REFINABLE FUNCTIONS FROM THEIR VALUES AT
INTEGERS

CHARLES A. MICCHELLI AND QIYU SUN

Dedicated to Mike Powell with friendship and esteem
on the occasion of his 65th birthday

ABSTRACT. Any positive sequence of finite numbers such that the
sum of the even indexed and odd indexed terms are one determines
a refinable function which is positive in its support and whose
integer translates form a partition of unity. Using this fact we
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1. INTRODUCTION

A real-valued continuous function ¢ supported on the interval [0, N+
1], where N is a positive integer, is said to be refinable provided that

(1.1) ¢:Za]¢(2-—j)

for some sequence of real numbers {a; : j € Z} such that a; = 0 for
J & Znio:={0,1,... , N+1}. A necessary condition for the existence
of ¢ is that the polynomial

(1.2) a(z) == Zajzj, 2€C
JEZ
has the property that
(1.3) a(—1) =0, a(1) =2
The first author is supported in part by the U. S. National Science Foundation
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and in this case

(1.4) > (-4 =1,

jez
see [1]. If, in addition to (1.3),
(]_5) a; > 0, ] S ZN+2,

then there exists a unique continuous ¢ satisfying the refinement equa-
tion (1.1) and the partition of unity condition (1.4). Moreover, in this
case,

_ [ >0, z€(0,N+1)
(1.6) ¢(x) = { 0, otherwise,

see [9] and also [4, 8]. In fact, ¢ is Holder continuous, see [8].
Following discussion in [7] and also recently in [3], we use the values

of  on Zy 4 to generate another polynomial of degree NV + 1 satisfying

(1.3) with positive coefficients on Zy,. For example, the polynomial

(1.7) a'(z) = (a+2)° Z op(j+1)27, z€C

2 ;
JEZN

determines a refinable function ¢! satisfying all the same conditions
as ¢ itself. We continue this process and form polynomials a™,n € Z,
(each of degree N+1) and corresponding refinable functions ¢, n € Z,
and ask about their limit as n — oo.

This iteration is in fact a special case of the one studied in this paper.
Before getting to the specifics of the iteration, let us briefly mention in
passing an illustrative example of the above iteration. The cases N =1
and N = 2, converge in at most two steps. For N = 3, we start with
a symmetric quartic polynomial

1 1
ao(z):(1+z)[§—t+tz+t22+ (§—t>z3], z€C,
where t € (0,1/2) and note for n € Z, that
1 1
a"(z) = (1+2) [5 — bty F oz + 12+ (5 —tn>z3], zeC,

where

tn+1 = , n € Z+,
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The sequence {t, : n € Z,} is strictly increasing, lies in (0,1/2) and
converges to 1/2 as n — oco. In particular,

t+(1—2t)n

n — , S/
1+2(1—2tm "5
Hence, we conclude that
lim a" = a*™
n—oo
where ,
1
a®(z) == il ;_Z) , 2 € C,
which implies that
lim ¢" = ¢™
n—oo

where for x € R,

o |0, z¢ (1,3
¢ @y_{1-¢2—ﬂ,erL£.

The convergence is uniform on compact subsets of C, R respectively.
The function ¢ is uniquely determined by the refinement equation

67 = aFe™(2-—j)

JEZ

» ¢>(—4)=1

JEZ

and the condition that

This example prepares us for the general case which we now describe.

2. THE ITERATION

For any continuous function ¢° on R, positive on (0, N + 1) and zero
otherwise, which satisfies the equation

(2.1) » 8- =1
jEZ
and @ € (0, 1), we define the polynomial of degree N+1 by the equation
a’(z) == ZLj(d)O)zj, 2€C
jEZ
where
Li(¢") :=06°(j — 1) +¢°(j) + (1 = 0)¢"(j + 1), j€Z.

