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Abstract
In this paper, direct estimate of Sobolev exponent of refinable dis-
tributions and its application to the asymptotic estimate of Sobolev
exponent of M band Daubechies’ scaling functions are considered.

1 Introduction

Fix integer M > 2. We say that a tempered distribution ¢ is refinable if it
satisfies such a refinement equation
¢(z) = D cxdp(Mz — k), (1)
kEZ.
where the coefficients ¢, are summable and satisfy > ..z ¢y = M. Define the
symbol H of the refinement equation (1) by

H(E) = % T e, @)

ke
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Generally the symbol H can be put into the factorized form

1 — e—iMf

H(¢) = (m)Nﬁ(ﬁ), (3)

where N > 1 and £ is bounded.
Define the Fourier transform of an integrable function f by

£(6) = Jp o " Fa)da.

The Fourier transform of a tempered distribution is understood as usual. For

a distribution f with measurable Fourier transform, the Sobolev exponent
sp(f) is defined by

so(f) = sup{; fp 1P+ Jglydg < 00}, 0<p <o

and X
Soo(f) = sup{7; [f(E)|(1 + [¢])” is bounded}.

The Hoélder exponent a(f) of a continuous function f is defined by

aff) =sup{y; f € C},

where C7 denotes the usual Holder class. Then

1 1
Sp(f)—l-}—?ZSq(f)-F; (4)

for any compactly supported distribution f and 0 < p < ¢ < oo, and

So0(f) = 1 < s1(f) < af) < s00(f)

for any compactly supported continuous function f.

There are considerable literature devoted to estimate the Sobolev expo-
nent and Holder exponent of the refinable distribution ¢, for instance [E],
[HW], [Vi] for s5(¢), [CD] for s,(¢), [Her] and [FL] for s,(¢). The following
are two elementary estimates of Sobolev exponent ([D, Lemmas 7.1.5 and
7.1.6]).



Theorem 1.1 Let M = 2, ¢ be the refinable distribution in (1), H be the
symbol with the factorized form (8) and {&o, &1, -+, Ep_1} C [—m, 7| be any
non-trivial invariant cycle for the map 7€ = 2 (modulo 27), which means

gm = Tf’mfl; m=1,---, P— 177_61371 = 60 and 60 7£ 0. [fé(é-O) 7£ 0, then fOT’
all integer k > 1 there exists a constant C' > 0 independent of k such that

(2P )| > C(1 + |27+ g, |) N+,

where K = SP=1n|£(¢,)]/(P1n2).

Theorem 1.2 Let M = 2, ¢ be the refinable distribution in (1) and H be the
symbol with the factorized form (3). Suppose that [—m, 7] = D;UDyU---UDg
and there exists ¢ > 0 so that

|‘C(£)|SQ7 feDla
IL(€)L(2)] < ¢, £ € Dy,

L)L) - L29€)| < 42, € € Dy,
Then |p(€)| < O(1 4 |€])~N*K, where K =1ng/In2.

Combining (4) and the estimates in Theorems 1.1 and 1.2, we obtain the
following estimate of Sobolev exponent

N-K<su(¢) <N-K (5)
and .
5(6) 2 N =K~ . (6)
Define
M-1
ay,n(s) = > (N_81_+8‘7>( J )%, 0<s<N-1
S1+-tspy—1=$ j=1 J (7)
and o
Pun(€) = D amn(s)sin® g (8)
s=0



Let Ly,n(§) be a trigonometric polynomial with real coefficients satisfying

Lo n(E)]F = Pun(£).

and let ¢y be the refinable distribution in (1) with corresponding sym-
bol (%)N;CM,N(&-). The functions ¢y y above are the well-known
Daubechies’ scaling functions when M = 2 ([D]). So we call the functions
¢um,n as M band Daubechies’ scaling functions. The functions ¢,y were
introduced by Heller in [H] and independently by Bi, Dai and Sun in [BDS].

There are a much large literature devoted to estimate the regularity of
Daubechies’ scaling functions (see [D], [CD], [LS] and references therein). For

M = 2, Volker ([V]), independently Cohen and Conze ([CC]), proved that
Soo(P2.n) = (1 —In3/In4)N + o(N).

In [BDS], Bi, Dai and Sun improved the asymptotic estimate above as

In3 In N

—(1- 2N
Soo(f2.n) = (1 — 2N+ o

+O(1)

by using the estimate (5) and precise estimates of £y y. Recently in [LS],
Lau and Sun gave more precise asymptotic estimate

—C/N < sp(pon) — N +In|Ly ny(27/3)|/In2 <0 (9)
when 0 < p < oo and
Soo(@2,8) = N —In|Lo n(27/3)[/In2,
where C'is a constant independent of N. This affirms the phenomenon
A}LH;O Sp(Po,n) — S¢(d2,ny) =0, VO <p,g<oo

observed by Cohen and Daubechies in [CD]. By the method used in [FS],
C/N in the lower bound estimate in (9) can be improved by Cr" for some
constants C' and 0 < r < 1 independent of N.

