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Abstract

In this paper, the existence, regularity and biorthogonality of the
solution of the nonhomogeneous refinement equation

O(z) = Z a®(2x — k) + G(x), zeR?

keZzd

are considered. Also new class of biorthogonal wavelet basis on a
non-uniform grid is constructed.
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1 Introduction

1.1 Overview

Fix d’' and d with d' < d as the dimensions of spaces and N as the length of
vectors. Let g;, 1 < 7 < N be compactly supported distributions and ¢, k €
Z% be a family of N x N matrices such that ¢; # 0 for only finite indices
ke Z%. Set (z) = (¢1(x),---, on(2)T and G(z) = (¢1(x),- -, gn(2))T.
In this paper, we shall consider the existence, regularity and biorthogonality
of the solution of such a nonhomogeneous refinement equation

d(z)= > ®(2r—k)+G(z), zeR™ (1)

kez?

Hereafter we identify k' € Z? (resp. 2/ € R?) to (k',0) € Z* (resp.
(z',0) € R%). Obviously any solution of the equation (1) can be written
as the sum of a fixed solution of the equation (1) and a solution of the
corresponding refinement equation

d(z)= Y ®(2r—k), zeR~ (2)

kez?

So we call the equation (1) as the nonhomogeneous refinement equation. For
the refinement equation, there is a much large literature (for instance [CDP],
D], [GHM], [HC], [H], [HSW], (], [Ji], [JiS], [LCY], [MS], [RS]).

1.2 Motivation

The nonhomogeneous refinement equation appeared in the constructions of
wavelets on bounded domain, multiwavelets and biorthogonal wavelets at
non-uniform grid (see for instance [Me|, [CDD], [CDV], [Ma], [GHM], [HM],
[HSW], [CMS]).

In the multiresolution approximation on the unit interval [0, 1], the ap-
proximation space of scale n is spanned by interior functions, left edge func-
tions and right edge functions. Generally the interior functions are the scaling
functions on the line with their support contained in [0, 1], which satisfy re-
finement equations, and the left and right edge functions are modified from
restriction of scaling functions on the line, which satisfy nonhomogeneous
refinement equations.



Let ¢ be an orthonormal scaling functions supported on [0, N]. In the
multiresolution approximation proposed by Meyer([Me]), ¢(2"z—k),0 < k <
2" — N are chosen as its interior functions, ¢(2"z +k)xp,1(z), 1 <k < N-1
as its left edge functions and ¢(2"x — 2" + k)xj0,11(7),1 <k < N —1 as its
right edge functions, where x(,;) is the characteristic function on [0, 1]. Set

Pl (z) = (¢(2"x 4+ 1), -+, 62"z + N — 1)) xj0.1(2)
and
O (z) = (p(2"x — 2" + N = 1), -+, 2"z — 2" + 1)) xpo,1)(2)-

Then for sufficiently large scale n, ®L and ®f satisfy the nonhomogeneous
refinement equation

@y (2) = A1y, (2) + Gy (@) = 418, (22) + Gy (2)
@,/ () = Ay ;0,1 (2) + Gy (7) = A2/ (22) + G(w)

where A, Ay are constant matrices and GZ GE are vectors with linear com-

bination of interior functions as their components.

In the multiresolution approximation on the interval proposed by Cohen,
Daubechies and Vial([CDV]), ¢(2"z — k),a < k < 2" — N — b are chosen as
its interior functions, 2"x! — ¥~ P(k)p(2"z —k),0 < [ < Nj as its left edge
functions and 2™z! — Yy con n Pi(k)(272 — k), 0 < 1 < Ny as its right edge
functions, where a,b are nonnegative integers and P;,0 < [ < N, are some
polynomials with degree at most [ such that

Y Pk)p(z —k)=2', 0<1< N

kez

Similarly the vector with left edge functions as its components and the one
with right edge functions as its components satisfy the following type of
nonhomogeneous refinement equation

O(z) = AD(2z) + G(x). (3)

In [Ma], Madych studied multiresolution approximation on [0, 1] through
discrete orthogonal transform. After appropriate choose of matrix A and
function G in (3), the solution of the nonhomogeneous refinement equation
(3) together with interior functions span the approximation space of scale n.
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The multiresolution approximation on the interval in [CDV] is general-
ized to the one on bounded domain in high dimensions by Cohen, Dahmen
and Devore([CDD]). The edge functions also satisfy a nonhomogeneous re-
finement equation of the form (1) with G as linear combination of interior
functions. In the wavelet construction on bounded domain, the regularity
and biorthogonality of edge functions are known.

Nonhomogeneous refinement equation also occurs in the multiwavelet
construction. For example, let h be the hat function defined by

_ ]‘_|"E|7 T € [_171]7
h(x) = { 0, otherwise,

and w, satisfy a nonhomogeneous refinement equation of the form
we(x) = h(2z — 1) + c(we(2x) + we(22 — 1)).

Then (h,w.) leads to the symmetric orthogonal continuous scaling vector

when ¢ = —1, and the pair (b, w.) and (h, w;) with ¢ = 25 and -1 < ¢ <
1/7 leads to a family of symmetric biorthogonal scaling vector (see [GHM],

The perturbation of Daubechies’ orthonormal scaling functions and wavelets
in [HSW] is another example to use a solution of a nonhomogeneous refine-
ment equation and a scaling function as two components of a new orthonor-
mal scaling vector. Let ¢p and p be Daubechies’ orthonormal scaling func-
tions and wavelets respectively. In [HSW], Huang, Sun and Wang considered
solutions (¢1(x), ¢2(z))" of the refinement equation

{ D1(2) = Xpez CLud1(20 — k) + ez Cox2(22 — k),
$2(7) = Xhez 3 pt2(20 — k)

in the neighborhood of (¢¥p(x), ¢p(x))”. It leads to nontrivial orthonormal
scaling vector with arbitrary regularity. In [A], Ayache use the perturbation
of tensor-product of Daubechies orthonormal scaling functions to construct
compactly supported orthonormal wavelets of non-tensor product type with
arbitrary regularity on the plane.

The nonhomogeneous refinement equation is one of the cornerstone in
the construction of biorthogonal wavelet basis on arbitrary triangulation of



a polygon by lifting scheme in [CES] from hierarchical basis. The dual refin-
able function ¢ (1, x9) at the intersection of different type of grid satisfies a
nonhomogeneous refinement equation of the form

¢($1,1‘2) = Z de)(z%‘l — ]{3, 21’2) + G(IL’I, IL'Q)

keZ

and the one at exceptional node satisfies a nonhomogeneous refinement equa-
tion of the form

(21, 22) = ¢(221, 225) + G(21, 22)

(see [CES] for detail). In the construction of biorthogonal wavelets in one
dimension with non-uniform grid at last section, the solution of a nonhomo-
geneous refinement equation of the form

¢(r) = ¢(22) + G(z)

is used as the dual refinable function at the intersection node of different
type of grid.

In the construction of multiwavelets and biorthogonal wavelets on non-
uniform grid, the existence, regularity and biorthogonality of the solution
of a nonhomogeneous refinement equation are considered as the case may
be. At least for constructing more practical and efficient multiwavelets and
biorthogonal wavelets on non-uniform grid, it is necessary to study system-
atical about the existence, regularity, biorthogonality and other properties of
solutions of nonhomogeneous refinement equations.

To our knowledge, there are several authors started to working on the
nonhomogeneous refinement equations (for instance [DH| and [SZ]). They
use different technique to consider the existence and uniqueness of compactly
supported distributional solution, convergences of corresponding cascade al-
gorithm and other properties of nonhomogeneous refinement equation.

1.3 Main Results

In Section 2, we consider the existence and explicit expression of compactly
supported distributional solution of the nonhomogeneous refinement equation
(1) and its general setting which includes nonstationary refinement equations
and continuous refinement equation as special cases. The main results are



Theorems 2.1 and 2.8, where necessary and sufficient conditions are given to
the existence of compactly supported distributional solutions of nonhomo-
geneous refinement equations. We use the vector F' of compactly supported
distributions in Theorem 2.1 for more freedom and for better convergences of
the explicit expression. When F'is chosen as vector of distributions supported
on the origin, we give explicit necessary and sufficient condition on the mask
of the corresponding refinement equation for the existence of the solution of
nonhomogeneous refinement equation in Theorem 2.3. Similar results are ob-
tained by Dinsenbacher and Hardin([DH]), and Strang and Zhou([SZ]). For
scale case, i.e., N = 1, we can choose P(D)¢, as the function F' in Theorem
2.1 where P(D) is a differential operator and ¢y is a solution of a refinement
equation (Theorem 2.4). We apply the explicit expression in Theorem 2.1 to
solve the corresponding refinement equation (2) and obtain the result about
the existence of compactly supported distributional solutions of refinement
equations in [JS] and [Z]. At last, we give explicit necessary and sufficient
condition to the existence of compactly supported distributional solution of
the equation (3), simple form of the nonhomogeneous refinement equation
(1) (Theorem 2.7).

