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Abstract

In this paper, we give a characterization of compactly supported
distributions which are both m and n refinable for some integer pair
(m,n).
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1 Introduction

Define the Fourier transform of an integrable function f by

f&) = fp e Fa)ds

and the one of a compactly supported distribution by usual interpretation.
For any integer m > 2, a compactly supported distribution ¢ is said to be m
refinable if ¢ satisfies the refinement equation

¢ =2 ci(m-—j) (1.1)

JEZ

and ¢(0) = 1, where the sequence {c;};cz satisfies Yjez ¢ = m and ¢; #
0 for all but finitely many j € Z. In this paper, a refinable distribution
means a compactly supported distribution which is m refinable for some
m > 2. Refinable distribution arises in many contexts, such as subdivision
scheme and construction of various wavelets (see for instance [1], [2], [5]).
Typical examples of refinable distributions are B-splines and Daubechies’
scaling functions.

Define the m symbol of the refinable distribution ¢ in (1.1) by

1 .
H,(z) = p > .

JEZ

By taking the Fourier transform at each side of (1.1), we obtain

~

A(E) = Hple /™)p(¢/m). (1.2)

From (1.2), we see that an m refinable distribution must be m” refin-
able for all integers » > 1. Furthermore its corresponding m" symbol is
[} Hn(z™ ), where H,, is its m symbol. This motivates us to consider
the converse — whether a distribution which is m” refinable for all r > 2
is necessarily m refinable. In this paper, we discuss the following question
relating to an even stronger statement.
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Problem 1. Let r and s be two relatively prime integers. Is it true that a
distribution which is both m” and m?® refinable is necessarily m refinable?

A compactly supported distribution is said to be totally refinable if it is
m refinable for all m > 2. Define B-spline By, k > 0 by

~ 1 —e %k

B =—-) .
Then By, k > 0 are totally refinable. It motivates us to consider the con-
verse — whether B-splines are the only totally refinable distributions. In
this paper, we discuss the following question relating to an even stronger
statement.

Problem 2. For which class of integer pairs (m,n) is a compactly supported
distribution that is both m and n refinable necessarily essentially a B-spline?

Recall that a compactly supported p refinable distribution is p" refinable.
Then a compactly supported distribution, which is both m and n refinable,
need not to be a B-spline if the integer pair (m,n) is (p", p®) for some integers
r,s > 1 and p > 2.

Problem 2 is of interest by itself. In [3], Cohen, Daubechies and Ron
proved that the smoothness and approximation order go hand-in-hand for
a totally refinable space. The reader refer [3] to the definition of totally
refinable spaces. In fact, the space spanned by the integer translates of a
totally refinable function is an important class of totally refinable spaces.
So to study Problem 2 is helpful to understand the totally refinable spaces.
In recent years, some authors have tried to understand when a refinable
distribution is essentially a B-spline. Lawton, Lee and Shen proved in [6] that
a refinable piecewise polynomial is essentially a finite linear combination of
integer translates of a B-spline. In [9], the first named author showed that a
compactly supported distribution, which is piecewise smooth and m refinable
for some m > 2, is essentially a B-spline.

In this paper, we give an affirmative answer to Problem 1 under some
minor restrictions on the refinable distribution and identify certain classes of
integer pairs (m,n) for the solution to Problem 2.
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To state our results, we fix some terminologies. A compactly supported
distribution ¢ is said to be linearly independent to its integer translates, or
linearly independent for short, if

Y di¢g(-—j)=0 on R implies d; =0, VjeZ.

JEZ

We say that an integer pair (m,n) is of type I if there exist integers r, s > 1
and p > 2 such that m = p" and n = p*. For [ > 2, an integer pair (m,n) is
said to be of type [ if it is not of type [ — 1 and there exist integers r;, s; > 0
and p; > 2,1 =1,2,---,[ such that p;, 1 <1 <[ are pairwise relatively prime,
m = [I'_, pi* and n = [I'_, pf*. For example (9,27) is of type I, (12, 18) is of
type I and (22-3-5,3%-5) = (300, 45) is of type IIL. In this paper, we prove
the results that only involve integer pairs of type I, II and III.

Theorem 1 Let r and s be two relatively prime integers, and let m > 2 be
an integer. Assume that the compactly supported distribution ¢ is linearly
independent. Then ¢ is both m" and m?® refinable if and only if it is m
refinable.