For M > 3, Bi, Dai and Sun ([BDS]) proved that

AN In(sin Mm/(2M +2))™' +1In N N
4In M

O(1)

Soo(¢M,N) =
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when M is even and

In N

ool ) = gy TOW

when M is odd. Independently Soardi ([So|) proved
N lInsin 27/5
a(pan) = T oma T o(N)
and la N
n
Oé(¢M,N) = Ala M + O(IIIN)

when M = 3,5. Heller and Wells ([HW]) gave similar estimate of ss(dar,n)
for M = 3,4.

The purpose of this paper are to establish a direct estimate of Sobolev
exponent of refinable distributions and to apply the direct estimate above
to the asymptotic estimate of Sobolev exponent of the M band Daubechies’
scaling functions.

The paper is organized as follows. In Section 2, we shall establish the same
upper bound estimate of Sobolev exponent s,(¢), 0 < p < 0o as the one of
Soo (@) (Theorem 2.1). Obviously it is impossible to obtain precise estimate
of 5,(¢),0 < p < oo by combining (4) and estimate of s, (¢). So we estimate
the lower bound of s,(¢),0 < p < oo directly under natural assumptions
(12) and (13). The lower bound estimate in Theorem 2.2 seems complicated,
but precise. In Section 3, we shall consider the application of the lower
and upper bound estimates above of s,(¢) to the M band Daubechies’ scal-
ing functions, and hence generalize the corresponding result in [LS], where
only 2 band Daubechies’ scaling functions are considered (Theorem 3.1). By
the relationship between Holder exponent and Sobolev exponent, we obtain
similar asymptotic estimate of Holder exponent of the M band Daubechies’
scaling functions (Corollary 2.2). From Theorem 3.1, we see that the phe-
nomenon in [CD] for the 2 band Daubechies’ scaling functions appears for
the M band Daubechies’ scaling functions too when M > 3 (Corollary 3.3).
The technical estimates of £y n and ap,n(s) are another important part of
Section 3 (Theorems 3.6-3.8, 3.8', 3.11 and 3.11"). They are used to obtain
the asymptotic estimate of s,(¢n ) and are interesting themselves. The
corresponding estimates for £y y can be found in [D], [CS] and [LS].



2 Direct Estimate of Sobolev Exponent

In this section, we shall discuss the upper and lower bounds of Sobolev ex-
ponent of refinable distributions with corresponding symbol having the fac-
torized form (3).

2.1 Upper Bounds

Theorem 2.1 Let ¢ be the refinable function in (1), H be the corresponding
symbol with the factorized form (3), and {&, &1, ---,&p_1} C [—m, 7] be any
non-trivial invariant cycle for the map 76 = M¢ (modulo 27), which means
=71, m=1,--- P—1,7p_1 =& and & # 0. Assume that H and
¢ are continuous and ¢(&) # 0. Then

$p(9) S N—-K, 0<p<oo
where K = YP 1 n|£(€,)]/(P1n M).

Theorem 2.1 is proved by the method in [CDR] and its modification in
[LS]. For the perfection we include the proof here.

Proof. By taking Fourier transform at both sides of (1), we obtain

$(&) = H(E/M)d(E/M). (10)
Thus by using (10) for k£ times, we get

k

o(&) = [ H(&/M)d(&/M"). (11)

J=1

Without loss of generality, we assume that £(&,) # 0,0 < m < P — 1.
Recall that {&,---,{p 1} is a non-trivial cycle. Then M, & 2n7Z and L
is continuous at &,,m = 0,1,---, P — 1 by the factorized form (3) and the
continuity of H. Thus there exists 0 < ¢ < 1 for any € > 0 such that

|£(€m+£)| > (1 _6)|£(£m)|7 \Vlge [_6v6]v m=0,1,---,P—1

and

[0(6 + )] > (1= e)[d(&)] > 0, &€ [-6,4]
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by the continuity of qZA) at & and L at &,,. By computation, we have
Mjgo = gjr modulo 27

if j/ =7 modulo P. Thus it follows from (11) that

prP-1
B(MP*Ey + )| > CM™TEN (1 — ) PF T] L(&n)IF, V€€ [-6,6].
m=0

Hence

[0 Jepds > o [ e + o

MP(k=1)|g5|4+1 o -6 0

> car - o (T eie,)) s
m=0

and Theorem 2.1 follows. O

2.2 Lower Bounds

We say that D,,,1 < m < @ be an partition of [—m, x| if D, are mutually

disjoint and [—m, 7] = U2_, D,,.

Theorem 2.2 Let ¢ > 0, ¢ be the refinable distribution in (1) and H be
the corresponding symbol with the factorized form (3). Suppose that D,,,1 <

m < Q is an partition of [—m, 7], and L(&) satisfies

1L(E)] <gq, ¢ e Dy,
|‘C(€)‘C(M£)| §q27 £€D27

LE)L(ME) - L(MO€)| < °, € € Dg,

and

|‘C(£)| STQ7 gepla
[L(OLME)] < (rq)?, £ €Dy,

LOL(ME) - L(MO€)| < (rq)?, € € Do,

(13)



where 0 < r <1, Dy C [-7, 7| and
D, ={¢€ Dm;M]f € Dy+277Z for some 0 <j<m—1}, 1<m<Q.

