
LOCAL DUAL AND POLY-SCALE REFINABILITY

QIYU SUN

Abstract. For a compactly supported function f , let Sn(f), n ≥ 0, be the space
of all finite linear combinations of f(Mn · −k), k ∈ Z. In this paper, we consider
the explicit construction of local duals of f and the poly-scale refinability of
functions in S0(f) when f is an M -refinable function. We show that for any
M -refinable function f , there exists a local dual of f in SN (f) for some N ≥ 0
(Theorem 1.1), and that any function in S0(f) is poly-scale refinable (Theorem
1.2).

1. Introduction

Let L2 := L2(R) be the space of all square integrable functions on R and 〈·, ·〉
be the usual inner product on L2. For compactly supported functions f and g in
L2, we say that g is a local dual of f if

〈f(· − k), g(· − k′)〉 = δkk′ ∀ k, k′ ∈ Z,(1.1)

where δ is the usual Kronecker symbol. Given a compactly supported function f ,
we define the corresponding semi-convolution f∗′ on `, the space of all sequences
on Z, by

f∗′ : ` 3 {c(k)} 7−→
∑

k∈Z

c(k)f(· − k).

We see that for any k ∈ Z, the kth component of a sequence c contributes only
to f ∗′ c at the neighborhood k + suppf of the location k, and hence the semi-
convolution is locally defined. If there exists a local dual g of f , then for any
k ∈ Z, the k-th component c(k) of the sequence c := {c(k)} can be recovered from
the restriction of the semi-convolution f ∗′ c to a neighborhood of the location k in
a stable way because

c(k) = 〈f ∗′ c, g(· − k)〉 ∀ k ∈ Z,(1.2)

and hence the semi-convolution f∗′ has a local inverse. From (1.2), we see that the
semi-convolution f∗′ is one-to-one, which is known as linear independent shifts of
f ([10, 13]). Conversely if f has linear independent shifts, then a local dual g of f
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can be found ([1, 9, 14]). Thus for any given compactly supported L2 function f ,
the existence of its local dual in L2 is equivalent to its linear independent shifts.

We say that a compactly supported function f is M-refinable, or refinable for
short, if

f =
∑

k∈Z

a(k)f(M · −k) and f̂(0) = 1,(1.3)

where the dilation M is a fixed integer larger than 2, and {c(k)} is a finitely
supported sequence on Z and satisfies

∑
k∈Z

a(k) = M ([2, 5, 12]). Here the Fourier

transform f̂ of an integrable function f is defined by f̂(ξ) =
∫
R

f(x)e−ixξdx. The

sequence {a(k)} and the function H(ξ) = 1
M

∑
k∈Z

a(k)e−ikξ are called the mask and
the symbol of the refinable function f respectively. The first topic considered in this
paper is the explicit construction of a local dual of a given refinable function. Our
motivation is based on the following three easy observations: the first observation is
that if f has orthonormal shifts, that is, (1.1) holds for g being replaced by f , then
f itself is the local dual of f , and hence there is a local dual in the shift-invariant
space S0(f) generated by f ,

S0(f) = {f ∗′ c : c ∈ `0},

where `0 is the space of all finitely supported sequences on Z; the second observation
is that if f is M -refinable, then the spaces

Sn(f) = {h(Mn·) : h ∈ S0(f)}, n ≥ 0,

satisfy the following nestedness condition,

S0(f) ⊂ S1(f) ⊂ · · · ⊂ Sn(f) ⊂ · · · → L2;

and the third observation is that for the hat function h(x) = max(1 − |x|, 0), the
function −1

2
(h(2x−1)+h(2x+1))+3h(2x) in S1(h) is a local dual of h, where we set

M = 2. The above three observations inspire us to consider the problem whether
for any refinable function f we can find its local dual in SN(f) for some N ≥ 0. An
affirmative answer to the above problem for M = 2 follows from the intertwining
multiresolution analysis in [8]. In this paper, we give an affirmative answer to the
above problem for any dilation M , and prove the following result where the local
dual can be chosen from the dilation of the shifts of another refinable function.

