A Class of M-Dilation Scaling Functions with Regularity Growing Proportionally to Filter Support Width

Xianliang Shi ${ }^{1}$
Department of Mathematics, Hangzhou University
Hangzhou, Zhejiang 310028, P. R. China
and
Qiyu Sun ${ }^{2}$
Center for Mathematical Sciences, Zhejiang University
Hangzhou, Zhejiang 310027, P.R. China

September 1995

ABSTRACT In this paper, a class of M-dilation scaling functions with regularity growing proportionally to filter support width are constructed. This answers a question proposed by Daubechies in p. 338 of her book Ten Lectures on Wavelets(1992).

AMS Subject Classification: 42C15.

[^0]
1. Introduction

Let $M \geq 2$ be a fixed integer. A multiresolution analysis for dilation M consists of a sequence of closed subspaces V_{j} of $L^{2}(R)$ that satisfy the following conditions (see [C], [D], [M]):
i) $\quad V_{j} \subset V_{j+1}, \forall j \in Z$;
ii) $\overline{\cup_{j \in Z} V_{j}}=L^{2}(R)$;
iii) $\cap_{j \in Z} V_{j}=\{0\}$;
iv) $f \in V_{j} \Longleftrightarrow f\left(2^{-j}\right) \in V_{0}$;
v) there exists a function ϕ in V_{0} such that $\{\phi(\cdot-n) ; n \in Z\}$ is an orthonormal basis of V_{0}.

The function ϕ is called an M-dilation scaling function. It is easy to see that ϕ satisfies the refinement equation

$$
\begin{equation*}
\phi(x)=\sum_{n \in Z} c_{n} \phi(M x-n), \tag{1}
\end{equation*}
$$

where the sequence $\left\{c_{n}\right\}$ satisfies

$$
\sum_{n \in Z} c_{n}=M
$$

In this paper we shall only deal with compactly supported M-dilation scaling functions. In this case the sequence $\left\{c_{n}\right\}$ must have finite length. The function

$$
\begin{equation*}
H(\xi)=\frac{1}{M} \sum_{n \in Z} c_{n} e^{i n \xi} \tag{2}
\end{equation*}
$$

is called a symbol corresponding to the refinement equation (1).
The filter support width $W(\phi)$ of an M-dilation scaling function ϕ is defined as the difference of the largest and the smallest indices of the nonzero c_{n}. The regularity $R(\phi)$ of ϕ is defined as the supremum of α such that $\phi \in C^{\alpha}$, where C^{α} denotes the Hölder class of index α.

In her book [D, p.338], Daubechies remarks that:
At present, I know of no explicit scheme that provides an infinite family of m_{0} (i.e., symbols H), for dilation 3 (i.e., $M=3$), with regularity growing proportionally to the filter support width.

To our knowledge, this question is still open. The purpose of this paper is to construct a class of M-dilation scaling functions ϕ_{N} for which there exists a constant λ_{M} independent of N such that

$$
\begin{equation*}
R\left(\phi_{N}\right) \geq \lambda_{M} W\left(\phi_{N}\right) \tag{3}
\end{equation*}
$$

where $M \geq 3$. On the other hand it is already known that (see [DL])

$$
W\left(\phi_{N}\right) \geq R\left(\phi_{N}\right)
$$

These facts give an affirmative answer to Daubechies' question.

The regularity of ϕ has been studied in several papers, see for example [BDS], [D], and [HW]. In general, to study the regularity of ϕ we need to consider the symbol (2) first. By the Fourier transform, we see that all the symbols H satisfy

$$
\begin{equation*}
\sum_{l=0}^{M-1}|H(\xi+2 l \pi / M)|^{2}=1 \tag{4}
\end{equation*}
$$

The solutions H of the equation (4) are determined by (see [BDS], $[\mathrm{H}]$)

$$
\begin{equation*}
|H(\xi)|^{2}=\left(\frac{\sin ^{2}(M \xi / 2)}{M^{2} \sin ^{2} \xi / 2}\right)^{N} \sum_{s=0}^{N-1}{ }_{N}^{M} a(s) \sin ^{2 s} \frac{\xi}{2}+\left(\sin \frac{M \xi}{2}\right)^{2 N} R(\xi) \tag{5}
\end{equation*}
$$

where

$$
{ }_{N}^{M} a(s)=\sum_{s_{1}+\cdots+s_{M-1}=s} \prod_{j=1}^{M-1}\binom{N-1+s_{j}}{s_{j}} \frac{1}{\sin ^{2 s_{j}} j \pi / M}
$$

and R is a real-valued trigonometric polynomial such that
i) $\quad \sum_{l=0}^{M-1} R(\xi+2 l \pi / M)=0$
and
ii) the right hand side of (5) is nonnegative.