This polynomial begins the iteration which we describe next.
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Proposition 2.1. For every 6 € (0,1) and function ¢° described above
there exists a sequence of functions {¢™ : n € Z} such that

N mrn_ | >0, ze(0,N+1)
i) " () _{ 0, otherwise,

(ii) Zjez ¢n(' - j) =1,
(ili) ¢+ =300z Li(@")e" (2 =)

Proof. According to our definition of the polynomial a® and our remarks
in Section 1, there is a unique refinable function ¢! such that
ot =2 Li(@")e'(2- —i)
jez
and (i) and (ii) of Proposition 2.1 hold with n = 1. The polynomial of
degree N + 1
a'(z) = ZLj(¢1)zj, z€C
jez

has positive coefficients and satisfies (1.3). This means that it likewise
determines a refinable function ¢? which satisfies (i)—(iii) of the propo-

sition. In this way, we define inductively for n € Z, refinable functions
¢" and polynomials

(2.2) a"(z) = ZLj(¢”)zj, z€C.
U

Note that in our definition of ¢" and a™,n € Z, we only require the
values ¢°(j+1),j € Zy, the fact that they are positive and sum to one.
The case § = 1/2 of the iteration corresponds to the case described in
Section 1. For any 6, when N = 1 all the iterates are the same and so
henceforth we assume N > 2.

We now consider two special refinable functions central in our analy-
sis of convergence of our iteration. The first is defined by the refinement
equation

(2.3) b= t0(2) + B2 —1) + (1 - (- —2)
and the requirement that
(2.4) dov(—4)=1
JEZ
where ¢t € (0,1). This function has support [0,2] and is positive in

(0,2). Moreover, as a special case of general results from [9, 4] it
was proved in [8] that ¢ is strictly increasing on [0,1]. We display
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its dependency on ¢ by the notation v, and observe for ¢ = 1/2 that
Yy(x) = max(0,1 — |1 —z|), x € R.
The next function we require is defined by the equation

[y(x) = /lzpt(a)da, reR

or alternatively by the requirement that

(2.5)

r, = %[(1 COT(2) 4 (2 - HT2- 1) + (1 + L2~ —2) + (T,(2 - —3)]
and

(2.6) d L(—j)=1

JEZ
We are now prepared to define the limit of the iteration described

above. To this end, we introduce an integer m € Zy_; and 7 € [0,1)
defined by the equation

(2.7) m4T=Y jé’(j +1).
jEZ
These definitions lead us to the function

Yo(- — N+1), if € (0,1/2)
(2.8) d>(-|0) ;=< T (-—m), if=1/2
Yo, it9e(1/2,1).

Theorem 2.2. If0 € (0,1), then there are constants q € (0,+00) and
r € (0,1) such that for alln € Z, and x € R, either

(i) 07 1/2 and [¢"(x) — ¢ (x]0)| < gr", or
(ii)) 0 =1/2, 7 # 0 and |¢p"(x) — ¢ (x|0)| < gr™, or

(iii) # =1/2 and 7 =0 and |¢"(x) — ¢=(x|0)| < q(n+ 1)L

We remark that the estimate above in (iii) of Theorem 2.2 cannot be
improved, since for the refinable function ¢™ and ¢ in Section 1 and for
any t € (0,1/2) there is a positive constant ¢ such that for all n € Z
we have that

6"(2) — ¢*(210)| = [4tn1 — 2] > c(1+n)~".
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3. ESTIMATES

We find it convenient to introduce the sequence of polynomial of
degree N — 1

(3.1) b (2) := Z¢”(j + 1)z, 2€C, neZ,
jez

and also make use of the quadratic polynomial

(3.2) Co(2) =0+ 2+ (1—-0)2% z€C.
From these definitions there follows the formula
(3.3) a" = Cpb", n € Z,.

Our first observation concerns an equivalent way to state the iteration
described in Section 2 in terms of these polynomials.

Lemma 3.1. For any n € Z, there holds

(3.4) v'(1) =1
while for z € C
(3.5) a"(2)b" 1 (2) — a"(—2)b" T (—2) = 220" (2?).