Theorem 1.1. Let f and g be compactly supported refinable functions in L2. If f
and g have linear independent shifts, then there is h ∈ SN(g) for some N ≥ 0 so
that h is a local dual of f .

From Theorem 1.1, we see that for any refinable function f ∈ L2 with linear
independent shifts, a spline of order L with knots on Z/MN can be a local dual
of f when N is sufficiently large. For the case that both f and g are B-splines, a
function in S1(g) can be chosen to be a local dual of f from the proof of Theorem
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1.1. For instance, 3χ[0,1/2] − χ[1/2,1) is a local dual of the hat function h, where we
set M = 2 and we denote the characteristic function on a measurable set E by χE.

Given any compactly supported refinable function f ∈ L2 with linear indepen-
dent shifts, the functions in SN (f) have been used in the construction of ortho-
normal wavelets ([2, 5, 12]), tight affine frames ([3, 4, 6]), and also the local dual
(Theorem 1.1). The second topic of this paper is the refinability of functions in
S0(f). Given a refinable function f , a function g ∈ S0(f) is not refinable in general.
In particular, one may easily verify that g =

∑
k∈Z

d(k)f(·−k) ∈ S0(f) is refinable if
and only if D(zM )H(z)/D(z) is a Laurent polynomial, where D(z) =

∑
k∈Z

d(k)zk

and H(z) =
∑

k∈Z
a(k)zk with {a(k)} being the mask of the refinable function

f . Recently, poly-scale refinability, a weak concept of refinability, was introduced
by Dekel and Dyn ([7]). For a compactly supported function f , we say that f is
poly-scale refinable if

f =
N∑

n=1

∑

k∈Z

cn(k)f(Mn · −k)(1.4)

for some N ≥ 1, where {cn(k)} ∈ `0, 1 ≤ n ≤ N . Clearly, a refinable function is
poly-scale refinable, and a compactly supported function f is poly-scale refinable
if and only if

S0(f) ⊂ S1(f) + · · ·+ SN (f)

for some N ≥ 1. In this paper, we show that given a refinable function f having
linear independent shifts, any function g ∈ S0(f) is poly-scale refinable.

Theorem 1.2. Let f be a compactly supported refinable function. Then any func-
tion in S0(f) is poly-scale refinable.

Given a compactly supported refinable function f and a function g ∈ S0(f), we
see from Theorem 1.2 that S0(g) ⊂ S1(g)+S2(g)+· · ·+SN(g) for some N ≥ 1. Also
we notice that S0(g) ⊂ S0(f). The above two observations inspire us to consider
the following problem whether

S0(f) ⊂ S1(g) + · · ·+ SN (g)(1.5)

holds for some N ≥ 1.

Theorem 1.3. Let f be a compactly supported refinable distribution having linear
independent shifts, and let g =

∑
k∈Z

d(k)f(· − k) ∈ S0(f) for some nonzero se-
quence {d(k)} ∈ `0. Assume that there does not exist ξ0 ∈ R so that d(Mnξ0) = 0
for all n ≥ 0, where we set d(ξ) :=

∑
k∈Z

d(k)e−ikξ. Then (1.5) holds for some
positive integer N .

The condition on d in Theorem 1.3 cannot be dropped out in general. For
instance, if g = f − f(· − 1), then any function h in SN (g), N ≥ 1, satisfies∫
R

h(x)dx = 0, which implies that (1.5) does not hold for any N ≥ 1.
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2. Local Dual

In this section, we give a constructive proof to the following slight generalization
of Theorem 1.1.

Theorem 2.1. Let f be a compactly supported refinable function in L2 and have
linear independent shifts, and let g be a compactly supported function in L2, have
linear independent shifts and satisfy

∫
R

g(x)dx 6= 0. Then there exists a function h
in SN(g) for some N ≥ 0 so that h is a local dual of f .