By the Riesz Lemma (see [D], p.172), such symbol H exists. Let ${ }_{N} H$ be a solution of (5) with $R=0$, and let ${ }_{N} \phi$ be the solution of (1) corresponding to the symbol ${ }_{N} H$. In [BDS], Bi, Dai and Sun prove the following estimates on the regularity of ${ }_{N} \phi$,

$$
\left|R\left({ }_{N} \phi\right)-\frac{\ln N}{4 \ln M}\right| \leq C,
$$

when M is odd, and

$$
\left|R\left({ }_{N} \phi\right)-\frac{4 N \ln \left(\sin \frac{M \pi}{2 M+2}\right)^{-1}+\ln N}{4 \ln M}\right| \leq C
$$

when M is even. For the special cases $M=3,4,5$, similar results are obtained by Heller and Wells in [HW]. This result shows that for these special ${ }_{N} \phi$ the regularity does not grow proportionally to the filter support width when M is odd. To construct M-dilation scaling functions with regularity growing proportionally to the filter support width we use the symbol H_{N} determined by

$$
\begin{gathered}
\left|H_{N}(\xi)\right|^{2}=\sum_{k_{0}+\cdots+k_{M-1}=M N-M+1} \alpha_{N}\left(k_{0}, \cdots, k_{M-1}\right) \frac{(M N-M+1)!}{k_{0}!\cdots k_{M-1}!} \times \\
\prod_{l=0}^{M-1}\left(\frac{\sin M \xi / 2}{M \sin (\xi / 2+l \pi / M)}\right)^{2 k_{l}}
\end{gathered}
$$

where $N \geq 1$, and $\alpha_{N}\left(k_{0}, \cdots, k_{M-1}\right)$ is defined by

$$
\alpha_{N}\left(k_{0}, \cdots, k_{M-1}\right)= \begin{cases}0, & \text { if } \quad k_{0} \leq N-1, \\ \frac{1}{\#(E)}, & \text { if } \quad k_{0} \geq N\end{cases}
$$

where $E=\left\{j: k_{j} \geq N\right\}$ and $\#(E)$ is the cadinality of E. Let ϕ_{N} be the solution of (1) corresponding to a symbol H_{N}. Then we have the following

Theorem. Let $M \geq 3$ and $N \geq 2$ be any natural numbers. Then ϕ_{N} is a M-dilation scaling function and there exists a constant C independnet of N such that

$$
\begin{aligned}
& \left(\frac{1}{2}-\frac{(M-1) \ln \left(1+\frac{1}{M-1}\right)}{2 \ln M}\right) N-\frac{\ln N}{4 \ln M}-C \leq \\
& R\left(\phi_{N}\right) \leq\left(\frac{1}{2}-\frac{(M-1) \ln \left(1+\frac{1}{M}\right)}{2 \ln M}\right) N-\frac{\ln N}{4 \ln M}+C
\end{aligned}
$$

Remark 1. Observe that $W\left(\phi_{N}\right) \leq 2(M-1) M N$. Therefore the regularity $R\left(\phi_{N}\right)$ of ϕ_{N} grows proportionally to the filter support width $W\left(\phi_{N}\right)$, i.e., (3) holds.