In Section 3, we use the behavior of symbol H and regularity of G to
estimate the regularity of the solution ® of the nonhomogeneous refinement
equation (1) in Bessel potential space LPY by complex interpolation method
and to estimate Sobolev exponent s,(®),1 < p < oo (Theorems 3.1 and 3.5).
Some examples are included to show that these estimates cannot be improved
in general. The number « in (22) and (24) is very important to our estimate.
We study the relationship between the number o and the spectral radius of
the symbol H(0) in Theorems 3.4, 3.8 and 3.9.

In the construction of biorthogonal wavelets on bounded domain or non-
uniform grid, solutions of nonhomogeneous refinement equations are used as
functions near boundary or near intersection of different type of grid when
d' < d. For edge functions in the wavelet construction on the interval, we only
consider the biorthogonality between edge functions and interior functions or
between themselves instead of the one between their integer translates. So the
biorthogonality of solutions of nonhomogeneous refinement equations should
be different with the one of refinement equations when d’ < d. In Section
4, we consider the restricted biorthogonality between solutions of nonhomo-
geneous refinement equations and give a practical condition (Theorems 4.1
and 4.2). In Example 4.3, the restricted biorthogonality of solutions of non-
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homogeneous refinement equations and the biorthogonality of solutions of
refinement equations are compared in some sense.

In some applications such as construction of curves and surfaces, and fi-
nite element method, the user provides data, sampled on a closely spaced
but irregular grid. Resampling onto regular grid is typically costly and may
generate unwanted artifacts. In [SS2], it is shown how to build a multiresolu-
tion analysis and an associated transform on the original non-uniform grid.
In [W], Warren shows how spectral analysis can be used to analysis the limit
function of an interpolating subdivision on non-uniform grid of semi-regular
case (see Remark 5.9 for its definition). In [DGS] Daubechies, Guskov and
Swelden study the smoothness of the limit function of unequally spaced in-
terpolating subdivision schemes by the commutation formula. For the spline
context, global subdivision scheme for non-uniform spline was introduced in
[QG]. In last section, we discuss the construction of biorthogonal wavelets on
one-dimsional non-uniform grids of semi-regular case, consider its unit de-
composition and regularity (Propositions 5.6 and 5.7), and use corresponding
wavelets to characterize certain Sobolev space(Theorem 5.8). To our surprise,
the regularity of dual refinable functions is same as the one on non-uniform
grid. Thus we may construct refinable functions with arbitrary regularity
on any non-uniform grids of semi-regular case (Remark 5.10). In the con-
struction of biorthogonal wavelets, we find that the dual refinable function
at the intersection node of different type of grid satisfies a nonhomogeneous
refinement equation. This construction is also the one-dimensional model of
biorthogonal wavelets on triangulation of a polygon in [CES].

1.4 Notations

1fllp: = (fga |f (@) [Pdz) /P, 1 < p < oo;

1F[lp: = (fge s [fi(@)[Pdz) P, 1 < p < oo when F(x) = (fi(2), -+, fx(2))";
_ !

Opr: the Kronecker symbol defined by 6y = { (1): Z ; ]]z, :

p(A): the spectral radius of a matrix A;

r(A): the rank of a matrix A;

Zi: the set of integers in Z¢ with nonnegative components;

Re z: real part of a complex number z;

I'm z: imaginary part of a complex number z;



Re (z1,++,29) =: (Re z1,--+, Re zy);
Im (z1, - ,2q) = (Im z1,- -+, Im zg);
sl=: s11---s4! for s = (s1,---, 54) EZ;L;
=& for = (&, 8a) €C

Xx: the characteristic function on the set K.

and s = (sq,---

7Sd)

d
€ Z,;



2 Existence

In this section, we will consider the existences of compactly supported dis-
tributional solutions of the nonhomogeneous refinement equation (1) and its
general setting (19). In one dimension, Dinsenbacher and Hardin, Strang and
Zhou established in [DH| and [SZ] some characterization to the existence of
compactly supported distributional solutions of nonhomogeneous refinement
equations.

Define the Fourier transform f of an integrable function f by

f(6) = fpoe = f @)z,

The Fourier transform of a compactly supported distribution is understood as

usual. For F(x) = (fi(w), -, f(@))", F(¢) is interprated as (£1(€), -+, f(€))"-
Set the symbol H (&) of the nonhomogeneous refinement equation (1) by

H(E) = % T e, ¢ e R @)

kezd

Then the nonhomogeneous refinement equation (1) can be written as

a(e) = H(5)a() +G(©) 6

By using (5) for n times, we obtain

B(E) = HE ') HE OB 70 + T HR - HEIOGR 9. (©

Theorem 2.1 Let G(x) be a vector of compactly supported distributions, cx
be N x N matrices such that ¢, # 0 for only finite indices and H(E) be
defined by (4). Then a necessary and sufficient condition such that there
are compactly supported distributional solutions ¢;,1 < j < N of the non-
homogeneous refinement equation (1) is that there exist compactly supported
distributions f;(x),1 < j < N such that

2 €\ &

GE) = FO)+HGF(E) =0(¢) as £—0, (7)
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where T is the minimal nonnegative integer with p(H(0)) < 27 and F(£) =

(f1(&), -, Fn(O)T.
Let ®(x) be defined with the help of Fourier transform by

®i(&) = FE)+ T H2E) - H2™) (8)
(G(27¢) — F(27¢) + H2 1) F (277 1¢))

Then any solution ® of the nonhomogeneous refinement equation (1) can be

written as
O(z) = Dy(x) + Py(z),

where ®o(x) is a solution of the corresponding refinement equation (2).
To prove Theorem 2.1, we need a simple lemma.

Lemma 2.2 Let H() be a matriz with trigonometrical polynomial entries.
Then for any 6 > 0 there exists a constant C such that

1HS) - HCEI < CeM(p(H(0)) +6)", V=1, €e e

Proof. For any 6 > 0 there exists a norm || - ||, such that
IHO)]|« < p(H(0)) +6/2.

Recall that H (&) is a matrix with trigonometrical polynomial entries. Then
there exists a constant C' such that

|H (&) — H(0)||. < Cefll¢], V e

Therefore by the equivalence of different norms we have

1) B < I B

< CTLUHO). +Ce™ M2 7 |¢)) < CeFl(p(H(0) + 6)".
1=1
Proof of Theorem 2.1 By (5), the left hand side of (7) equals zero

when F(€) is replaced by ®(¢). Hence the necessity follows.
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Obviously the sufficiency reduces to right hand side of (8) being well-
defined, analytic and Fourier transform of compactly supported distributions,
and satisfying (5).

By (7) and Lemma 2.2 with 0 < 6 < 27 — p(H(0)), we obtain

1H@2g) - H(2 ")[G(2 ") — F(27"€) + H(2 " ') FR ™)
1 (271¢) - - H2T")|| x |G(27"¢) — F(27"¢) + H(2 "' F(27" ¢
2”

<
< Ce“Fl(p (H(O)) +6)"2T, Vn>1, £

Therefore the sum in the right hand side of (8) converges absolutely and
uniformly on any bounded domain of €¢. Hence the function ®;(¢) in (8) is
well-defined.

Denote

0n(€) = H(27'€)--- H2 "0)[G(2"¢) — F(277€) + H2 " ') P2 lx:)(] |
9
Then a,(€), n > 0 are analytic functions. Thus &, (¢) is analytic by uniform
convergences on any bounded domain of €.
Recall that H(¢) is a matrix with trigonomatrical polynomial entries and
that GG is a vector with compactly supported distribution components. Then
there exist constants C' and A such that

|H(&)|| < cetltm el v ¢eqd

and
G| < C(L+ )™ v eea

By (8) and uniform convergence, there exists a constant C' such that

B,(6)] <O, V<2

Thus for 2" 1r < [¢] < 2"7, we have

A

IIH(2‘1£) H(27"E) @1 (2778
< C’H IH(277¢)|| < C [ (Cetm 2 7ely < gmeAltm ¢l (10)

Jj=0 Jj=1
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and

I3 HE ) HEIGEE)]

< C Z ( f[ CetlIm 2780 5 (O(1 + [¢])Cetiim 2778 (11)

j=0 =1
< nCmR(1 A Jg]) e m 8,

Combining (6), (10) and (11), we get
1B,(6)] < C(1 + [¢])Cem €.

This proves that all components of ®; are Fourier transform of compactly
supported distributions supported in [—A, A]¢ by Paley-Wiener Theorem.

Hence it remains to prove that ®;(x) satisfies the nonhomogeneous re-
finement equation (1). By (9), we have

£ /&

b () = HSan (), n >0
Hence
B0 - HE): ()
= FO+ X an(©) - HGFE) - X H Gl
= P - H(%)F(g) +ag(8) = G(9).

