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1. Introduction

Let M > 2 be a fixed integer. A multiresolution analysis for dilation M consists
of a sequence of closed subspaces V; of L?(R) that satisfy the following conditions
(see [C], [D], [M]):

i)V C Vi€ Z;

ii) UjezVj = L*(R);

i) NjezV; ={0};

iv) feV; < f(277) € Vy;

v) there exists a function ¢ in Vj such that {¢(-—n);n € Z} is an orthonormal
basis of Vj.

The function ¢ is called an M-dilation scaling function. It is easy to see that ¢
satisfies the refinement equation

(1) $(x) = cad(Mz —n),

nez

where the sequence {c, } satisfies

ch:M.

nez

In this paper we shall only deal with compactly supported M-dilation scaling
functions. In this case the sequence {c,} must have finite length. The function

¢ HE = 123 enel™

nez

is called a symbol corresponding to the refinement equation (1).

The filter support width W(¢) of an M-dilation scaling function ¢ is defined
as the difference of the largest and the smallest indices of the nonzero ¢,. The
regularity R(¢) of ¢ is defined as the supremum of « such that ¢ € C%, where C*
denotes the Holder class of index «.

In her book [D, p.338|, Daubechies remarks that:

At present, I know of no explicit scheme that provides an infinite family of myg
(i.e., symbols H), for dilation 3(i.e., M = 3), with regularity growing proportionally
to the filter support width.

To our knowledge, this question is still open. The purpose of this paper is to
construct a class of M-dilation scaling functions ¢ for which there exists a constant
Ay independent of N such that

(3) R(én) > AW (dn),

where M > 3. On the other hand it is already known that (see [DL])

W(én) > R(on).

These facts give an affirmative answer to Daubechies’ question.
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The regularity of ¢ has been studied in several papers, see for example [BDS],
D], and [HW]. In general, to study the regularity of ¢ we need to consider the
symbol (2) first. By the Fourier transform, we see that all the symbols H satisfy

M-1

(4) > H(E + 20 /M) =

1=0
The solutions H of the equation (4) are determined by (see [BDS], [H])

N-1

(M¢/2) 2s € . M¢
(5) |H(&)]* = (j\l;%m g 72 )7 Ma(s) sin® 5+ (sin =)V R(),

s=0

where

Yt - ()
" ( ) s1+-- -l-zS;/I 1=8 .]]i[l . Sinzsjjﬂ-/M
and R is a real-valued trigonometric polynomial such that
By MR+ 2 /M) =0
and
ii) the right hand side of (5) is nonnegative.
By the Riesz Lemma (see [D], p.172), such symbol H exists. Let yH be a solution
of (5) with R = 0, and let n¢ be the solution of (1) corresponding to the symbol
~H. In [BDS], Bi, Dai and Sun prove the following estimates on the regularity of

NO,
In N

4In M

when M is odd, and

4N1In (sin M7 )" 4+ InN

4In M

| R(ng) —

| <C,

when M is even. For the special cases M = 3,4, 5, similar results are obtained by
Heller and Wells in [HW]. This result shows that for these special y¢ the regularity
does not grow proportionally to the filter support width when M is odd. To con-
struct M-dilation scaling functions with regularity growing proportionally to the
filter support width we use the symbol Hy determined by

MN — M +1)!
Hy(6)? = 3 (ko kar1) )
ko' --kar—1!
ko+-4+kyv_1=MN-M+1
]‘ﬁl ( sin M¢/2 J7i
P Msin(¢/2 + Im /M)
where N > 1, and ay(ko, -, kyp—1) is defined by
0, if ko< N—1,
ko k1) = oS0 S
N( 0 M 1) {#(IE)v if kOZNv
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where EE = {j : kj; > N} and #(F) is the cadinality of E. Let ¢ be the solution
of (1) corresponding to a symbol Hy. Then we have the following

Theorem. Let M > 3 and N > 2 be any natural numbers. Then ¢y is a
M -dilation scaling function and there exists a constant C' independnet of N such
that

1 (M_ 1) 11’1(1 + Ml_l) N InN

— — — —C<
(2 2In M ) 4dIn M C<
1 (M-1)In(1+ 4;) In N
< _ — .
R(¢N)—(2 2In M N s T ¢

Remark 1. Observe that W (¢n) < 2(M — 1)M N. Therefore the regularity
R(¢n) of ¢n grows proportionally to the filter support width W(¢n), i.e., (3)
holds.