The condition for the linear independence of ¢ in Theorem 1 can not be
left out. For example, the distribution ¢ defined by

. et —1  e28 — 2cos(2m/m?)e + 1
P§) = —— X (2n/ )2
i€ 2 — 2cos(2m/m?)

is m” refinable for all » > 2, but not m refinable.

Theorem 2 Let (m,n) be an integer pair of type II or of type III. Assume
that the compactly supported distribution ¢ s linearly independent. Then ¢ is
both m and n refinable if and only if there exist a B-spline By, and an integer
s such that s(n — 1)/(m — 1) is still an integer and ¢ = By( - —s/(m — 1)).

We say that a Laurent polynomial P is m closed if P(z™)/P(z) is still
a Laurent polynomial. If the condition for the linear independence of ¢ in
Theorem 2 is left out, then we have

Theorem 3 Let (m,n) be an integer pair of type II or of type III. Then ¢
15 both m and n refinable if and only if there exists an integer s such that
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s(n —1)/(m — 1) is an integer, and a B-spline By, and a sequence {d;};cz
with finite length such that (1 — 2)* ;25 d;27 is both m and n closed, and

6= diBi(- ———= = j).

JEZ

From Theorem 3, it follows that a totally refinable distribution is a finite
linear combination of integer translates of a B-spline. So we believe that the
following assertion is true.

Conjecture. Let the integer pair (m,n) be not of type I. If a compactly
supported distribution is both m and n refinable, then it is essentially a finite
combination of the integer translates of a B-spline.

Let us briefly describe the ideas to prove our theorems. The proofs of one
direction follow from the facts that a B-spline is m refinable for all m > 2
and that an m refinable distribution is m" refinable for all integer » > 1. To
give the proofs of another direction, we need two basic assertions. The first
one says that both m and n refinability of the distribution ¢ is equivalent to

Hy(2")Hy(2) = Hp(2™)Hpn(2)

on the corresponding m and n symbols H,, and H,, (see Lemma 1 for precise
statement). The second one says that a compactly supported distribution,
which is both m and n refinable, is also m/n refinable if it is linearly inde-
pendent and m/n > 2 is still an integer (see Lemma 2 for precise statement).
Then we may use Lemma 2 to prove Theorem 1.

The first step to prove Theorem 2 is to simplify integer pairs in Theorem
2 by Lemma 2. In fact it suffices to consider integer pairs (m,n) with m
and n being relatively prime, or satisfying m = pd and n = qd for some
pairwise relatively prime integers p,q and d. The key step is to prove that
the corresponding m symbol H,, can be written as

Ha(e) = (22 ) B

for some Laurent polynomial P with P(1) = 1 (see Lemmas 3 and 4 for
precise statement). At last we show that the Laurent polynomial P above
equals z® for some integer s.



In order to prove Theorem 3, by Theorem 2 we only need to show that for
a both m and n refinable distribution ¢, there exist a compactly supported
distribution ¢; and a sequence {d;};cz with finite length such that ¢, is
linearly independent, both m and n refinable, and ¢ = 3 ,cz d;d1(- — j) (see
Lemma 7 for precise statement).

The paper is organized as follows. In Section 2, we give some basic asser-
tions and the proof of Theorem 1. Section 3 contains the proof of Theorem
2. Theorem 3 is proved in Section 4.

The authors would like to thank two anonymous referees very much for
their useful comments in revising the paper. Also thanks to Prof. A. Cohen
and Prof. A. Ron for their help.

2 Proof of Theorem 1

To prove our theorems, we need some lemmas.

Lemma 1 Let m and n > 2 be two integers. If a compactly supported dis-
tribution ¢ is both m and n refinable, then the corresponding m symbol H,,
and n symbol H,, satisfy

H, (2" H,(2) = H,(2™)Hp(2). (2.1)

Conversely if Laurent polynomials H,, and H, satisfy (2.1) and H,,(1) =
H, (1) = 1, then there exists a compactly supported distribution ¢ such that
it s both m and n refinable, and H,, and H, are the corresponding m and n
symbols respectively.