This proves that ®; satisfies (5) and completes the proof.

By Theorem 2.1, the problem to solve the nonhomogeneous refinement
equation (1) reduces to finding compactly supported distributions f;,1 <
j < N of the equation (7). Now we give a simple method to construct
fj,1 <j < N with their supports at the origin.

Write
G = > G&+0(EN) (12)

|s\§7'—1,seZd+
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and

HE)= > H&+0(E. (13)
|s|<r—1,s€Z%
Set
S=1I- (2_‘8|Hs—t)s,teZ‘j_,Oﬂs\,\t|§7'—1 (14)
and
G = (Gz)sTezi,og\sgrfp (15)

where we set Hy =0 when s ¢ Z% or |s| > 7 — 1. In one dimension,

I — H, 0 xE 0 0
—iH, I-im, - 0 0
S = : : : :
_277+2HT_2 _2*T+2HT_3 oo T — 27T+2H0 0
_277+1HT_1 _2*T+1HT_2 . _277+1H1 I — 2*T+1H0
and

G = (G(J;ﬁ T GZfI)T'

Theorem 2.3 Let Gy, Hy, S and G be defined by (12)-(15). Then the neces-
sary and sufficient condition such that there exist some compactly supported
distributional solutions f;,1 < j < N of the equation (7) is

r(S) =r(5%)
where S* = (S, G) is the augmented matriz.

Proof. Write
FO= Y  E&+O(). (16)

s€Z4,0<]s|<r—1
Then the equation (7) for F(€) is equivalent to

Gy+27 > H O F-F=0 seZ'0<|s|<r-1

teZd |t <r—1

or

SF =G, (17)



o T\T . . .
where F' = (F} )sezi,ogs\g—l' Observe that the equation (17) is solvable if

and only if r(S) = r(S*). Thus the necessity follows from (17) and the suffi-
ciency follows by letting F'(§) = ¥,cz¢ g<|sj<r1 F&* and (F5HT

s /seZd 0<|s|<r—1
be a solution of the equation (17).

Obviously the solution of the equation (7) is not unique. The functions
f;»1 < 3 < N chosen in Theorem 2.3 are distributions supported on the
origin.

For N =1 and d = 1, we can simplify the conditions in Theorem 2.1
and construct the functions F in (7) explicitly. Let ¢p(x) is the solution of
refinement equation

do(x) = H(0)™" > crgo(2x — k).

kez

Theorem 2.4 If H(0) # 2' for all nonnegative integers I, then there exists
compactly supported distributional solution of the nonhomogeneous refine-
ment equation (1) and the function F(x) in (7) can be chosen that

R R T—1 ( 7—1/\(5) s
b - i § E

If H(0) = 2! for some nonnegative integer [, then the sufficient and necessary
condition such that there exists compactly supported distributional solution of
the nonhomogeneous refinement equation (1) is

(G(&)ey " (€)"(0) = 0,

where O denotes I-derivatives of f. In this case, F(z) in (7) can be chosen

that -1 1)
: s (90 9)(0)8°
F() = —_—
Theorem 2.4 follows from Theorems 2.1, 2.3 and the facts that (S) =7
when H(0) # 2! for all nonnegative integer [ and that r(S) =7 —1 = when
H(0) = 2! for some nonnegative integer [.
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In Theorem 2.4, the function F is chosen that P(D)¢, for some differential
operator P(D) and is more regular than the distribution supported at the
origin when ¢ is sufficiently smooth.

Theorems 2.1 and 2.3 can be used to study the existence and explicit
expression of nonzero solutions of the refinement equation (2).

Theorem 2.5 Let F(£) be a solution of the equation (7) with G(£) = 0.
Assume that Fy # 0 in (16) for some s € Z%,|s| < 7 —1. Then

©(¢) = lim H(27'¢)--- H2 ™) F(27"¢)

n—0o0

is a nonzero solution of the refinement equation (2). The dimension of com-
pactly supported distributional solutions of the refinement equation (2) is
NA(r,d) — r(S), where A(t,d) denotes the dimension of the space of all
polynomials in R® with degree at most T — 1.

Proof. For any solution @ of the refinement equation (2),

£ 608
b(e) = H(S) - H(S)B(S) = 0
as n — oo when R

(&) = O0(E") as [] —0.
Thus the solution ®(x) of the refinement equation (2) isn’t identically zero
if and only if ®*)(0) # 0 for some s € Z%,0<|s| < 71— 1. By (8), we have
®{(0) = s!F, for all s € Z%,0 < |s| <7 — 1, where F, is defined by (16).
Then Theorem 2.5 follows from Theorem 2.3.

Set
SlO = [ - (2_|s‘HS—t)s,tEZ‘i,loS\S|,|t\ST—17 ]_ S lO S T — ].

and
T,

0

=1- (27‘5'Hsft)s,tezi,oﬂs\,\t|§lofl7 1< <7-1

Then the matrices S;, and 7}, are block lower triangular matrices with diag-
onal block I — 25/ Hy and

(T O
s=(% )
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where B is a matrix. By (14), Let [y be the minimal nonnegative integer
such that 2 is an eigenvalue of H(0). Then T}, is nonsingular and there
exists a vector a such that aHy = 2%«a. Let & = ady, be the vector with the
sp-th block component o and other block components zero where |so| = lo.
Then the so-th block component of &S, is (I — 2710l Hy) = 0 and other
block components zero from the fact that S, is the block lower triangular
matrix. Hence Sj, is singular and S is singular too. This proves that there
exists nonzero compactly supported solution of the refinement equation (2).
Obviously the assertion above doesn’t mean that there exists compactly sup-
ported solution ® of the refinement equation (2) with ®(0) # 0 even when
one is an eigenvalue of H(0). For example, (0,Cé'(z))T are all compactly
supported solutions of the refinement equation

@(x):<_22 2)@(2x)+(g 8)@(233_1),

where ¢'(z) denotes the derivative of the delta distribution. It is easy to see
that any solution with S;F = 0 satisfies S(0, F")" = 0. Hence there are
not any compactly supported solution ® of the refinement equation (2) with
®(0) # 0 when 7(S) = 7(S)) + N because S(q)S)OSMST—l,sEZ‘i = 0, where

®, is defined by (16) for ®(¢). Conversely the dimension of solutions of the
linear equation SF = 0 with the first block zero is N(A(7,d) — 1) — r(5;) <
NA(r,d) —r(S) when (S) < r(S;) + N — 1. This proves that there exists a
solution F' = (F}) of the linear SF' = 0 with the first block nonzero. Let ®
be defined by (8) with F(§) = Yoczd F,¢°. Then ® satisfies the refinement

equation (2) and ®(0) = F, # 0. This proves that

Corollary 2.6 Let S and S), be defined as above. The necessary and suf-
ficient condition such that there exist compactly supported solutions of the
refinement equation (2) is that 2 is an eigenvalue of H(0) for some nonneg-
ative integer . Furthermore there exist compactly supported solutions ® of

the refinement equation (2) with ®(0) # 0 if and only if (S) < 7(S))+N—1.

It is easy to see that S, is of full rank when 2!, [ > [, are not eigenvalues
of H(0). Thus r(S) < NA(r,d) — 1 < r(S;) + N — 1 when 2/,] > 1 are
not eigenvalues of H(0) and one is an eigenvalue of H(0). Hence under
the assumption 2!,/ > 1 are not eigenvalues of H(0), the necessary and
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sufficient condition such that there exist compactly supported solution & of
the refinement equation (2) with ®(0) # 0 is that one is an eigenvalue of
H(0) . The assertion above was proved by Jiang and Shen ([JS]) for N > 2
and Zhou ([Z]) for N = 2. In particular, there are considerable literature
concerning the existence and uniqueness of compactly supported solutions of
refinement equations (see for instance [HC|, [CDP], [H], [HSW], [LCY]).

The nonhomogeneous refinement equation in one dimension below is an
important class of nonhomogeneous refinement equation

®(z) = HP(22) + G(x), (18)

where H is an N x N matrix. By elementary property of a matrix, it can
be written as U~'TU, where U is nonsingular, T = diag(E(\y), -+, E(\;))
and

hy 0
1A

E(N) = o L 1<i<1p
0 Y

¥‘\ilrite Ud(z) = (By(z)7, -+, By (2)")T and UG(z) = (G ()7, -+, G, (2)T)T.
®)(2) = E(N)®(22) + Gy(z), 1<1<1p.