We remark that the condition
∫
R

g(x)dx 6= 0 in Theorem 2.1 cannot be dropped
out in general. For instance, let f = χ[0,1) and g = χ[−1/2,0)−χ[0,1/2]. If we can find
h ∈ SN(g), N ≥ 0, so that h is a local dual of f , then

〈f(· − k), h〉 = δk, k ∈ Z.(2.1)

Write h =
∑

k∈Z
aN (k)g(2N · −k) for some {aN(k)} ∈ `0. Then direct calculation

yields

〈f(· − k), h〉 = 2−NaN (2Nk)− 2−NaN(2N(k + 1)), k ∈ Z.(2.2)

By (2.1) and (2.2), the sequence {aN(k)} is not finitely supported, which is a
contradiction.

We say that ξ0 is an m-symmetric root of a trigonometric polynomial a if a(ξ0 +
2kπ/m) = 0 for all k ∈ Z. To prove Theorem 2.1, we need a lemma about m-
symmetric root of a trigonometric polynomial.

Lemma 2.2. Let f be a compactly supported refinable function having linear inde-
pendent shifts, and A be a nonzero trigonometric polynomial. Let H be the symbol
of f and define

Hn(ξ) = H(Mn−1ξ) · · ·H(ξ)(2.3)

for n ≥ 1. Denote the set of all Mn-symmetric roots of HnA by Kn with multiplicity
being not counted, where we say that a and b are two different Mn-symmetric roots
if a− b 6∈ 2M−nπZ. Then Kn ⊂ 2M−nπZ for sufficiently large n.

Proof. Let f satisfy the refinement equation

f =
∑

k∈Z

a(k)f(M · −k),(2.4)

where {a(k)} ∈ `0 satisfies
∑

k∈Z
a(k) = M . Taking Fourier transform of both

sides of the equation (2.4), we get

f̂(ξ) = H(ξ/M)f̂(ξ/M),(2.5)

and using (2.5) iteratively for n times, we obtain

f̂(ξ) = Hn(ξ/Mn)f̂(ξ/Mn).(2.6)
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Recall that f has linear independent shifts, then for any complex number ξ0 there
exists an integer k := k(ξ0) so that f̂(ξ0 + 2kπ) 6= 0 ([10, 13]). This together with
(2.6) concludes that

Hn(ξ) does not have any Mn-symmetric root for any n ≥ 1.(2.7)

Let Z(A) be the set of all roots of A(ξ) with multiplicity being not counted. By
(2.7), we have

Kn ⊂ Z(A) + 2M−nπZ,(2.8)

and hence

#Kn < ∞(2.9)

for all n ≥ 1. Here #E is the cardinality of a finite set E.
For any ξ0 ∈ Kn, let k1 be an integer so chosen that H(Mn−1ξ0 + 2k1π/M) 6= 0,

and set ξ′0 = ξ0 + 2M−nk1π. Then ξ′0 ∈ Kn−1 since Hn(ξ0 + 2M−nkπ)A(ξ0 +
2M−nkπ) = 0 for all k ∈ Z and Hn(ξ) = H(Mn−1ξ)Hn−1(ξ). Also one may
verify that if ξ0, ξ

′

0 ∈ Kn are two different Mn-symmetric roots of HnA, then
ξ0+2M−nk1π and ξ′0+2M−nk′1π are two different Mn−1-symmetric roots of Hn−1A,
where k1, k

′

1 ∈ Z. Therefore we conclude that

#Kn ≤ #Kn−1 ∀ n ≥ 1.(2.10)

Moreover, we see that #Kn = #Kn−1 if and only if

Kn−1 = {ξ0 + 2M−nk(ξ0)π : ξ0 ∈ Kn},(2.11)

where k(ξ0) ∈ Z is chosen so that

H(Mn−1ξ0 + 2kπ/M) = 0 ∀ k 6∈ k(ξ0) + MZ,(2.12)

and

H(Mn−1ξ0 + 2kπ/M) 6= 0 ∀ k ∈ k(ξ0) + MZ.(2.13)