Proof. Let ¢ be both m and n refinable. Then it follows from (1.2)
that

HE) = Hale )2 = Hye ) Hy (e )5

mn
and ¢ ¢
3(¢) = Hn(e_ig/")é(;) = Hy (e /") Hop (7™ go( )



Recall that ngﬁ is a nonzero analytic function. Then
H, (e ™) H,(e ™) = H,(e ™) H,, (e %)
and (2.1) follows.

Let H,, and H, satisfy (2.1) and H,,(1) = H,(1) = 1. Define
H H,, (e /™). (2.2)

Then ®(0) = 1. It is easy to show that the right hand side of (2.2) converges
uniformly on any compact set of the complex plane €. Hence ®(&) is an
analytic function. Furthermore there exists a constant C' such that |®(&)| <
C(1 + |€))¢eCIm &l where I'm & denotes the imaginary part of a complex
number . Thus there exists a compactly supported distribution ¢ by the
Paley-Wiener theorem such that & = qS Hence it remains to prove that ¢
is both m and n refinable. Obviously ¢ is m refinable by (2.2). To prove n
refinability of ¢, we introduce an auxiliary function

9(&) = 3(n) /3(€) = (nk) /B(E).

Obviously ¢ is continuous at the origin and ¢(0) = 1. By (2.1) and (2.2), we

get

H, (e ﬂ”g/m)?(nf/m) _ Hn(e-*li) g(é)
Hp(e=®/m)g(¢/m) — Hale /™)™ m

9(§) =

Hence (it
0(6) = el

for all k > 1 and g(¢) = H,(e %) by letting k tend to infinity. This shows
that ¢ is n refinable. By the procedure above, we see that H,, and H, are
the m and n symbols of the refinable distribution ¢ respectively. O

For zy € C\{0}, we say that a Laurent polynomial P has m symmetric
roots 2y if P(zw?,) = 0 for all 0 < s < m — 1, where w,, = >™/™ is the
m-th root of unity. A Laurent polynomial P is said to have no m symmetric
roots if all zy € C\{0} are not m symmetric roots of P.
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Lemma 2 Let m and n be two integers such that m/n > 2 is still an integer.
If ¢ is linearly independent, and both m and n refinable, then ¢ is m/n
refinable.

Proof. Let H,, and H, be the m and n symbol of the refinable distri-
bution ¢ respectively. Then H,, has no n symmetric roots and H,, has no m
symmetric roots by the linear independence of ¢. By Lemma 1, we have

H,(2)H,,(2") = Hy(2)H, (2™). (2.3)
Write
H,.(2) = Hym(2)Hym(2")
such that H,, has no n symmetric roots and Hi,,(1) = 1. Then all n

symmetric roots of the left hand side of (2.3) are those of H,,(2") and all n
symmetric roots of the right hand side of (2.3) are those of Hy,,(2")H,(2™).
Therefore by (2.3) we get

H,(z) = Hg,m(z)Hn(zm/”)

and
Hy . (2) = Hy(2).

Replacing H,, and H,, in (2.3) by the formulas above, we obtain
H,(2)Hy p(2") = Hypp(2) H, (21™).

Hence Lemma 2 follows from Lemma 1 and the above formula of H, and
H,,. O

Proof of Theorem 1. Obviously it suffices to prove that ¢ is m refin-
able when ¢ is m" and m?® refinable. If r or s equals 1, then the assertion
follows. Inductively we assume that the assertion holds for all relatively
prime integers r < k and s < k. Now we prove the assertion when » < k +1
and s < k + 1 are relatively prime. Without loss of generality we assume
r>s. Set ' =r—s. Then ' <k, s <k, and " and s are also relatively
prime. Furthermore ¢ is m" = m” /m?® and m? refinable by Lemma 2. Thus ¢
is m refinable by the inductive assumption. Hence the assertion holds when
r<k+41and s <k + 1 are relatively prime. O
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3 Proof of Theorem 2

A Laurent polynomial P(z) is said to be a normalized polynomial if P(z) is
a polynomial and satisfies P(0) # 0 and P(1) = 1. Denote the set of all
nonzero roots of a Laurent polynomial P, taking multiplicities into account,
by Z(P). If z is a root of multiplicity m, we may distinguish its repeated
occurrence in some way, such as zg X 1,29 X 2,---, zp X m. For example

Z(P)={ix1,ix2,—ix1,—ix2}
when P(z) = z(z* 4+ 1)?. But we abandon such vigor and write simply
Z(P)={i,i,—i,—i}.