Therefore the nonhomogeneous refinement equation (18) is essentially the
combination of the following type of nonhomogeneous refinement equations

Type I: ®(x) = A\®(22) + G(x), N =1.
Type II: ®(z) = E(A\)®(2x) + G(x).
By Theorems 2.1 and 2.3, we have

Theorem 2.7 The nonhomogeneous refinement equation of type I is solvable
if and only if X # 2! for all nonnegative integers | or A = 2' and GV (0) = 0.
The nonhomogeneous refinement equation of type II is solvable if and only if
A # 2L for all nonnegative integer | or X = 2! and Ggl)(O) = 0, where G1(z)
denotes the first component of G(x).
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The nonhomogeneous refinement equation can be formulated in general
setting. Fix a matrix A with the norms of all eigenvalues strictly larger than
one. Let Z, be Z or Z .. For integrable functions f and g, the convolution
f * g between f and g is defined by

Fr9@) = [ fl@=nawy.

The convolution of two compactly supported distributions is understood as
usual. Denote the space of compactly supported distributions by D’. Con-
sider the generalized nonhomogeneous refinement equation

®,(x) = Hy *x Py (Ax) + Go(x), n € Z,, (19)

where all entries of H, and all components of ®,, and G,,,n € Z, are in a
bounded set of D’. Obviously nonstationary refinement equation and con-
tinuous refinement equation are special cases of the generalized nonhomoge-
neous refinement equation (19) (see [CD], [ChS], [DR], [DM] and references
therein).

Theorem 2.8 Let G, (z), H,(z),n € Zy be in a bounded set of D'. Then
the following are equivalent:

1) There ezists a solution ®, of the generalized nonhomogeneous refine-
ment equation (19) with its components in a bounded set of D',

2) There exists F,, with its components in a bounded set of D' such that
(G(€) = Fu(€) + Hu(BE Fa (B < CIET, V€] < 1, n € Zo,

where C' is a constant independent of n € Zy, B denotes the inverse of
the transfer of A, and T is the minimal nonnegative integer such that
I|H,(0)||p(B)" < r < 1 holds for some constant 0 < r < 1 and some

norm || - || independent of n € Z,.
Set
®u(€) = Fu(€) + $52 Husa (BE) -+ Huyj(BIE)

(Gusi(BIE) = Foyj(BIE) + Hyyjr (BITE) Fy 1 (BIH))

18



Then any solution ®,,n € Z, of the generalized nonhomogeneous refinement
equation (19) can be written as

q)n(l') = q)n,l(x) + (I)n,g(l'),

where @, 1 is the inverse Fourier transform of ®,1 and ®,, is a solution of
the corresponding refinement equation

(I)n,()(x) = Hn * q)n+1(Ax)

Theorem 2.8 can be proved by the same procedure used in the proof of
Theorem 2.1, we omit the detail here. Similarly we can establish the corre-
sponding results of Theorems 2.3 and 2.5 to the generalized nonhomogeneous
refinement equation (19).
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3 Regularity

The analysis of the smoothness of compactly supported solution of refine-
ment equations is widely studied (for instance see [CDP], [CGV], [J], [Ji],
[MasS], [MS], [RS] and references therein). In this section, we divide two sub-
sections to discuss the regularity in Bessel potential spaces and estimate of
Sobolev exponent of the solution of the nonhomogeneous refinement equa-
tion (1). These estimates can used directly to the regularity estimate of dual
refinable function at the intersection node of different type of triangles of a
triangulation in [CES].

3.1 Time Domain Estimate

For nonnegative integer v, f € LP7,1 < p < oo means that f and f(
are p-integrable for all s € Z¢ with |s| < . For noninteger v > 0 and
1 < p < oo, LP7 is defined as the complex interpolation space of LP7* and
LP72 where 71, 79 are nonnegative integers with v; < v < 7, (see [BL]). For
F(x) = (fi(z), -, fxn(x))T, F € LP7 is interprated as fi,---, fy € LP7.
For 1 < p < oo, the norm ||f||,, on L7 can be defined by the L? norm of
(F(6)(1+|€]%)7/2)Y, where fY denotes the inverse Fourier transform of f. For
p = 2, the Bessel potential space L?7 is just the usual Sobolev space.
Let
TF(z)= Y aF(2z—k). (20)
kez?

Then the nonhomogeneous refinement equation (1) can be written as
TF(z) = F(x) — G(z).

Write
H@2Y') - H(E) =23 ¢, e (21)

kezd

Theorem 3.1 Let 1 < p < oo and v > 0. Let ® be the solution of the
nonhomogeneous refinement equation (1), and let G, H and ¢, be as in (1),
(4) and (21) respectively. If G € LPY and

27N e P < C270 (22)
kezd
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with o« > vy, then ® € LP7.
To prove Theorem 3.1, we need a lemma.

Lemma 3.2 Let T be defined by (20), cnr by (21) and let F' be the vector
of compactly supported p-integrable functions. Then there exists a constant
C dependent only of the support of F' such that

IT"Fll, < C@7 37 fennl”) P IIE -

kezd
Proof. By (20) and (21), we have

T"F(z) =Y cpF(2"z — k).

kez?

Hence by the assumption on F', we obtain

T"F@)P <C Y leaslIF (2" k)P,

kez?

Thus
IT"Fll, < CQ27 S Jear”) P F .

kezd

Proof of Theorem 3.1. By taking £ = 0 in (21), we obtain

HO)"=2T"Y" cup.

kez?
Hence
[H(0)"]] < 27" 3 Jensl S COY lensl?) /P27 < C2707,
kez? kezd
Thus

p(H(0)) <27 < 1
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and 7 = 0 in Theorem 2.1. Therefore we may use zero vector as a solution
of the equation (7) and we obtain by (8)

B(6)= 3 H@ '0)- H "G "),
Hence -
O(z) = Z:OT”G(Q:). (23)

By (23) and Lemma 3.2, we have

12f, < > IT"Gll,
n=0

o0

< Y lear) PG,
n=0 keZz4
< CY 2 "G, < ClGp
n=0

Observe that
(TG) (z) =2TG (x).
Therefore .
'(z) => 2"T"G'(2).
n=0

Hence for a > 1,

12, < 322" 117G"l, < O 327Gl < Ol Gl

n=0 n=0

Inductively we can prove that
1@y < CllGIlpy

for all nonnegative integers v < a. This proves the assertion when v is an
integer.

Now we prove the assertion for all ¥ > 0. Recall that LP7 is the complex
interpolation space between LP7' and LP7?, where v, and v, are integers
and 71 < 77 < 2. Therefore for every G(z) € LP7, there exists an analytic
function G(z, z) about z on Q@ = {z € C;0 < Re z < 1} such that
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e G(x,z) is continuous about z on {z € C;0 < Re z < 1},
o G(2,0) = G(z), where 6 = (v =)/ (72 = ),

o |G(@, it)llps < CeMGllyy, VEER,

o [|G(z,1+it)||p, < Ce“UG,, VteR.

Without loss of generality, we assume that G(z, z) is supported in a fixed
compact set independent of z € (2, otherwise by multiplying a compactly
supported smooth function which takes values 1 on the support of G.

For F(x) = (fi(z), -, fx(x)), define

T,F(z) = 27nn=7e=mamp () 2 € Q.
n=0

Then N
T,G=> T'G
n=0
satisfies the nonhomogeneous refinement equation (1) by (23). Furthermore
there exists a constant C' such that

||T’itF||P,V1 S CGCMHFHP,VU Vi € R

and
||T1+itF||p,72 < OGCM“FHpﬁza VieR.

Set
R.G(z) = ((TG(,2)" (L +]- [2)0r+0r-m/2) (g),

Then R,G(x) is an analytic function about z on © and continuous on {z;0 <
Re z < 1}. Furthermore for ¢ € R we have

|R:uGllp < CITuG(,it) |y < Ce“MNG (i) ||y < CeP[Glpr,
and

1RusiGlly < CITiriaGC L4 it) |, < Ce“NG (1) |y < CeM|G.
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Thus
| RoGllp < CIGlp,y

by complex interpolation theorem ([BL]). Hence Theorem 2.1 follows from

1RoG |, = | TyG

|p,7 = ||(I)||p,7'

The condition a > v in Theorem 3.1 cannot be improved in general.

Example 3.3 Let ¢ be a compactly supported orthonormal wavelet of a mul-
tiresolution and belongs to C" for some large integer vy (see [D]). Then 1)
belongs to LP° for1 < p < oo. Let ¢q be the solution of the nonhomogeneous
refinement equation

¢1(z) = 27%(P1(22) + ¢1 (22 — 1)) + ¥().

Then

2_n Z |Cn7k|p = 2_apn
kez

and ‘
27 —1

¢1(z) = 22%’ ]; V(2x — k).

For vy > 7, by the characterization of LP7 (see [D]), ||¢1]lp,y s equivalent to

27 -1

00 Ry ) 00 Ry 1/2
10222077 37 w2 =kl = 132 220 Y x0()) Iy
§=0 k=0

J=0

Hence ¢y € LP7 if and only if a > 7.