Remark 2. Let $D(\phi)=R(\phi) / W(\phi)$ be the rate of regularity and filter support width of a scaling function ϕ. Then

$$
D\left(\phi_{N}\right) \geq \frac{1}{4 M(M-1)}\left(1-\frac{(M-1) \ln \left(1+\frac{1}{M-1}\right)}{\ln M}\right)-C \frac{\ln N}{N}
$$

and

$$
D\left({ }_{N} \phi\right) \leq \frac{\ln N}{4 N M \ln M}+\frac{C}{N}
$$

when M is odd, and

$$
D\left({ }_{N} \phi\right) \leq \frac{\ln (\sin M \pi /(2 M+2))^{-1}}{M \ln M}+C \frac{\ln N}{N}
$$

when M is even. Therefore we get

$$
D\left(\phi_{N}\right) / D\left({ }_{N} \phi\right) \geq \frac{N}{\ln N}\left(\frac{\ln M}{M-1}-\ln \left(1+\frac{1}{M-1}\right)\right)-C
$$

when M is odd, and

$$
D\left(\phi_{N}\right) / D\left({ }_{N} \phi\right) \geq \frac{\ln M-(M-1) \ln \left(1+\frac{1}{M-1}\right)}{4(M-1) \ln (\sin M \pi /(2 M+2))^{-1}}-C \ln N / N
$$

when M is even. This shows that $D\left(\phi_{N}\right)$ of the M-dilation scaling function ϕ_{N} is larger than the one of ${ }_{N} \phi$ even when M is an even integer larger than 4.

2. Proof of the Theorem

To prove the theorem, we estimate $H_{N}(\xi)$ first. Let

$$
h(\xi)=\frac{\sin ^{2} M \xi / 2}{M^{2} \sin ^{2} \xi / 2}
$$

and

$$
B_{N}(\xi)=(h(\xi))^{-N}\left|H_{N}(\xi)\right|^{2}
$$

Then for all real valued ξ we have

$$
\begin{aligned}
B_{N}(-\xi)= & \sum_{k_{0}+\cdots+k_{M-1}=M N-M+1} \alpha_{N}\left(k_{0}, k_{M-1}, \cdots, k_{1}\right) \frac{(M N-M+1)!}{k_{0}!k_{1}!\cdots k_{M-1}!} \times \\
& (h(\xi))^{k_{0}-N} \prod_{l=1}^{M-1}(h(\xi+2 l \pi / M))^{k_{l}} \\
= & B_{N}(\xi)
\end{aligned}
$$

and

$$
B_{N}(\xi) \geq 0
$$

Therefore by the Riesz Lemma ([D], p.172) we obtain the existence of $H_{N}(\xi)$ with

$$
H_{N}(\xi)=\left(\frac{1-e^{i M \xi}}{M\left(1-e^{i \xi}\right)}\right)^{N} \tilde{H}_{N}(\xi)
$$

and

$$
\left|\tilde{H}_{N}(\xi)\right|^{2}=B_{N}(\xi) .
$$

From the definition of $\alpha_{N}\left(k_{0}, \cdots, k_{M-1}\right)$ and from

$$
\sum_{l=0}^{M-1} h(\xi+2 l \pi / M)=1
$$

we get
$\alpha_{N}\left(k_{0}, k_{1}, \cdots, k_{M-1}\right)+\alpha_{N}\left(k_{1}, k_{2}, \cdots, k_{M-1}, k_{0}\right)+\cdots+\alpha_{N}\left(k_{M-1}, k_{0}, \cdots, k_{M-2}\right)=1$ and

$$
\begin{aligned}
& \sum_{l=0}^{M-1}\left|H_{N}(\xi+2 l \pi / M)\right|^{2} \\
= & \sum_{k_{0}+\cdots+k_{M-1}=M N-M+1}\left(\alpha_{N}\left(k_{0}, k_{1}, \cdots, k_{M-1}\right)+\alpha_{N}\left(k_{1}, k_{2}, \cdots, k_{M-1}, k_{0}\right)\right. \\
& \left.\quad+\cdots+\alpha_{N}\left(k_{M-1}, k_{0}, \cdots, k_{M-2}\right)\right) \times \frac{(M N-M+1)!}{k_{0}!k_{1}!\cdots k_{M-1}!} \prod_{l=0}^{M-1}(h(\xi+2 l \pi / M))^{k_{l}} \\
= & \left(\sum_{l=0}^{M-1} h(\xi+2 l \pi / M)\right)^{M N-M+1} \\
= & 1
\end{aligned}
$$

Therefore (4) holds for $H_{N}(\xi)$. Recall that $H_{N}(\xi) \neq 0$ when $|\xi| \leq \pi / M$. Hence the solution ϕ_{N} of (1) corresponding to the symbol $H_{N}(\xi)$ is an M-dilation scaling function by an elementary argument ([D], p.182, Theorem 6.3 .1 with $K=[-\pi, \pi]$).