Proof. The first claim follows immediately from (ii) of Proposition 2.1.
For the second claim we specialize (iii) of Proposition 2.1 to obtain for
i,j S Z,TL S Z_|_ that d2i+1 = ¢Jn+1(i + ].), where

di =Y Lij(¢")¢" (i + 1 - j).
jez
Recalling definition (2.2) and (3.1) we obtain from the above equation
that d = a™b"*! and hence for all z € C,

22bn+1(22) - 9 Z d2l+lz2l+1

I€Z
= a"(2)b"T(2) — a"(—2)b" (—2).
U
Recall for n € Z, that all the coefficients of 0" are positive. In view
of the first fact stated in Lemma 3.1 these polynomials are bounded

on compact subsets of C. In our next lemma we identify all possible
cluster points of this sequence of polynomials.

Lemma 3.2. If0 € (0,1) and b is a Laurent polynomial with nonneg-
ative coefficients such that for all z € C\{0}

(3.6) Co(2)(b(2))* — Co(—2)(b(—2))* = 22b(7)
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and

then either @ = 1/2 and there exist « € [0,1) and integer k € Z such
that

(i) b(z)=[a+(1—a)z]z* z€C,

or 0 # 1/2 and there ezists k € Z such that

(ii) b(z) = 2%, 2€C.

Moreover, any polynomial of either of these forms satisfies (3.6) and

(3.7).
Proof. Certainly (3.6) and (3.7) represent the equations necessarily sat-
isfied by any cluster point of the sequence of {b" : n € Z, }.

Let us begin the proof of the lemma by confirming that any polyno-
mial of the type described in (i) and (ii) provide a solution to (3.6) and
(3.7). To this end, we observe whenever b satisfies (3.6) and (3.7), then
the Laurent polynomial b defined by the equation b(z) := 2*b(2),z €
C\{0} for any k € Z also satisfies these equations. Likewise, recalling
the definition of the quadratic polynomial Cy the Laurent polynomial
defined by the equation b(z) := b(z™'),z € C\{0} satisfies (3.6) and
(3.7), with 0 replaced by 1 — @ when b itself is a solution to these equa-
tions. Consequently, since the polynomial b = 1 clearly satisfies (3.6)
and (3.7), we see the polynomials in (ii) is also a solution. In a similar
manner, when 6 = 1/2, a direct computation confirms the polynomial
in (i) satisfies (3.6) and (3.7).

For the converse, we let b be any solution to (3.6) and (3.7) with
nonnegative coefficients. By our previous remarks, we can assume b is
an algebraic polynomial with 6(0) > 0 and # € (0,1/2]. We make use
of this additional information by differentiating both sides of (3.6) and
setting z = 0 to obtain the formula

b(0) + 204/ (0) = 1.

Moreover, since

1=0(1)= Z b(j).(o) > b(0) +b'(0) > b(0) +260b'(0) =1,

[

JEZy J:
we conclude that b0)(0) = 0 for all j > 2. If § € (0,1/2) we also have
that '(0) = 0. This proves the result. O

Our next lemma provides useful inequalities for the coefficients of
the polynomial 0",

(z) = Y b, z€C,

JEZN
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assumed to satisfy (3.6) and (3.7), and to have positive coefficients.
For the proof of the next result we find it convenient to say a(z) > b(z)
whenever a; > b;, j € Z for any two Laurent polynomials a and b.

Lemma 3.3. Ifn€Zy, 0 €(0,1) andl € Zn_y. Then

1 — e)anrl

n+l (—l n

(38) bl+1 ol 1 _ (1 . e)b? 1+1

and

(3.9) Pt < L= p(L = 0pF 4+ 21— 0)7" > (b + b
JEZ

where p := 11%290.

Proof. We start with the inequality (3.8). Since the coefficient of b”
are nonnegative we have that

bn+1(z) > b?“zl + bl"j'llzlﬂ.