By (2.10) and (2.11), there exist an integer N0 and a finite set K such that

Kn = K modulo 2M−nπZ(2.14)

for all n ≥ N0.
For any ξ0 ∈ K and n ≥ N0, H(Mnξ0 + 2kπ/M) = 0 for k ∈ Z\MZ and

H(Mnξ0 + 2kπ/M) 6= 0 for k ∈ MZ by (2.12) and (2.13). Then for any 1 ≤ k ≤
M − 1, {Mnξ0 + 2kπ/M : 1 ≤ k ≤ M − 1, n ≥ N0} is a finite set modulo 2πZ,
which implies that Mn1ξ0 + 2kπ/M = Mn2ξ0 + 2kπ/M mod 2πZ for some integers
N0 ≤ n1 < n2. Therefore η0 := Mn1ξ0 is rational and we may assume that

η0 = 2j0π/(m− 1)(2.15)

for some 0 ≤ j0 ≤ m− 2, where m = Mn2−n1 , and

H(Mnη0 + 2kπ/M) = 0 ∀ k ∈ Z\MZ and n ≥ 0.(2.16)
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From (2.16), it follows that

Hn2−n1
(η0 + 2kπ/m) = H(Mn2−n1−1(η0 + 2kπ/m)) · · ·H(η0 + 2kπ/m) = 0

(2.17)

for all k ∈ Z\mZ, which implies that for any k ∈ Z with k = j0+· · ·+ml−1j0+mlk′

for some l ≥ 0 and k′ − j0 ∈ mZ, we have

f̂(η0 + 2kπ) = f̂(mη0 + 2(k − j0)π)

= Hn2−n1
(η0 + 2(k − j0)π/m)f̂(ξ0 + 2(k − j0)π/m)

= Hn2−n1
(η0)f̂(ξ0 + 2(k − j0)π/m)

= · · · = Hn2−n1
(η0)

lf̂(ξ0 + 2k′π)

= Hn2−n1
(η0)

lHn2−n1
(η0 + 2(k′ − j0)π/m)f̂(η0 + 2(k′ − j0)π/m)

= 0.(2.18)

On the other hand, we see that if 0 < j0 ≤ m−2, then the union of the sets Ul(η0) :=
j0+· · ·+mlj0+ml

Z\ml+1
Z, l ≥ 0, is the whole integer set Z, because Z\(∪L

l=0Ul) =
j0 + · · · + mLj0 + mL+1

Z, and min{|k| : k ∈ Z\(∪L
l=1Ul)} ≥ min(mL+1 − (j0 +

· · · + mlj0), (j0 + · · · + mLj0)) → ∞ as L → ∞. Therefore j0 = 0 by (2.18)
and the linear independent assumption on f . This proves that for any ξ0 ∈ K
there exists an integer n so that Mnξ0 ∈ 2πZ. Hence K ⊂ 2M−N1πZ for some
sufficiently large integer N1. This together with (2.14) proves that Kn ⊂ 2M−n

Z

for all n ≥ max(N0, N1) and hence the result follows.

Now we reach the stage of the proof of Theorem 2.1.

Proof of Theorem 2.1. Define the correlation of two compactly supported L2 func-
tions f and g by

Af,g(ξ) :=
∑

k∈Z

〈f, g(· − k)〉e−ikξ.(2.19)

Recall that f is a refinable function in L2, which implies the unit partition property∑
k∈Z

f(· − k) ≡ 1. Thus

Af,g(0) =

∫

R

g(x)dx 6= 0.(2.20)

Denote the set of all Mn-symmetric roots of HnAf,g by Kn with multiplicity
being not counted, where as before we say a and b are two different Mn-symmetric
roots if a − b 6∈ 2M−nπZ. By (2.20) and Lemma 2.2, KN ⊂ 2M−NπZ for some
integer N . Thus KN is an empty set, since otherwise 0 ∈ KN , and then Af,g(0) =
HN(0)Af,g(0) = 0, which contradicts (2.20). From the definition of KN and the
assertion KN = ∅, it follows that HN(ξ)Af,g(ξ) does not have any MN -symmetric
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root. By Bezout identity, there exists a trigonometric polynomial B(ξ) so that