Then the cardinality of the above set of roots of the polynomial z(z? +1)? is
4. For any natural number 7, let Z(P)" be the set of all z{ with zy € Z(P)
and Z(P) x Z(Q) be the set of all zgug with 2y € Z(P) and uy € Z(Q).
For the above example, Z(P)* = {—1,—1,—-1,—1} and Z(P) x {-1,1} =

{i,i,1,1,—1,—1i,—1i,—i}.

Lemma 3 Let m and n be relatively prime integers. If H,, has no m sym-
metric roots, H, has no n symmetric roots, and H,, and H, satisfy

H,(2)H,(2") = Hy(2)Hy,(2"),

then there exist a normalized polynomial P and an integer k > 0 such that
P is m and n closed, and

L—zm )kP(zm) 1—z”>kP(z”)

Hn(2) = ( P(z)’ Ha(z) = (n— nz) P(z)

m—mz

Proof. Let A(z) be the maximal common factor of H,,(z) and H,(z)
with A(1) = 1. Then

is a polynomial by the assumption on H,, and H,. Furthermore we have
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Claim 1 Q(z) has no m symmetric roots.

On the contrary, there exists zp € C such that Q(zows,) = 0 for all 0 <
s <m—1. Observe that {w?;0<s<m—1} ={w;0<s<m-—1} when

m and n are relatively prime. Then H,,(zfw?,) =0 for all 0 < s < m — 1,
which contradicts to the assumption on H,,.
Similarly by the assumption on H,, we have
Claim 2 Q(z) has no n symmetric roots.

Thus it follows from Claims 1 and 2 that A(z) =1 and

Z(H,)™ = Z(H,), Z(Hy,)"=Z(Hpy). (3.1)
Write

H,(z2)=C ] (2-2).

20€Z(Hnp)

Then Hy(2) = C Tl ez, (2 — 25°) by (3.1) and

Qz) = H H: H nﬁ(z—zowfn).

ZTA ez(Hy) s=1

Qz) = H ﬁ (2 — upw?).

uo€Z(Hpm) t=1

Hence we get
Z(Q)=Z(Hy) x{wi;1 < s<m—1} = Z(Hp) x{w;1 <t <n—1}. (3.2)
By (3.1) and (3.2), we obtain
Z(Hp) x{1,1,--- 1}, 1 =Z(H,)" x {w;;1 <s<m-—1} (3.3)
and
Z(Hy) x {1,1,-++ 1}y = Z(Hy)™ x {wl;1 <t <n—1}, (3.4)
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where {(y, o, -+ -, (o} is the set of all roots of (z — (y)* for ¢, € C\{0}. Thus

we have

Claim 3 There exists a polynomial Py such that Z(H,)" = Z(P;) x
{17 17 T 1}n71-

On the contrary, there exist 21,29 € Z(H,)" and 1 < s; < n — 1 such
that z; = zow?! by (3.3). Hence
{ziw;;0<s<m—1} C Z(H,)" x {w;;;1 <s<m—1}

m

and H,, has m symmetric root z; by (3.3), which contradicts to the assump-
tion on H,,.

Combining (3.1), (3.3) and Claim 3, we obtain
Z(Hp) = Z(P1) x {wp;1 < s <m -1} (3.5)
and
Z(P)" x{wi;1<s<m—-1}=Z(P) x {w,;1 <s<m—1}.
Furthermore we have
Claim 4 Z(P,) = Z(P,)".

On the contrary, there exist z; € Z(Py), 2o € Z(P)" and 1 < sy <m—1
such that z; = zw?'. Hence H,, has m symmetric roots z; by (3.1) and
(3.5), which contradicts to the assumption on H,,.