Then for any integer R > 1 and 0 < p < 0o, we have

In E( wer)E{0, 1, M—1} R pPo(eryer)
> N _ _ €1,"€R IR
w(0) 2 N =K Rpln M
and
seo(9) 2 N = K,
where K = Ilng/InM and 5(61, €r) denotes the cardinality of the set

J(€1,- -+, €r) defined by

R
J(er, - er) ={0<j<R—1; 2aM? (Y &M~ + [0, M™")) C Dy + 277}
i=1
Obviously the lower bound estimate in Theorem 2.2 reduces to (6) when
r=1. For 0 < r < 1, the lower bound estimate above of Sobolev exponent
is better than the one in (6) when Dy contains a small interval.
To prove Theorem 2.2, we need a lemma. Define

L&) = {j; 0<j <k—1, M€ € Do+ 2772}
and i, (€) as the cardinality of the set [(£). Then we have

Lemma 2.3 Let L be as in Theorem 2.2. Then there exists a constant C
independent of k such that
k—1 . .
[T 1c(aig)| < Oriv®©gh, (14)
§=0
Proof. = We prove (14) by induction. It is easy to see that (14) holds
for all £ < @ by letting the constant C' chosen large enough. Inductively we
assume that (14) holds for k < k.
For £ € D,,,1 < m < (@, we have

ko ) m—1 ko )
[T = T lcrelx T 1£(7¢)]
7=0 7=0 j=m

IN

QT‘) (C’T-lkoJrl m(Mmf)qkoJrl m) < Orik0+1(§)qk0+1,
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where the first inequality follows from (13) and the induction assumption,
and the last one holds because of ig,1(&) < m + ik r1-m(M™E).
For 6 € Dm\Dma 1 <m < Qa we have iko+1(£) = ik0+17m(Mm£) and

ko m—1 ko

[L1c@rg)) = ]I el = [T 1£(7))|

j=0 j=0 j=m
< ¢"x (Crikoﬂ—m(Mmf)qko-i-l—m) — C’rikoﬂ(ﬁ)q’%“'

Hence (14) holds for k = kg + 1 by the assumption on D,,1 <m < Q. O

Proof of Theorem 2.2. For 2M*~'x < |¢] < 2M*x, it follows from
(3), (11) and Lemma 2.3 that

0] < c|s|*Nﬁ|£<M*k+jg>|

Therefore
Soo(0) > N — K.
For any integer R > 1, it is easy to prove that

k
ikr(2r (Y M~ + M) > 3" 6(ej—1yr, -+ €ir), 1€ [0,1].
j=1 j=1

Thus for 0 < p < oo and k > 1, we get

2MkR

/ LGRSl N TG
oOMFR=17<|¢|<2M (h+DR-17 MkR—11
ivrp kkp [P pien(M-RR
< CM *NErg p/ rPikr( Od&
0
—kNRp kRp e
< cumgn S >
0<e;<M—1,1<j<R  0<e;<M—1,(k—1)R+1<j<kR
1 . kR —i _kR
/ T,plkR(QW(ijl EjM T+M n))d,r]
0
k
CM—kNqukRp Z . Z H Tp&(E(i_1)R+1,-..,eiR)
0<e;<M—1,1<j<R  0<e;<M—1,(k—1)R+1<j<kRi=1
k
< CM—kNqukRp( Z Tp&(q,...,eR)) .

(e1,-,er)E{0, 1, , M~ 1} R

9



Hence

(e,
In E(El,"',ER)E{O,I,"-,M—I}R r? (e1,€r)

Rpln M

sp(¢) > N — K —

3 Asymptotic Estimate

In this section, we shall prove an asymptotic estimate of Sobolev exponent
$p(pprn) of the M band Daubechies’ scaling functions and some estimates
of GJM’N(S) and CM,N .

3.1 Asymptotic Estimate of Sobolev Exponent

In this subsection, we shall apply Theorems 2.1 and 2.2 and some estimates
of Lyrn (Theorems 3.6 and 3.7) to the following asymptotic estimate of
sp(dm,n),0 < p < oo.

Theorem 3.1 Let ¢y n and Ly n be defined as above. Then there exist
constants C' and 0 < ry < 1 independent of N such that

—Cry < sp(dmn) — N+ I | Lo (M /(M +1))]

<0, 0<p< @

In M
when M 1is even, and
In|L
—CT(])VSSp@M,N)—NJFWSO, 0<p< o0
" In Cas ()
n T
Soo(¢M,N) =N — #

when M s odd.

For the terms |Ly n(7)| and |Lpn(M7/(M + 1))| in Theorem 3.1, we
can use Py in (8) to compute them directly. By comparing the estimate
in [BDS] and the one above, we also have the following asymptotic estimate

In|Lyn(m)|=NInM —InN/4+ O(1)

10



for odd M and

M~
M+1

Mr ., InN
2M+2) )_ +0(1)

1D|LM,N( 1

)| :N(lnM—ln(sin

for even M (see also Theorem 3.11").
By Theorem 3.1, we have

Corollary 3.2 Let ¢y n and Ly n be defined as above. Then there exist
constants C' and 0 < r < 1 independent of N such that

In|Lyn(Mm/(M+1))|

—orV < - N <0
Y < a(dmw) + i <
when M 1is even and
ln|£MN(7r)|
—C N < - N4+ —— 20
r < a(duw) + M <

when M s odd.
By Theorem 3.1, we also have
Corollary 3.3 Let ¢y n be defined as above. Then
A}LH;O Sp(OmN) — Sq(dmn) =0, V0<p,q<o0.