We say that ®(z) = (¢1(),- -, dn(x))" € LP is LP stable if there exists
constant C' such that

CHY )P < 32 ek @(@)ll, < Y el

kezd kezd kezd

holds for all sequence of vectors {ey, k € Z*} (see [JM]).
In the proof of Theorem 3.1, we see that p(H(0)) < 27 when the symbol
satisfies (22). Conversely we have
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Theorem 3.4 Let Hg) be the symbol of the nonhomogeneous refinement
equation (1), and let ®(x) € LP be compactly supported solutions of the re-
finement equation (2) with symbol NH (&) where |\| = p(H(0))~'. If ® is LP

stable, then (22) holds for o = _W _

Proof. By the L? stability of ®(z), there exists a constant C' such that

@ ol 3 cas®(@'z = BPd)? 2 CCS flensl)

keZd kezd
Observe that

(32 can®(2"- )" (€)

kezd

~

= H27'€)-- H2O)P(27"¢) = A\7"d(¢).
Thus
@73 lewsl)H? < Clp(H(O))]"

kezd

3.2 Frequency Domain Estimate

For a compactly supported function f, the Sobolev exponent s,(f) is defined
by

o) = sup{; s 1P (L + Jgl7d < o0)

for 1 <p < oo and

Soo(f) = sup{7; f(E) A+ [€])" is a bounded function}.
For a vector F(x) = (fi(z),---, fn(x)), s,(F') is interprated as

sp(F) = min{s,(f;),1 <j < N},

25



Theorem 3.5 Let 1 <p<oo,1 <r<oo and a > 0. Let ® be the solution
of the nonhomogeneous refinement equation (1), G(x) be as in (1) and H be
the symbol of (1). Assume that
d(r—1)

rp

Spr(G) > a+

and there exists a constant C' such that for alln > 1,

(/ | |H(E) - HE o) |Pr/e=0dg) ™" < camntortdin - (24)
¢|<2nm

Then s,(®) > a.

Proof. By letting n tend to infinity in (6) and combining p(H(0)) < 1
(see Theorem 3.8 below), we obtain

o0

b(e) = H(2'€)---H2 ")G(27").

n=0

Hence it suffices to prove that for any § < « there exist constants C' and
6 > 0 such that

St )+ HETOGERTOP (L + el de < 0277,

Write ) X
Gonl©) = 3 |G(E + 2km) (1 +2°)¢ + 2kr]) .

kez
Then

Jpt [H(©) -+ HET OGP (1 + [el)de
S [ W) - HETOIPIG (27" e

< 027n(o¢p+d/r)(/

|§|<2nm
o2 (( [ 1Gan(@)lde)

Cs2 e ( /|§|§W| ST |G(E + 2km) [P (1 + 27|€ + 2k )PP

keZd

G2 m)de) "

1/r

IN

IN
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1/r
(1 + |£ + 2k7r|)d(r71)+6d€) /

—(a—B)n ~ T r r— 1/
< G ([ GO+ fgly e ag)
< Qg2 ™eBp

— Y

where § < (a — ()r, the second inequality follows from the assumption on
the symbol H and Holder inequality, the fourth one holds because of

Z |€k| < ( Z |€k|r(1_|_|£_|_2k7r|)d(r—1)+6)1/r

kez? kezd

(X a+le+ 2k7r|)—d—6/<r—1>)<’"—1>/’"

kez?
< C (1 ok d(r—1)+6 L/r
< Go X2 el (1 + |€ + 2kr) )
kez?
and the last one follows from the assumption on s,,(G).
The assumptions on s,,(G) and the symbol H(¢) in Theorem 3.5 cannot
be improved in general.

Example 3.6 Let By be the spline of order 2k defined by

Bus(€) = (5)

§

Then ®(z) = #B% satisfies the nonhomogeneous refinement equation

k
() =272k Z ( " Ekm ) &2z — j) + Bax(x).
=k

Observe that s,(Bak) = Soo(Bak) — 1/p = 2k — 1/p. Thus

1 r—1
$p(P) = 2k — ]—9 = Spr(Bak) — o

On the other hand,
(Jyoye, @) H TP D)

< 2—7pn(/ |COS(2—2€) .. _008(2—n—1€)|2kpr/(r_1)d£)(7"*1)/r < oo,
§|<2nm

(r—=1)/r

Therefore the equation (24) holds when v > 2k — 1/p+d/r.
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Example 3.7 Let v > 0 and ®(x) be the solution of the nonhomogeneous
refinement equation

P(z) =272k Z ( L 3k|]| ) ®(2x — j) + Bax(82).

Jj=—k

By the same procedure as in Example 3.6, we have
([ 1@ mE g pr/e=) ™ ag < e,
|§|<2nm

For |€] < 2™Flr  we have

o . 2%

n=0

. 2k
2—<no—l>v( sing )ng@—no—%)

v

2n0—1 gip 2-notLE

. 2k
o (e Y

™ 2mo—lgin 2-mot1¢

v

Therefore
d(&)|Prd
/2"07r<§<2n0+17r| (€)| £
: 2kpr
(2)216177"2’7(7101)[71‘/ Slng dg
T |¢|<2mo—1x no—1 sin2—n0+1€

. 2kpr
(2)4’61”"2—7(no—1)pr / sing) ™ dg
m gl<zmo=2x \ &

> 27PN g > 1.

v

v

Hence
5p(®) <.

Obuviously
d(r—1)

rp

1
Spr(BZk) =2k — 2_9 >+

as k is chosen large enough.
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The condition (24) is important to the estimate of Sobolev exponent of the
solution of the nonhomogeneous refinement equation (1). From the proof of
Theorem 3.5, we see that the condition (24) can be replaced by the following
weaker condition: for any ¢ > 0 there exists Cs such that

([, MHE©--HE g/ vag)"
|§]<2nm

< 0627n(o¢p+d/r75) (25)

and that the condition s, (G) > o+ d(:—;l) by

3 IG(E + 2k7)P(1 + |€ + 2kx])* € L7 ([, 7])

kez

for all § < a. There is close relationship between the number « in (24) or
(25) and the spectral radius of H(0). In particular we have

Theorem 3.8 If H(&) satisfies (24) or (25), then the spectral radius p(H (0))
satisfies

p(H(0)) < 27e-/0w),

Proof. Let H(¢) = p(H(0)) 'H(£). Then p(H(0)) = 1. By Lemma
2.2, there exists a constant C' such that

IH(€)---H2¢)|| < Ce“Fl(1+6)", n>0
where 0 < § < 1/2. Hence for || < 1, we have
|H ()~ H(27"¢) — H(0)"||
1)+ H2 O H(2 7€) — HO)|[|H(0)" |

)

IN
NE

1

O3 (1 + 8YeCk @) (n — )°

j=1

CnClgl.

<.
Il

IN

IN

Thus
IH(&)---H2 ")l > [[H(0)" || = Cn®p(H(0))"[¢]
p(H(0))"*(1 — CnClg]) > S[p(H(0))]"*!

v
—_

2
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when [¢] < £C'n~¢. Hence
[ [ HE PV > O Clp(r )/

and p(H(0)) < 27(2+d/(rp)) by (24) or (25).

We say that compactly supported distributions f;,1 < j < N is weakly
stable if the rank of N x oo matrix (f;(§ + 2k7)), oy peze equals N for all

¢ € R? (see [R]). For compactly supported functions f; € LP,1 < p < oo,
weak stability and LP stability of f;,1 < j < N are equivalent to each other
(see [JM]).

Theorem 3.9 Let H be the symbol of the nonhomogeneous refinement equa-
tion (1), and let ®(x) = (él, e Q;N) be compactly supported solution of the
refinement equation (2) with symbol (p(H(0))) " H(€). If ® is weakly stable
and sy, r—1y(®) > 0, then (25) holds for H(&) with

 loglo(H©O)] d
log2 D

Proof. Obviously it suffices to prove that for any ¢ > 0 there exists a
constant Cy such that

f oy @) )P0 Ve < Cp2,

where H(¢) = p(H(0))"'H(£). By the weak stability of ® and continuity of
® (&), there exists a bounded set K of Z? such that the rank of the matrix

~

(D(& + 2k7)),cx equals N for & € [—m, 7]?. Therefore

( Z |A<i>(§ + Qkﬂ)|pr/(rfl))(r—1)/(rp) > C|| Al

kK
holds for all N x N matrix A. Hence

figj<onn 1H(271€) - H(27E) [P/ g

C fiqj<onn Ther |H(271€) - H(27mE)D(277¢ + 2km) /=1 de
C Jig<onn Lker |B(¢ + 2nkr)[Pr/ =D e

C Jigj<cons |RE) P/ 1dg < C27,

VAN VARVAN

where the last inequality follows from sy, /—1)(®) > 0.
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4  Biorthogonality

In this section, we shall discuss the restricted biorthogonality of the solutions
® and ® of the nonhomogeneous refinement equations

{ D(2) = Lyepm P22 — k) + G(2),

B(r) = Xy g 6020 — k) + G(x), (26)

where ®(x) = (¢1(2), -+, on(x))" and B(x) = (di(x),- -, dn ()"
We say that the solutions ® and ® of the nonhomogeneous refinement
equation (26) are restricted biorthogonality or biorthogonal on /AR

/Rd O(x — k)(x — k) de = 6, YV kK € Z?. (27)

The masks {c;} and {¢} of the nonhomogeneous refinement equation (26)
are said to be discrete biorthogonal if

270N el =8I~ Gy, Ve Z”, (28)

kezd

where Gy = [[ra G(z — )G (x)Tdx.