Therefore we conclude that

Co(2)b"(2)b" " (2) > (1 — ) (b + bt o) 22,

Combining this inequality with the equation (3.5) proves (3.8).
For the second inequality we set

e"(z) == Z bi2l, z€C
JEZ

and use the convention that whenever r™ appears below it represents
some polynomial which does not contain a factor 22+, Our first step
is to write

bn+1bn — 6n+1bn + enanrl + (bn+1 - 6n+1)(bn - en) - 6n+16n
and conclude that
Co(" T (2" (2) < Cyl2)e" ()" (2) + Co(2)0" ! (2)e" (2)
+Co(2) (0" (2) — €1 (2)) (" (2) — €"(2)).

For the last term we note that each factor has terms starting with z'.
Therefore, we obtain that it is

< [0 O B )| ).
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Our estimate for the first term is
Co(2)e" ™ (2)b"(2)
< Cy(2)e"(2) Z 2" (2)
JEZN 1
< (0e"TH(1) + €MD) + (1= 0)e" T (1)) + 1" (2)
26n+1 (1)Z2l+1 4 Tn(Z)
A similar estimate holds for the second term, and in total we get
Co(2)0" 1 (2)b" (2)
<[ OB+ ) + 2 (b + b2 4 2).
JEZ
Referring back to the equation (3.5) we obtain,
(3.10) Bt < by OO O + BT 2 ) (07 + 67,
JEZ
We bound the second factor on the right hand side by using the fact
that 0, ; < 1—0 and upon simplification obtain the desired result. [

In the next lemma, we use the inequality above to establish that

lim 07 =0, j € Zy

n— 00

whenever 6 € (0,1/2) and N > 1. In fact, we shall demonstrate that
the convergence is geometrically fast.

Lemma 3.4. If 0 € (0,1/2) and j € Zy_1, then there is a positive
constant ¢ and p € (0,1) such that for alln € Z

(3.11) b < qu”.

Proof. We first prove the result for j = 0. To this end, we specialize
(3.9) to this case, and obtain for n € Z,

bt < (1 p(1 = 5o <,

that is, {bf : n € Z,} is a nonincreasing sequence. Therefore, we
conclude from the first inequality that

byt < 1= p(1 - )]

and so, indeed (3.11) holds for this case.

The proof of the general case proceeds by induction on j € Zy_;.
So, we assume that (3.11) holds for all j € Zj for some k € Zy_;. If
k = N — 1, we are finished, otherwise, we have that 1 < k < N — 2.
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Again, we make use of (3.9) and the induction hypothesis to obtain for
n e Z+

(3.12) b < [1— (1 — BB + s

where s := 2k(1 — 6)"!(u + 1) from which we derive that the sequence
{0 +s(1—p)"tu™ : n € Z,} is nonincreasing. Hence thereisar € (0, 1]
such that

lim b, =r.
n—oo

Let us first demonstrate that » # 1. If, to the contrary r = 1, then for
all j € Zy 1\{k} we obtain that

A% =0

However, since k& < N — 1 we can use (3.8) to conclude that, since
0 € (0,1/2), that

n+1 (1_9)bz+1 n 1 n
bty > T (= Z 590+
for sufficiently large n. In other words,
b1 = c(20)7"

for some positive constant ¢, which is a clear contradiction as the lower
bound tends to oo as n — oo.
We now know that r # 1 and therefore from (3.12) for all n € Z,

(3.13) byt < ebj + sp”,
where € := 1 — p(1 — /) and § € (0, 1) is chosen so that for all n € Z,

we have that b} < . Using inequality (3.13) repeatedly in n gives us
for n € Z, the estimate

(B14) T < max(s (0" + e 4 €
< max(s,1)(n + 1)[max(p, €)]"
which advances the inductive hypothesis and proves the lemma. O