To estimate the regularity of ϕ_{N}, we need some estimates on $B_{N}(\xi)$. From the Stirling formula, which says that n ! is equivalent to $n^{n} e^{-n} \sqrt{n}$, from $1 /(M-1) \leq$ $\alpha_{N}\left(k_{0}, \cdots, k_{M-1}\right) \leq 1$ when $k_{0} \geq N$ and $h(2 \pi /(M-1))=1 / M^{2}$, we get

$$
\begin{aligned}
B_{N}(\xi) & \leq \sum_{k_{0}+\cdots+k_{M-1}=M N-M+1, k_{0} \geq N} \frac{(M N-M+1)!}{k_{0}!\cdots k_{M-1}!} \times \\
& (h(\xi))^{k_{0}-N} \prod_{l=1}^{M-1}(h(\xi+2 l \pi / M))^{k_{l}} \\
& \sum_{0 \leq k_{0} \leq(N-1)(M-1)} \frac{(M N-M+1)!}{\left(k_{0}+N\right)!\left((N-1)(M-1)-k_{0}\right)!} \times \\
& \leq \frac{(h(\xi))^{k_{0}}(1-h(\xi))^{(N-1)(M-1)-k_{0}}}{N!((N-1)(M-1))!} \leq C M^{N}(1+1 /(M-1))^{(M-1) N} N^{-1 / 2}
\end{aligned}
$$

and

$$
\begin{aligned}
B_{N}(2 \pi /(M-1)) \geq & \frac{1}{M-1} \sum_{k_{1}+\cdots+k_{M-1}=(M-1)(N-1)} \frac{(M N-M+1)!}{N!k_{1}!\cdots k_{M-1}!} \times \\
& \prod_{l=1}^{M-1}(h(2 \pi /(M-1)+2 l \pi / M))^{k_{l}} \\
\geq & \frac{1}{M-1} \times \frac{(M N-M+1)!}{N!((N-1)(M-1))!}\left(1-\frac{1}{M^{2}}\right)^{(N-1)(M-1)} \\
\geq & C M^{N}(1+1 / M)^{(M-1) N} N^{-1 / 2}
\end{aligned}
$$

Therefore we get

$$
R\left(\phi_{N}\right) \geq\left(\frac{1}{2}-\frac{(M-1) \ln (1+1 /(M-1))}{2 \ln M}\right) N-\frac{\ln N}{4 \ln M}-C
$$

by an argument as in [D, p.217]. Observe that $2 M \pi /(M-1)=2 \pi /(M-1)+2 \pi$. By an argument similar that in p. 220 of [D] we obtain

$$
R\left(\phi_{N}\right) \leq\left(\frac{1}{2}-\frac{(M-1) \ln (1+1 / M)}{2 \ln M}\right) N-\frac{\ln N}{4 \ln M}-C .
$$

This completes the proof of the Theorem.

References

[C] C. K. Chui, An Introduction to Wavelets, Academic Press, 1992.
[BDS] N. Bi, X. Dai and Q. Sun, Construction of compactly supported M-band wavelets, Research Report 9518, Center for Mathematical Sciences, Zhejiang University, 1995.
[D] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics 61, Philadephia, 1992.
[DL] I. Daubechies and J. Lagarias, Two-scale difference equation I: existence and global regularity of solution, SIAM J. Math. Anal., 22(1991), 1388-1410.
[H] P. N. Heller, Rank M wavelets with N vanishing moments, SIAM J. Matrix Anal. Appl., 16(1995), 502-519.
[HW] P. N. Heller and R. O. Wells, Jr., The spectral theory of multiresolution operators and applications, Technical Report AD930120, Aware Inc. 1993, to appear in Wavelets: Theory, Algorithms, and Applications, edited by C. K. Chui, L. Montefusco, and L. Puccio, Academic Press.
[M] Y. Meyer, Ondelettes et Opérateurs,I: Ondelettes, Hermann, Paris, 1990.

[^0]: ${ }^{1}$ Current address: Department of Mathematics, Texas A\&M University, College Station, TX 77843-3368, USA
 ${ }^{2}$ This author is partilally supported by the National Natural Science Foundation of China and the Zhejiang Provincial Science Foundation of China.