MN
−1∑

k=0

HN

(ξ + 2kπ

MN

)
Af,g

(ξ + 2kπ

MN

)
B

(ξ + 2kπ

MN

)
= 1.(2.21)

Define h by ĥ(ξ) = B(ξ/MN)ĝ(ξ/MN). Obviously h ∈ SN(g). By (2.6) and (2.21),
we have

Af,h(ξ) =
∑

k∈Z

f̂(ξ + 2kπ)ĥ(ξ + 2kπ)

=
∑

k∈Z

HN

(ξ + 2kπ

MN

)
B

(ξ + 2kπ

MN

)
f̂
(ξ + 2kπ

MN

)
ĝ
(ξ + 2kπ

MN

)

=
MN

−1∑

k=0

HN

(ξ + 2kπ

MN

)
Af,g

(ξ + 2kπ

MN

)
B

(ξ + 2kπ

MN

)

= 1,

and hence h is a local dual of f .

3. Poly-scale Refinability

In this section, we give the proofs of Theorems 1.2 and 1.3. To prove Theorems
1.2 and 1.3, we need a lemma about trigonometric polynomials.

Lemma 3.1. For any given nonzero trigonometric polynomial d(ξ), there exist an
integer N and trigonometric polynomials cl(ξ), 1 ≤ l ≤ N , so that

d(MNξ) = c1(M
N−1ξ)d(MN−1ξ) + c2(M

N−2ξ)d(MN−2ξ) + · · ·+ cN(ξ)d(ξ).(3.1)

Furthermore, if there does not exist ξ0 ∈ C so that d(Mnξ0) = 0 for all n ≥ 0, then
there exist an integer N and trigonometric polynomials c∗l (ξ), 1 ≤ l ≤ N , so that

1 = c∗1(M
N−1ξ)d(MN−1ξ) + c∗2(M

N−2ξ)d(MN−2ξ) + · · ·+ c∗N(ξ)d(ξ).(3.2)

Proof. We let d0(ξ) = d(ξ), and inductively for n ≥ 1, we let dn(ξ) be the trigono-
metric polynomial with minimal degree so that any common factor between d(ξ)
and dn−1(ξ) is a factor of dn(Mξ). Here the degree of a trigonometric polynomial

p(ξ) :=
∑k2

k=k1
p(k)e−ikξ with p(k2)p(k1) 6= 0 is defined by deg p = k2 − k1. Note

that dn(ξ) is a factor of dn−1(ξ/M) · · ·dn−1(ξ/M + 2(M − 1)π/M) since dn−1(ξ) is
a factor of the trigonometric polynomial dn−1(ξ) · · ·dn−1(ξ +2(M − 1)π/M). Then
the degree of dn is less than the one of dn−1, which implies that there exists an
integer N so that the degree of dn is the same as the one of dN for all n ≥ N . Recall
that dn+1(Mξ) is a factor of dn(ξ) · · ·dn(ξ + 2(M − 1)π/M). Then comparing the
degrees of the above two trigonometric polynomials, we get

dn+1(Mξ) = cn(ξ)dn(ξ) · · ·dn(ξ + 2(M − 1)π/M),(3.3)
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where cn(ξ), n ≥ N , are nonzero monomials. This together with the construction
of dn+1 implies that

dn(ξ) is a factor of d(ξ) for all n ≥ N.(3.4)

Therefore there exists a trigonometric polynomial c0 so that

d(ξ) = c0(ξ)dN(ξ).(3.5)