This lemma has sufficient information to prove Theorem 2.2 for # #
1/2. In the next lemma, we use the inequalities in Lemma 3.3 to
establish

lim b7 =0, j € Zy,

Jj—00
when §# =1/2 and 7 € (0, 1).
Lemma 3.5. If 0 = 1/2, m, T are chosen as in (2.7) with 7 € (0,1),
then there are constants ¢ > and p € (0,1) such that for all n € Z,
and j € Zy,,
b < qu".
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Proof. Since # = 1/2, we see that the constant p appearing in the
bound (3.9) is one. This is a barrier to obtaining our goal to establish
exponential decay of the first m coefficients of the polynomial 6™. To
circumvent this problem we return to use proof of (3.9) and see that
an exponential bound would be available provided that we can find a
n € (0,1) such that for all | € Z,,, and n € Z

(3.15) By + 07 < 1.

Indeed, if this were the case then inequality (3.10) in the proof of
Lemma 3.3 yields for all [ € Z,,, and n € Z, the inequality

n+1 n n 4 n n+1
(3.16) < <ﬂ> by +3_—2772(bj + 004,

JEZ;

We now follow the argument in Lemma 3.4 and use (3.16) to prove the
lemma. Hence, there remains the proof of (3.15). The first step is to
observe that for all n € Z,

(3.17) > o= g0,
jeZ jEZ
To this end, we differentiate both sides of (3.5) and evaluate the re-

sulting expression at 2 = 1 upon simplification there follows equation
(3.17). Hence, for any [ € Z,, we conclude that

N—-1 1 N-1
(3.18) Z 0> Z 5"
j=1+2 j=1+2

1 N-1 I+1 1
> (2 -+ Do) = -1 1),
=0 =0

Consequently, recalling the fact that [ < m — 1 and m < N — 2, we
obtain the desired inequality

N-1
" . . m+17—-1—-1 N-1-7
bl+1+bl§1—2bjg1— 1T S v <!
j=l+2
and hence completes the proof. O

This lemma has sufficient information to prove Theorem 2.2, for
6 =1/2 and 7 € (0,1). In the next lemma, we use the inequalities in
Lemma 3.3 to study the remaining case § = 1/2 and 7 = 0.

Lemma 3.6. If 0 = 1/2, m, T are chosen as in (2.7) with T = 0, then
there is a positive constant ¢ and p € (0,1) such that for all n € Z,
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and j € L1,

b < qu”,
and lim,,_, ., b | exists.

Proof. For | € Z,_1 and m < N — 2, we obtain from (3.18) that

N-1
m—I[l—-1 N -2

b <1 — b <1 -— < < 1.
1T s E, i = — N
Pyt N -1 N -1

This leads to (3.15) for all [ € Z,,,_;. We now follow the argument in
Lemma 3.4 to obtain the first claim.
For [ =m — 1, we have from (3.9) that

bt <bp 4 Y (b b,

jeszl

Using this fact and the estimate of b} for j € Z,, , we proceed again as
in the proof of Lemma 3.3 and conclude that lim,, ., b, | exists. O

4. PERTURBATION OF REFINABLE FUNCTIONS

The previous results concentrate on the asymptotic behavior of the
coefficient polynomials {b" : n € Z,} as they generate and reflect
properties of the refinable functions {¢" : n € Z,}. We now need to
make an observation on the dependency of the refinable function ¢ in
(1.1) on the polynomial a. For this purpose, we amplify our notation
for ¢ to ¢, as a means to display its dependency on a. Our goal is
to estimate the difference ¢, — ¢;. The bound we present comes from
delving into the proof of the existence of ¢, (and ¢z) as presented in
[8], see also [1], and making appropriate additional observation. The
polynomial a is our “target” and a is meant to be “close” to a. With
this distinction in mind we prepare for the next fact.

For any biinfinite sequence ¢ = {c; : j € Z} we let ||c[|oc = sup{|cj] :
j € Z}. Likewise we use ||¢||e for the suprenorm of any function ¢
defined on R.