The phenomenon above was observed by Cohen and Daubechies in [CD]
and affirmed by Lau and Sun in [LS] when M = 2.

Because Theorem 3.1 is proved in [LS] when M = 2 after little modifica-
tion, we assume that M > 3 from now on. To prove Theorem 3.1, we need
some estimates of 3, . c.ye0,1,,M—1}7 rélesser) and Ly n.

Lemma 3.4 Let M > 4 be even, 0 <r <1 and Dy = [-(M —1)x /M, (M —
1) /M]. Then

Z O(erer) < (2 + (M _ 2)7;)(1 + (M _ 1)7,)1?,71‘
(617"'7€R)E{0717"'7M_1}R

11



Proof. By computation, we have

2 (<5 + [0, 7))

when ¢ € {0,1,---, M — 1} and ¢ # M/2,M/2 — 1, and

C D() +27TZ

€1 €9 1

when ¢, = M/2 and ey > M /2. Hence
O(€1,€2, -+, €r) =1+ 06(€a,--+,€R)
when €; # M/2,M/2 —1, or ¢, = M/2 and €, > M/2. Recall that
o(er,--,er) =06(M —1—€p,---,M —1—€g).

Then we get
Z 7-6(61 ER)
(617"'7€R)€{0717"'7M_1}R
— Z yO(etyser)
(61,~~~,€R)E{0,1,~~~,M—1}R,51¢M/2,M/2—1
+2 Z T5(61,"',6R)
(€1,+,€r)E{0,1,--,M—1}E e1=M/2
< (M—2)r 5 plens i)
(e2,-,er)€{0,1,--,M —1}B-1
tor 3 pilenen)
(e2,-,6R)E{0,1,--, M —1}B=1 s >N /2
) Z o€z, €r)
(€2,+er)E{0,1, -, M—1}R=1 en<M/2—1
= (1+(M-1)r) > pO(ezer)
(527"'75R)€{0717"'7M_I}R_l
S .
< (14 (M —1)r)Ft > poler)
er€{0,1,-, M—1}
= 2+ (M —=2)r)(1+ (M —1)r)%
O

12



Lemma 3.5 Let M > 3 be odd, 0 < r <1 and Dy = [—(M — 1)x/M, (M —
1)m/M]. Then

Z polerer) < (14 (M —1)r)E,
(e1,+,er)€{0,1,-,M—1}E

Proof. By computation, we have

€1

M
when €; # (M — 1)/2. Thus

27 ( C Dy + 2nZZ

+0,57)

O(€r,---,€ep) =1+ 0(ea,- -+, €R)

when ¢ # (M — 1)/2. Hence we obtain

Z 745(617"'76}{)

(517"'75R)e{0717"'7M_1}R
— Z rO(etser)
(517"'75R)€{0717"'7M_1}R7€1¢(M_1)/2

_|_ Z Tls(fl,"',ER)

(e1,€r)€{0,1, . M—1}R e =(M—1)/2

(1+ (M —1)r) Z role2er)

(627"'aER)E{0’17"'aM71}R_1

IN

VANVAN

(L4 (M — 1))t > e =1+ (M- 1))t
er€{0,1,--,M—1}

O

Theorem 3.6 Let M > 4 be even and L,y be defined as above. Then there
exist constants 0 < ri,ry < 1 and C' such that

M M M
Lan(© < un(Grph €€ 5T (19
and
M M
[L3x(OLan (MO < (14Cr P Loy (7)€l € [gprgo7)- (16)

13



Furthermore

M M — M —
Lan(©) < O lun(r), ee (AU BLDT )
and
L3 Lan (MO < OV | Lasn ()P, lel € fr— LoD gy
(18)

Theorem 3.7 Let M > 3 be odd and Lar,n be defined as above. Then there
exist constants 0 < r3 < 1 and C such that

1Lun(©] < [Lun(m)], € €[-m, 7] (19)
and
(M -7 (M—1)r

1Lun(€)| < Cri|Lyn(m)], €€ T J-

(20)

We postpone the proof of Theorems 3.6 and 3.7 to next subsection. For
a moment, we assume that the estimates of £,y in Theorems 3.6 and 3.7
hold and start to prove Theorem 3.1 by using the estimates of Ly x above
and Theorems 2.1 and 2.2.

Proof of Theorem 3.1. The upper bound estimate follows from The-
orem 2.1 and the facts that {—M=/(M + 1), M7 /(M + 1)} is a non-trivial
invariant cycle when M is even and that {7} is a non-trivial invariant cycle
when M is odd.

We divide two cases to prove the lower bound estimate of s,(¢ n)-

Case 1. M 1is even

By Lemma 3.4, Theorem 3.6, and by letting Dy = [—(M — 1)n/M, (M —
V) /M|, Dy = [-Mn/(M +1),Mn/(M +1)], Dy = [-7,—M=/(M + 1)] U
(Mz/(M +1),7], ¢ = (1 + Cr")|[Lyuyn(Mr/(M + 1))] and r = Crd in
Theorem 2.2, we obtain

~ In|Lyn(Mr/(M + 1)) +1In(1 + CrY)
In M

Soo(@Pm,n) > N

14



and

~ In[Lyn(Mn/(M +1))] +In(1 +Cr)
In M
In(2 + CP(M — 1)ry?) + RIn(1 + C?(M — 1)r3’?)