Theorem 4.1 Let ® and P be compactly supported solutions of (26). As-
sume that ® and ® are square integrable, and satisfy

/]Rd O(2 — k)C(x) do = /de b2z — K)G(@) de =0, ¥ ke z?%. (29)

Then the mask {cy} and {¢} are discrete biorthogonal when ® and ® are
biorthogonal on Z% . Conversely if

(f oy, V@ HEOIPAE) x ([ HE)- A o)l de) =0

as n tends to infinity and the masks {cy} and {¢} are discrete biorthogonal,
then ® and ® are biorthogonal on A

Proof. The assertion of the first part follows easily from the nonhomo-
geneous refinement equations (26) and the assumptions on ® and ®.
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Now we start to prove the assertion of the second part. For n > 1 and
ke Z?%, write

n—1
= > o e—-0)+> > dj,G2x—1)

ez 7=0 1z
and
n—1
=Y & e -n+> > dGRIz—1).
ez 7=01cz4
Then ¢}, = ¢ and ¢} ; = 3, 4 ¢k | yci_op by induction. Thus
S e e = 2 (2 1) - H(g)e
4
By the discrete orthogonality of the masks {¢,} and {é} and by the assump-
tions on ® and ®, we obtain

/le Oz — k)B(z — k) dx — ]

= 3y /qu>(2”x—5)&>(2"x—z')7’dx 2, T) (@ )T

I /]Rd Oz — k)D(x — k) dr — ]|

< X ||Cﬁz||||/]Rd‘I>(2"fv—l)‘f(?”fv—l')Tdfv 27" ||| |

Cn,l/

IN
—~
]
-

4 ||2||/qu>(2nx_z)é(znx—z')de 2= 7))

Liezd
~k" 112 n T (on NT —nd 1/2
(3 NP o @@ = DB — 1) da — 275 1]
ez
n 1/2 Y 1/2
< (N ek ?) T x (X EkuIP)
ez rezd
< 02 IS chue PO x ([ I E e e Pag)
¢|I<m ¢<m

ez ez

—n+1 2 1/2 ~ —n+t1 1/2
- 0(/5<2n_1,rllﬂ<f>---ﬂ<2 OPde)” ([ QA )

— 0, as n— oo,
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where the third inequality follows

- C, when |I-1|<C
_ —IT — ! ’ - ,
| fppe @ = DO —1)"do MHS{O, otherwise,

where C' is a constant independent of [ and ' € Z%.
By the proof of Theorem 4.1, we have

Theorem 4.2 Let ®,®,G and G as in (26). If

/de G2 "z —k)G(z) dx = /]Rd G(@)G(2 s —k)Tdr =0, Vke Z¥ n>1.
(30)

and
H L H(2Tm 2d ]7{ [~{ —n 2d _
([ @ HEOPde) + ([ | HE)- A" de) — 0
as n tends to infinity, then (29) holds.

The conditions (29) and (30) on G and G seems not easy to check in gen-
eral, but practical in some applications such as the construction of biorthog-
onal wavelet basis on non-uniform grid(see [CES]).

When G and G are linear combinations of integer translates of solutions
of refinement equations, the condition (30) and the restricted biorthogonality
can be formulated in simple form.

Example 4.3 Let U(z) = (¢y(2), - -, ¥y, ()7 and U(z) = (41 (z), - - -, P, (x))7

be the compactly supported solutions of the refinement equation

U(x) = Zd ex U (2x — k) (31)
and ~ ~
U(x) = Zd eV (2x — k). (32)

Assume that ¥ and U are biorthogonal on Z°, i.e.,

/sz U(z — k)U(z — K de = 6o, Y kK € Z° (33)
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Then
274N el o = b0l (34)

kezd

Let E(€) and E(€) be the symbol of the refinement equation (31) and (32)
respectively. Then we can write (34) as

S B+ en)B(E+en) =1 (35)

e€{0,1}d

Assume that G and G in the nonhomogeneous refinement equations (26) are
linear combinations of ¥(2x — k) and V(2x — k) respectively. In other words
there exists a family of matrices d;, and dj such that

= > dp¥(2z - (36)

kezd

and

=Y dp¥ (20 — (37)

kezd

By computation and (33), we obtain

/]Rd Gla— D)@ —1de = Y dy_nd! .

kezd

Thus the discrete biorthogonality (27) of the mask {cy} and {¢} of the non-
homogeneous refinement equation (26) with G and G in (36) and (37) reduces
to

kez? kez?
Set .
D) =213 de ™
kezd
and

DE) =27 Y dye it

kezd
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Then the equation (38), or the discrete biorthogonality (27), can be written
as
T

I— 7r_d+d’/ . > D({'—i—ew,n)ﬁ({’—i—ew,n) dn
=l croye
1 NiT 1]
= 20" N H(+em)H(¢ +em) , VE € R”. (39)
ec{0,1}4'
Observe that
/]Rd G2z — k)G (z) do
= Y dy /]Rd (2" — k(22 — )T dFdx
K lcZd
= > dpw /le W2 — kl)q’@n“x - l,)T(C;,l')TCZszfU:

K lezd
where U(x — 1) = ey cﬁL’l,qf(Q”x —1"). Then the equation (30) can be

rewritten as

f[fﬂ',ﬂ'}d_d’ Z D(fl + €, TI)E(§’ + €, 7])

ec{0,1}4'

= T = T— T
E(2¢,2n) ---E(2n1¢, 20" 1y) D(27¢,2my) dn = 0 (40)

T

and

f[—w,ﬂ']‘i*‘i, Z D(Qngla an)E(anlfl, 271717]) Y E(2€,7 277)

ec{0,1}4'
-
E( +em,n)D(E +em,n) dn=0, Vn>1. (41)
Obviously the equations (40) and (41) hold when

= T
> D +em,n+€ém)EE +em,m+€em) =0 (42)
ec{0,1}4' ,e'e{0,1}d—'
and
= T
> E(& +em,n+m)D(E +em,n+€n) =0. (43)

ec{0,1}4 e'e{0,1}4-'
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When d = d', the equation (35), (39), (42) and (43) is equivalent to

— — T
HE+em) Di+em)\ [ HE+em) DEter) ) _
> 5 ~ =1. (44)
cctonye 0 (£ + em) 0 E(¢ +em)
This is the necessary condition of biorthogonality of refinable vectors (®T, UT)T

and (OT, 91T (see [CDP], [HSW], [LCY] and references therein). Obuviously
the conditions (39)-(41) is strictly weaker than the necessary condition ({4)
to the biorthogonality of refinable vectors (®7, ¥T)T and (®7,9")" when

d <d.
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5 Examples

In this section, we shall construct a new class of biorthogonal wavelets on
a non-uniform grid on the line by modifying cardinal refinable functions on
uniform grid, consider its unit decomposition, regularity and characteriza-
tion of Sobolev spaces. Also we construct refinable functions with arbitrary
regularity on any non-uniform grids of semi-regular case.

First we recall the construction of biorthogonal wavelet basis on the uni-
form grid (see [CDF] and references therein). Let ¢ be the solution the
refinement equation

2Na+1

o)=Y sl —k) (45)

k=—2N>—1

with cor, = Ok and ¢ = ¢ g, |k|] < 2Ny + 1. Assume that ¢ be square
integrable and cardinal, which means

o(k) = bpo, Vk € Z,

and satisfy [g #(x)dz = 1. Then ¢ is symmetric about the origin and the
mask ¢, —2N, — 1 < k < 2N, + 1 satisfies ZkNiO Cory1 = 1/2.
Set ¢p(r) = ¢(2"x — k). Then ¢, 4,k € Z is linear combination of
P15l € Z,
Gk = D Cl2kPni1,- (46)

ez
Let V,, be the closed subspace of L? spanned by ¢, , k € Z. Then

Vi CVosr, Ve Z
by (46). Define operators P, ; by

= [27"k)bn(@).

kez

Recall that ¢ is cardinal. Then
Popf(z) = f(z), V [€Va
Define Q1 f(v) = Poy1,1f(x) — Py f(z). Then
Quaf(z) =) (f(T”*l(Qk +1)-> 02k+1—2lf(27nl))¢n+1,2k+1($)-

keZ leZ
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Obviously @,,1 f is not well-defined for square integrable function f. So Q1
is not appropriately used to characterize L? or Sobolev spaces.
Let ¢ be the solution of another refinement equation

o(x) = Y xd(2w —k), (47)
k=—N3
with ¢, = c_y. Furthermore we assume that gz; is square integrable and

satisfies [[g ¢(7)dz = 1, and that ¢ and ¢ are biorthogonal, i.e.,

/]R oz —k)p(x — K)de = 6, VYV kK € Z.