Similarly by (3.1), (3.2), (3.4) and the assumption on H,, there exists a
polynomial P, such that

{Z(Hn) = Z(P) x{wi;1<t<n—1}

2P = Z(P) (3.6)

By (3.2), (3.5) and (3.6), we obtain

Z(P) x{wh;1<t<n—1} x{wi;1<s<m-—1}
= Z(P) x{w;1<t<n—1}x{wi;1<s<m—1}

13



Furthemore we have

On the contrary, there exist z; € Z(P;), 2, € Z(P,),0 < s; <m — 1 and
0 <t <n—1such that (s1,¢) # (0,0) and z; = zpwilw’. From (3.2), (3.5)
and (3.6), it follows that
Qziwiw!) =0, V1<s<m-1,0<t<n-1
when s; =0,
Qziwiw!) =0, V0O<s<m—-1,1<t<n-1

when ¢t; =0 and
Qziwiwl)=0, VO<s<m—-1,0<t<n-1

when s; # 0 and ¢; # 0. Hence ) has m or n symmetric roots, which
contradicts to Claims 1 and 2.

Write Py(2) = C(1 — 2)¥Py(z) with Py(1) = 1. Hence Lemma 3 follows
by (3.5), (3.6), Claims 4 and 5, and letting P = Fy. O

Lemma 4 Let p,q,d > 2 be pairwise relatively prime integers, m = pd and
n = qd. Assume that the normalized polynomials H,, and H, have no m and
n symmetric roots respectively. If Hy, and H, satisfy (2.1), then there exist
a normalized polynomial P and an integer k > 0 such that P is m and n

closed, and
e = (L) i o= (=) 55

Obviously Lemma 4 follows from Lemmas 5 and 6 below.

P(z)

m —mz

Lemma 5 Let m,n,p,q,d, Hy,, H, be as in Lemma 4. If H,, and H, satisfy
(2.1), then

{Hm(z) = Hp(2")B(2) = Hua(2)C(2") (3.7)

H,(2) = H,1(2%)B(2) = H,2(2)C(29),

where B(z),C(z) and H,;, Hy,;,i = 1,2 are normalized polynomials. Fur-
thermore B(z) and C(z) have no d symmetric roots, Hy, ;(2),i = 1,2 has no
p symmetric roots and H, ;(z),i = 1,2 has no ¢ symmetric roots.
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Proof. Write
H,(z) = Hm,l(zd)Bl(z) = H,,2(2)C1(2P),
H,(2) = Hn,l(zd)Bg(z) = H, 5(2)Cs(27)

such that H, ;(2), Hp.i(2), Bi(2),Ci(2),i = 1,2 are normalized polynomials,
and B;(z),7 = 1,2 has no d symmetric roots, Hy,,2(z) has no p symmetric
roots, and Hy, »(#) has no ¢ symmetric roots. By the assumptions on H,, and
H, we see that C;(z),7 = 1,2 has no d symmetric roots, H,,1(z) has no p
symmetric roots and H, (%) has no ¢ symmetric roots. Thus it suffices to

prove that B;(z) = By(z) and C4(z) = Cy(2).
We first show that By(z) = By(z). By (2.1), we have
By (2)Hp 1 (2Y)H, (2%7) = By(2)Hp 1 (2%) Hpp(2%9). (3.8)

It is easy to see that all d symmetric roots of the left hand side of (3.8) are
those of Hy,1(2%)H,(2%), and all d symmetric roots of the right hand side
of (3.8) are those of H,(z%)H,,(z%). Thus we have Z(B;) = Z(Bs). Hence
from B;(0) # 0, B2(0) # 0 and By (1) = By(1), it follows that

By (2) = Bsy(2).

Next we prove that C(z) = Cy(z). Obviously (2.1) can be written as
H,,(2)H, 5(2")Cy(2%7) = H,(2)Hypo(2%)Cy(2%7). (3.9)
Hence we have

Claim 6 All dpg symmetric roots of the left hand side of (3.9) are those
of Cy(2%7).

On the contrary, there exists a complex number 2, such that

Hm(zgwfqu)Hn,g(zgpw;‘) =0, V0<u<dpg—1.

Hence

Hy (20wl Hy o (207w3) =0, V0<s<g-1,0<t<dp—1. (3.10)
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Recall that H, »(z) has no ¢ symmetric roots. Therefore there exists 0 <
so < q — 1 such that Hn,z(zgpwgo) # 0. Hence Hm(zowfingﬁl) = 0 for all
0 <t <m—1Dby (3.10), which contradicts to the assumption on H,,.

Similarly we have

Claim 7 All dpq symmetric roots of the right hand side of (5.9) are
those of Cy(2%1).