— (21
pR1In M (21)

sp(omn) > N

Hence the assertion for even M is proved by letting R tend to infinity in (21)
and 1 > ry > max(ry,rs).

Case 2 M is odd.

By Lemma 3.5, Theorem 3.7 and by letting Dy = [—(M — 1)7/M, (M —

Or/M], Dy = [-m,7], ¢ = |Lun(7)| and r = Crl in Theorem 2.2, we
obtain I | ()]
n M.N\T
> N — =M N
Soo(¢M,N) =z In M
and Np
In|Lyn(m)]  In(l+CP(M —1)ry?)
> N — ’ — . 22
Sp(ae,v) 2 In M pln M (22)

Hence the assertion for odd M is proved by letting 1 > ry > r3. O

3.2 Estimates of L)/ n

In this subsection, we shall prove Theorems 3.6 and 3.7 and give some ele-
mentary estimates of ay; n(s) and Ly y (Theorems 3.8, 3.8, 3.11 and 3.11").

Set
~ sin(€/2) cos(M¢/2)
h(£) = cos(£/2) sin(Me/2)
Then hy(0) =1/M, hy(7/M) =0 and
d _ sin Mg — Msin¢
d_ghl@ T Zcos?(¢/2) s’ (ME/2) 0

Thus hy decreases strictly on [0, 7/M] and there exists unique &(x) € [0, 7/M]
for 0 < x < 1 such that hy(&(z)) = (1 — x)/M. Furthermore there exists a
constant such that

Cla'? < ¢(x) < Oz

15



For 0 <z <1, define

x?(aj) ~ sin jws/llr\li(f(:lzléié(x)ﬂ)’ tsj<M-1 (23)
and Vet
Dm:{(xla"'afol); ngjgxa Z JTJZZU}

To estimate ay,n(s), we introduce an auxiliary function ¥ on D,,
M- i
F(zy,---,2p1) Z 14 z;)In(l +z;) — lenxj—ijlnsinM. (24)

Theorem 3.8 Let 0 < s < N—1 and ap n(s) be defined by (7). Then there
exists a constant C independent of N and s such that
s 0

S
— )< c
N—l), 7xM—1(N_1))—ON

CIN“< ay,n(s)exp(—(N — 1) F(29(

To prove Theorem 3.8, we need two lemmas.

Lemma 3.9 Let F be defined by (24) and 0 < x < 1. Then F takes its

mazimum at (2%(x),---, 2%, | (z)) and its mazimum is

M
2In M + (1 —x) lnsin2¥ —lnsin2$.

Lemma 3.9 was proved in [BDS] for z = 1.
Proof.  First we prove (2%(x),---, 2%, (7)) € D;,0 <z < 1. Set

R
ho(t) = H sin®
Then for ¢ = sin? £ /2
1— M-t 2j 1—cos M M
ho(t)t = %s{ x 2M—1 ]1—[1 (cos & — cos ]‘\7;) = C;)S ¢ sin? 7€

16



and
d M sin(M¢) sin?(£/2) — sin € sin®(M&/2)

%hQ( )= sin € sin*(£/2)

Obviously
= d Ry (t)

U2) = —t—Inhy(t) = —t-2>
jz:l x](x) dt n 2( ) hg(t)

where ¢ = sin® £(z)/2. Hence

M1 o _MCOS(M{(:U)/Q) sin(§(x)/2) —
2 5 = e ) s L "
Observe that

0? —(zj(L+a))™, j=i
F 1) = J J T
070, (w1, wa) { 0, i
Then F is strictly convex. Set
D:ivnner = (.’L’l,"',l'M_l) € Dx,O < xZ; <l‘,]_ S]S M — ]_}

Then D" is open and convex, (z9(z), -+, 2%,_,(z)) € D* and D, is the
closure of Din*. By computation, we have
0 14z

—F . _ In —9

0 (21,5 @ar1) = zjsin®(jm /M)’
Thus 5

5 Flab(o)ee by o(a) =~ tusin? S0
is independent of 1 < j < M — 1. Hence the maximum of F' on D, is taken
at (ZU(I)(QT), U 737(])\/[71(37))'
By (23) and (24), we get
M-
F(2(x), -, 2%, ,( Z (1+2%(x)) — 25(x) In sin® @

M—1 . _
- ]Zllnsm2%—hl|8in2%—sin2¥|—x]( z)In Sn2§(2)

= —1In hy(sin? @) +1n hy(0) — xInsin® @

M
= (1 —x)lnsinQ@ — In sin? % +2In M.