Then
Z Ckék+2l = 26[0. (48)

keZ

Let H and H be the symbol of the refinement equation (45) and (47) respec-
tively. Then we may write (48) as

H(OH(E) + H(E+mH(E+m) = 1. (49)
Furthermore there exists a trigonomometric polynomial d(&) such that

) =1+ d(§)H(E+ ),

A
a(¢) = d(~¢),

A(E) +d(E + 1) =0, (50)
0

d(0) = —d(m) = 1.

Set gz;nk( )= 2”(/)( — k). Define operators P, 5 by
keZ ]R

Then by the biorthogonality of ¢ and gz;, we have

Pn,Qf(x) :f(l‘), \V/fE Vn
Set
Y(z) =Y é(-1)¢(2x —1—k)

keZ
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and

Y(x) =Y ep(=1)*6(2w —1 k)

keZ
Define ()2 = Py41,2 — Py 2. By computation, we have
keZ

where ¥, 1 (x) = (2"z — k) and ¢, x(z) = 2"p(2"z — k). Obviously Q,»f

is well defined for square integrable function f. Furthermore we can use

operators 0,2 to characterize L? and certain type of Besov spaces. In fact
1/2

the L? norm of (EnZO |Quaf()]* + |P0,2f(-)|2) ”? s equivalent to the one of

f when ¢ and ¢ € L>* for some a > 0.

Now we restrict ourselves to consider the construction of biorthogonal
wavelets on the following simple non-uniform grid: the length of the grid of
scale n at left side of the origin is 27"b and the one of the right hand side
is 27"a, where a # b. The construction of biorthogonal wavelets on non-
uniform initial grid with uniform dyadic subdivision will be given in Remark
5.8.

First we modify the primal refinable function ¢,  on the uniform grid
with grid length 1 to the one on the non-uniform grid above. Set

new( ) o ¢(2nb71x - k)a r <0,
kAT 9(2%a e — k), x> 0.

Then by (46) ¢I'%" satisfies the refinement equation

nik ( ch 2k¢n+1z( ). (51)

ez
By the unit decomposition 1 = Y.z ¢ni(x) for ¢, we obtain the unit

decomposition
=3 ¢y’ (@)
keZ

new
for ¢;%".
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Tlazy -

A lazy method to construct dual refinable function ¢, " is to set
- 20 1p(2" e — k), <0
lazy — ? ) = Y
Dn (7) { 2%~ 'p(2"a" 'z — k), = >0.
Then
lazy ch zkd)lnaju ), Vn>1, keZ
2icz
and

/]R new ;a]f’y( )da: = 6kk"

In wavelet approximation, the unit decomposition is very important. But in
this case the unit decomposition does not hold for d)lazy

Define )
ez, x>0,
L(z) = { b lz, x>0.

Then ¢P5(z) = ¢ni(L(x)) and ¢1'7"(x) = |L'(2)| " dnx(L(z)). This shows
that ¢lazy is constructed by using the Lipschitz transform L from the non-
unlform grid above to the uniform grid with length 1. The Lipschitz trans-
form above doesn’t always exist for the domain decomposition in high di-
mensions, such as triangulation of bounded polygon. This inspires us to
construct new type of biorthogonal wavelet basis. Here we use the lifting
scheme in [SS1] to construct new class of biorthogonal wavelets and find that
the dual refinable function at the intersection of different type of grid satisfies
a nonhomogeneous refinment equation of the form

¢(r) = ¢(22) + G(2).

For the construction of dual refinable functions, we define d;(£),l € Z at
first.

e For I > Nj, we use d(§) in (50) as d;(&).

o For 2Ny +1 < 1 < N3, di(§) = Spez dige™ are chosen that d;(€) +
di(E+7)=0,deg"d; < N3 —2N,+1,1>deg dy > —I+2N,+ 2 and
Yi>oN,+1d1j—2 = 1 when j > 4N, + 3 is odd, where degt P and deg” P
denote the upper and lower degree of a trigonometric polynomial P
respectively.
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e For 0 <1 < 2Ny, di(§) is chosen as 0.
e For I =0, dy(§) is defined by

2N>

do(§) = 2:(Clo,2k+1ei(%ﬂ)g + do,fzkflefi(%ﬂ)g),
k=0

where

o0

do,ok1 = 2(b+ a)*l(a/ o(x)dx + b/::k1 o(z)dz)

—2k—1

and

o0

2k+1
%5%4:2@+af%g/ ¢@mx+@[w é(z)dz), 0<k<2N,.

2k+1

e For 1 <0, we set d;(§) = d_i(—¢).

and

Then

and

Write .
_ Z dl,kemg
keZ
}N[l(g):1+dl(§ (E+7) = Zhuce le Z.
keZ
hlk = 0ko + = Z dyscr—s(—1)F " (52)
sEZ
hig =0 (53)

Whenk<—landl>00rwhenk2[andl<0.

Let d)”e“’ be the solution of the refinement equation

pre (z) Z hieg—on Y () (54)

leZ

with

~new(x) o 2nb71¢~)(2nb711‘ - k‘), when k S —Ng,
wh T 2%a g(2%a e — k), when k> Ns.
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Then ¢”ew is linear combination of QEZT{ , with |I| > |k] + 1 when k& # 0
by (53) and (54). Thus there exists an integer N, such that ¢"% is linear
combination of ¢Ziufv4,l with |[| > N3 when k& # 0. Hence qﬁﬁfg’,k # 0 is

well-defined for k£ # 0 and satisfies the refinement equation (54)
By (52), the symmetry of ¢ and Y02 Corp1 = %, we obtain

. 12 ok
hoo = 1+ = 9 Z (dogk41c—2k—1(—1) 2 "‘dO,*?k*lC?kH(_l)%H)
k=0
12N 1
= 1-= Zc2k+1 (dogks1 + do—2x-1) =
2 =0
Thus 1
10 (@) = 58510(®) + Gala), (56)

2
where Gn(:v)~: 2140 Eo,légiuil(x). Observe that Zi“{ o is the corresponding
function of ¢;%" of level n with corresponding initial grid lengths b/2 and

a/2. Thus gz;ﬁ“{p( ) = 2([)2%“(2@ and d)”e“’ satisfies the nonhomogeneous
refinement equation

s’ () = dny’ (20) + Gu().

By Theorem 2.1 and Theorem 3.1, the nonhomogeneous refinement equation
above is solvable in L? when G,, € L** for some o > 0. Furthermore qﬁ”e“’( )
belongs to L>™™@1/2=€) for any ¢ > 0 and for any 0 < v < min(a, 1/2) there
exists a constant C' such that

||¢new||L2 L, < 0211,(1/2+’y)

when ¢(z) € L*®. This completes the construction of dual refinable function
~Zf,§’ . For ége,g’ , we have the biorthogonality with ¢;%" (Proposition 5.1),
the unit decomposition (Proposition 5.6), regularity (Proposition 5.7) and
the characterization of Sobolev spaces (Theorem 5.8). To our surprise, the

regularity of ”e“’ is the same as ¢. This shows that our construction is better

Tlazy -

than the one by lazy method, where ¢,;” is not continuous even if qz is for

really non-uniform grid.
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Proposition 5.1 Let anew be defined by (54) and (55). Then we have
[ G @ @) = b, VK € 7. (57)
Proof By (52), we have

chf%ilk’,lf%’ ch 2k51(2k')+ Z Ay s ch,%cl,%r,s(—l)l’s) :5k,k'-

lez leZ s odd leZ

For m > 1, by (51) and (54) we may write

k=2 O

ez
and
new ~ TLC’[U
n N Z C n+m,l*
ez
Then £, = Y,cz ki s and &, ) = Yyey &, hyy_sy. By induction,
we have
E sk
Z Cm,lcm,l - 6kk'
A
and

/]R new ze]g/)({ﬂ)d{ﬂ - 5kk’

= 3 chith /]R ) (e = su). (58)

Lez
By the biorthogonality of ¢ and ¢ and the definition gz;Ze,gf for |k'| > N3, we
have

/]R i (@)op(2)de = b, VK| > Na.

Recall that for k' # 0, Ze,;‘/ is linear combination of @%4,! with [l| > Ns.
Then by letting m = N, in (58), we obtain
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For k' = 0, we have

< |Zczzé&o /]R (@) 81 o) = 61)

lez
= 27| [ o @)oo (w)dr = [ ¢nk<x>a§n+mo<x>da:|
< 2 m/?(nwewn 1625 + l6n izl dnollz) = 0, a5 m — oo,

where the equality holds because of ¢, o =27 and
S Gor@usmo(@)ds = 3 chy [ Guima(@)bnimo(@)dr = cbyp.
leZ
Hence

/]R ()G (x)d = by

and Proposition 5.1 is proved.