Therefore by Claims 6 and 7 we have Z(C}) = Z(Cs). Recall that C;(2),i =
1,2 are normalized polynomials. Then

01(2’) = CQ(Z)
Hence Lemma 5 follows by letting B(z) = B;(z) and C(z) = C1(z). O

Lemma 6 Letm,n,p,q,d and Hy(2), Hy(2), B(2),C(2), Hpi(2), Hmi(2),1 =
1,2 be as in Lemma 5. Then there exist normalized polynomials Py(z),i =
0,1,2 and an integer k > 0 such that

((Hpp(z) = (1=22)%[(p—pz)* x Pi(27)/Py(2),
Hpp(z) = (1—2°)F[(p — p2)k x Py(2*) [Pi(2),
Hui(z) = (1—29q—q2)* x Pi(27)/Py(z), (3.11)
Hyo(z) = (1= 29 g — qz)F x Py(27)/Pi(z), '
B(z) = (1—=2%%/(d—dz)F x Py(2%)/Py(2),
Clz) = (1—z2")d—dz)F x Pi(2")/Py(2),

and Py(2%)/Pi(2), Pi(2")/Pa(z), Pi(2?)/Po(z), Pi(29)/Po(z), Pa(2")/Pi(2)

and Py(z7)/Py(z) are normalized polynomials.
Proof. By (3.7) and (3.8), we obtain

Hmyl(zd)B(z) = H,2(2)C(2"),
H,,(zYB(2) = H,,(2)C(29), (3.12)
Hm,l(Z)Hn,Q (Zp) = Hn,l(z

First we prove that

Z(Hm,Z) — Z(Hm,l)qa
Z(Hpmy) = Z(Hpp)?, (3.13)
Z(Hm,l) - Z(Hm,l)na



and

Z(Hn 2) = Z(Hn l)pa
Z(H,,) = Z(H,»)", (3.14)
Z(Hn,l) Z(Hn,l)m

Since we can prove (3.14) by almost the same argument as the one of (3.13),
we only give the detail of the proof of (3.13) here. Let R3(z) be the maximal
common factor between H,,(z) and H, 1(z) with R3(1) = 1. Set

. Hm’g(zq)Rg(Z)
Q1(z) = Hoa(e) (3.15)
Then Q1(z) is a normalized polynomial and
_ H,5(2P)Rs(2)
Qi(2) = THAG) (3.16)

by (3.12). Furthermore we have
Claim 8 (Q1(z) has no p symmetric roots.

On the contrary, there exists zp € € such that Qi(zw,) = 0 for all
0<s<p—1. Thus Hyp(zwy?) = 0 forall 0 < s < p—1 by (3.15). By
computation, we have {w:%;0 < s <p—1} = {w;;0 < s < p—1}. Therefore
Hy, 5 (25wy) = 0 for all 0 < s < p — 1, which contradicts to the property of
Hm,2-

Similarly by (3.16) and the property of H,» we have
Claim 9 (4(z) has no q symmetric roots.
Thus it follows from (3.15), Claims 8 and 9 that
Z(Hps) C Z(Hm1/R3)" C Z(Hpy)". (3.17)
Let R4(2) be the maximal common factor between B(z) and H,, »(z) with
R4(1) =1, and let

Ry(2)H,p, 1 (2%) ‘

Q2(2) = Hoa(2)
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Then Q(z) = C(2?)R4(z)/B(z) is a polynomial by (3.12) and (2(z) has no
p and d symmetric roots by the same argument as the one used in the proof
of (3.17). Therefore we get

Z(Hpy) C Z(Hpo/Ry)* C Z(Hys)" (3.18)

Combining (3.17) and (3.18), we get
Z(Hps) C Z(Hpo)"™ (3.19)

Observe that the sets at both sides of (3.19) have the same cardinality. Then
Z(Hm’g) = Z(Hm,g)n, Z(Hm,l) = Z(Hm’g)d and R3(Z) = R4(Z) =1 by
(3.17)-(3.19). Hence (3.13) follows.

By (3.15), (3.16) and R3(z) =1, we have

Hm,z(zq) . Hnyg(z”)

Hoi(z) ~ Hoa(2) (3.20)

Qi(z) =

By the same argument as the one used in the proof of Lemma 3 it follows
from (3.13) and (3.20) that

Z(Q1) = Z(Hpm,) x {wys1 <s <q—1} = Z(H,,) X {w;;l <t<p-1}.