17



Lemma 3.10 Let F' be defined by (24). If v; > 0 and
jz; — 2f(x)| < Cy/N, 1< j <M -1,

then
|F(x1,- - ap—1) — Fa(2), -+, 2% (2)] < CT-

Proof. By (24), we have

0 1+xz;
—F V=ln——— "
(1,05 2ar-1) N2 sin? (/M)

o, =In(1+2;") — Insin® %

For |£(z)| > Cy/v/N with some sufficiently large constant Cj, we have
|2}(x)| > 2C1/N and |z;| > C1/N because |z; — x3(z)] < C1/N. So we
obtain 5
|a—ij(l'1, s ',.’L'M_1)| S ClnN

and
|F(1‘17 t '7xM—1) - F(l'(l)(l'), ’ '71.?\471(‘%.”
70
< ClanSI]%e}\}(il |z — x;(x)] < Cln N/N. (25)

For |£(x)| < Cy/V/N, we have |23 (x)| < C/N and |z;] < C/N. So we get

|F(:U1, ’ "7xM*1) - F(JZ?(:U), ’ '7x?\/f—1(x))|

< F (e, onn)| + [F(@(@), -, 2y (@) (26)
< OCN'+C max |rlnz|< ClnN/N.
0<z<C/N

Hence Lemma 3.10 follows from (25) and (26). O

Proof of Theorem 3.8. By the Stirling formula
k! = ke \/2r(k +1)(1 + o(1)),

18



there exists a constant C' independent of s and N such that

—1 Ar—C S1 SM—1
C™'N exp((N—l)F(N_l,---,N_1>)
M-1 .
< 1_1( ! )<smM> 21)
j=1 J
C S1 SM—1
< CN exp((N—l)F(N_l,---,N_l)).

Hence it follows from (27) and Lemma 3.9 that

o =Y T1 ( A ) (Sin%)zsj

sittspy—1=s j=1 5j

< CN® Y exp((N-1)F(

S1t+SpM—1=5

< CN%exp ((N = 1)F(a(

s SM*I))

N—-1 'N-1
s 0 s

N_]_)?.'.?"L.M—I(N_l)))'

Conversely let s;,,1 < j < M — 1 be integers such that Ej]vi]l sj1 = s and

Sj,1 0 5 -
L < — <7< — 1.
Then we get
M-1 :
N—14s;4 . IT g
apn(s) > & sin —) %!
wat) = IL(V 725 )
> CIN Cexp (N —1)F(2tL ... ZM=Ll
> exp (¥~ (I S
> C7'N “exp ((N—1)F($?(ﬁ)a“',$9\/171(ﬁ))—ClﬂN)

S

CTNCexp (N = DF @) ah 1 (7).

where the third inequality follows from Lemma 3.10. O

v

By the proof of Theorem 3.8 and the method used in [BDS], we have

Theorem 3.8  Let ap n(s) be defined by (7) and 0 < 6 < 1. Then there
exists a constant C' independent of N and s such that
s 0 s

S S < -1/2
N—l)’ 7‘%.M—1(N_1))—CN

CTINT?2 < am,n(s) exp(—(N—l)F(x(l)(

19



hold for all 5(N —1) < s < N —1 and N > 2.

To estimate |Lyr v (€)|, we introduce auxiliary functions

M sin(é/2)/ sin(M¢/2)], || < m/M.
9(8) =\ M]sin(¢/2)] n/M < |¢| < . (28)
g(x — 2km), £ € 2km + [—m, 7.

Fr.&) = F@(). o4 () + 2rln |sin 5|

£(x)

M
= 2InM+ (1 —x) lnsiHQT —lnsiHQ%

oz e 0,1](29)

Theorem 3.11 Let g and Ly y be as above. Then there exists a constant
C independent of & such that

CTINTIG(ON < 1L ()] < CNTg(6)".
For M = 2, Cohen and Sere ([CS]) proved |Lsn(£)] < g(&)" and Lau

and Sun ([LS]) showed C'N-“g(&)N < |Ly n(€)]. To prove Theorem 3.11,
we need two lemmas.

Lemma 3.12 Let F(xy, -, xp—1) and g(§) be defined by (24) and (28) re-
spectively. Then

S
F e _ 2 1 > :21 )
S Py o) + 20l sin | = 2lag(9

Proof. By Lemma 3.9 and the fact that F(z, ) and g(€) are 27 periodic
even functions, it suffices to prove

ma<xlﬁ(x, )=2Ing(§), 0<E<m.

20



By (23) and (24), we get

d 0 0
%F(xl(a:), T 7xM71(x))
= 3 G P @) * el
LN
- e & @Y TR ey

where the last equality follows from $37'2%(z) = x. Therefore for 0 <

¢ < /M, F(:C,é) takes its maximum when x satisfies {(z) = &, and for

/M < & < 7, F(z,) takes its maximum at z = 1. Hence Lemma 3.12
follows from Lemma 3.9. O

Lemma 3.13 Let F(x,£) be defined by (29) and let z(€) be 2w periodic
function with its restriction on [0,7] satisfying £(z0(§)) = &, € [0,7/M]
and zo(€) =1 when & € [w/M,x. If |x — zy(§)| < C1/N, then there ezists a
constant C independent of N and & such that

|F(z,€) = 2Ing(¢)| < CIn N/N.

Proof. Obviously it suffices to prove the assertion for £ € [0, 7]. By the
proof of Lemma 3.12, we obtain

sin? /2
sin? £(x)/2
For ¢ € [Cy/V/N,7] with some sufficiently large constant Cy, we have

|20(&)] > 2C1/N and |z| > Cy/N for all |z — z(§)| < Cy/N. Thus [£(x)]| >
C/v/N and

d -~
%F(l',g) =1In

dﬁ(x,g)| < ClnN.