Proposition 5.2 Let ¢”ew be defined by (54) and (55). Then d)”e“’ satisfies
the normalized condition

/]R new () dy = 1. (59)

Proof For k # 0, we prove the assertion (59) by induction. By the
definition of ¢”ew for k£ > N3, the equality holds for £ > Nj3. Inductively we
assume that (59) holds for all £ > ky > 2. Recall that

Tnew _ 7 Tnew
o = g1 g—oke 290
[>ko

and s g, Pko—1,1-2k0+2 = Hio—1(0) = 1. Then (59) holds for k = kg — 1. This
proves the assertion for £ > 1. By the same procedure as above, we may

prove the assertion for k£ < —1.
By (56), we have

/ new — Tnew 21, dl‘—FZhgl
nO
R R 170

1
— new d -
2/]R )z + 5.
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This proves the assertion for £ = 0.
Define wavelets ¢, %" and 1/)”6“’

{ 26120 = 2¢n+1 2k+1 ZSEZ ds%k-l-l—sd)g?sw? (60)

o = 5 ez (= 1) eopradnsy -

Then we have

Proposition 5.3 Let ~Zf,§“, n and Yp5r be defined by (54), (55) and (60).
Then

Jp i @i dx—/ZR nen () (w)de = 0, Y kK € Z

and

/JR new ()G () dar = 6, ¥k, K € Z.
Proof By Proposition 5.1 and (60), we have

/R () ()

new new
= 5 X ) e [ G ()
ll’EZ
= 3 Z Cr— 2k C2k’+lfl =0,
ZEZ

and by (54)
Jip Vi (@) (2)da

= Y (251(2k+1) -y ds,2k+1—2501—25) (5l(2k’) + = Z dpr 4C1—opr — (—1)1%)

ez seZ 2iz
= > dpiCoprr—on—t — Y ds2kr1-25Cok—2
t odd SEZ
1
It
—= > dsprri—2si 1 (D castioop—i (1))
SEZ, t odd ez

= dp okt1-26 — At gky1—20r + 0 =0.
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Similarly by (60) and Proposition 5.1, we obtain
Jip Vi @) (o) da

1
= > (251(2k+1) -y ds,2k+1—250l—25)(5)(_1)l+102k’+1—l

ez s€EZ

= Opp — 3 Z ds 2k+1- 25(2( 1)l+10172502k'+171) = Oppr-

SGZ lez

Proposition 5.4 Let "% and Y be defined by (60). Then

/ new dl‘ — 0
IR

/ new da:, — 0
R

Proof Obviously the first assertion follows from (60), Proposition 5.2

and ez Cort1 = Dpez Cor = L.
By (50) and

and

2k—1 00
/]R new (1) = 2- "b/ )dx+2_"a/ (x)dr,

—2k—1

we have

3G

= 27"bay + 2~ a(l —ag) — doar 127" (b + a)

o0

=27 N (bdgapt1-25 + ads _2p—1-95),
§=2Np+1
2 — 27 azs 2No+1 s 2k+1—2s; k 2 2N2 + 1
= ”bak +2™" (]_ - CLk) d0’2k+12in71(b + a), —2N2 -1 S k S 2N2,
27 — 27" 352 o N, 11 s, —2k—1-2s, E < —=2N,; -2,

= 0,

where aj, = [~2*7! ¢(z)dx. This completes the proof.

o0
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By computation, we get

Z ci—ok(Ov(ary + 3 Z dy,sCr—ak—s( ) + Z egpi1 X
keZ 2% keZ
(2012011) — Y dsopr1-25C1-25) = 6w, VYV I1,I' € Z.
seEZ

Thus we have the reconstruction formula.

Proposition 5.5 Let ¢>g€,;” be defined by (54) and (55), and let 1/)”6“’ and
Un%’ be defined by (60). Then we have the reconstruction formula

ni =2 (Giawy + = Z disCiook—s(—1)"D)Pr% + > (- Czk+lflwgfkw
keZ sEZ keZ

and

Ziu{l > ok prer 4 D (2612k11) — D dsorr1-25Ci—as)Uny -

keZz keZ SEZ

Let V" be the closed subspace of L* spanned by ¢7%, k € Z and ynew
be the closed subspace of L? spanned by dgze,é“ k€ Z. Then

new new
Vol Vi
and
rrnew r rnew
|

by (51) and (54). Define

P:ew f (:L,) new /R TLC’LU

kGZ

and )
prew new / new

kEZ

Then by Proposition 5.1, we have

P f(z) = f(zx), V feVrw
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and

Brevf(e) = f(x), ¥ fevre
By Propositions 5.1, 5.3 and 5.5, we have

new pnew __ pnew
P Pn+1 Pn

and

new new new
P Pn = Pn .

Let W new and W "ew he the orthogonal Complement of Ve in VW and
g n n+1
[/new n vnel respectlvely Set

@ef@) = T U) fp 1)
and .
@) = L) fp 1)
Then
Quf(x) =f(x), V [feWr
and
A fla) = f(x), YV fewpe.
Furthermore
Py — B = Q™ (61)
and
Pyt — Pret = Qpe” (62)

by Proposition 5.5. .
Observe that (Pr“1)(z) = (P?"1)(x) =1 when 27" N3 < |z| # 0. Then
by (61), (62) and Proposition 5.4 we have

Proposition 5.6 Let P and P*" be defined above. Then we have the
unit decomposition
prv1 =1

and .
P =1.
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Proposition 5.7 Let o > 0 and ¢ € L>*. Then for any v < « there exists
a constant C such that

16r5 |2,y < C272ED[ |5,

Proof The assertion for k& # 0 follows from the fact that ége,;u is finitely
combination of 2"+ (2" Nz . —k) with |k| > N3 by the construction of ¢
For £ = 0, we have

Tnew 2b Tnew 2a Tnew
n,0 :1_a—_|_bz¢n,k _a+bz n,k

k>0 k<0

by Proposition 5.6. Thus the assertion holds for £ = 0.

Obviously P’ f and P:e“’ f is well-defined for locally square integrable
function f. Then by the procedure in [Da], we have the following character-
ization of L?“.

Theorem 5.8 Let ¢ € L** and ¢ € L¥™ with ag, 0 > 0. Let Prev, Qrevw
and P, QreY be defined as above. Then

no | ynew 1/2 new :
1 o 2 (12 22 1Qu F17) ll2 + 1Py £l —en < @ < min(ag, 1/2)

n>0

and

- 1/2 . .
1 o 2 122 2°"1@Q0 £17) *lla + 1 B3 fll2, - — min(ag, 1/2) < o < e,

n>0

where A ~ B means there ezists an absolute constant C such that C™1A <
B < CA.

Remark 5.9 Let {z} be initial nodes on the line such that xp < Xpyq,
limg oo T = 400, limy_,_ oo 2 = —00 and

00 > Ilgleazx|xk+1 x| > %é%lm“ x| >0
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Define the nodes xk ) of scale n > 1 by x%) = :L‘EC ) and xg’,gll = (x;” Rt

x,(g_ll )/2, where x,(c) = xp. Set

(n)
r—z ) (n
Ly(x) = NOREN) k Ol k, xe [x,g ),x,(H)l].

The grid above is appeared in [W] and is classified as non-uniform grid of
semi-regular case in [DGS].
Then 2L,(x) = Lyy1(z). Define the primal refinable function ¢Y5* o

the knot m,(cn) by
ni (¥) = ¢(La(x) — k).
Then
nil =D 2k¢n+1l

leZ
By the same procedure as the one in the construction of dual refinable func-

tions ”ew and wavelets ;;@,;U, we may construct dual refinable functions ,]Xiw

and wavelets INew such that oY and YN uniformly in L>™™1/2=6) yhen

¢ € L>* and the support ¢Ne“’ and wNe“’ is contained in a interval with cen-
(n)

ter x;, ' and length less than C2™" for some constant C' independent of n and
k. Furthermore Propositions 5.1-5.6 and Theorem 5.7 hold when @75, 75"

n,k 7 ¥m,k s

prew and 1/)”6“’ are replaced by o), VNiY, oNGY and 1/)Ne“’ respectively.

Remark 5.10 Let h be the hat function defined by
hz) :{ L—of, @e[-1,1],

0, otherwise.

For any a > 0, by the construction in [D], there exists a compactly supported
refinable function ¢ € L*»* such that

/ZR Wz)d(a — k)de = 6,V k € Z.

Then by our construction above, we may construct refinable functions QSNB“’

L*% on any non-uniform grids of semi-reqular case such that
/ZR B ()N () da = g, ¥ kK € Z.

This completes the construction of compactly supported refinable functions
with arbitrary reqularity on any non-uniform grids of semi-reqular case.
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