Proposition 4.1. If 0 € (0,1), a = Cyb and a = Cyb, where b and b
are polynomaials of degree at most N — 1, have nonnegative coefficients,
and satisfy b(1) = b(1) = 1, ¢q,¢s are the corresponding refinable
functions satisfying (1.1) and (1.4), then

||b _ 5||<><>

(4-1) ||¢a—¢a||oo < QNW-
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Proof. Central to our proof of the inequality (4.1) is the subdivision
operator S, defined as a bounded map on ¢*°(Z) by the formula

(SaC)Z‘ = Zai,zjcj, 1€Z
JEZ
where ¢ := {¢; : j € Z}. Clearly, a,a are polynomial of degree at most

N + 1 having nonnegative coefficients and satisfying (1.3). Hence, we
obtain that

(4.2) [Salloe <1
where

[Salloo := sup{[|Saclloo : flefloo < 1}
Also, we have that ||Sy|lec < (N 4+ 1)||a|co-

Let d(2) := (0 + (1 = 0)2)b(2) := 3 ez, dj#’, z € C, and V be the
difference operator defined by

(VC)j =G — Cj+1,y ] € Z7

where ¢ = {¢;,j € Z}. By direct computation, we obtain that

(4.3) 1Sd]|co < max(f,1 — )
and
(4.4) vs, =5,;V.

So, for all k£ € Z,, we conclude that

k—1
(45)  [ISF = Stle < D NSH(Sa — Sa)SE s

=0

k—1
< D II(Se = Sa)SE e
=0
~ k—1
< NIb=blloo > IIVSE " lue
=0
~ k—1
< Nlb=blloo > 1185V luo
=0
~ k—1
< 2N = bllo > (max(f, 1 - 0))F"
=0
<

min(f,1 —0)
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Let
M(z) := max{0,1 — |z|}, x € R
and recall that the sequence of functions
Q=) (Sk8);M(2" - —j)
jEZ
where k € Z; and § := (J; : j € Z) is defined as
s [0 G40
i1, j=0.
Furthermore we set ao(z) := (1 + 2)?/2, z € C, and conclude that
(4.6) 196" = Qalloe < 118570 — SuwSydlls
< AN|VSHD]a < 2N (max(h, 1 — 0))*

This shows that QF converges uniformly to ¢, as k — oo and satisfies
the estimate

(max (0,1 — 0))*
min (6,1 — 6)
Therefore, for any p € Z, we have that
I60 = Galloe < l160 = Llloo + 192 = 2loc + 9 — dalluc

(max(#,1 — 6))? 16— bl
min(6,1 — 6) * 2Nmin(&, 1—-190)

||QZ - d)a“oo < 2N

L keZ,.

< 4N

We now let p tend to infinity in this upper bound to finish the proof of
(4.1). O

We remark that the effect of “truncating” the coefficients in a refine-
ment equation (1.1) on the refinable function has been studied, [2, 5].
Although the results in [2, 5] are of a general nature. Proposition 4.1 is
directly pertinent to the class of refinable functions of our focus here,
and is not covered by the results in [2, 5].

5. CONVERGENCE

Proof of Theorem 2.2. First, we discuss the case 0 € (0,1/2). Accord-
ing to (3.4) and Lemma 3.4 there are constant ¢ > 0 and p € (0,1)
such that for all n € Z

(5.1) la™ = a=(]0)lo < qu”

where

a™(z]0) := 2N "1Cy(2), 2z € C.
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In the inequality above, p has the same meaning as in Lemma 3.4 while
g may be different. Similarly, for 6 € (1/2,1), (5.1) holds with

a>®(z]0) .= Cy(z), z € C.

The reason for this is that in this case the polynomial " defined for
n € Z, by the equation

V'(2) = 2N (z7Y), z e C

satisfies all the conditions of Lemma 3.4 with 6 replaced by 1 — 6 and
consequently
lim b"(z) =1, z € C

n—0o0
uniformly on compact subsets of C.
Now we make use of Lemma 3.5 to consider the case §# = 1/2 and

7 € (0,1). Here both b and b" satisfy the hypothesis of the lemma.