17
Hence

|F(2,€) = 2Ing(&)] = |F(x,€) — F(2(£),)] < CInN/N.  (30)
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For ¢ € [0,Cy/v/N], we have |z(£)| < C/N and |z| < C/N. Recall that
there exists a constant C such that C~'z'/2 < ¢(x) < Cx'/2. Then
M sin §(z)/2 . &()
2|z Insin =’
Sn(ME(r)2) T 2lwinsin=]
< Cl@))?+Clrlnz| +Clz| < ClnN/N

|}~7’(x,§)| < 2|In

and
Msin&/2

sin(MéE/2)

<ol

2lng(§):2‘ln N

Thus we have .
|F(z,§) —2Ing(§)| < CIn N/N. (31)
Hence Lemma 3.13 follows from (30) and (31). O

Proof of Theorem 3.11. Obviously it suffices to prove
CTIN"“g(&)*™ < |Larn(§)]* < CNg(€)*.

By Theorem 3.8 and Lemma 3.12, there exists a constant C' independent
of N and £ such that

N-1 s

1Laun(©)P < CNO Y exp((NV - 1)F(N — 175))

< ONCexp(2(N - 1)lng(€) < ONg(e)?.  (32)

Let 0 <u < N — 1 be an integer such that

Then by Theorem 3.8 and Lemma 3.13, there exists a constant C' independent,
of N and £ such that

U 1

o1 2Ol

Lan(©F = C7'NCexp((N = )F(5—7.9)
> C7IN“Cexp((N —1)F(2(€),€) — ClnN)
> CTINT()*. (33)

Hence Theorem 3.11 follows from (32) and (33). O
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For |Lar,n(€)|, we also have

Theorem 3.11"  Let g and Ly n be as above and 0 < 6 < n/M. Then
there exists a constant C independent of & and N such that

ZI2g@N < |Lan(©)]

—1 in(1. N—1/4 .
€~ min(1, N7 g] - =

) g(e)N

< Cmin(1, N~V*l¢] - A

for & € [—m,—m /M| U [r/M, 7], and
Clg(ON < |Lun(E)] < Cg(O)Y

for & € [—n/M,—6] U [6, 7/M].

Proof. Obviously it suffices to prove the assertion for £ € [§, 7]. Recall
that

sin? /2
n < 9., o
sin® {(z)/2

Thendi( )>0When0<x§z0(§)<1andd(x§)<0when
20(§) < x < 1. By computation, we have

d? - _cosé(x )/2 dé(x)
@O =—Grwe X a2

d -~

Then there exist positive constants 6; < 2¢(£)/2, ¢ and 6, such that

. B I sin¢/2 v

< =tz — %(§))* (34)

holds for all zy(¢§) — 6; < = < min(1,2¢(§) — 6;) and & € [6,7]. Hence by
Theorems 3.8 and 3.8" we obtain

—01(z — 20(£))*

IN

Z aM,N(S) sin25 g
0<s<(20(§)—61)(N—1)
< ¢ _ (2
< ONT S e (N DR 9)
<s<(#0(€)—61)(N-1)
< ONexp (N = 1)F(20(6) = 61,€)). (35)
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and

> ayrn(s) sin®

(20(€)+61)(N-1)<s<N-1
< CN° > exp ((N—l)ﬁ’(
(20(€)+61)(N-1)<s<N—1
< ONexp (N = 1D)F(2(€) +61,6)) (36)

DO [y

1)

if 29(&) +6; <1, and

anr,v(s) sin®
(20(&)—=61)(N—=1)<s<min(N—1,(z0(£)+61)(N—1))
~ N2 > exp ((N —1)F(
(20(8)—=61)(N—=1)<s<min(N—1,(z0(£)+61)(N—1))

l\DIJ‘f‘r

1)

1o min(1,2z0(§)+61) ~
~ NY / exp(N — 1)F(x, €))dx. (37)
z0(€)—061
Hereafter A ~ B means C'A < B < CA for some absolute constant C
independent of parameters in the terms A and B.
For £ € [r/M, 7], we have 2y({) = 1. Thus by (34) we obtain

/: exp(N — 1)F(z, €))dx

0(§)—61

< o [ e (V-1 —Sijij f(éfw) (2= 1) B3 — 1)) d
< C1g(&)* min(N V2 N~ |1)

and similarly
1 ~
[ expl(N = D)F(w,€))dz > Cog(€)*Y min(N /2, N1 = | 1),
20(€)—61 M
This shows that
1 ~
[ exp((N = DP(@,€))dz & g(©)* min(N /2, N Mg = ). (38)
20(€)—61 M

when ¢ € [7/M,7].
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For & € [6, m/M], we have z;(£) < 1. Similarly by (34) we obtain

/min(l,zo (f)+(51 )

0()—51 exp((N — 1)F(z,§))dx

min(1,2z0(&)+61)
< 9@ [ e (= 0N 1) = 20(9))dr < Cagl€) N
20(€)—61
and in(1,20(£)+061)
min(1,zg 1 ~
Lo BN = DF(,€)dr > Cog(@)V N2
20(§)—01
Therefore
min(1,2z0(§)+61) ~
Lo (N = )P O)de N7 gef™. (39)
20 —01

when £ € [6, 7/M]. Hence Theorem 3.11" follows from (35)-(39) and |Lr 5 (€)]? =
Zévz_ol aM’N(S) Sian % O

To prove Theorems 3.6 and 3.7, we need the following property of g(&).