Remark 2. Let D(¢) = R($)/W (o) be the rate of regularity and filter support
width of a scaling function ¢. Then

1 (M - l)ln(l + Ml_l) In N
> — —_ -
Do) 2 4M(M—1)( In M ) —C
and mN  C
n
D < —
(vd) < ANM In M + N
when M is odd, and
In (sinMn/(2M + 2))~! In N
<
D(wg) < M In M +C N
when M is even. Therefore we get
N , InM
> _ _
D(én)/D(wp) > (s —In(1 4 ) = C
when M is odd, and
InM — (M —1)In(1 + 57—
D(gn)/D(xb) > W=D wx) o

~4(M —1)In(sin M7 /(2M + 2))~1

when M is even. This shows that D(¢n) of the M-dilation scaling function ¢y is
larger than the one of n¢ even when M is an even integer larger than 4.

2. Proof of the Theorem

To prove the theorem, we estimate Hy (¢) first. Let

_ sin® M¢/2
he) = M2 sin? £ /2



and N
By (&) = (&) [Hn (O]
Then for all real valued £ we have
(MN — M +1)! "
kolki!- - kpr—q!

Bn(=¢) = > an(ko, ky—1,- -, k1)

ko+-+kn_1=MN—M+1

)= H (€ + 20w /M))"

=Bn(§)

and
By (§) > 0.

Therefore by the Riesz Lemma ([D], p.172) we obtain the existence of Hy(§) with

1 —eME N -
HN(f) (M(l _ eig)) HN(g)
and B
|Hn (6)” = B (é).
From the definition of an(ko,--- ,kap—1) and from
M—1
> h(¢+20r/M) =1,
1=0
we get

an(ko, ki, yky—1)+an(ki, ke, s kpm—1,ko)+- - -+an(ky—1,ko, -+ s km—2) =1

and
M-1
|Hn (€ + 2l7r/M)|
1=0

= > (an(ko, ki, - kp—1) + an(kr, k2, -+ ka1, ko)
ko+-+knv_1=MN-M+41

(MN — M + 1)1 5!

+ 2lm /M
kolky! - kar—q! lll U / ))

+ -t an(kp—1, ko, -+ kp—2)) X

=( Z_: h(& + 2lm /M)
=0
=1.

)MN—M+1

Therefore (4) holds for Hy(&). Recall that Hy(€) # 0 when || < w/M. Hence
the solution ¢ of (1) corresponding to the symbol Hy () is an M-dilation scaling
function by an elementary argument ([D], p.182, Theorem 6.3.1 with K = [—m, 7]).



To estimate the regularity of ¢, we need some estimates on By(§). From the
Stirling formula, which says that n! is equivalent to n™e="\/n, from 1/(M — 1) <
an(ko,- -, ky—1) <1 when kg > N and h(27/(M — 1)) = 1/M?, we get

3 (MN — M +1)!

By(§) < kol - kar—q!

k;0++k;M_1:MN_M+17kOZN

(h(©))"~N T (h(€ + 2Um /M)
=1

- (MN — M + 1)!
- 2. (ko + NN — 1) (M — 1) — ko)l |

0<ko<(N-1)(M—1)
(h())™ (1 = h(g) N D=k
(MN — M + 1)!

= NI(N —1)(M —1))! < CMN(l +1/(M — 1))(M—1)NN—1/2

and

1 3 (MN — M +1)!

X
1ealo.. |
For - thns 1 =(M—1)(N—1) Nk kpr—q!

1:[ (h(2r /(M — 1) + 2lx/ M)k

=1

1 (MN — M +1)! 1 ((N—1)(M-1)
> 1S v nar oy i)
> CMN(l + 1/M)(M_1)NN_1/2.

Therefore we get

R(¢n) > (% (M- m&;ﬂ;/(M “D))y 4111374 B

by an argument as in [D, p.217]|. Observe that 2M=« /(M — 1) = 2 /(M — 1) + 2.
By an argument similar that in p.220 of [D]| we obtain

Ao < - RN

This completes the proof of the Theorem.
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