From the construction of dn, there exist trigonometric polynomials an and bn so
that

dn(Mξ) = an(ξ)d(ξ) + bn(ξ)dn−1(ξ)(3.6)

for all 1 ≤ n ≤ N . The assertion (3.1) follows from (3.5) and (3.6).
Now we prove (3.2). Let dn, n ≥ 0, and N be as above. By (3.6), it suffices to

show that dN is a monomial when there does not exist ξ0 ∈ C so that Mnξ0, n ≥ 0,
are roots of d(ξ). Suppose, on the contrary, that dN is not a monomial. Then
dN(η1) = 0 for some η1 ∈ C. Iteratively using (3.3), we obtain dn+N(Mnη1) = 0
for all n ≥ 0. This together with (3.4) implies that d(Mnη1) = 0 for all n ≥ 0,
which is a contradiction.

Now we start to prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Write g =
∑

k∈Z
d(k)f(· − k) for some {d(k)} ∈ `0, and

assume that f satisfies the refinement equation f =
∑

k∈Z
a(k)f(M · −k) for some

{a(k)} ∈ `0. Then setting H(ξ) = 1
M

∑
k∈Z

a(k)e−ikξ and d(ξ) =
∑

k∈Z
d(k)e−ikξ

yields

f̂(Mξ) = H(ξ)f̂(ξ) and ĝ(ξ) = d(ξ)f̂(ξ).(3.7)

By Lemma 3.1, there exist a positive integer N and trigonometric polynomials
cn(ξ), 1 ≤ n ≤ N , so that

d(MNξ) =
N∑

n=1

cn(MN−nξ)d(MN−nξ).(3.8)

Multiplying f̂(MNξ) at both sides of (3.8) and using (3.7), we obtain

ĝ(MNξ) =
N∑

n=1

cn(MN−nξ)d(MN−nξ)f̂(MNξ)

=
N∑

n=1

cn(MN−nξ)H(MN−1ξ) · · ·H(MN−nξ)ĝ(MN−nξ).(3.9)

Hence taking inverse Fourier transform at both sides of (3.9) proves that g is poly-
scale refinable.
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Proof of Theorem 1.3. We use the same argument as in the proof of Theorem 1.2
except the equation (3.8) being replaced by (3.2). We omit the details of the proof
here.

4. Generalization, Applications and Problems

In this section, we give few remarks about generalization, applications and open
problems related to Theorems 1.1, 1.2 and 1.3.

For a vector-valued compactly supported function F = (f1, . . . , fr)
T on R

d, we
define the semi-convolution F∗′ by

F∗′ : (`)r 3 {c(k)} 7−→
∑

k∈Zd

c(k)T F (· − k),

where (`)r is the r copies of the space of all sequences on Z
d, and the shift-invariant

spaces Sn(F ) by

Sn(F ) = {F ∗′ c(Mn·) : c ∈ (`0)
r}.

We say that F is M-refinable if

S0(F ) ⊂ S1(F ),

and poly-scale refinable if

S0(F ) ⊂ S1(F ) + · · ·+ SN (F )

for some N ≥ 1. For two vector-valued compactly supported functions F =
(f1, . . . , fr)

T ∈ L2 and G = (g1, . . . , gr)
T ∈ L2, we say that G is a local dual

of F if 〈fi(· − k), gi′(· − k′)〉 = δii′δkk′ for all 1 ≤ i, i′ ≤ r and k, k′ ∈ Z
d.

First we consider the generalization of Theorem 1.1 to the vector-valued case.

Theorem 4.1. Let F = (f1, . . . , fr)
T and G = (g1, . . . , gr)

T be vector-valued com-
pactly supported functions in L2. Assume that F is M-refinable and has linear inde-
pendent shifts, the symbol H(ξ) of the refinable function F satisfies det H(ξ) 6≡ 0, G

satisfies
∫
R

G(x)dx 6= 0, and the correlation matrix
∑

k∈Z
F̂ (ξ + 2kπ)Ĝ(ξ + 2kπ)T

is nonsingular for some ξ0 ∈ C. Then there exist functions h1, . . . , hr ∈ SN (g) for
some N ≥ 0 so that (h1, . . . , hr)

T is a local dual of F .