Moreover, since

2 b =N=1=3

JE€EZN JE€EZN
we have that

m=N-2-m and 7=1-1.
This means for some positive constant ¢, u € (0,1), n € Z, and for all
jsuch that 0 <7 <m—1lorm+2<7 <N —1 we have that
b < qu".

However, since for all n € Z,,

(5.2) d =1

JEZN
and
(5.3) d gt =m+r
JEZN

see (3.17), we conclude that there exists a positive constant ¢ such that
foralln e Z,

(5.4) 0, = (L =) < qu", [ = 7] < gp"
Consequently, we have proved that (5.1) holds for # = 1/2 and 7 €
(0,1), where
a>(z|0) :=2"((1—71)+712),2z € C.
The final case § = 1/2 and 7 = 0 requires the use of Lemma 3.6.

As in the proof above, using Lemma 3.6 we conclude that for some
positive constant ¢ and u € (0,1),

(5.5) by < qp”
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for all j suchthat 0 <7 <m—2orm+2<j <N —1, and moreover
limy, o 07, _; and lim,, o 0], exists. Therefore, so does lim,,_,, 0}, by
(5.2). According to Lemma 3.2 there is a k € Z, and « € [0,1] such
that

(5.6) lim b"(2) = 2°((1 — a) + az),z € C.

n—o0

We combine this fact with (5.2) and (5.3) to conclude that

lim b"(2) = 2™, 2 € C,

n—00

that is, lim, o 0}, = lim, by, = 0 and lim, b, = 1. We
must now estimate the rate at which these three sequences tend to
their respective limits. The two equations (5.2) and (5.3) and the
estimate (5.5) guarantee that it suffices to estimate the rate at which
the first sequence tends to the limit. Specifically, there exists a positive

constant ¢; > ¢ such that for all n € Z

(5.7) b1 — b 1] < up”
and
(5.8) by, +2b, 1 — 1| < iy

This inequality together with the estimate (5.5), shows that
0" (z) = 2" M) S @t Y A
JEZN

where 3"(z) := b _; + (1 — 2b" _,)z + b _, 2% Substituting this in-
equality into (3.5) with @ = 1/2, we conclude that there is a positive
constant ¢, such that for alln € Z,

|C1y2(2)8™(2) 8" (2) = Crya(=2)B" (=2) B (—2) — 226" (2?)]
2
< 2qpp"™ Z 7.
=0

Identifying the coefficients of z of the polynomials appearing in the
above inequality yields, upon simplification, the estimate

pntl b?nifl
42k,

< 2qo1",

and, in particular, we conclude that

7

b

m—1
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Let g3 > 1 be a positive constant chosen so that g3 > 2¢o7"(n + 3)? for
all n € Z,. We now prove that

(5.9) bp 1 < gs(n+1)7"

for all n € Z,. Clearly (5.9) holds for n = 0. The proof of the
general case proceeds by induction on n. So we assume that (5.9) holds
for some n € Z,. Therefore using the monotonicity of the function
z — x/(1+2zx) on (0,00) we get that

b 43 43 43
mol T o T S T T2 T 432 S nt2
This proves that the inequality (5.9) holds for all n € Z,. As a conse-
quence of (5.9), for # = 1/2 and 7 = 0 there exists a positive constant
¢4 such that

q4
1 b" — a™(z|0)||ee < ——, Z
(5.10) 16" — a*(2]0)]] 1 "E€Zs

where
a>®(z]0) := 2", z € C.
In all cases, we have by our definition, (2.8) that

¢2(10) =D a5 (0)9™(2- —jl0)
JEZ
and therefore Theorem 2.2 follows from Proposition 4.1 by choosing
a:=a"™ and a = a*>(-|0). O
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