(3.21)
Hence by (3.13), (3.14) and (3.21) we obtain
Z(Hn,l) X {17 L, "71}11*1 = Z(Hmyl)m x {w;; I<s<q- 1} (3 22)
Z(Hpp) x{1,1,-++,1}g01 = Z(Hpp)" x {w;1 <t <p—1}. '

Then by the same argument as the one used in the proof of Lemma 3, it
follows from (3.13), (3.14), (3.22) and the properties of H,,; and H, that
there exist polynomials P, and P, such that

Z(Hpy) = Z(P)x {wp;1<s<p-—1}
{ Z(H,) = Z(B)x {wh1<t< 5— 1 (3.23)
and
Z(P)" = Z(P), Z(P)™ = Z(P,). (3.24)



By (3.21) and (3.23), we have
Z(Py) X{w;;lgtgp—l}x {wis1<s<qg—1}
= Z(P) x{w;;lgtgp—l}x {wis1 <s<q—1}

Hence by the same argument as the one used in the proof of Lemma 3 it
follows from (3.20), Claims 8 and 9 that

Z(P) = Z(Py). (3.25)
Write
ez (2 = ta) = ci(z = 1)FPy(2),
ez (z —uh) = ez = 1)FPi(2), (3.26)
M, ezpy(z —ul) = cs(z = 1)FPr(2), '
M, ezpy(z —u80) = cz = 1)FPy(2),

where £ > 0 and constants ¢;,1 < ¢ < 4 are chosen such that P;,i = 0,1, 2
and P, are normalized polynomials. Here the same integer k£ is chosen in
(3.26) because u? # 1, ul # 1 and uB? # 1 when u, # 1 by (3.24) and (3.25).
Again by (3.24) and (3.25), we obtain

Py (2) = P{(2). 320
Hence it follows from (3.13), (3.14), (3.23), (3.26) and (3.27) that
P — 1Nk Py (2P
Hpi(2) = (pz —p) Po((z))
29— 1\k Py (21
H,.(2) = (qz — q) PO((Z))
2P — 1Nk Py(2P
Hpo(2) = (pz —p) Pl((z))’
29 — 1\k Py(21
Hpp(2) = (qz — q) Pl((z))'

Substituting the above formulas of H,,; and H,;,¢ = 1,2 in the first and
second equation of (3.12), we obtain

(1 . zm)kpl(zm) (1 — ZP)’“PQ(Z”) P
(p — pz?)k Py(29) Bz (p — p2)FPi(2) o)

(¢ — qz7)"Fo(27)
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Hence
(1 — 2P)EPy(2P)

(1 —zm)kPy(2m)

(1 — 29k Py(29)
C(z?) = C'(29).
It is easy to prove that a rational polynomial @) satisfying Q(z?) = Q(z9) is
a constant polynomial. Therefore we have

1— 2%k Py (2°
¢(z) = (d - dz) PQ((Z))

Replacing C(z) in (3.28) by the above formula, we get

1 — 24\ k Py(2?
B(z) = (d — dz) Pl((z))

By the construction of P;,7 = 0,1,2, these polynomials satisfy the re-
quired properties of Lemma 6. O

Proof of Theorem 2. Let s be an integer such that s(n—1)/(m—1) is
still an integer and let ¢ = By(-—s/(m —1)). Then ¢ is linearly independent
and

$<£>=:e“f“"‘1)(1'}§%)k-

Thus we have "
A , 1—e? ko~ &
_ ,is§/m o
O = e ™M () ()
and c
~ " l—e™ \k. ¢&
— ,—is'é/n >
D) = eI () $C),
where s’ = s(n — 1)/(m — 1). Hence ¢ is m and n refinable. The necessity
follows.

