z +2) =0,z € O.

NOW the matter reduces to prove that ¢M(a: + j) is not indentically zero on O when

= 0,1,2. Observe that ¢p(z + j),7 = 0,1,2, is a linear function on O with slope
(1 +0)/2,—0,(0 — 1)/2 respectively. Hence ¢(x + j) is not indentically zero on O for all
j=0,1,2. W
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7. Interpolation

For an L? closed subspace G of continuous functions on R and a point xy € [0, 1), we
say that interpolation problem at xg + Z is well-posed if there exists a constant C such
that "

CHIflla < (D 1f(@o+ k)" < Clfl2

keZ

holds for all f € G. We say that a continuous function ¢ is interpolatable at xoy + Z
if the interpolation problem at zo 4+ Z is well-posed for the L? closed space spanned by
{6(-—k),k € Z}. Tt is proved that a compactly supported and continuous scaling function
¢ is interpolatable at zo + Z if and only if there does not exist £ € R such that

> plao + k)e™ = 0. (11)

kez

(see [W] for example)
For M-band scaling function ¢, we have

Theorem 7. Let M > 2. Then ¢pr is interpolatable at xo + Z if and only if dpr(xo +
1) # %, where o € [0,1). Moreover there exists xg € [0,1) such that ¢ar is not interpolat-

able at vo + Z and such xo can be chosen as % — 2?\/1__12 when M > 11.

Proof. Let xzg € [0,1) be any point such that ¢ is not interpolatable at z¢ + Z.
Then by (11) there exists £ € R such that

e~ p(x0) + d(xo + 1) + % p(x + 2) = 0. (12)
By Proposition 1, we write (12) as

{ (1 —cos&)p(zo+1) +cos{ =0,
(p(x0) — Pp(zo +2))sin& = 0.

It is easy to see that ¢(zo + 1) = 3 when sin& = 0. Therefore the proof of the first part
reduces to prove that sin ¢ = 0. Contradictly we assume sin& # 0. Then ¢(z9) = ¢(xo+2).
By Proposition 1, we get

sy (20(w0) + ¢(wo + 1)) = 2o

and hence
1—-6

o= o — o
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1-6
2M—2

which is a contradiction since z¢ € [0,1) and < 0. This proves sin§ = 0 and the first
part of Theorem 7.

By the proof of Proposition 1, we get

2M -3+ 0
o) =" 5 7!
and L0
¢M(2): oM — 9 < 0.

Recall that ¢ps is continuous on [1,2]. Hence there exists z¢ € [0,1) such that ¢pr(zo +
1) = 1/2 by mean-valued theorem for continuous function. This proves that ¢as is not
interpolatable at xy + Z by the first part.

By the second formula in Proposition 2, ¢ is linear function with slope —1 on [1 +
< 2]. Observe that

3 f—1 1
- - >1+
2 2M — 2 M-—-1
when M > 11. Hence we get
3 f—1 3 f—1 1
g — 2) +92 — = - _
oy —oar o) M2 ot 5 T

and ¢ps is not interpolatable at % — 2?\4_—12 + 7. 1

Observe that
3 g—1 11

2 2M -2 10
when M = 11. By Theorem 7, we get

Corollary. Let

$11(z) = dp11(2+ ;6'—4ﬁ)

Then the scaling function <z~511 18 a scaling function with its filter

and s not interpolatable at 7.

The existence of g in Theorem 7 for which Y, ¢as(z0 + k)e "¢ = 0 for some £ € R
can be extended to general compactly supported continuous function.
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Theorem 8. Let ¢ be a compactly supported continuous function. Then there exist
xo € 10,1) and £ € R such that

Z (o + k‘)e_ik£ = 0.

keZz

If ¢ is further assumed that {¢(- — k);k € Z} is a Riesz basis of the space Vy spanned by
{¢(-—Fk); k € Z}, then there exists xo € [0,1) such that the interpolation problem at o+ Z
s not well-posed for Vj.

Proof. Without loss of generality, we assume that ¢ is supported in [0, N] for some
integer N. Define
z) = Z p(x + k)z "

Then G(z, z) is a polynomial of z for all z € [0,1]. Contradictly if

> lwo+ k)e ™ £0

keZz

hold for all z € [0,1] and £ € R. Then G(z, z) # 0 when |z| = 1. Denote the cardinality of
zero of G(z, z) including its multiplicity by k(z). Then k(z) is a integer and a continuous
function of x by Rouché theorem. Therefore we get k(x) = k(0) for all x € [0,1]. On
the other hand we have G(1,2) = 2G(0,2) and k(1) = k(0) + 1, which contradicts to
k(1) = k(0). This proves the first part.

The second part follows from (11).H

8. Wavelets

Let V;,j € Z, be the closed subspace of L? spanned by {¢p (M7 - —k);k € Z}. Then
{V;} is a multiresolution of L? (see [BDS]). Denote the orthogonal complement space of
Vi in Vi1 by Wi, 5 € Z.

Denote eg = (1,1,---,1) and e; = (0,1,2,--- , M — 1).

Theorem 9. Let U be the complement space of the one spanned by eq and ey in RM,
and let e; = (€0, ,ei(m—1)),2 < i < M — 1 be orthonormal basis of U. Define

Yy (@) = /B8 M A g (M — )

M- .
M~|—9 Z 1 2M 21]\42] QQS(MCU—j —M),

Vi (w) = MY 070 e,m( w—j),2<i<M-1.

Then {M3/%); pr(MPx — k);1 <i < M — 1,k € Z} is an orthonormal basis of W; for all
7€ Z, and {MI/?; py(Miz — k);1 <i <M — 1,5,k € Z} is an orthonormal basis of the
space L? of square integrable functions.
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Proof. Write H(z) = 47 ijvigl 2 H;(zM). Then we get

140 1 2M —-1-0 1

oM eo + M@l) + (Teo — Mel)z.

(Ho(2), -+, Ha-1(2)) = (

Define
U(z) = A+ Bz,
where 140 .
57 €0 T 271

2
M—:LZ(lziMaeo + ﬁﬁ)

and

O e

Then the first row of U(2) is (Ho(2),- -, Hp—1(2)). Furthermore it is easy to check that
U(z"YHU(2)T = I, where U(2)T denotes the transpose of U(z) and I is the unit matrix.
Then Theorem 9 follows from the fact that {¢as(- — k); k € Z} is an orthonormal basis of
Vo by complicated but usual computation. B
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