As an easy consequence of Theorem 4.1, we see that for a vector-valued refinable
function F ∈ L2 having linear independent shifts, if the corresponding symbol
has nonzero determinant, then a local dual to F can be found in SN (F ) for some
N ≥ 1. We do not include the proof of Theorem 4.1 here since the proof is similar
to the one of Theorem 2.1, except more delicate analysis about symmetric roots of
a matrix-valued trigonometric polynomial.

Next we consider the compactly supported distributional solution of a poly-scale
refinement equation. As mentioned in [7], for a poly-scale refinement equation,
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there is a corresponding vector-valued refinement equation. In particular, let F =
(f1, . . . , fr)

T satisfy the following poly-scale refinement equation,

F =

N∑

n=1

∑

k∈Z

cn(k)F (Mn · −k),(4.1)

where {cn(k)} ∈ `r×r
0 , 1 ≤ n ≤ N , set

Hn(ξ) = M−n
∑

k∈Z

cn(k)e−ikξ, 1 ≤ n ≤ N,

and define

H̃(ξ) =




H1(M
N−1ξ) H2(M

N−2ξ) · · · HN−1(Mξ) HN(ξ)
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · I 0




.

Then the vector-valued function F̃ defined by

̂̃F (ξ) =




F̂ (MN−1ξ)
...

F̂ (Mξ)

F̂ (ξ)




satisfies the refinement equation

̂̃F (ξ) = H(ξ/M) ̂̃F (ξ/M).

As an application of Theorem 2.1 in [11], we have the following result about the
existence of nonzero compactly supported distributional solution of a poly-scale
refinement equation.

Theorem 4.2. Let {cl(k)} ∈ `r×r
0 , 1 ≤ l ≤ N , and set

H(z, w) =

N∑

l=1

∑

k∈Z

cl(k)zkwl.

Then there exists a nonzero compactly supported distributional solution F of the
poly-scale refinement equation

F =

N∑

n=1

∑

k∈Z

cn(k)F (Mn · −k),(4.2)

if and only if H(1, M−l)− I is singular for some nonnegative integer l.
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Now we consider the possible application of Theorem 1.3. Let f be a compactly
supported refinable function on the real line, and let g ∈ S0(f). By Theorem 1.3,
there exist a positive integer N and sequences {cn(k)} ∈ `0, 1 ≤ n ≤ N , so that

f =
∑N

n=1

∑
k∈Z

cn(k)g(Mn · −k). Then taking inner product with an L2 function
h leads to

〈h, f(· − k)〉 =
N∑

n=1

∑

l∈Z

cn(l)〈h, g(Mn · −Mnk − l)〉 for all k ∈ Z,

which implies that the local information of the sequence {〈h, f(· − k)〉} can be
obtained from the local information of {〈h, g(Mn·−k′)〉} at the finer level n between
1 and N . The above formula is useful in the reconstruction of the original function
or signal in the shift-invariant space generated by f , especially when it is costly
for designing a good average sampler g to obtain the data at initial level than for
using an easy average sampler g to obtain the data at finer level.

Finally, we propose some problems about local dual and poly-scale refinability:

Problem 1. Let F and G ∈ L2 be vector-valued compactly supported refin-
able functions on R

d, d ≥ 2, and have linear independent shifts. Can we find local
dual of F in SN(G) for some N ≥ 1.

Problem 2. Let F = (f1, . . . , fr)
T be a vector-valued compactly supported

(poly-scale) refinable functions having linear independent shifts. Characterize all
functions g1, . . . , gr ∈ S0(F ) which are poly-scale refinable.

Problem 3. Let F = (f1, . . . , fr)
T be a vector-valued compactly supported

refinable functions having linear independent shifts. Characterize all functions
g1, . . . , gr ∈ S0(F ) so that S0(F ) ⊂ S1(G) + · · · + SN(G) for some N ≥ 1, where
G = (g1, . . . , gr)

T .
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