Now we prove the sufficiency when the integer pair (m,n) be of type II.
Let p;, 75, 8i,% = 1,2 be nonnegative integers such that p; > 2 and py > 2
are relatively prime, m = pi'py? and n = pi'p3?. Without loss of generality

we assume 715y > r981. Set m' = n't/mS = py!** "% and n' = m*/n"? =
p1t*2 "%t Then m' and n' are relatively prime. By the assumption on ¢ and
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Lemma 2, ¢ is both m' and n' refinable. From Lemma 1 it follows that the
m' and n' symbols H,, and H, of ¢ satisfy

HmI(Z)HnI(Zm’) == Hn:(z)HmI(z”,) (329)

Write H,y(2) = 2°H,(2) and H,(2) = 2* Hy(z), where H,, and H, are
normalized polynomials. Then s'(m’—1) = s(n'—1), and H,, and H, satisfy
(3.29). Define ¢ = ¢(- — s/(m’ —1)). Then ¢ is m’ and n' refinable, and its
m' and n' symbols are H,, and H, respectively. By Lemma 3, we get

- 1— 2™ \kP(z™)
H,(2) =
m(2) (m’ — m’z) P(z2) ’
where P is a normalized polynomial. Hence
= 1 —e\k '
— —ig
o6 = (=) P,

Obviously ¢ is linearly dependent if the normalized polynomial P above is
not a constant. This proves P(z) = 1 and ¢ = By. It is obvious that
Bi(- — t),t € R is m refinable if and only if (m — 1)t € Z. Hence the
sufficiency follows when the integer pair (m,n) is of type II.

At last we prove the sufficiency when the integer pair (m,n) is of type
ITI. Let p;, 1, 8:,¢ = 1,2,3 be nonnegative integers such that pi, ps,ps > 2
are pairwise relatively prime, m = pi'py*ps* and n = pi*p5*ps*. Without loss
of generality we assume that r1/s; > 73/s9 > r3/s3. Then ¢ is n™ /m* =
PRt RN and m3 [nTs = ptoeT TN it %2 refinable by Lemma 2
and the assumption on ¢. Hence after appropriately choosing p;,7 = 1,2, 3,
we may assume that s; = r3 = 0 and r; = s3 = 1. For the above integer
pair (M., n.) = (p1py’, p3°ps), set p = pi*,q = ps*,d = py>*. Then m$* = pd,
n'? = qd and p, q,d are pairwise relatively prime. Furthermore ¢ is pd and
qd refinable by Lemma 2. By the same argument as the one used in the
proof for the integer pairs of type I, it follows from Lemma 4 and the linear
independence of ¢ that the pd symbol H,q of ¢ may be written as

1 — zpd )k

i) =2 (=

for some integers k > 0 and s. Thus ¢ = By(-—s/(pd)). Hence the sufficiency
follows when the integer pair (m,n) is of type III.
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4 Proof of Theorem 3

To prove Theorem 3, we need the following lemma.

Lemma 7 Let m,n > 2 be two integer, and let compactly supported distri-
bution ¢ be both m and n refinable. Then there exist a compactly supported
distribution ¢, and a sequence {d;}jcz with finite length such that ¢y is lin-

early independent, both m and n refinable, and satisfies
¢=> dipi(-—j) (4.1)

JEZ

Proof. It is well known (see [7] for instance) that there exist a compactly
supported distribution ¢, and a sequence {d;};cz with finite length such that
(4.1) holds and ¢, is linearly independent. Then it suffices to prove that ¢,

are both m and n refinable. Set D(z) = Y ;czd;2’. Then by taking the
Fourier transform at each side of (4.1), we obtain

$(€) = D(e ) (6).

Hence by the m refinability of ¢ and the linear independence of ¢, we have

D(e™"™)1(m€) = Hum(e*)D(e™ )1 (€)

and H,,(z)D(z)/D(2™) is a Laurent polynomial. This shows that ¢; is m
refinable. Similarly we may prove that ¢; is also n refinable. O

Proof of Theorem 3. By Lemma 7, there exist a compactly supported
distribution ¢; and a sequence {d;};cz with finite length such that ¢, is
both m and n refinable, linearly independent and ¢ = ¥,z d;j¢1(- — j). By
Theorem 2, there exist integers & > 0 and s such that s(n —1)/(m — 1) is
still an integer and ¢y = By(- — s/(m — 1)). Therefore

o= diBr(-—j - )- (4.2)

JEZ

S

m—1
By taking the Fourier transform at each side of (4.2), we obtain

R . — e % g
B(E) = e e/ D (ZZE Y 3 e,

i ez

Thus (1 — 2)* ez d;27 is m and n closed by the m and n refinability of ¢.
|
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