Lemma 3.14 Let g be defined by (28). Then g(§) increases strictly on [0, .
Furthermore

M M
0 < 9(©g(MO) < g5 16l € [ (40)
and there exists 0 < r4 < 1 such that
M M—-1
o(€)9ME) < o), fel e fr— DT

when M 1is even.

Proof. By computation, we have

™

QM)'

i(sian) ~cos&cos ME
d& N sin® &

Hence sin M ¢/ sin ¢ decreases strictly on (0,7/(2M)) and ¢ increases strictly
on [0, 7] by (28).

e (M tan & — tan M€) < 0, & € (0,
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Observe that

d M 1 M M Mm
dg(smésmTf) = §cosgcosé(tan7£ — tan = )7&0 €€ (]\/[le )
and
smgsm—‘g = =0
when M is even. Then |sin$ sin 22¢| decreases strictly on | A%fl,w]. Recall
that

o 21 . é- . Mf M’/T (M2—1)7T
g(g)g(Mf)—M|sm§sm7,§€[M+1, i ].
Then g(&)g(M¢) decreases strictly on [T (M2_1)7r].

M+1° M?
For € € [(M U™ 7], we have

0 < g(&)g(Me) < g(w)g(%):M sin? 27](4
3T M M
< M?%sin® — < M?sin? — 2
sin g = sin 2(M +1) Q(M+1)

This proves (40).
From the proof of (40), we see that (41) holds for

(cos((M — 1)7/(2M?)) sin((M — 1)7r/(2M)))1/2

e sin?(Mn/(2M + 2))
O
Now we start to prove Theorems 3.6 and 3.7.
Proof of Theorem 3.6. Recall that
g 2s
|Larn(6)]? —Z(IMN 51112)
Then M M M
T T T
L <L —
[Larn(6)] < | M’N(M+1)|’ el M+1’M+1]

and (15) holds.
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By Theorem 3.11 and Lemma 3.14, we have

M
Laun(©] < ON%© < ONOrig(577)"
M M — M —
< CT{V|£M,N(M7L)|: VEe [—( Ml)w,( Ml)ﬂ],
and
Mmn
Lan(OLun (MO < ON(g(O)g(ME) < COri¥lg(577)I™
M M-1
< B Lwn(gra), vl e b - DT g

where 75 = g((M L )/g(MH) rs < r < 1and ry < ry < 1. This proves
(17) and (18).
By (18), it suffices to prove (16) for & € [{} 5, 7 — (MA;;)”]. Recall that

maxo<,<i F(r,€) = F(1,€) and F(z,€) increases strictly about 0 < z < 1.
Then there exist constants C' and 0 < 75 < 1 by Theorems 3.8 and 3.11 such
that

(Z )aM,N(S)(Sinf/2)23 < CONCexp((N —1)F(8,€))
s<B(N-1

< ory Z aMyN(s)(sing)Qs,
5=0
when € € [=1 + (M — 1)m/M2, —(M — 1)x/M] U [(M — 1)7/M, 7 — (M —
1)7/M?], where 3 = 3/(2M). By computation, we have M¢ € Mm — [(M —
L)yn/M,Mm/(M + 1)]. Hence we get

z__% art (5) (sin g)% <S40 Y aya(s)(sin Sy

s>H(N-1) 2
and
L ©Lun (MO < (1O Y ana(k)ang (1) sin® S sin? TF
kI2A(N-1)
Set
Fra(§) = Sin%gsin” ?, BN -1)<kI<N-—1.

27



Then

1 M M
%Fk,l(g) = Z(k tan 7§ + Ml tan g) sin?* 2 g sin? 2 7§ sin(M¢) sin €.

For ¢ € [, 7 — (M]\};)”], we have sin € sin(M¢) < 0,

M
(k:tan—g + Mltan§)‘
2 27 le=Mn/(M+1)

= ((=D)M?*'k 4 MI) tan

> (N =DM = Dtan 5

and p e ¢
d_g(ktaHT + Mltan§) > 0.

Therefore ktan 28 + Mitan§ > 0 and L F;;(¢) < 0 on [A]/‘[/[fl,w - (M]\;;)”].

So Fi(€) decreases on [{75, m — (Mj\;;)”]. Hence for & € [, 7 — (Mj\;;)”],
we obtain

M7r)
M+1

1Larn(©)Layn(ME| < (14Cry)° > amn(k)ann () Fri(
k1> B(N—1)

M
< (1+Cr¥ 2| Lprn(—r

2
M+1)|'

Proof of Theorem 3.7. Recall that

N-1 é-
Lun(©OF = 3 ay(s)(sin )
5=0
Then we have |Ly n(€)] < |Larn (7).
By Theorem 3.11 and Lemma 3.14, there exists a constant C' such that

Lun(€)] < CN(ON < ONrY g(m)N < ONOrY|Loyn(T))|

(M -7 (M—-1)r
M M )

< Crif|Lun(m)], €€l

where 75 = g(%) /g(m) < 1 and the last inequality holds by letting
rs < r3 < 1.0
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